Lobentanzer, S.* et al. A platform for the biomedical application of large language models. Nat. Biotechnol. 43, 166-169 (2025) Luecken, M. et al. Defining and benchmarking open problems in single-cell analysis. Nat. Biotechnol. 43, 1035-1040 (2025) Luo, J. et al. Nanocarrier imaging at single-cell resolution across entire mouse bodies with deep learning. Nat. Biotechnol., DOI: 10.1038/s41587-024-02528-1 (2025) Su, J.* et al. Democratizing protein language model training, sharing and collaboration. Nat. Biotechnol., DOI: 10.1038/s41587-025-02859-7 (2025) Allesøe, R.L.* et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat. Biotechnol. 41, 399-408 (2023) Allesøe, R.L.* et al. Author Correction: Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat. Biotechnol. 41:1026 (2023) Ertürk, A. & Elsner, M. Breaking boundaries in whole-body imaging and disease understanding with wildDISCO. Nat. Biotechnol., DOI: 10.1038/s41587-023-01864-y (2023) Gottschlich, A.* et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nat. Biotechnol. 41, 1618-1632 (2023) Kim, D.-K. et al. A proteome-scale map of the SARS-CoV-2-human contactome. Nat. Biotechnol. 41, 140–149 (2023) Mai, H. et al. Whole-body cellular mapping in mouse using standard IgG antibodies. Nat. Biotechnol., DOI: 10.1038/s41587-023-01846-0 (2023) Meier, A.B.* et al. Epicardioid single-cell genomics uncovers principles of human epicardium biology in heart development and disease. Nat. Biotechnol. 41, 1787-1800 (2023) Sigmund, F. et al. Genetically encoded barcodes for correlative volume electron microscopy. Nat. Biotechnol. 41, 1734–1745 (2023) Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41, 604-606 (2023) Fischer, D.S. ; Schaar, A. & Theis, F.J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol., DOI: 10.1038/s41587-022-01467-z (2022) Gaurav, K.* et al. Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nat. Biotechnol. 40, 422–431 (2022) Gayoso, A.* et al. A Python library for probabilistic analysis of single-cell omics data. Nat. Biotechnol. 40, 163-166 (2022) Palla, G. ; Fischer, D.S. ; Regev, A.* & Theis, F.J. Spatial components of molecular tissue biology. Nat. Biotechnol. 40, 308–318 (2022) Ringeling, F.R.* et al. Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nat. Biotechnol. 40, 741–750 (2022) Annabi, N.* et al. Voices of biotech research. Nat. Biotechnol. 39, 281-286 (2021) Hoffmann, M.A.* et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411–421 (2021) Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol., DOI: 10.1038/s41587-021-01001-7 (2021) Mishra, K. et al. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. Nat. Biotechnol., DOI: 10.1038/s41587-021-01100-5 (2021) Bergen, V. ; Lange, M. ; Peidli, S.* ; Wolf, F.A. & Theis, F.J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020) Mahaddalkar, P.U. et al. Generation of pancreatic β cells from CD177+ anterior definitive endoderm. Nat. Biotechnol. 38, 1061–1072 (2020) Pleitez, M.A. et al. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat. Biotechnol. 38, 293-296 (2020) Fischer, D.S. et al. Inferring population dynamics from single-cell RNA-sequencing time series data. Nat. Biotechnol. 37, 461-468 (2019) Haghverdi, L. ; Lun, A.T.L.* ; Morgan, M.D.* & Marioni, J.C.* Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421-427 (2018) Hilsenbeck, O. et al. Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat. Biotechnol. 34, 703-706 (2016) Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015) Chu, V.T.* et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543-548 (2015) Küffner, R. et al. Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression. Nat. Biotechnol. 33, 51-57 (2015) Moignard, V.* et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269-276 (2015) Drukker, M. et al. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells. Nat. Biotechnol. 30, 531-542 (2012) Wichmann, H.-E. et al. Comprehensive catalog of European biobanks. Nat. Biotechnol. 29, 795-797 (2011) Choi, H.S.* et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 28, 1300-1303 (2010) Kreyling, W.G. ; Hirn, S. & Schleh, C. Nanoparticles in the lung. Nat. Biotechnol. 28, 1275-1276 (2010) Wurst, W. & Hrabě de Angelis, M. Systematic phenotyping of mouse mutants. Nat. Biotechnol. 28, 684-685 (2010) Orchard, S.* et al. The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat. Biotechnol. 25, 894-898 (2007) Eggan, K.* et al. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat. Biotechnol. 20, 455-459 (2002) Mainguy, G.* et al. An induction gene trap for identifying a homeoprotein-regulated locus. Nat. Biotechnol. 18, 746-749 (2000) van Camp, W.I.M.* et al. Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nat. Biotechnol. 12, 165-168 (1994)