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Abstract

Background: The impact of additive-genetic relationships captured by single nucleotide polymorphisms (SNPs) on
the accuracy of genomic breeding values (GEBVs) has been demonstrated, but recent studies on data obtained
from Holstein populations have ignored this fact. However, this impact and the accuracy of GEBVs due to linkage
disequilibrium (LD), which is fairly persistent over generations, must be known to implement future breeding
programs.

Materials and methods: The data set used to investigate these questions consisted of 3,863 German Holstein
bulls genotyped for 54,001 SNPs, their pedigree and daughter yield deviations for milk yield, fat yield, protein yield
and somatic cell score. A cross-validation methodology was applied, where the maximum additive-genetic
relationship (amax) between bulls in training and validation was controlled. GEBVs were estimated by a Bayesian
model averaging approach (BayesB) and an animal model using the genomic relationship matrix (G-BLUP). The
accuracy of GEBVs due to LD was estimated by a regression approach using accuracy of GEBVs and accuracy of
pedigree-based BLUP-EBVs.

Results: Accuracy of GEBVs obtained by both BayesB and G-BLUP decreased with decreasing amax for all traits
analyzed. The decay of accuracy tended to be larger for G-BLUP and with smaller training size. Differences
between BayesB and G-BLUP became evident for the accuracy due to LD, where BayesB clearly outperformed
G-BLUP with increasing training size.

Conclusions: GEBV accuracy of current selection candidates varies due to different additive-genetic relationships
relative to the training data. Accuracy of future candidates can be lower than reported in previous studies because
information from close relatives will not be available when selection on GEBVs is applied. A Bayesian model
averaging approach exploits LD information considerably better than G-BLUP and thus is the most promising
method. Cross-validations should account for family structure in the data to allow for long-lasting genomic based
breeding plans in animal and plant breeding.

Background
The development of high-throughput genotyping of sin-
gle nucleotide polymorphisms (SNPs) has enhanced the
use of genome-wide dense marker data for genetic
improvement in livestock. Meuwissen et al. [1] pre-
sented a two-step approach to predict genomic breeding
values (GEBVs): First, SNP effects are estimated using
genotyped individuals that are phenotyped for the

quantitative trait (training), and then GEBVs are pre-
dicted for any genotyped individual by using only its
SNP genotypes and estimated SNP effects. This predic-
tion and selection on GEBVs was termed genomic selec-
tion (GS).
The acceptance of GS by cattle breeders and thereby

the potential to reduce generation intervals depends
mainly on the accuracy of GEBVs. Assuming that cose-
gregation is not modeled, GEBV accuracy is higher than
the accuracy of standard pedigree-based BLUP-EBVs
only if there is linkage disequilibrium (LD) between
SNPs and quantitative trait loci (QTL). LD is defined
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here as the dependency between the allele states at dif-
ferent loci of all individuals in the available data set. In
case of linkage equilibrium, the accuracy of GEBVs is
not necessarily zero but will approach the accuracy of
pedigree-based BLUP-EBVs as the number of SNPs
fitted in the model increases. The reason is that SNPs
capture additive-genetic relationships irrespective of the
amount of LD in the population as demonstrated by
Habier et al. [2] and Gianola et al. [3]. In those studies
as well as here, additive-genetic relationships are defined
as twice the coefficient of coancestry given by Malécot
[4]. Note that this does not require that the training
individuals are related, but only that individuals for
which GEBVs are estimated are related to the training
individuals. This is demonstrated in detail in additional
file 1 in this paper. In practice, LD exists in cattle popu-
lations [5-7] and thus two types of information are uti-
lized to estimate GEBVs: LD and additive-genetic
relationships. If cosegregation is modeled, then a third
type of information can be utilized. However, cosegrega-
tion was not modeled in this study. The persistence of
the accuracy of GEBVs over generations, and therefore
the potential of GS to reduce future phenotyping [8,9],
depends largely on the amount of LD, which originates
in outbred populations from historic mutations and
drift, cosegregation, migration, selection and recent drift.
In simulations, Habier et al. [2] estimated the accuracy
of GEBVs that is only due to LD (in short, accuracy due
to LD), which was considerably smaller than the GEBV
accuracy resulting from both LD and additive-genetic
relationships in the offspring of the training individuals,
but it was fairly persistent over generations. Further-
more, the ability to exploit LD information by the statis-
tical methods used to estimate SNP effects varies.
Meuwissen et al. [1] proposed a Bayesian model aver-
aging approach termed BayesB, which fits only a small
proportion of the available SNPs in each round of a
Markov-Chain Monte Carlo (MCMC) algorithm and
models SNP effects with a t-distributed prior. They
further used Ridge-Regression BLUP (RR-BLUP), which
fits all SNP effects with a normal prior. Habier et al. [2]
showed that BayesB was more able to exploit LD infor-
mation and less affected by additive-genetic relation-
ships than RR-BLUP. Accuracy of GEBVs from real
cattle data has been reported for Holstein Friesian popu-
lations from North America [10], Australia, the Nether-
lands and New Zealand [11,12]. In those studies,
accuracies of GEBVs for milk performance, fertility and
functional traits ranged from 0.63 to 0.84, and depended
on the size of the training data, heritability and SNP
density. These accuracies confirmed those found in
simulations [1,2,13,14] quite well, but RR-BLUP was
only slightly inferior compared to methods that fit only
a fraction of the available SNPs such as BayesB.

