
METHODOLOGY ARTICLE Open Access

Structuring heterogeneous biological information
using fuzzy clustering of k-partite graphs
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Abstract

Background: Extensive and automated data integration in bioinformatics facilitates the construction of large,
complex biological networks. However, the challenge lies in the interpretation of these networks. While most
research focuses on the unipartite or bipartite case, we address the more general but common situation of
k-partite graphs. These graphs contain k different node types and links are only allowed between nodes of
different types. In order to reveal their structural organization and describe the contained information in a more
coarse-grained fashion, we ask how to detect clusters within each node type.

Results: Since entities in biological networks regularly have more than one function and hence participate in more
than one cluster, we developed a k-partite graph partitioning algorithm that allows for overlapping (fuzzy) clusters.
It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a
weighted k-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the
multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates
the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures
on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were
able to structure this graph on a large scale into clusters that are functionally correlated and biologically
meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters’ elements. We exemplified
this for the transcription factor MECP2.

Conclusions: In order to cope with the overwhelming amount of information available from biomedical literature,
we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end,
we presented a novel fuzzy k-partite graph partitioning algorithm that allows the decomposition of these objects
in a comprehensive fashion. We validated our approach both on artificial and real-world data. It is readily
applicable to any further problem.

Background
With the increasing availability of high throughput
“-omics” technologies such as next generation sequen-
cing, proteomics or metabolic profiling an enormous
amount of textual data is accessible in the biomedical
literature. Hence, methods able to structure these het-
erogeneous data and to extract new knowledge gain
more and more importance. Learning approaches often
focus on the analysis of homogeneous data sets that can

be represented as graphs having vertices of a single type
only. However, biological networks are complex and
highly diverse and therefore often involve objects of
multiple types, forming k-partite graphs consisting of
different kinds of vertices. We use this representation as
it provides a more comprehensive picture of the under-
lying structure compared to the widely used graph
transformations. These so-called projections - e.g. of a
bipartite network into an unipartite version - discard
important information [1]. For instance, [2] shows that
in the case of metabolism the use of projections leads to
wrong interpretations of some of the most relevant
graph attributes, whereas the bipartite view offers a clea-
ner interpretation of its topological features.
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The human disease network presented in [3] is an
example for a bipartite graph having two disjoint sets of
vertices. Here, structural questions need to be addressed
outside of the unipartite graph setting. One set of nodes
represents all known genetic disorders, the vertices of
the other partition correspond to all known disease
genes in the human genome. A disorder and a gene are
connected if mutations in that gene are implicated in
that disorder. Other examples of bipartite networks are
protein complex or gene-localization, gene-function or
microRNA-target networks. The integration of such net-
work data then leads to complex k-partite graphs.
A key question is how to interpret the internal organi-

zation of these networks. A possible answer may be a
modular decomposition, which implies the coexistence
of structural subunits associated with more highly inter-
connected parts. We regard the identification of these a
priori unknown building blocks - such as for instance
functional modules in protein-protein-interaction (PPI)
networks - as clustering methods. The clusters and their
interconnections are essential for understanding the
underlying functional properties. They structure biologi-
cal data by compressing their information into a con-
densed form.
Most available clustering methods do not treat the

single node types (partitions) separately and therefore
do not represent the global cluster structure of k-partite
networks correctly. While this has been addressed in
terms of algorithms for some time now [4-6], not many
applications were successfully implemented in bioinfor-
matics yet, although the field commonly deals with such
networks [1]. A particular issue that may hamper appli-
cation to biological data is that most existing algorithms
identify separated, disjoint clusters by assigning each
point to exactly one cluster [7,8]. This is unrealistic for
biological systems as e.g. genes or proteins commonly
participate in multiple processes or pathways [9]. So far,
only a few approaches exist that allow the detection of
overlapping clusters. These either assign each data point
to several hard clusters [10] or determine a degree of
membership to each cluster [11,12]. Such methods are
known as fuzzy clustering, but have not been applied to
the common biological case of k-partite graphs.
To overcome these difficulties we developed a novel

fuzzy clustering algorithm based on a non-negative
matrix factorization (NMF) model [13]. Our algorithm
extends a hard clustering algorithm recently put forward
in [14]. This algorithm clusters each node type of the
graph separately and then connects clusters via a smal-
ler, weighted k-partite graph in an alternating minimiza-
tion procedure. Thereby, the cluster assignment in the
first step is made in a binary fashion. This disjoint clus-
tering is a feature that is often achieved by soft cluster-
ing algorithms when not forcing explicit cluster overlap

[11]. However, it can be easily seen that the cost func-
tion proposed is not fully minimized. Our computation-
ally efficient and scalable algorithm avoids this problem.
It is similar in structure to multiplicative algorithms for
NMF, with the difference that we address a three-matrix
factorization problem (see e.g. [15]), and have to deal
with a multi-summand cost function. As our cost func-
tion is monotonous with respect to the number of clus-
ters, our algorithm allows detection of clusters on
different scales. Hence, we are able to decompose the
network on different resolution levels.
The manuscript is organized as follows. In the first

part, we develop the fuzzy clustering algorithm and
validate it on a toy example and graphs with known
modular structure. Then, we apply it to a tripartite dis-
ease-gene-protein complex graph representing an
expanded view of the human disease network from [3]
extended by protein complexes [16]. By integrating
functional annotation we demonstrate that we are able
to structure this complex graph into biologically mean-
ingful clusters on a large scale. Finally, focusing on the
small-scale architecture, we identify overlapping clusters
that give a more comprehensive picture about gene-
disease connections rather than looking at disjoint clus-
ters alone. We exemplify how this clustering allows for
reclassification, annotation or even detection of misclas-
sified elements on a local level.

