TY - JOUR AB - Small mammals undergo thermoregulatory adjustments in response to changing environmental conditions. Whereas small heterothermic mammals can employ torpor to save energy in the cold, homeothermic species must increase heat production to defend normothermia through the recruitment of brown adipose tissue (BAT). Here, we studied thermoregulatory adaptation in an obligate homeotherm, the African striped mouse (Rhabdomys pumilio), captured from a subpopulation living in a mesic, temperate climate with marked seasonal differences. Basal metabolic rate (BMR), non-shivering thermogenesis (NST) and summit metabolic rate (MSUM) increased from summer to winter, with NST and MSUM already reaching maximal rates in autumn, suggesting seasonal preparation to the cold. Typical of rodents, cold-induced metabolic rates positively correlate with BAT mass. Analysis of cytochrome c oxidase (COX) activity and UCP1 content, however, demonstrate that thermogenic capacity declines with BAT mass. This resulted in seasonal differences in NST being driven by changes in BMR. The increase in BMR is supported by a comprehensive anatomical analysis of metabolically active organs, revealing increased mass proportions in the cold season. The thermoregulatory response of R. pumilio is associated with the maintenance of body weight throughout the year (48.3±1.4 g), contrasting large summer-winter mass reductions often observed in Holarctic rodents. Collectively, bioenergetic adaptation of this Afrotropical rodent involves seasonal organ adjustments influencing BMR, combined with a constant thermogenic capacity dictated by trade-offs in thermogenic properties of BAT. Arguably, this high degree of plasticity was a response to unpredictable cold spells throughout the year. Consequently, the reliance on such a resource intensive thermoregulatory strategy may expose more energetic vulnerability in changing environments of food scarcity and extreme weather conditions due to climate change, with major ramifications for survival of the species. AU - Welman, S.* AU - Jastroch, M. AU - Mzilikazi, N.* C1 - 65436 C2 - 52680 TI - Obligatory homeothermy of mesic adapted African striped mice, Rhabdomys pumilio, is governed by seasonal basal metabolism and year-round "thermogenic readiness" of brown adipose tissue. JO - J. Exp. Biol. VL - 225 IS - 13 PY - 2022 SN - 0022-0949 ER - TY - JOUR AB - Sleep is essential for memory consolidation after learning as shown in mammals and invertebrates such as bees and flies. Aplysia californica displays sleep and sleep in this mollusk was also found to support memory for an operant conditioning task. Here, we investigated whether sleep in Aplysia is also required for memory consolidation in a simpler type of learning, i.e., the conditioning of the siphon withdrawal reflex. Two groups of animals (Wake, Sleep, each n=11) were conditioned on the siphon withdrawal reflex with the training following a classical conditioning procedure where an electrical tail shock served as unconditioned stimulus (US) and a tactile stimulus to the siphon as conditioned stimulus (CS). Responses to the CS were tested before (Pre-test), 24 and 48 hours after training. While Wake animals remained awake for 6 hours after training, Sleep animals had undisturbed sleep. The 24h-test in both groups was combined with extinction training, i.e., the extended presentation of the CS alone over two blocks. At the 24h-test, siphon withdrawal durations to the CS were distinctly enhanced in both Sleep and Wake groups with no significant difference between groups, consistent with the view that consolidation of a simple conditioned reflex response does not require post-training sleep. Surprisingly, extinction training did not reverse the enhancement of responses to the CS. On the contrary, at the 48h-test, withdrawal durations to the CS were even further enhanced across both groups. This suggests that processes of sensitization, an even simpler non-associative type of learning, contributed to the withdrawal responses. Our study provides evidence for the hypothesis that sleep preferentially benefits consolidation of more complex learning paradigms than conditioning of simple reflexes. AU - Thiede, K.I.* AU - Born, J. AU - Vorster, A.P.A.* C1 - 62761 C2 - 51049 CY - Bidder Building, Station Rd, Histon, Cambridge Cb24 9lf, England TI - Sleep and conditioning of the siphon withdrawal reflex in Aplysia. JO - J. Exp. Biol. VL - 224 IS - 16 PB - Company Biologists Ltd PY - 2021 SN - 0022-0949 ER - TY - JOUR AB - Brown adipose tissue (BAT) enables adaptive thermoregulation through heat production that is catalyzed by mitochondrial uncoupling protein 1 (UCP1). BAT is frequently studied in rodent model organisms, and recently in adult humans to treat metabolic diseases. However, complementary studies of many non-model species, which have diversified to many more ecological niches, may significantly broaden our understanding of BAT regulation and its physiological roles. This Review highlights the research on non-model organisms, which was instrumental to the discovery of BAT function, and the unique evolutionary history of BAT/UCP1 in mammalian thermogenesis. The comparative biology of BAT provides a powerful integrative approach that could identify conserved and specialized functional changes in BAT and UCP1 by considering species diversity, ecology and evolution, and by fusing multiple scientific disciplines such as physiology and biochemistry. Thus, resolving the complete picture of BAT biology may fail if comparative studies of non-model organisms are neglected. AU - Jastroch, M. AU - Oelkrug, R.* AU - Keipert, S. C1 - 53269 C2 - 44638 CY - Cambridge TI - Insights into brown adipose tissue evolution and function from non-model organisms. JO - J. Exp. Biol. VL - 121 PB - Company Of Biologists Ltd PY - 2018 SN - 0022-0949 ER - TY - JOUR AB - Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations. AU - Schöttl, T. AU - Fischer, I.P. AU - Ussar, S. C1 - 53327 C2 - 44660 CY - Cambridge TI - Heterogeneity of adipose tissue in development and metabolic function. JO - J. Exp. Biol. VL - 221 PB - Company Of Biologists Ltd PY - 2018 SN - 0022-0949 ER -