VanRaden et al. [10] and Hayes et al. [12] concluded
that, unlike in most simulations, only a few QTL with a
large effect and many with a small effect contribute to
genetic variation. These studies, however, did not show
the dependency of the GEBV accuracy on additive-
genetic relationships, which is a function of the number
of relatives in training, the degree of relationship with
training individuals [2] and heritability. Thus, a lower
accuracy with decreasing training size [10] could be the
result of a lower number of relatives in training, mean-
ing that the more persistent accuracy due to LD and the
GS method that exploits LD information best remains
to be evaluated for real cattle data. More important, the
dependency of GEBV accuracy on additive-genetic rela-
tionships as well as the accuracy due to LD must be
known to develop future breeding programs, because
close relatives that were progeny tested for quantitative
traits may not be available when GEBVs are applied to
select animals early in lifetime. The objectives of this
study were to analyze the impact of additive-genetic
relationships between training and validation data sets
on the accuracy of GEBVs and to estimate the accuracy
due to LD in the German Holstein Friesian population.
Thereby, the accuracy of GEBVs for current and future
selection candidates as well as for individuals that are
unrelated to the population were estimated. Further-
more, the comparison of BayesB and RR-BLUP based
on the accuracy due to LD will show which statistical
model has the potential to reduce future phenotyping.

Materials and methods
Genotyped bulls
A total of 3,863 German Holstein Friesian bulls, progeny
tested with at least 30 daughters in the first lactation
and genotyped for 54,001 SNPs distributed over the
whole genome, were available. The proportion of miss-
ing genotypes for any bull was lower than 5%, at an
average of 1%. The distribution of genotyped bulls by
birth year and the average number of daughters per bull
are shown in Table 1. The family structure of these
bulls, consisting of paternal half and full sib families as
well as genotyped fathers and sons, are summarized in
Table 2.

SNP data
DNA was extracted either from frozen semen, leukocyte
pellets or fullblood samples. The BovineSNP50 Bead-
Chip (Illumina, San Diego, CA) was used to obtain SNP
genotypes for all bulls. A detailed description of the
SNP content was given by [15]. Only SNPs with less
than 5% missing genotypes and minor allele frequency
greater than 3% were used, resulting in 40,588 SNPs.
Minor allele frequencies of the selected SNPs were
nearly uniformly distributed with a mean = 0.27.
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Genotypes of SNPs located on the X chromosome, but
outside the pseudo-autosomal region, were set to miss-
ing if the genotype of a bull was heterozygous. Missing
genotypes were imputed by fastPhase [16].
Furthermore, the haplotypes obtained by fastPhase

were utilized in Haploview [17] to estimate r2 as a mea-
sure of LD between SNPs. Haplotypes of all genotyped
bulls were used in this calculation, because the aim was
to evaluate the LD that can be utilized to estimated SNP
effects, and this LD may have also been caused by cose-
gregation, recent drift and selection.

Pedigree information
The pedigree consisted of genotyped bulls as well as
their ancestors born between 1950 and 1998, yielding a
total of 21,591 individuals. This pedigree was used to
generate training and validation data sets with a speci-
fied maximum additive-genetic relationship between
bulls in both data sets and to estimate breeding values
with the standard BLUP-methodology.

Phenotypes
Daughter yield deviations (DYDs) [18] for the quantita-
tive traits milk yield, fat yield, protein yield and somatic
cell score were available for both genotyped bulls and
their male ancestors in the pedigree. They were esti-
mated from the test-day yields of daughters corrected

for fixed and permanent environmental effects as well as
half the breeding value of the daughter’s dam [19]. Phe-
notypes and estimated effects were taken from the April
2009 evaluation for the German Holstein Friesian popu-
lation. Additive-genetic and residual variances,  g

2 and
 e

2 , used as prior information in the statistical analyses,
were estimated by ASReml [20] utilizing all phenotyped
bulls in the pedigree. A sire model was used for this
purpose in which residual terms were weighted by the
reliability of a bull’s DYD.

Statistical models
Three statistical models were used to evaluate the
impact of additive-genetic relationships on the accu-
racy of GEBVs. These were 1) BayesB [1], 2) BLUP
animal model using the genomic relationship matrix
[21], which is equivalent to RR-BLUP [2,22,23], and 3)
BLUP animal model using the numerator relationship
matrix [24,25] to estimate standard BLUP breeding
values. These models are described in more detail
below.
The statistical model for BayesB can be written as
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where yi is the DYD of bull i in training, a is an inter-
cept, K = 40, 588 SNPs, xik is the SNP genotype, bk is
the effect and δk is a 0/1-indicator variable, all for SNP
k, ei is the residual effect with mean zero and variance

 e
2 , and wi is the reliability of yi. SNP genotypes are

coded as the number of copies of one of the SNP alleles,
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set to 0.01. SNP effects are treated as random and are
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, where pk is the allele frequency at

SNP k. MCMC-sampling was used to infer model para-

meters, where a, bk and  e
2 were sampled with Gibbs

steps and δk and   k

2 with a Metropolis-Hastings step.