Results and Discussion
A k-partite graph is a graph G = (V, E) of edges E
between a set of vertices V together with a partition of
the vertices into k disjoint subsets Vi such that no two
vertices in the same subset are adjacent. For k = 1 this
reduces to the standard graph, where we do not take
into account different node types. Graphs with two par-
titions are called bipartite. Let ni := |Vi| be the number
of vertices in the partition i, i = 1 ... k. We represent the
graph as a set of ni × nj-dimensional adjacency matrices
A(ij) for all i, j with 1 ≤ i <j ≤ k. Typically, each matrix
element is either 0 or 1, but we only restrict the
matrices to have non-negative coefficients thereby allow-
ing weighted graphs as well.

Approach
We want to approximate G by a smaller k-partite cluster
network H which we call backbone network. It is defined
on the fuzzy clusters of each G-partition Vi. We fix the
number of clusters in partition i to mi. We denote a
non-negative ni × mi-dimensional matrix C(i) to be a
fuzzy clustering of Vi, if it is right-stochastic, i.e.

C kl
i

l

mi ( )
=∑ =
1

1 for all k. Its (k, l)-th element C kl
i( ) gives

the degree of membership of the original node k to the
backbone node l.
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Then we search for a k-partite graph H with mi × mj

adjacency matrices B(ij) and a fuzzy clustering C := (C(i))

i = 1,...,k such that the connectivity explained by H is as
close as possible to G after clustering according to
C. Figure 1 shows an example graph and its approxima-
tion by a backbone network. From the approximation,

we can easily reconstruct an edge A uv
ij( ) between two

nodes u and v from partitions i and j in the original
graph. To this end, we have to sum up all edge weights
B(ij) in the backbone graph that connect the commu-
nities u and v are assigned to. Of course, in a fuzzy
environment these contributions have to be weighted by
the nodes’ degrees of membership C(i) and C(j), respec-
tively. Taken together, the entry of the adjacency matrix
can be reconstructed as the double sum

A C B Cuv
ij

ux
i

y

m

x

m

xy
ij

vy
j

ji

( ) ( ) ( ) ( ).≈
==

∑∑
11

Writing this in matrix notation, we see that the
requirement of explaining maximum possible connectiv-
ity means that the adjacency matrices A(ij) are best pos-
sible approximated by factorizations of the form

A C B C( ) ( ) ( ) ( )( ) .ij i ij j≈ 

We can measure the difference between the two
graphs H and G in a variety of ways. In [14], this choice
has been circumvented by focusing on arbitrary Breg-
man divergences, see e.g. [17], which still allow efficient
reformulation of gradient-type algorithms without
knowing the specific formula. This is also possible in
our case of multiplicative update rules, as has been
shown for NMF by [15]. Here, we choose the minimum
square distance as the cost function. This implies mini-
mization of

f H C ij i ij j

F
i j

( , ) : ( ) ,( ) ( ) ( ) ( )= −
<
∑ A C B C  2

where .
F
2 denotes the squared Frobenius norm i.e.

the square sum of the matrix elements. This cost func-
tion is obviously monotonous with respect to the num-
ber of clusters in each partition.
Algorithm formulation and relation to other work
We aim at minimizing the cost function f(H, C) using a
local algorithm extending gradient descent. In order to
avoid the choice of update rates and to ensure positivity
of both the backbone network and the degrees of mem-
bership of all nodes, we employ multiplicative update
rules. This strategy is widely used in algorithms for non-
negative matrix factorization (NMF) [18]. We find the

Figure 1 Illustration of the fuzzy clustering approach. We want to approximate the tripartite example graph G in (a) by a smaller tripartite
cluster network H, the so-called backbone graph (b). The decomposition into fuzzy clusters connected by this backbone must explain the
original connectivity as good as possible. The edges of G are collected in adjacency matrices A(ij) connecting the elements of the partitions i and
j. The approximation of G by the backbone graph is encoded in the adjacency matrices B(ij) connecting the fuzzy node clusters C(i). These
matrices C(i) collect the degrees of membership of each node of partition Vi to each cluster of this type. Its (k, l)-th element C kl

