TY - JOUR AU - Gruber, C. AU - Krautner, L. AU - Bergant, V.* AU - Grass, V.* AU - Ma, Z. AU - Rheinemann, L.* AU - Krus, A. AU - Reinhardt, F. AU - Mazneykova, L. AU - Rocha-Hasler, M. AU - Truong, D.J.J. AU - Westmeyer, G.G. AU - Pichlmair, A.* AU - Ebert, G. AU - Giesert, F. AU - Wurst, W. C1 - 70490 C2 - 55633 CY - Campus, 4 Crinan St, London, N1 9xw, England TI - Engineered, nucleocytoplasmic shuttling Cas13d enables highly efficient cytosolic RNA targeting. JO - Cell Discov. VL - 10 IS - 1 PB - Springernature PY - 2024 SN - 2056-5968 ER - TY - JOUR AB - Hepatitis B Virus (HBV) constitutes a major threat to global public health. Current understanding of HBV-host interaction is yet limited. Here, ribosome profiling, quantitative mass spectrometry and RNA-sequencing were conducted on a recently established HBV replication system, through which we identified multiomic differentially expressed genes (DEGs) that HBV orchestrated to remodel host proteostasis networks. Our multiomics interrogation revealed that HBV induced significant changes in both transcription and translation of 35 canonical genes including PPP1R15A, PGAM5 and SIRT6, as well as the expression of at least 15 non-canonical open reading frames (ncORFs) including ncPON2 and ncGRWD1, thus revealing an extra coding potential of human genome. Overexpression of these five genes but not the enzymatically deficient SIRT6 mutants suppressed HBV replication while knockdown of SIRT6 had opposite effect. Furthermore, the expression of SIRT6 was down-regulated in patients, cells or animal models of HBV infection. Mechanistic study further indicated that SIRT6 directly binds to mini-chromosome and deacetylates histone H3 lysine 9 (H3K9ac) and histone H3 lysine 56 (H3K56ac), and chemical activation of endogenous SIRT6 with MDL800 suppressed HBV infection in vitro and in vivo. By generating the first multiomics landscape of host-HBV interaction, our work is thus opening a new avenue to facilitate therapeutic development against HBV infection. AU - Yuan, S.* AU - Liao, G.* AU - Zhang, M.* AU - Zhu, Y.* AU - Xiao, W.* AU - Wang, K.* AU - Li, C.* AU - Jia, C.* AU - Sun, N. AU - Walch, A.K. AU - Gao, D.* AU - Xu, P.* AU - Deng, Q.* AU - Zhang, J.* AU - Wang, H.* AU - Hu, R.* C1 - 63424 C2 - 51529 CY - Campus, 4 Crinan St, London, N1 9xw, England TI - Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and non-canonical proteins as host restriction factors against HBV. JO - Cell Discov. VL - 7 IS - 1 PB - Springernature PY - 2021 SN - 2056-5968 ER -