The MCMC-sampler was run for 50,000 iterations with

Table 1 Distribution of genotyped bulls (n = 3,863) by
birth year and average number of phenotyped daughters
per bull (s.e.)

Birth year No. of bulls No. of daughters

1981-1989 140 5,969 (± 886)

1990-1997 455 4,473 (± 356)

1998 378 567 (± 115)

1999 446 297 (± 42)

2000 484 142 (± 11)

2001 482 107 (± 2)

2002 485 116 (± 2)

2003 830 93 (± 1)

2004 163 62 (± 2)

Table 2 Family structure of genotyped bulls. Number (n),
average size ( x ), standard deviation (s), minimum (Min)
and maximum (Max) size of paternal half and full sib
families as well as number of genotyped fathers and
summary statistics for the number of their genotyped
sons

Family type n x s Min Max

Half sib 646 6.0 10.9 1 102

Full sib 168 2.2 0.4 2 5

Father-son 114 10.7 19 1 109
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a burn-in of 40,000 rounds. The GEBV of bull i, either
in training or validation, was estimated as

GEBVi ik k

k

K

x=
=

∑ ˆ ,
1

(1)

where ̂ k is the estimated SNP effect of locus k. The
BLUP animal model used to estimate genomic or pedi-
gree-based EBVs is

y g
ei
wi

i i= + + ,

where yi, ei and wi are defined as before, μ is the over-
all mean, and gi is the breeding value of bull i in train-
ing. Genomic BLUP (G-BLUP) EBVs of both training
and validation bulls were obtained by mixed-model
equations using the genomic relationship matrix,
whereas pedigree-based BLUP (P-BLUP) EBVs were
obtained by using the numerator relationship matrix
[24,25]. The elements of the genomic relationship

matrix were calculated as
x xk kk

K

pk pkk
K
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[2,26], where xk is a column vector containing the SNP
genotypes of training and validation bulls at locus k.

Generation of training and validation data sets
Training and validation data sets were generated system-
atically using the additive-genetic relationships between
bulls derived from the pedigree in order to study the
impact of additive-genetic relationship information on
accuracy of GEBVs by cross-validation. The aim was to
control the maximum additive-genetic relationship
between bulls in training and validation denoted by
amax; That is, given amax, no bull in training was allowed
to have an additive-genetic relationship larger than amax

with a bull in validation. This criterion allows to divide
the family structure present in the data set such that
validation bulls are allowed to have close relatives in
training or not. Furthermore, the decay of additive-
genetic relationships over generations, similar to that in
simulation studies [1,2,14,27], can be mimicked. A sam-
pling algorithm was implemented to generate training
and validation data sets, which assigned bulls to both
sets in a way that amax was not exceeded. For small
amax values this can only be achieved by removing com-
pletely some bulls from the analysis, where the algo-
rithm was optimized to exclude as few bulls as possible.
In general, the lower the amax, the smaller the number

of bulls in validation. Therefore, several pairs of training
and validation data sets were sampled, where repeated
sampling of a bull into validation was not accepted. In
addition, no more than two bulls out of one half sib

family were allowed to be in validation in order to
reduce the dependency between validation bulls in each
pair of data sets. Furthermore, fathers of training bulls
were not allowed to be in validation, because the accu-
racy of those bulls is not representative for the predic-
tion of the GEBVs of future individuals as demonstrated
by [2].

Relationships between training and validation data sets
Four different scenarios with amax = 0.6, 0.49, 0.249 and
0.1249 were generated. These values were selected to
exploit the family structure in the data as follows: The
training data set contained fathers, full- and half sibs of
the bulls in validation with amax = 0.6, only half sibs
with amax = 0.49, and neither of those close relatives
with amax = 0.249 and 0.1249. All scenarios had the
same training size in order to exclude the effect of dif-
ferent sizes on the accuracy of GEBVs. Because of diffi-
culties to obtain large training data sets for the lowest
amax in a structured dairy cattle population, the training
sizes for the other scenarios were reduced to the average
size of amax = 0.1249 by removing bulls randomly. Note,
however, that for the scenarios with amax = 0.6 and 0.49
the half and full sibs or fathers of the bulls in validation
were not removed from the training data. The training
size for amax = 0.1249 was 2,096 bulls on average in 15
sampled pairs of training and validation data sets, hence
the training size for the other scenarios was fixed at
2,096 bulls. Validation data sets of each sample for the
first three scenarios were required to have at least 30
bulls, and for amax = 0.1249 at least 11 bulls. The corre-
lation between EBVs and DYDs was also estimated for
training bulls and denoted as scenario amax = 1.
To study the effect of the size of the training data on

accuracy at different amax values, training data sets were
halved to a size of 1,048 by removing bulls randomly,
except for fathers as well as full and half sibs of the
bulls in validation. Thus, the number of close relatives
between training and validation was kept constant in
order to analyze the impact of the precision of SNP
effects on accuracy rather than the number of relatives,
which can already be observed with decreasing amax.