i( ) specifies how
much node k belongs to the backbone node l.
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following update rules (see Methods for the detailed
derivation):
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C A C
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We note that these update rules do not increase the
cost function (1). This can be shown via auxiliary func-
tions similar to NMF [18] and multi-factor NMF [15],
which has been applied in a related model for co-clus-
tering of microarray data [19]. This theoretical result
implies convergences of the update rules. However, in
contrast to early statements in NMF [18], it does not
necessarily imply convergence to stationary points of the
Euclidean norm (zero of the differential from (1)), since
the update steps may be too small to reach those points.
Another possible drawback of such multiplicative
updates is the fact that once a matrix entry has been set
to zero (which may happen due to zeros in A(ij) or to
numerics), the coefficient will never then be able to
become positive again during learning. This is one of
the reasons, why sometimes alternating least-squares
algorithms are chosen [20].
We have not yet taken into account the constraint

that the fuzzy clusterings C(i) are required to be right-
stochastic. We force this constraint by regularly project-
ing each row of C(i) onto the sphere of the 1-norm. The
final fuzzy k-partite clustering algorithm is summarized
in Figure 2. Implementations are available as Additional
Files 1 and 2.
Our algorithm has two nested loops over the number

of partitions k, hence its runtime depends quadratically
on this number. The update rules for C(i) and B(ij) how-
ever are fully vectorized and contain only matrix opera-
tions with non-square matrices. Their time complexity
is dominated by the occurring matrix products: multi-
plying two matrices of sizes s1 × s2 and s2 × s3 is of
complexity  (s1s2s3). Assuming that the cluster num-
bers mi are smaller than the largest two partition sizes,
the total time complexity of the fuzzy clustering algo-
rithm can then be estimated as

# ( ).iterations 2
max1 max2 max× k n n m

Here, nmax1 and nmax2 denote the sizes of the largest
and the second-largest partition, mmax is the maximum
number of clusters within any partition. Hence, the run-
time grows only quadratically in the total number of

nodes in the case of graphs with similarly large parti-
tions. In general, the runtime is linear in each partition’s
size ni and cluster number mi. We additionally con-
firmed this theoretical analysis by simulations shown in
Additional File 3.
Algorithm evaluation - Toy example
For illustration, we applied our algorithm to a bipartite
graph having several vertices connected with all vertices
of the other partition (e.g. nodes 1 and 10). Figure 3
shows that these vertices are assigned to two clusters
with distinct degree of membership, whereas vertices
partially connected are element of a single cluster only
(e.g. 3). This demonstrates the idea and importance of
using a fuzzy that allows for overlapping clusters.
Algorithm evaluation - Performance analysis
Before applying our algorithm to real-world data, we
tested its behavior on simulated data with controlled
cluster structure. In particular, we compared it to the
hard clustering algorithm from [14]. We used exactly the
same stopping criteria for both algorithms. We generated
random, modularly structured k-partite networks as
described in the Methods section. In order to compare
algorithm performance, we determined runtime, final
cost function value and the quality of cluster estimation
in four different settings. We restricted ourselves to
bipartite and layered tripartite graphs with two different
noise settings because Long et al. provided code for ana-
lyzing these special cases only.
We found that while the method of Long et al. per-

formed around two times faster, our algorithm produced
around 10% lower cost function and was able to esti-
mate the cluster structure better (see Figure 4). This dif-
ference in algorithm runtime originates from the much
more fine-tuning of the continuous degrees of member-
ship compared to hard cluster assignments. These
require less update steps until convergence.
Algorithm evaluation - Stability of clusters
In contrast to deterministic methods like for instance
singular value decomposition (SVD), NMF-based meth-
ods have problems concerning robust computation.
Even for standard unipartite NMF there is no unique
global minimum of the cost function [21]. Our algo-
rithm aims to minimize the cost function using a local
optimization strategy extending gradient descent. This
implies that the algorithm only converges to a local
minimum. The algorithm is indeterministic, it does not
converge to the same solution on each run due to the
stochastic nature of initial conditions. Thus, following
the general proceeding in literature on NMF [21,22], we
compare the local minima from several different starting
points (multiple restarts), using the results of the best
local minimum found.
In order to illustrate the stability of the fuzzy cluster-

ing algorithm we applied it to a toy network with well
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defined cluster structure using multiple restarts. We
compared the clustering results of 100 runs and quanti-
fied the cluster stability using a fuzzy variant of the rand
index recently proposed in [23]. As we show in Addi-
tional File 4, our algorithm is able to reproduce the true

clustering results in more than 70% of the runs. Hence,
we can not guarantee that the local optimization finds a
global minimum of the cost function, and with this the
cluster structure of a graph. This illustrates the critical
need for multiple restarts.

Figure 2 Fuzzy clustering algorithm. Summarization of the final fuzzy k-partite clustering algorithm.

