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Abstract

Scientists have made huge progress in the area of stem cell research, but there are still
countless aspects, which remain to be discovered. Cell differentiation takes place in the
gastrulation process, forming the three primitive germ layers. The endoderm is the in-
ner primitive germ layer from which cell development will form epithelial cells. The
middle germ layer is represented by the mesoderm. The last of the three layers, the ecto-
derm, is the outer layer of the three primitive germ layers of an embryo. The epithelial-
mesenchymal transition is the process during which cells lose their epithelial characteris-
tics, gain a lesser regular appearance and get the mesenchymal migratory properties, by
dissolving the epithelial cell-to-cell adhesion. The epithelial and mesenchymal phenotypes
are not irreversible, they convert under specific conditions between those two phenotypes.
This transition process is called EMT - the epithelial-mesenchymal transition. The re-
verse EMT process is called the mesenchymal-epithelial-transition process (MET), which
also occurs during embryonic stem cell development. These two processes are critical for
the appropriate morphogenesis of the organs.
We try to understand the differentiation process, more precisely how the split between
endoderm and mesoderm is regulated. This split seems to be a epithelial-mesenchymal re-
spectively mesenchymal-epithelial transition process. During in mouse embryo live imag-
ing, endodermal cells give the appearance to transform from epithelial to mesenchymal
cells and than to retransform back to epithelial cells. As this EMT-MET process doesn’t
express EMT core signaling factors, endodermal cells don’t seem to go through the typical
EMT followed by MET.

CD24 was used to subclassify whithin mesodermal and endodermal stem cells. Indeed
we observe that CD24 clarifies whether the stem cell is in an early or late developmental
stage, independently of the time of in vitro measurement. After data normalization and
preprocessing, we performed a principal component analysis (PCA), which is a mathe-
matical way of identifying patterns in data and expressing the data, highlighting their
similarities and differences. After that, a regression model was designed and calculated,
resulting in p-values for every expressed gene, indicating their regulatory activity.

We were able to dissect gene regulation from mouse ESC differentiating to endoderm
and mesoderm. We calculated the most regulatory active genes not only for early and
late embryonic developmental stages, benefitting from the sub segregation using the CD24
as marker, but also for mesodermal and endodermal stem cells, using Foxa2 und T as
markers. We found out, that Foxa2 and T positive samples behave like late endodermal
cells and that CD24 indeed distinguish early and late endoderm and not as assumed in
vitro measurement time dependent embryonic stem cell development.
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Zusammenfassung

Wissenschaftler haben grosse Fortschritte auf dem Gebiet der Stammzellforschung gemacht,
aber es gibt immer noch zahllose Aspekte, die es zu entdecken gilt. Zelldifferenzierung, die
in dem Gastrulationsprozess stattfindet, bildet die drei primitiven Keimblätter. Das En-
doderm entsteht aus dem inneren primitiven Keimblatt, aus dessen Zellentwicklung sich
Epithelzellen bilden. Das mittlere Keimblatt wird zum Mesoderm. Das letzte der drei
Keimblätter, das Ektoderm, ist die Aussenschicht der drei primitiven Keimblätter eines
Embryos. Die epithelial-mesenchymale Transition ist der Prozess, bei dem Zellen ihre ep-
ithelialen Charakteristika verlieren, um eine weniger rigide Form zu gewinnen, indem sie
die epithelialen Zell-zu-Zell-Verbindungen lösen und ihre mesenchymalen Eigenschaften
zur Migration in womöglich andersartiges Gewebe nutzen. Die epithelialen und mesenchy-
malen Phänotypen sind nicht irreversibel, die Zellen transformieren unter bestimmten
Bedingungen zwischen diesen beiden. Dieser Transformationsprozess wird als EMT -
der epithelial-mesenchymale Transition beschrieben. Den EMT Vorgang in gegenläufiger
Richtung nennt man den mesenchymalen-epithelialen-Übergangsprozess (MET), welcher
auch während der embryonalen Stammzellentwicklung auftritt. Diese beiden Prozesse
sind kritisch für die entsprechende Morphogenese der Organe.