Criterion for comparisons
The correlation between true and estimated breeding
values, g and ĝ , was estimated by the following formula:

ˆ
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where y denotes DYD, hy
2 the heritability of DYDs

and ̂ gy the correlation between the true breeding
value and DYD averaged over bulls in validation. The
latter was estimated from the accuracy of DYDs using
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the selection index formula

ni

ni
h j

h j

+
−4 2

2
, where ni is the

number of daughters of a bull i and h j
2 the heritability

of a daughter record of trait j known from parameter
estimations by Liu et al. [28,29]. The heritabilities for
milk, fat and protein yield as well as somatic cell score
were 0.53, 0.52, 0.51 and 0.23, respectively. The correla-
tion  ĝy was calculated using the validation bulls from
all replicates of a specified amax, after their EBVs were
corrected by the mean EBV of their respective validation
data set.

Accuracy due to LD
The accuracy due to LD was estimated using a regres-
sion approach as suggested by Habier et al. [2]. In that
study, the authors estimated the accuracy due to LD of
generation j,  j

LD , by using the accuracy of GEBVs
obtained from four generations and the model

 i i j i j ix d x e= = +1 2
LD ,

where ri is the accuracy of GEBVs in generation i, x1i
is the accuracy of P-BLUP in generation i divided by the
accuracy of P-BLUP in generation j, which models the
decay of P-BLUP accuracy due to the decline of addi-
tive-genetic relationships, dj is the difference between
the accuracy of GEBVs and the accuracy due to LD in
generation j, x2i is the decay of LD over generations and
ei is a residual term. In this study, accuracies of GEBVs
from different generations were replaced by those from
different amax values. Furthermore, the accuracy due to
LD was assumed to be constant with different amax

values, because the average birth year of training and
validation bulls was nearly the same for all amax values
and thus x2i is always 1. The equation used here was

 a a amax max max
x d e= + +LD , (2)

where amax
is the accuracy of GEBVs for amax (i.e.,

0.6, 0.49, 0.249 and 0.1249) estimated by BayesB or G-
BLUP, xamax

is the accuracy of P-BLUP for amax divided
by the accuracy of P-BLUP for amax = 0.6, d is the dif-
ference between the accuracy of GEBVs for amax = 0.6
and the accuracy due to LD and eamax

is a residual
term.

Results
Linkage disequilibrium
Figure 1 shows average r2 between syntenic SNP pairs
against map distance of up to 1 megabase (Mb), which
is roughly 1 centimorgan, as well as standard deviations
of the average r2 values across all 30 chromosomes.

Average r2 decreased exponentially with increasing dis-
tance between SNPs and was equal to 0.29, 0.23, 0.15
and 0.07 at distances of 0.02, 0.04, 0.1, and 1 Mb,
respectively. Average distance and r2 of adjacent SNPs
were 0.064 Mb and 0.22, respectively.

Training and validation data
Table 3 summarizes the number of bulls used for train-
ing in each sampled pair of training and validation data
sets as well as the total number of validation bulls over
all samples for the specified amax values. Fifteen pairs of
training and validation data sets were generated for each
scenario with an average validation size of 33 bulls per
sampled pair for amax = 0.6, 0.49 and 0.249, and 11
bulls for amax = 0.1249. To better understand the differ-
ences in the accuracy of GEBVs between amax values in
the following description of the results, the distributions
of additive-genetic relationships between bulls in train-
ing and validation depending on amax are depicted in

Figure 1 Average r2 (mid-point) as a measure of linkage
disequilibrium between syntenic SNP pairs against map
distance in megabase (Mb) as well as standard deviation of
mean r2 values from all 30 chromosomes (upper and lower
deviation from the mid-point).

Table 3 Average number of bulls used for training in
each of the 15 sampled pairs of training and validation
data sets and total number of validation bulls over all
pairs for a maximum additive-genetic relationship
between bulls of both data sets (amax) of 0.6, 0.49, 0.249
and 0.1249

No. of bulls in

amax training validation

0.60 2,096 491

0.49 2,096 497

0.249 2,096 477

0.1249 2,096 (± 28) 176

Habier et al. Genetics Selection Evolution 2010, 42:5
http://www.gsejournal.org/content/42/1/5

Page 5 of 12



Figure 2. The scenarios amax = 0.6, 0.49 and 0.249 only
differed in the upper parts of their distributions, whereas
mean (not shown), median and quartiles were nearly
identical. The training data for amax = 0.49 contained
half sibs which were not in the training data sets for
amax = 0.249 and 0.1249, and the scenario with amax =

0.6 had also full sibs and fathers of bulls in validation
which were not in the scenario 0.49. A validation bull
had on average 10 half sibs in training in both scenarios
with amax = 0.6 and 0.49, but numbers varied largely
between 1 and 58. Only a few validation bulls had a full
sib or father in training in the scenario with amax = 0.6.

Accuracy of GEBVs
Figure 3 depicts the accuracy of EBVs depending on amax

for milk, fat and protein yield as well as somatic cell
score obtained by BayesB, G-BLUP and P-BLUP utilizing
2,096 training bulls. For amax = 1, accuracies were close
to unity for G-BLUP and P-BLUP, but somewhat lower
for BayesB. The reason is that accuracies for amax = 1
describe goodness of fit rather than prediction ability and
it is well known that the coefficient of determination,
which is related to this accuracy, increases with the num-
ber of explanatory variables. G-BLUP used all available
SNPs, whereas BayesB fitted only 400 in each round of
the MCMC-algorithm. Accuracy of P-BLUP decreased
with amax as expected, where the overall level for milk
and protein yield was higher than for fat yield and
somatic cell score. P-BLUP was outperformed by both
GS methods, where the absolute difference between the
latter and P-BLUP was higher for fat yield and somatic

Figure 2 Box plots of additive-genetic relationships between
bulls in training and validation for a maximum additive-
genetic relationship, amax, of 0.6, 0.49, 0.249 and 0.1249.