Figure 3 Illustration of the cluster decomposition of a bipartite toy example. (a) We demonstrate the graph decomposition with our
algorithm on a small bipartite graph with overlapping cluster structure. The original graph consists of partitions V1 = {1 ... 4} (red filled nodes)
and V2 = {5 ... 10} (blue filled nodes) connected by edges A(12) colored in black. We decomposed it into two clusters for partition V1 and three
clusters for partition V2. The resulting fuzzy clustering is illustrated as a weighted graph connecting original nodes to cluster nodes (framed red
and blue). The cluster assignments C(1) and C(2) are indicated by dashed lines, where the coloring corresponds to the degree of cluster
membership. The interconnections of the clusters form the backbone graph, encoded in the adjacency matrix B(12) which we denote by
continous lines where color indicates the edge weight. Another way of illustrating the graph decomposition is shown in (b). It is clearer
especially for larger graphs. First, we plot hierarchical clusterings of the nodes’ degrees of membership in partitions V1 and V2 (encoded by C(1)

and C(2)). This facilitates the identification of overlapping clusters (e.g. nodes 1 and 10 are assigned to more than one cluster) or hard cluster
assignments (e.g. node 5). The backbone graph B(12) is shown bottom right. This backbone graph is densely connected in our example.
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Structuring biological data
In order to exemplify the analysis of biological networks,
we applied our algorithm to a layered tripartite disease-
gene-protein complex network, see Figure 5a for an
illustration. In this graph, a disorder and a gene are con-
nected if mutations in that gene are implicated in that
disorder. A complex and a gene are linked if the gene is
coding for a protein part of the complex. We con-
structed this graph by integrating the human gene-dis-
ease network from [3] and protein complexes from the
CORUM database, as explained in the Methods section.
An important feature of many biological networks is

their hierarchical organization, where higher-level struc-
ture is composed of multiple instances of a lower-level
structures of different types [24]. This implies that small
groups of nodes organize in a hierarchical manner to
increasingly large groups on many different scales [25,26].
To account for this topological characteristic we have to
be able to extract relevant information on an appropriate,
pre-defined resolution level.
We addressed this issue by analyzing the very global

structure and a detailed local level of the disease-gene-
protein complex network. In the following, we first pre-
sent the results of a decomposition into large clusters
which demonstrates that our method is generally applic-
able to biological data. Then, we discuss smaller clusters
that allowed for a precise interpretation of single
elements.

As discussed before, due to its random initialization
our algorithm is inherently indeterministic. Different
clustering results have of course a significant impact on
the interpretation of the biological meaning of the
results. We show in Additional File 4 that our algorithm
is quite stable on graphs with well defined cluster struc-
ture. To avoid analyzing a local minimum, we discuss
performance over 10 runs and verify that the disease-
gene-protein complex network has indeed a defined
cluster structure in Additional File 5.
Dealing with a theoretically monotonous cost func-

tion, it is hard to determine the optimal numbers of
clusters for each node type in which the graph has to be
partitioned. Appropriate values are not apparent from
prior knowledge about our data set. We therefore chose
desired approximate resolutions mg for the gene parti-
tion. The number of clusters mc and md in the protein
complex and disease partitions were then scaled accord-
ing to their partitions’ sizes (see Methods). We use this
heuristics, since a brute-force sampling of the three-
dimensional parameter space is computationally out of
reach. Then, we looked for plateaus and steep drops in
the cost function within a certain range around this
value mg and chose a local optimum of the algorithmi-
cally found decompositions. In Additional File 5 we per-
formed simulations showing that the profile of the cost
function may indeed indicate for a proper number of
clusters in graphs with known cluster structure.

Figure 4 Performance on toy models. We validated our algorithm on graphs with predefined cluster structure. To this end, we compared it
with the hard clustering method by Long et al. on four different random toy models, see Table 1. The plot shows the mean relative deviation
between the two algorithms relative to the results of the hard clustering. Error bars denote standard deviations over 1000 runs. We see that the
fuzzy cluster assignments of our method require much more runtime, but both cost function and data estimation error (see Methods) are
significantly smaller. The large standard deviations show the dependency of the decomposition on the random initial conditions. Therefore, by
default we perform multiple restarts with different initializations.

Hartsperger et al. BMC Bioinformatics 2010, 11:522
http://www.biomedcentral.com/1471-2105/11/522

Page 6 of 15



Large-scale clustering
First, we focused on the identification of large clusters.
Figure 5b shows the distribution of the cost function
values after algorithm convergence for each parameter
setting. In the following discussion, we used (mg, mc,
md) = (10, 5, 6) as it showed the first steep drop in the
cost function. Moreover, here we observed a significant
local minimum of the cost function values of the algor-
ithmically determined decompositions. From the illus-
tration of the decomposition in Figure 6 we see that the
resulting clusters vary strongly in size. For all partitions,
the majority of elements was assigned to a single cluster
with degree of membership μ > = 0.9. This demon-
strates that the analyzed graph has a well defined cluster
structure at the desired resolution level. The corre-
sponding histograms are given in Additional File 5.
Therein we also discuss an example illustrating that
such large degrees of membership are rarely found in
graphs lacking any cluster structure. However, there
exists also a considerable amount of elements assigned
to several clusters simultaneously, e.g. in complex clus-
ters 3 and 5, gene clusters 1 and 3 or disease clusters 3
and 4. This confirms the usefulness of our fuzzy
approach.