Wir versuchen die Differenzierung zu verstehen, genauer gesagt, wie die Spaltung zwis-
chen Entoderm und Mesoderm reguliert wird. Diese Spaltung scheint ein epithelial-
mesenchymaler bzw. mesenchymal-epithelialer Übergangsprozess zu sein. Live-Bildgebungen
im Mausembryo erwecken bei Entodermzellen den Anschein, sich von epithelialen zu mes-
enchymalen Zellen und wieder in epitheliale Zellen zu verwandeln. Da dieser EMT-MET-
Prozess nicht die Kern-Signalfaktoren exprimieret, scheinen die Entodermzellen nicht der
angenommenen EMT-MET Umwandlung zu folgen. CD24 wurde verwendet, um inner-
halb mesodermaler und endodermaler Stammzellen Subgruppierungen aufzuspüren. Nach
der Datennormalisierung und Präprozessierung, wurde eine Hauptkomponentenanalyse
(PCA) durchgefürt, einer mathematische Analyse zur Feststellung von Mustern in Daten
und zur Hervorhebung ihrer Gemeinsamkeiten und Unterschiede. Danach wurde ein Re-
gressionsmodell konstruiert und berechnet, wodurch die p-Werte für jedes exprimiertes
Gens berechnet wurden, die deren regulatorische Aktivität widerspiegeln.
Wir konnten die Genregulation der Differenzierung von embryonalen Stammzellen hin zu
Endoderm und Mesoderm isoliert beobachten. Wir berechneten die regulatorische Ak-
tivität der Gene, nicht nur für die frühen und späten embryonalen Entwicklungsstadien,
sondern auch für mesodermale und endodermale Stammzellen. Wir fanden heraus, dass
sich Foxa2 und T positive Proben genauso verhalten, wie späte Entodermzellen. CD24 un-
terscheidet in der Tat zwischen frühem und spätem Endoderm und nicht wie ursprünglich
angenommen embryonalen Stammzellentwicklung nach in-vitro-Messpunkten sortiert.
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1. Introduction

In 1909 the term ’stem cell’ was first used in a scientific way by the Russian histologist
Alexander Maksimov at the congress of the hematologic society in Berlin, postulating the
existence of hematopoietic stem cells. It was published in the folia haematologica ’The
lymphocyte as a stem cell, common to different blood elements in embryonic development
and during the post-fetal life of mammals’ [1]. Nowadays, the term ’stem cell’ describes
unspecialized cells, which have the ability to renew themselves indefinitly and become
tissue specific cells with their unique functions.

From 1909 to the present day, scientists have made huge progress in this area of research,
but there are still countless aspects, which remain to be discovered. Stem cell research is
driven by opportunities for developing new medical therapies [2], e.g. a cure of diabetes by
studying the pancreas development, new cancer treatments, etc., as well as fairytale-like
dreams of an everlasting self-renewing life. The diversity of all species including genetically
similar individuals, arises during embryogenesis. Gaining more knowledge about this
process is one of the most important aims of modern developmental biology. The term
’adult stem cells’, describes undifferentiated cells found in specialized tissue, which have
the ability to renew themselves and convert into nearly all cell types, from which the
tissue originated [3]. This self-renewal property might be causing the involvement of stem
cells in processes of carcinogenesis. Although stem cell research seems to promise a lot of
yet unknown benefits, the research itself is controversial, given the different ethical views
of society as well as the legal classification of the early embryo. Limiting the research
only to mice or other model organisms is not sufficient due to their substantial biological
differences.

