TY - JOUR AB - The design of protein interaction inhibitors is a promising approach to address aberrant protein interactions that cause disease. One strategy in designing inhibitors is to use peptidomimetic scaffolds that mimic the natural interaction interface. A central challenge in using peptidomimetics as protein interaction inhibitors, however, is determining how best the molecular scaffold aligns to the residues of the interface it is attempting to mimic. Here we present the Scaffold Matcher algorithm that aligns a given molecular scaffold onto hotspot residues from a protein interaction interface. To optimize the degrees of freedom of the molecular scaffold we implement the covariance matrix adaptation evolution strategy (CMA-ES), a state-of-the-art derivative-free optimization algorithm in Rosetta. To evaluate the performance of the CMA-ES, we used 26 peptides from the FlexPepDock Benchmark and compared with three other algorithms in Rosetta, specifically, Rosetta's default minimizer, a Monte Carlo protocol of small backbone perturbations, and a Genetic algorithm. We test the algorithms' performance on their ability to align a molecular scaffold to a series of hotspot residues (i.e., constraints) along native peptides. Of the 4 methods, CMA-ES was able to find the lowest energy conformation for all 26 benchmark peptides. Additionally, as a proof of concept, we apply the Scaffold Match algorithm with CMA-ES to align a peptidomimetic oligooxopiperazine scaffold to the hotspot residues of the substrate of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our implementation of CMA-ES into Rosetta allows for an alternative optimization method to be used on macromolecular modeling problems with rough energy landscapes. Finally, our Scaffold Matcher algorithm allows for the identification of initial conformations of interaction inhibitors that can be further designed and optimized as high-affinity reagents. AU - Claussen, E.R.* AU - Renfrew, P.D.* AU - Müller, C.L. AU - Drew, K.* C1 - 68703 C2 - 54912 CY - 111 River St, Hoboken 07030-5774, Nj Usa SP - 343-355 TI - Scaffold Matcher: A CMA-ES based algorithm for identifying hotspot aligned peptidomimetic scaffolds. JO - Proteins VL - 92 IS - 3 PB - Wiley PY - 2024 SN - 0887-3585 ER - TY - JOUR AB - Recent work has shown that NMR structures can be determined by integrating sparse NMR data with structure prediction methods such as Rosetta. The experimental data serve to guide the search for the lowest energy state towards the deep minimum at the native state which is frequently missed in Rosetta de novo structure calculations. However, as the protein size increases, sampling again becomes limiting; for example, the standard Rosetta protocol involving Monte Carlo fragment insertion starting from an extended chain fails to converge for proteins over 150 amino acids even with guidance from chemical shifts (CS-Rosetta) and other NMR data. The primary limitation of this protocol--that every folding trajectory is completely independent of every other--was recently overcome with the development of a new approach involving resolution-adapted structural recombination (RASREC). Here we describe the RASREC approach in detail and compare it to standard CS-Rosetta. We show that the improved sampling of RASREC is essential in obtaining accurate structures over a benchmark set of 11 proteins in the 15-25 kDa size range using chemical shifts, backbone RDCs and HN-HN NOE data; in a number of cases the improved sampling methodology makes a larger contribution than incorporation of additional experimental data. Experimental data are invaluable for guiding sampling to the vicinity of the global energy minimum, but for larger proteins, the standard Rosetta fold-from-extended-chain protocol does not converge on the native minimum even with experimental data and the more powerful RASREC approach is necessary to converge to accurate solutions. AU - Lange, O.F. AU - Baker, D.* C1 - 7271 C2 - 29631 SP - 884-895 TI - Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. JO - Proteins VL - 80 IS - 3 PB - Wiley-Blackwell PY - 2012 SN - 0887-3585 ER -