Cluster evaluation To determine whether the resulting
clusters are biologically reasonable, we applied GO
enrichment analysis (see Methods) to the clusters of the
gene partition. We found, for instance, that for the genes
in the two overlapping clusters 1 and 3 significantly
enriched GO-terms are cell cycle and cellular response to
stimulus/stress. Genes in cluster 4 can be related to e.g.
death, cell proliferation and developmental processes,
whereas cluster 6 represents translation. Gene expres-
sion-associated GO-terms such as RNA processing and
splicing were detected in cluster 7. This shows that our
method was able to identify biologically meaningful func-
tionally enriched clusters. The complete tables for GO
enrichments in all clusters are shown in Additional File 6.
The interconnectivity of the in total 21 clusters is

sparse (see Figure 6). The skeleton for the global cluster
structure for both underlying bipartite graphs (gene-
complex and gene-disease) demonstrates that locally
overlapping clusters also tend to interconnect with the
same clusters of the other partition; for instance, disease
clusters 3 and 4 are both connected with gene cluster 9.
To evaluate the extracted backbone graph, in the follow-
ing we tested the hypothesis that interconnected clusters
of different partitions are also functionally correlated.

Figure 5 Decomposition of a gene-disease-protein complex network. We integrated the gene-disease network from [3] with human protein
complexes from the CORUM database [16]. This resulted in a layered tripartite graph, which is schematically drawn in (a). We performed a 10-
fold approximation of this graph to estimate appropriate numbers of clusters. The boxplot curve (b) shows how the cost function f(H, C) from
equation (1) depends on the number of gene clusters mg. The true minima of the cost function are decreasing with mg, and this is also visible
in the approximated minima using our proposed algorithm. Therefore, we are able to identify structures on various resolution levels. The details
represent the cost function course for large-scale clustering (i) and a decomposition on small scale (ii), respectively. For our detailed analyses, we
used the decompositions showing steep drops in the cost function marked by the red and green boxes.
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Figure 6 Illustration of large-scale cluster structures in the gene-disease-protein complex network. The large-scale decomposition of the
gene-disease-protein complex network is illustrated as described in Figure 2b. The hierarchical clustering of the nodes’ degrees of membership
of the (a) complex, (c) gene and the (d) disease partition show that the majority of elements was assigned to single clusters. However, a
considerable amount of cluster overlaps exists, e.g. for the disease clusters 3 and 4. The backbones for gene-complex (b) and for gene-disease
(e) are sparsely connected, but show that locally overlapping clusters tend to interconnect with the same clusters of the other partition; e.g.
disease cluster 3 and 4 are both connected to gene cluster 9 with large weights.
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Gene-complex interconnections Assuming that the
resulting interconnected gene and complex clusters are
functionally related, one expects to see a similar profile
for FunCat annotation and backbone interconnectivity
of each cluster. This hypothesis was verified in Figure 7,
where for instance complex cluster 3 and the intercon-
nected gene clusters 1 and 3 show a high binary FunCat
correlation. The difference score (as defined in Meth-
ods) between backbone interconnectivity and annotation
correlation is 2.48, resulting in a p-value < 10-5. To
compare the results of the fuzzy clustering approach
with the results for the disjoint clustering method from
[14] we applied the algorithm with the same parameter
settings and identical annotation and randomization
procedure to the obtained clusters. For hard clustering
we achieved a larger difference score of 2.99 which cor-
responds to a significant p-value of 0.0015.

Gene-disease interconnections To ascertain that our
method is able to detect biological feasible clusters in all
partitions, we determined for each gene and disease
cluster disorder class profiles. Again, we observed a high
similarity between backbone interconnectivity and disor-
der correlation having a difference score of 1.09 (p-value
< 10-5). For instance, gene cluster 1 and 10 and the
interconnected disease clusters 1 and 5 show a high dis-
order correlation (see Figure 7).
Small-scale clustering
We showed that our method is able to both detect and
interconnect biologically meaningful clusters. However,
due to their size of about 279 genes on average the sin-
gle clusters are hard-to-interpret. The detection of smal-
ler clusters representing biological units enables a
precise biological interpretation. In the following, we
describe results for (mg, mc, md) = (222, 135, 112),

Figure 7 Evaluation of the backbone of the gene-disease-protein complex network. To evaluate the large-scale clustering we additionally
included functional annotations. (a) and (b) compare the gene-complex backbone graph with the functional correlations of the extracted
clusters according to FunCat annotation. Similarly, (d) and (e) show the gene-disease backbone and the clusters’ disorder class correlations (see
Methods). We see that interconnected clusters also seem to correlate in their annotations. To test this hypothesis rigorously, we calculated
difference scores as defined in Methods in order to quantify the correlation of the backbones and their annotations, respectively. Vertical lines in
(c) and (f) correspond to these difference scores for the fuzzy (black) and the hard (red) clustering. Comparing these values to the difference
scores for 105 randomized cluster assignments we obtain significant p-values, both < 10-5. The correlations between annotations of connected
clusters of the backbone is higher when applying the fuzzy approach.
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where we found the lowest value of the cost function
(see Figure 5b). This setting accounts for an average
cluster size of 10 genes.
In order to make use of the cluster overlaps, we

