TY - JOUR AB - Given the rise in the global population and the consequently high levels of pollution, urban green areas, such as those that include plants in the Cupressaceae family, are suitable to reduce the pollution levels, improving the air quality. However, some species with ornamental value are also very allergenic species whose planting should be regulated and their pollen production reduced by suitable pruning. The Aerobiological Index to create Risk maps for Ornamental Trees (AIROT), in its previous version, already included parameters that other indexes did not consider, such as the width of the streets, the height of buildings and the geographical characteristics of cities. It can be considered by working with LiDAR (Light Detection and Ranging) data from five urban areas, which were used to create the DEM and DSM (digital elevation and surface models) needed to create one of the parameters. Pollen production is proposed as a parameter (alpha) based on characteristics and uses in the forms of hedges or trees that will be incorporated into the index. It will allow the comparison of different species for the evaluation of the pruning effect when aerobiological risks are established. The maps for some species of Cupressaceae (Cupressus arizonica, Cupressus macrocarpa, Cupressus sempervirens, Cupressocyparis leylandii and Platycladus orientalis) generated in a GIS (geographic information system) from the study of several functions of Kriging, have been used in cities to identify aerobiological risks in areas of tourist and gastronomic interest. Thus, allergy patients can make decisions about the places to visit depending on the levels of risk near those areas. The AIROT index provides valuable information for allergy patients, tourists, urban planning councillors and restaurant owners in order to structure the vegetation, as well as planning tourism according to the surrounding environmental risks and reducing the aerobiological risk of certain areas. AU - Pecero-Casimiro, R.* AU - Fernández-Rodríguez, S.* AU - Tormo-Molina, R.* AU - Silva-Palacios, I.* AU - Gonzalo-Garijo, Á.* AU - Monroy-Colín, A.* AU - Coloma, J.F.* AU - Maya-Manzano, J.M. C1 - 59271 C2 - 48765 CY - St Alban-anlage 66, Ch-4052 Basel, Switzerland TI - Producing urban aerobiological risk map for cupressaceae family in the SW iberian peninsula from LiDAR technology. JO - Remote Sens. VL - 12 IS - 10 PB - Mdpi PY - 2020 SN - 2072-4292 ER - TY - JOUR AB - A disease is non-communicable when it is not transferred from one person to another. Typical examples include all types of cancer, diabetes, stroke, or allergies, as well as mental diseases. Non-communicable diseases have at least two things in common-environmental impact and chronicity. These diseases are often associated with reduced quality of life, a higher rate of premature deaths, and negative impacts on a countries' economy due to healthcare costs and missing work force. Additionally, they affect the individual's immune system, which increases susceptibility toward communicable diseases, such as the flu or other viral and bacterial infections. Thus, mitigating the effects of non-communicable diseases is one of the most pressing issues of modern medicine, healthcare, and governments in general. Apart from the predisposition toward such diseases (the genome), their occurrence is associated with environmental parameters that people are exposed to (the exposome). Exposure to stressors such as bad air or water quality, noise, extreme heat, or an overall unnatural surrounding all impact the susceptibility to non-communicable diseases. In the identification of such environmental parameters, geoinformation products derived from Earth Observation data acquired by satellites play an increasingly important role. In this paper, we present a review on the joint use of Earth Observation data and public health data for research on non-communicable diseases. We analyzed 146 articles from peer-reviewed journals (Impact Factor >= 2) from all over the world that included Earth Observation data and public health data for their assessments. Our results show that this field of synergistic geohealth analyses is still relatively young, with most studies published within the last five years and within national boundaries. While the contribution of Earth Observation, and especially remote sensing-derived geoinformation products on land surface dynamics is on the rise, there is still a huge potential for transdisciplinary integration into studies. We see the necessity for future research and advocate for the increased incorporation of thematically profound remote sensing products with high spatial and temporal resolution into the mapping of exposomes and thus the vulnerability and resilience assessment of a population regarding non-communicable diseases. AU - Sogno, P.* AU - Traidl-Hoffmann, C. AU - Kuenzer, C.* C1 - 61224 C2 - 49663 CY - St Alban-anlage 66, Ch-4052 Basel, Switzerland TI - Earth observation data supporting non-communicable disease research: A review. JO - Remote Sens. VL - 12 IS - 16 PB - Mdpi PY - 2020 SN - 2072-4292 ER -