1.1. Gastrulation

The word gastrulation is derived from the latin word ’gaster’ which can be translated
as ’guts’, implying ’the formation of the guts’. The term ’gastrulation’ was first used
by Ernst Haeckel 1872-1877 in his ’Studies for the Gastrae Theory’[4]. Primarily, it is a
stage of the common embryonic cell development. The overall aim of gastrulation is the
manifestation of the three primitive germ layers. In this thesis the mouse ’mus musculus’
serves as model organism. Keep in mind that embryonic human development is slightly
different to the rodent’s one, although main processes are very similar.

Johannes Höffler, 2015 1



1. Introduction

Figure 1.1.: This figure shows the development of a fertilized egg, starting as a zygote
and eventually developing into a blastocyst [5].

Beginning as a zygote, the embryo development starts with multiple cleavages until
it becomes a ’morula’ after four or five days. Morula not only describes the developing
zygote, but also the embryonal developmental stage. This cell consists of 8 to 32 blas-
tomeres, emerging from the previous cleavage divisions. The next step of embryogenesis is
the stage of blastulation, in which the morula transforms into a ’blastocyst’. Its outer cell
layer, also called ’trophectoderm’ or ’trophoblast’, is a cavity called ’blastocoel’ filled with
fluid, and in its interior is a cluster of cells called the ’inner cell mass’ (ICM), containing
approximately 30 pluripotent stem cells. Stem cells with the ability to differentiate into
cell types beyond those of the own tissue cell type are referred to as ’pluripotent’. The
outer layer counts approximately 70 trophoblastial cells [6].

Figure 1.2.: Generalised gastrulation process, showing the main developmental stages [7].

Gastrulation begins shortly after a blastocyst containing the ’blastocoel’ implants itself
into the uterine wall of the mother, followed by the organogenesis. A ’blastula’ emerges
from that process. The term ’blastula’ originally means a different stage of the embry-
onically development, but the term is often used to describe both. The blastocoel is
composed of the inner cell mass, surrounded by a layer of blastomeres. At about four and
a half days post coitum (DPC) the blastula implants itself into the uterine wall [6]. Two
days later, at six and a half DPC, the gastrulation process starts. The polar trophecto-
derm and the ICM convert into the extra-embryonic ectoderm, the epiblast and a layer
of visceral endoderm. Gastrulation starts by forming the primitive streak, through which
epiblast cells ingress to form the mesoderm and endoderm. Mesoderm, endoderm and
the ectoderm, representing descendants of epiblast cells that did not pass the primitive
streak constitute the primary germ layers [6]. A part of the cell differentiation process
is called the ’epithelial-mesenchymal transition’. Two important genes are ’Brachyury’
and ’Foxa2’. They can be fused with fluorescence tags and provide thus an intracellular
information regarding the endoderm/mesoderm differentiation, as Foxa2 is expressed in
endodermal and Brachyury in mesodermal differentiated stem cells.

2 Johannes Höffler, 2015



1.2. Cell differentiation

1.1.1. Brachyury

In 1927, Nadine Dobrovolskaia-Zavadskaia discovered this gene, located within the T-box
complex of genes. She named it Brachyury due to the greek words ’brakhus’ meaning
short and ’oura’, the tail - as it caused short tails or the death of mice, when mutated.
Nowadays, Brachyury has the gene name ’T’, first cloned in 1990 by B. Herrmann et al.,
encoding 436 amino acids, which binds with a specific DNA section, called the T-box,
consisting of 18 T-box genes [8].

Brachyury is a nuclear tissue-specific transcription factor that is expressed during em-
bryogenesis, mostly in the notochord and also in other embryonal and extraembryonal
tissues [9]. Genetic and molecular embryonic development studies have demonstrated its
importance in regulating cell fate decisions that establish the early body plan, and in later
processes underlying organogenesis [10]. Mutant alleles of Brachyury have been isolated
and they have an effect on the development of the mesoderm and its derivatives [11]. T is
the founding member of the T-box family of transcription factors, often used as a marker
of the primitive streak, nascent mesoderm, and other tissues [11].