looked for genes assigned to more than one cluster with
a degree of membership of μ > 0.2. We considered this
threshold as significant as it is 50-fold higher than
assigning each gene uniformly to all 222 gene clusters
with equal degree of membership μ = 0.0045.
As a showcase we chose MECP2, a protein that func-

tions as a key factor in epigenetic transcriptional regula-
tion. It is known to be involved in neurodevelopmental
and psychiatric disorders such as Autism, Mental retar-
dation and Angelman syndrome [3,27,28], and was
assigned to three distinct gene clusters: 25 (μ = 0.42), 32
(μ = 0.31), 200 (μ = 0.24). These clusters mainly cover
neurological (23%), psychiatric (81%) and pleiotropic
(7%) genes having a degree of membership μ > 0.2. This
is illustrated in Figure 8, where we visualized the back-
bone interconnectivity and the fuzzy clustering of the
nodes in the neighborhood of MECP2.
We then analyzed the nine disease clusters intercon-

nected with the three gene clusters in the backbone net-
work. In total, 45 disorders representing mainly
psychiatric (66%) and neurological (20%) disorders were
assigned to eight disease clusters with a degree of mem-
bership of μ > 0.2; 6 out of 9 psychiatric disorders avail-
able in the network analyzed are present in three
disease clusters.
Another large fraction of these disease clusters are dis-

orders classified as multiple. Most of them (Shprintzen-
Goldberg syndrome or Aarskog Scott syndrome) show
also neurological diseases such as mental retardation
[29,30]. We also identified the ophthamological disorder
Blepharospasm, an adult-onset focal dystonia that causes
involuntary blinking and eyelid spasms [31] for that a
known polymorphism in the dopamine receptor DRD5
is associated with [32]. This is a subform of Dystonia
and classified as a neurological disorder (ICD-10 G24.5)
by the WHO [33].
Furthermore, we found Anorexia nervosa to be present

in the analyzed clusters. It is annotated as a nutritional
disorder by [3], however it represents a life-threatening
complex psychiatric disorder [34]. Another so far
unclassified disease Alcohol dependence was assigned to
the interconnected cluster. It is classified as a mental
and behavioral disorder (ICD-10 F10.2) and in a broader
sense can be considered as psychiatric disorder.
In contrast, applying the hard clustering algorithm,

MECP2 was assigned to a single gene cluster which is
connected to two disease clusters. Although all asso-
ciated disorders were identified correctly, no further
information could be obtained from the clusters.

However, [27] reports an epigenetic overlap in autism-
spectrum neurodevelopmental disorders as MECP2
affects the regulation of UBE3A expression. These rela-
tions became immediately apparent in the cluster result
of our fuzzy approach: Both genes were mutually
assigned to gene cluster 25 that identifies the phenotypic
and genotypic overlaps, whereas direct links to known
connected genes are missing in the hard clustering (see
Figure 8).

Conclusions
The widespread application of high-throughput methods
such as microarrays or next generation sequencing has
considerably increased the amount of experimental data
and the information available in biomedical literature
that is accessible to text-mining approaches [35]. These
data can usually be represented in terms of networks.
Over the last years, networks have emerged as an
invaluable tool for describing and analyzing complex
systems. However, we need to take into account that
network information is commonly available for various
types of nodes. Especially integrative biological networks
are k-partite [3,36].
Another important feature of biological networks is their

hierarchical organization, implying that small groups of
nodes organize in a hierarchical manner to increasingly
larger groups on many different scales [24-26]. This neces-
sitates the analysis of these objects on various resolution
levels. Furthermore, many proteins or genes are pleiotro-
pic, and often associated with many functions. Hence,
clustering algorithms that assign elements into several
functional modules are essential [10,12,37].
We presented a novel computationally efficient and

scalable graph clustering algorithm that is capable to
deal with all these described issues. Further, it does not
require any a priori knowledge about the data set.
Results on a tripartite network, constructed by integrat-
ing the human disease network and protein complexes,
demonstrated that we could identify and interconnect
biologically meaningful clusters on different scales.
Overlapping modules gave a more comprehensive pic-
ture of e.g. gene-disease connections than looking at dis-
joint clusters alone. Summarizing, the proposed fuzzy
clustering algorithm is suitable to compress and approx-
imate the underlying topology of heterogeneous biologi-
cal networks, which facilitates the understanding of such
networks on multiple scales. It is freely available and
readily applicable to many further problems.

