Consens, M.E.* et al. Transformers and genome language models. Nat. Mach. Intell., DOI: 10.1038/s42256-025-01007-9 (2025) Richter, T. ; Bahrami, M. ; Xia, Y.* ; Fischer, D.S. & Theis, F.J. Delineating the effective use of self-supervised learning in single-cell genomics. Nat. Mach. Intell., DOI: 10.1038/s42256-024-00934-3 (2025) Schulze Buschoff, L.M. ; Akata, E. ; Bethge, M.* & Schulz, E. Visual cognition in multimodal large language models. Nat. Mach. Intell. 7, 96-106 (2025) Bak, M.* et al. Federated learning is not a cure-all for data ethics. Nat. Mach. Intell. 6, 370–372 (2024) Ziller, A.* et al. Reconciling privacy and accuracy in AI for medical imaging. Nat. Mach. Intell., DOI: 10.1038/s42256-024-00858-y (2024) Debus, C.* ; Piraud, M. ; Streit, A.* ; Theis, F.J. & Götz, M.* Reporting electricity consumption is essential for sustainable AI. Nat. Mach. Intell. 5, 1176-1178 (2023) Dehner, C. ; Zahnd, G. ; Ntziachristos, V. & Jüstel, D. A deep neural network for real-time optoacoustic image reconstruction with adjustable speed of sound. Nat. Mach. Intell. 5, 1130–1141 (2023) Rädsch, T.* et al. Labelling instructions matter in biomedical image analysis. Nat. Mach. Intell. 5, 273–283 (2023) Bercea, C.-I. ; Wiestler, B.* ; Rueckert, D.* & Albarqouni, S. Federated disentangled representation learning for unsupervised brain anomaly detection. Nat. Mach. Intell. 4, 685-695 (2022) Schulte-Sasse, R.* ; Budach, S.* ; Hnisz, D.* & Marsico, A. Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nat. Mach. Intell. 3, 513–526 (2021) Holmberg, O. et al. Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy. Nat. Mach. Intell. 2, 719-726 (2020) Matek, C. ; Schwarz, S.* ; Spiekermann, K.* & Marr, C. Human-level recognition of blast cells in acute myeloid leukemia with convolutional neural networks. Nat. Mach. Intell. 1, 538-544 (2019)