Figure 3 Accuracy of EBVs, r, obtained by BayesB, G-BLUP and P-BLUP depending on the maximum additive-genetic relationship
between bulls in training and validation, amax, for the traits milk yield, fat yield, protein yield and somatic cell score, based on 2,096
training bulls in each amax scenario.
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cell score compared to milk and protein yield. The high-
est accuracies of GEBVs were found for amax = 0.6 and
0.49 and equal to 0.68, 0.65 and 0.60 for milk, fat and
protein yield, respectively, and 0.58 for somatic cell score.
BayesB and G-BLUP gave similar results in all traits
except for milk yield for which BayesB performed notably
better. Interestingly, the accuracy of GEBVs from both
GS methods was very similar for amax values = 0.6 and
0.49, although a decay was found from 0.6 to 0.49 for P-
BLUP in most traits. No plausible reason could be found
for that, especially as the decay of accuracy of the GS
methods resembled that of P-BLUP quite well otherwise.
Accuracy of GEBVs clearly decreased from amax =

0.49 to 0.1249 in all four traits and for both BayesB and
G-BLUP (Figure 3). The decay of accuracy was similar
for both GS methods in somatic cell score, but smaller
with BayesB for the yield traits. As a result, the accuracy
of the yield traits at amax = 0.1249 was higher with
BayesB than with G-BLUP. Furthermore, the smallest
decay of accuracy was found for fat yield, followed by
somatic cell score.

Accuracy with half the training data
With a training size of only 1,048 bulls, the accuracy
level of all methods decreased (Figure 3 and 4). Because
the number of fathers, half and full sibs of validation
bulls was identical for both training sizes analyzed,

accuracy of GEBVs for the yield traits decreased by only
0.03 to 0.05 for amax values = 0.6 and 0.49. The loss in
accuracy with decreasing amax was similar for both
training sizes from amax = 0.49 to 0.249, but consider-
ably larger from 0.249 to 0.1249 with only 1,048 training
bulls. The differences between BayesB and G-BLUP
were comparable for the two training sizes, except for
amax = 0.1249 where differences tend to decrease with
the smaller training data set.

Accuracy due to LD
Table 4 shows the accuracy due to LD estimated by
equation (2) for the two sizes of training data sets and
the four traits analyzed. With 2,096 training bulls, the
accuracy due to LD is always higher for BayesB than for
G-BLUP, where the largest difference of 0.2 and 0.12
between methods was obtained for milk and protein
yield, respectively, and smallest for somatic cell score.
With only half the training size, both the accuracies due
to LD and the differences between the two GS methods
decreased considerably. The absolute decay of accuracies
was similarly high for milk yield, fat yield and somatic
cell score, but notably smaller for protein yield, which
had the smallest accuracy of all traits with 2,096 training
bulls. Furthermore, BayesB and G-BLUP gave very simi-
lar accuracies for fat yield and somatic cell score using
1,048 training bulls, whereas BayesB was consistently

Figure 4 Accuracy of EBVs, r, obtained by BayesB, G-BLUP and P-BLUP depending on the maximum additive-genetic relationship
between bulls in training and validation, amax, for the traits milk yield, fat yield, protein yield and somatic cell score, based on 1,048
training bulls in each amax scenario.
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better for milk and protein yield. In comparison to the
accuracies of GEBVs with 2,096 training bulls (Figure 3),
differences between BayesB and G-BLUP became more
distinct for the accuracies due to LD. In addition, the
ranking of the traits according to their accuracies is dif-
ferent. Milk and protein yield had clearly higher accura-
cies of GEBVs than fat yield and somatic cell score,
whereas fat yield had the highest accuracy due to LD
and protein yield the lowest.

Discussion
The objective of this study was to analyze the impact of
additive-genetic relationships between bulls in training
and validation data sets on the accuracy of GEBVs and
to estimate the accuracy due to LD. The accuracy of
GEBVs obtained by both BayesB and G-BLUP decreased
with maximum additive-genetic relationship between
bulls in training and validation (amax) for all four traits
analyzed. The decay of accuracy tended to be larger for
G-BLUP and when training size was smaller. The differ-
ences between BayesB and G-BLUP became more evi-
dent considering the accuracy due to LD. BayesB clearly
outperformed G-BLUP in sets of 2,096 training bulls.
The LD found here is comparable to that reported by
De Roos et al. [5] for the Dutch and Australian Holstein
populations making the results of this study meaningful
for other Holstein populations.