Methods
Derivation of the update rules
We want to minimize f(H, C) in equation (1) using a
local algorithm extending gradient descent. Let D(ij): =
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Figure 8 The small-scale clustering in the neighborhood of MECP2. We draw the results - the backbone network and the nodes’ degrees of
membership to clusters, thresholded by μ > 0.2 - of the small-scale clustering in the neighborhood of MECP2 using the fuzzy (a) and the hard
clustering (b). Nodes are colored according to their disorder class annotations. Blue edges indicate backbone interconnectivity, grey edges
cluster assignment. Edge thickness indicates the degree of membership. MECP2 is connected to three gene clusters mainly covering neurological
(red) and psychiatric (purple) genes. The seven interconnected disease clusters also represent mainly psychiatric and neurological disorders. Also
unclassified disorders are present such as e.g. Alcohol dependence (white), which is classified as a mental and behavioral disorder. In a broader
sense, however, it can be considered as psychiatric disorder. Applying the hard clustering (b), MECP2 is assigned to gene cluster 209 which is
connected to two disease clusters only. Although all associated disorders are identified correctly, in contrast to the fuzzy clustering no further
information can be obtained from the decomposition.
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undefined for i >j. For simplicity of notation, we now
set A(ij): = (A(ji))⊤ for i >j (and similarly for the k-partite
graph H). Then D(ij) = (D(ji))⊤, and the differential sim-
plifies to

∂
∂

= − ( )
≠

∑f

c rs
i

ij j ij

rs
j i

( )
( ) ( ) ( )( .)2 D C B 

Altogether, by replacing the residuals, we have shown

∂
∂

= − −f

brs
ij

i ij j

i i ij j j

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(( )

( ) ( )

2 C A C

C C B C C



  ))

( ( )

( )

( )
( ) ( ) ( )

( ) ( ) ( ) (

rs

rs
i

ij j

j i

ij

i ij j j

f

c

∂
∂

= − −
≠

∑2 A C B

C B C C



 )) ( )( ) ) .B ij
rs



If we are to minimize f by alternating gradient des-
cent, we start from an initial guess of B(ij), C(i). Then,
we alternate between updates of the B(ij) and the C(i)

with learning rates  rs
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These update rules have two disadvantages: first, the
choice of update rate h (possibly different for B, C and i, j)
is unclear; in particular, for too small h convergence may
take too long or may not be achieved at all, whereas for
too large h we may easily overshoot the minimum. More-
over, the resulting matrices may become negative. Hence

we follow Lee and Seung’s idea for NMF [13] and rewrite
this into multiplicative update rules. We therefore choose
update rates
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Plugging this into the gradient descent equations, we
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Commonly, in order to extend cost functions in (uni-
partite) data clustering to include fuzzy clusters, a so-
called fuzzification factor is introduced [11,38]]. Instead
of squared norm minimization of the residuals D(ij), a
higher residual power is minimized, which results in
overlapping non-trivial cluster assignments. However,
we see that in our examples, already the standard case is
sufficient. This is because we are interested in co-clus-
tering, which is different from standard data clustering
where only a unipartite graph and hence C(i) = C(1) is
assumed.

Evaluation on simulated data
We built a random, modularly structured k-partite net-
work as follows: We fix the number of clusters mi of
nodes with color i, i = 1, ... k. The backbone graph is
initialized by mi × mj-matrices B(ij) filled with zeros. We
added uniformly random ones in each column according
to a set percentage a (here on average a ≥1 ones in each
column) such that each row has at least a single non-zero
entry. In order to construct the actual network A, we
split up A(ij) into mi · mj blocks of a fixed chosen cluster-
size (here 10). We fixed a cluster connectivity b and a
random connectivity g <b. Now, for each non-zero entry
in B(ij), we set the corresponding block of A(ij) to a ran-
dom Erdös-Rényi graph [39] with density b. Finally the
clusters are connected by replacing each zero block of
A(ij) with an Erdös-Rényi graph of the lower connectivity
g. We analyzed 1000 realizations of four network proto-
types with increasing complexity (parameters are given in
Table 1). In order to compare algorithm performance, we
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determined algorithm runtime, final cost function value
and quality of cluster estimation. Cluster estimation qual-
ity was measured by the summed up Frobenius norms of
the difference between the true C(i) and the estimated

ˆ ( )C i , where clusters have been permuted such as to give

minimal difference (permutation indeterminacy).

Construction of a disease-gene-protein complex graph
We constructed a layered, tripartite graph by enlarging
the human disease network [3] by all human protein
complexes from the CORUM core set (as of July 2009)
[16]. Integrating both data sets resulted in a graph of
5672 nodes and 7795 edges with all genetic disorders,
all known disease genes and human protein complexes.
We extracted the largest connected component resulting
in a network with |V| = 3737 and |E| = 6219. It consists
of 854 complexes (Vc), 590 diseases (Vd) and 2293 genes
(Vg) (see Additional File 7).

Parameter determination
We determined parameters for clustering on different
scales. For large-scale clustering, we approximated the
number of clusters to be found for each node type by
limiting the maximal number of gene clusters mg for Vg

to mg= m Vg g= ⎢
⎣

⎥
⎦| | /2 as suggested in [40]. The

number of complex clusters mc for Vc and disease clus-
ters md for Vd were then scaled according to mg by i =

m m V Vi i gg= ⎡
⎢

⎤
⎥| | / | | , where i Î {c, d}. To detect

smaller clusters, we set the maximum number of gene

clusters to mg for Vg according to mg = m
V

g
g=

⎡

⎢
⎢
⎢

⎤

⎥
⎥
⎥10
.

This resulted in a minimum average cluster size of 10
genes. Parameters mc and md for Vc and Vd were scaled
as previously.

Cluster evaluation
We validated the gene clusters using Gene Ontology
(GO) enrichment analysis. To this end, the genes used
in the analysis (degree of membership μ > 0.2) were

tagged with their respective GO categories and analyzed
within each cluster for overrepresentation of certain
categories versus the “background” level of the popula-
tion (in this case, all genes in the tripartite graph). We
used Ontologizer [41] with the setting ”Parent-Child-
Intersection” restricting the analysis to the biological
process category. For multiple testing correction we
employed Bonferroni correction. To assign GO terms to
gene sets, a p-value cutoff of 0.05 was used.
For evaluating the cluster interconnectivity we

employed FunCat [42] classifications for all genes and
protein complexes. We used FunCat, as Gene Ontology
associations for genes could be mapped to their accord-
ing FunCat categories, but not vice versa. A subset of 13
main categories was used, subcategory annotations were
mapped to corresponding main category terms. Disorder
classifications for genes and diseases were taken from
[3], where classification classes grey and multiple were
combined for pleiotropic genes (see Additional File 8).
We calculated Pearson’s correlation coefficients between
cluster FunCat/disorder annotations by weighting a clus-
ter element’s classification by its degree of membership
to the particular cluster. The difference score between
normalized backbone interconnectivity and annotation
correlation was determined using the Frobenius norm of
their difference.

Null model
Null models for the evaluation of the backbone graph in
the large-scale clustering were generated by applying a
weighted bipartite randomization procedure to each par-
tition-cluster subgraph C(i). To this end, we generalized
the degree preserving rewiring of complex networks first
introduced by [43]. In the weighted case, one has to
decide between preserving either the number of neigh-
bors of all nodes, or the total weight of their adjacent
edges. We chose to maintain the first quantity: In every
randomization step we randomly picked two edges and
exchange their endpoints of the partition type, thereby
keeping the weights attached to the edges. With this we
also conserved the weighted degree of the partition
nodes which reflects the right-stochasticity of the fuzzy
clusterings. The degree of randomization can be moni-
tored by a loss of degree-correlations between first and
second neighbors. In practice, correlations vanish after
about one randomization step per edge. So, for our ana-
lyses we used five times this number as suggested in
[44]. The p-values were calculated over 10000 runs.

Availability and requirements
Project name: Fuzzy clustering of k-partite graphs.
Project home page: http://cmb.helmholtz-muenchen.

de/fuzzyclustering.
Operating system(s): Platform independent.

Table 1 Random data models for evaluation of the fuzzy
clustering algorithm

model k m a b g description

1 2 (3, 3) 1 0.7 0.2 equal-sized, no overlap

2 2 (3, 4) 1 0.7 0.2 no cluster overlap

3 3 (3, 4, 5) 1.2 0.6 0.1 3-partite, low-noise

4 3 (3, 4, 5) 1.2 0.8 0.2 3-partite, noisy

Parameters for the simulated data models. k denotes the number of partitions
of the network, m is a vector with the number of clusters in each partition, a
the backbone connectivity, b the cluster and g the noise connectivity.
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Programming language: MATLAB/Octave.
Other requirements: MATLAB 7.1 or higher (no

additional toolboxes required) or Octave.
License: Free for non-commercial purposes.

Additional material

Additional file 1: MATLAB source code. Fuzzy k-partite graph
clustering algorithm for MATLAB.

Additional file 2: Octave source code. Fuzzy k-partite graph clustering
algorithm for Octave.

Additional file 3: Simulations on algorithm runtime. Verification of
the estimation of the algorithm’s time complexity by simulations.

Additional file 4: Simulation on cluster stability. Analysis of the
algorithm’s stability towards the random initialization.

Additional file 5: The chosen number of clusters. Analysis of the cost
function as an indicator for determining the number of clusters. We
study the stability of the clusterings with respect to this choice and give
evidence that the gene-disease-complex graph is modularly structured.

Additional file 6: GO enrichment analysis for the gene clusters from
the large-scale clustering. Tables 1-10 show the GO (Gene Ontology)
enrichment using Ontologizer [41] for the ten gene clusters in the large-
scale clustering. We used only genes having a degree of membership μ
> 0.2 (see Methods).

Additional file 7: Integrated tripartite network. Illustration of the
largest connected component of the layered, tripartite graph gene-
disease-protein complex network. It consists of 2293 gene (green), 590
disease (red) and 854 complex (blue) nodes connected by 6219 edges.

Additional 8: FunCat and disorder class annotation tables. Table 1
shows the FunCat classes used for evaluating the gene and protein
complex clusters. A subset of 13 FunCat main categories was taken from
CORUM. Table 2 represents the 20 primary disorder classes retrieved
from Goh et al. (2007). Additional classes are multiple, grey and
unclassfied.
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