Variability of accuracy of GEBVs
Results of this study demonstrate that the accuracy of
GEBVs is not constant for all selection candidates but
can vary depending on the number of relatives in train-
ing and the degree of additive-genetic relationships with
training individuals (Figure 3 and 4). The impact of
additive-genetic relationships also depends on the
method used to estimate SNP effects [2], because the
more SNPs fitted, the more additive-genetic relation-
ships are captured by them. This may explain why G-
BLUP tended to decrease more with amax than BayesB.
In principle, the decay of accuracy with additive-genetic
relationships is also expected to be higher with increas-
ing heritability, but this could not be observed here.
The accuracies of GEBVs reported in this study are

representative for the prediction of GEBVs of future
generations, in that fathers with offspring in training

were not used for validation. Otherwise the accuracy
would be higher because their Mendelian sampling
terms could be inferred by utilizing the additive-genetic
relationships captured by SNPs.
In conclusion, the additive-genetic relationships

between training individuals and a selection candidate
must be known in order to provide a reliable GEBV
accuracy of that candidate in practical application. As
was shown with Figure 2, the average additive-genetic
relationship for the amax scenarios 0.6, 0.49 and 0.249
did not differ, and thus is not helpful to describe the
impact of additive-genetic relationships on accuracy, but
rather amax. This criterion was selected here to exploit
the family structure in the data, but other criteria should
be found that are more useful in practice. One possibi-
lity, which should be tested in subsequent studies, could
be the expected accuracy of P-BLUP obtained from the-
oretical calculations.
To evaluate the expected variation in accuracy for

young selection candidates, amax was calculated for bulls
born in 2007 with respect to the full training data set of
3,863 bulls. Fortunately, all selection candidates have
amax≥ 0.125, 83% have amax≥ 0.25, and one third even
have ancestors and full sibs in training. The reason for
these high genetic relationships are the long generation
intervals in cattle and the low effective population size
of 40-50 (personal unpublished studies, estimated from
pedigree). This shows that the accuracy of GEBVs for
current selection candidates is expected to vary due to
different additive-genetic relationships with the training
data.

Accuracy due to LD
Accuracy due to LD ranged between 0.29 for protein
yield to 0.48 for fat yield using 2,096 training bulls and
BayesB. With this number of training bulls, accuracy
due to LD, which is expected to be fairly persistent over
generations, appears to be too small to reduce trait phe-
notyping, and progeny testing in particular if GS is
applied. However, accuracy due to LD improved consid-
erably with increasing training size and thus further stu-
dies are necessary to evaluate the accuracy due to LD
with the current training size of 3,863 bulls and beyond.
Further improvements may be possible by varying the
strong prior probability of fitting a SNP locus into the

Table 4 Accuracy of GEBVs due to LD estimated by equation (2) for milk, fat and protein yield as well as somatic cell
score using training data sizes of 2,096 and 1,048 bulls.

Training data size Method Milk yield Fat yield Protein yield Somatic cell score

2,096 BayesB 0.41 0.47 0.29 0.33

G-BLUP 0.21 0.38 0.17 0.29

1,048 BayesB 0.24 0.31 0.23 0.15

G-BLUP 0.13 0.33 0.10 0.15
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model, π, or by treating it as another variable model
parameter.
The accuracy due to LD may be a lower bound for the

accuracy of an individual that is unrelated to the train-
ing population. However, if LD is primarily due to selec-
tion and recent drift rather than historic mutations, the
accuracy for unrelated individuals might be even lower.
This could be the case if selection candidates descend
from a population having an LD structure that is differ-
ent from that in the training data. This may apply to
individuals either from families that did not contribute
to the actual German Holstein Friesian population or
from Holstein populations of other regions, such as
Australia, New Zealand or the United States.
The classical inheritance model in quantitative genet-

ics divides the breeding value into parent average and a
Mendelian sampling term. The advantage of GS is that
the latter can be inferred without its own or progeny
performance [30]. In general, LD information contri-
butes to both parts of the breeding value, and thus the
accuracy due to LD is not necessarily the accuracy to
predict Mendelian sampling terms. This accuracy is of
great interest in order to evaluate future inbreeding and
effective selection intensity when selecting on GEBVs.
For this purpose and to test to what extent the accuracy
due to LD obtained in this study corresponds to the
accuracy to predict Mendelian sampling, cross-valida-
tions should be conducted with Mendelian sampling
terms estimated from DYDs of bulls and yield deviations
of dams.
The persistence of the accuracy due to LD over gen-

erations might depend on the source of LD that is uti-
lized in estimating SNP effects, which should also be
analyzed in further studies. Muir [14] showed that accu-
racy of GEBVs is not only persistent due to historic
mutations and drift, but also when LD originates only
from recent drift and selection. Furthermore, when
selecting on GEBVs both the extent of LD between
SNPs and QTL and the size of the QTL effects deter-
mine the fixation of QTL alleles [31] and thereby a pos-
sible decay of accuracy due to LD over generations.

Inference of the genetic model
The number of QTL affecting a quantitative trait was
estimated by Hayes et al. [32] to be in the range of 100-
200. Goddard [33], however, pointed out that there are
probably many more, because there is a limit to the size
of the effect that can be detected. These findings are
consistent with conclusions from GS studies [10,12],
namely, that there are only a few major genes, but many
with a small effect. Results of this study confirm these
conclusions because BayesB did not perform much bet-
ter than G-BLUP in the accuracy of GEBVs. BayesB was
even inferior to G-BLUP for somatic cell score with a

training size of 1,048 bulls. In simulations [1,2], how-
ever, in which the genetic variance was mainly deter-
mined by a few QTL with a large effect, BayesB utilized
LD information considerably better than G-BLUP. The
question arises why G-BLUP was mostly as good as
BayesB and superior to P-BLUP despite the underlying
prior assumptions for SNP effects, causing strong
shrinkage. Goddard [33] pointed out that GS works in
part by using deviations of the realized relationships
from that expected from the pedigree, where these
deviations are only useful if there is LD between SNPs
and QTL or cosegregation. Those deviations seem to be
estimated better if more SNPs are fitted in the model
and therefore G-BLUP has advantages compared to
BayesB if SNP effects and/or LD are small. This may
explain why G-BLUP worked better than BayesB for
somatic cell score with 1,048 training bulls. However, if
more SNPs are fitted in BayesB, e.g. by altering π to 5
or 10%, that difference may disappear. The accuracy due
to LD gives more insight into the differences of the
genetic determination of quantitative traits. Because this
accuracy was higher for fat and milk yield than for pro-
tein yield and somatic cell score, milk and fat yield are
determined either by QTL with larger effects or the LD
between SNPs and QTL is higher than for protein yield
and somatic cell score. However, heritability of somatic
cell score is lower than that of the yield traits [19], redu-
cing the ability to detect QTL. One reason for the dif-
ference between protein and the other two yield traits
may be DGAT1 [34,35], but this locus is already well
estimated with the lower training size and thus the
increasing difference with more training individuals
results most likely from the fact that more QTL are
detected.

Comparison with simulation results
Meuwissen et al. [1] fitted 2-SNP haplotypes with
BayesB and obtained an accuracy for the offspring of
training individuals of 0.85 and 0.75 based on 2,200 and
1,000 training individuals, respectively. Solberg et al.
[13] and Habier et al. [2,27], in contrast, fitted single
SNPs and found an accuracy of 0.7 with 1,000 training
individuals, where the accuracy due to LD was estimated
to be 0.55 [2]. Although training data sets were compar-
able in size to this study, accuracies from simulations
tended to be higher, which might have two main rea-
sons. First, in simulations every offspring had two par-
ents in the training data set so that the additive-genetic
relationship information between training and validation
data sets is expected to be higher at first sight, but more
half sib relationships are present in real cattle popula-
tions. Second, there might be a discrepancy between the
simulated genetic models and the genetic architecture
(number of QTL, distribution of QTL effects, LD

Habier et al. Genetics Selection Evolution 2010, 42:5
http://www.gsejournal.org/content/42/1/5

Page 9 of 12



structure) in real populations, which might explain the
lower accuracy due to LD estimated in this study. To
analyze the causes of the different results between simu-
lations and real experiments in more detail, simulations
should be conducted using the real pedigree, as done by
[26,36].
The decay of accuracy with amax, especially for

BayesB, was similar to that observed in simulations over
generations without further phenotyping after training
[1,2,14]. In simulations, the additive-genetic relationship
with training individuals is halved each generation and
therefore amax values of the first four simulated genera-
tions after training correspond to those specified in this
study. Thus, the decay of accuracy with amax might
point to the decay of accuracy in generations after train-
ing when phenotyping is stopped. Note, however, that
the number of relatives in training at a certain amax is
different from simulations.
The differences between BayesB and G-BLUP in accu-

racy due to LD confirm simulation results [2], but they
tended to be higher in this study than in [2]. The reason
may be that 40,588 SNPs were utilized here to calculate
the genomic relationship matrix used in G-BLUP,
whereas only 1,000 SNPs were used in [2]. This indi-
cates that too many SNPs dilute LD information as
shown by Fernando et al. [37]. Thus, as SNP density
increases in the future, the genomic relationship matrix
may be less valuable than using the current density
unless the training data size increases largely (see also
Goddard [33]) and/or SNPs are pre-selected based on
other methods such as QTL fine mapping approaches
that exploit both LD and cosegregation [38].

Comparison with other GS studies
GEBVs were combined in other GS studies analyzing
real data with pedigree-based EBVs by using selection
index theory [12], which increases the proportion of
additive-genetic relationship information in GEBVs. In
this study only direct GEBVs were considered to deter-
mine the impact of additive-genetic relationships cap-
tured by SNPs.
Accuracies of combined GEBVs in those studies

should be higher, but conversely the decay of accuracy
with amax is also expected to be larger. Further difficul-
ties for meaningful comparisons are different numbers
of training bulls and that no information about the addi-
tive-genetic relationships between training and valida-
tion bulls was provided by the other authors. However,
VanRaden et al. [10] also presented squared correlations
between GEBVs and DYDs using 3,500 training bulls.
For the traits milk yield, fat yield, protein yield and
somatic cell score correlations obtained by G-BLUP
were 0.68, 0.65, 0.68 and 0.61, respectively. Correlations
found for amax = 0.6 and 0.49 (Figure 3) were somewhat

lower, which may be due to a smaller training size of
2,096 bulls. However, Hayes et al. [12] reported an accu-
racy of 0.67 for protein yield using G-BLUP and only
798 training bulls. Because the accuracy for protein
yield with G-BLUP and 1,048 training bulls was 0.6 in
this study, the relatively high accuracy estimated in [12]
might indicate the contribution of additive-genetic rela-
tionships either captured by SNPs or from pedigree-
based EBVs. In contrast to this study, VanRaden et al.
[10] found a lower correlation for somatic cell score
with G-BLUP than with a non-linear method similar to
BayesB.
The fact that SNPs capture additive-genetic relation-

ships has to be taken into account when genomic breed-
ing values are combined with pedigree-based EBVs in
practice. Otherwise the advantages of GS with respect to
inbreeding and effective selection intensity may be
lower.

Future performance testing, training intervals and
methods
The acceptance of GS by breeders depends to a large
extent on the level of accuracy of GEBVs. Until now,
breeders mainly use progeny tested bulls with a high
accuracy above 0.9, which is not yet achieved with
GEBVs without information from relatives. The most
realistic scenario at this moment is to use GEBVs for
pre-selection of young calves in combination with a sub-
sequent progeny testing. The latter will continuously pro-
vide relatives for training and thereby ensure the highest
accuracy of GEBVs. This also means that SNP effects
should be re-estimated in short time intervals to always
include the latest phenotypic data. The combination of
GEBVs with pedigree-based EBVs might not be the only
criterion for selection as deviations from expected rela-
tionships provide additional and specific information.
However, the accuracy of future cohorts can be lower
than for the current ones because if bulls are selected on
GEBVs and mated to the breeding population as soon as
they are sexually mature, the progeny test results will not
be available before the next generation is ready to be
selected on GEBVs (Kay-Uwe Götz, personal communi-
cation). Consider the following situation of a possible
breeding program: Suppose sons of a progeny tested bull
are just born. After 1.5 years, these sons can be selected
on GEBVs and then mated to the population to produce
both the next breeding generation and test progeny. The
accuracy of their GEBVs is expected to be as high as for
amax = 0.6 or 0.49. Another 2.5 years later, the grand-
sons become selection candidates, but the accuracy of
their GEBVs should be at least as low as for amax = 0.249,
because progeny testing lasts four years in cattle and
therefore no half and full sib information will be available
for these grand-sons. Consequently, the GEBV accuracy
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of future candidates may be lower than reported in pre-
vious studies. Most likely breeders would not accept
these low accuracies, meaning that the generation inter-
val cannot be decreased at this stage of the GS develop-
ments. However, as statistical methods improve and both
SNP density and training size increase, the currently
expected accuracy of future candidates may also be
higher.
The better approach to predict GEBVs in the future is

probably BayesB rather than G-BLUP, because as SNP
density and data size increase, BayesB may be able to
address more QTL such that the accuracy due to LD is
higher and additive-genetic relationship information
becomes less important. This was demonstrated here at
least for training data size (Table 4). Furthermore, there
were many adjacent SNPs with r2 close to zero and thus
QTL in between might not be picked up by SNPs. Van-
Raden et al. [10] compared several SNP densities by
removing SNPs from the 54K panel and found an
increase in accuracy with density. Another option to
increase both the level of accuracy and the persistence
with decreasing additive-genetic relationships might be
to model cosegregation in addition to LD as proposed
by [39-41]. For an average r2 of 0.225 between adjacent
SNPs, which is identical to this study, Calus et al. [42]
found no clear differences in the accuracy of GEBVs
between a model similar to BayesB and the approach of
[39] using simulated data. The question remains, how-
ever, whether this simulation result holds in practice,
because the real genetic model seems to be different
from the simulated one. This can be suspected from the
high accuracy of 0.8 for the offspring of 1,000 training
individuals in the simulations by [42] compared to the
accuracies of this study. Therefore additional informa-
tion from cosegregation should be useful in practice.

Conclusions
Additive-genetic relationships between the training indi-
viduals and a selection candidate captured by SNPs
affect the GEBV accuracy of that candidate. Thus, accu-
racy of current candidates can vary in practice. These
additive-genetic relationships must be known to provide
the accuracy along with GEBVs, and SNP effects should
be re-estimated in short time intervals to include the
most recent phenotypic data from relatives. The accu-
racy of future selection candidates can be smaller than
reported in previous studies because information from
relatives might not be available when selection on
GEBVs is possible and they can be used for breeding.
The decay of accuracy with decreasing additive-genetic
relationships is higher with a smaller number of training
individuals. Differences in accuracy of GEBVs between
G-BLUP and BayesB are small, but BayesB is much
more able to exploit LD information than G-BLUP.

Therefore, as SNP density and training data size
increase a Bayesian model averaging approach is more
suitable for GS than G-BLUP. Further studies are
needed to analyze the source of LD, its possible persis-
tence with selection and the accuracy to predict Mende-
lian sampling terms. Cross-validations that do not take
into account the structure of the data, and additive-
genetic relationships in particular, are not meaningful
enough for problems in plant and animal breeding.

Additional file 1: Accuracy of GEBVs in case of linkage equilibrium
and unrelated training individuals. This is a pdf file used to
demonstrate that the accuracy of GEBVs approaches the accuracy of
pedigree-based BLUP in case of linkage equilibrium.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1297-9686-42-5-
S1.PDF ]
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