1.1.2. Foxa2

The fork-head Foxa family of transcription factors, encoded by three genes, regulates
haptic and/or pancreatic gene expression [12] and is selectively expressed in respiratory
epithelial cells. It also plays a critical role in suppressing Th2-mediated pulmonary in-
flammation and goblet-cell metaplasia in the developing murine lung during postnatal
development [13].

Foxa2 is the first of the three family members to be expressed in the embryo prior
to gastrulation. All are expressed in the embryonic endoderm cells that constitute the
precursor cells for all organs forming the guts, and all of them remain present and active
in the adult liver [14].

Targeted disruption of Foxa2 resulted in embryonic lethality with defective development
of the foregut endoderm, from which the liver and pancreas arise [12]. Foxa2 is required for
epithelial differentiation, and its knockout causes goblet-cell metaplasia and Th2-mediated
pulmonary inflammation. These mechanisms are not yet fully known [13]. Also, Foxa2
acts as an initiating factor in the earliest stages of liver specification during embryonic
development. It plays a major role in glucose and lipid metabolism of adult liver cells
and can also open compacted chromatin, allowing for the activation of transcription from
silenced genes [14].

1.2. Cell differentiation

Cell differentiation takes place in the gastrulation process, forming the three primitive
germ layers. Nowadays it is possible to remove the ICM-cells from embryonic stem cells
(ESC) and cultivate them in order to investigate the complex differentiation mechanism.
Scientists can force them to differentiate into a specific major germ layer.

Johannes Höffler, 2015 3



1. Introduction

Figure 1.3.: Schematized process of the embryonic stem cell differentiation [15].

The main gastrulation process starts with the formation of the ’primitive node’ on
the posterior side of the epiblast (Fig. 1.6: C: ’Primitivknoten’). This node is the first
indication for the localisation of the head to tail regions (anterior - posterior polarity).
The primitive node consists of cells secreting cellular signals, which helps cells to migrate
within the embryo during gastrulation. Out of this node the ’primitive streak’ emerges. It
is a recess from the primitive node towards the ventral side of the embryo. The elongation
of this primitive streak induces an ingression of epiblast cells into the primitive streak.
Once moved through, the cells become mesendoderm and start to cover the outside of the
embryo.

Figure 1.4.: Dorsal surface view of a 16-day-old embryo, showing the composition of the
epiblast [16].

The endoderm is the inner primitive germ layer from which cell development will form
epithelial cells, giving birth to lungs, the gastrointestinal tract, liver, pancreas and the
urinary bladder. The middle germ layer is represented by the mesoderm. It is responsible

4 Johannes Höffler, 2015



1.3. Epithelial-mesenchymal transition

for the formation of the cardiovascular system, blood cells and bone marrow, the skeleton,
muscles and parts of the reproductive and excretory system. The last of the three layers,
the ectoderm, is the outer layer of the three primitive germ layers of an embryo. Skin,
hair, nails, nerve and brain cells are developed within this layer [17].

1.3. Epithelial-mesenchymal transition

The epithelial-mesenchymal transition is the process during which cells lose their epithe-
lial characteristics, gain a lesser regular appearance and get the mesenchymal migratory
properties, by dissolving the epithelial cell-to-cell adhesion.

The terms ’epithelium’ and ’mesenchyme’ need to be introduced, to understand the
process of epithelial-mesenchymal transition: the epithelium is a collective name for glan-
dular tissue, one of the four basic animal tissue types. These cells secrete bodily products.
It first forms a sheet of cells that are connected to each other by cell to cell junctions
[18]. This sheet is polarised, giving birth to a basal (bottom) and apical (top) region and
consists of several layers. As there are several different types of epithelial cells, they are
classified by the number of the layers and the shape of the outlining cells on its surface.

The mesenchyme is embryonal connective tissue. It consists of several different cell
types. Mesenchymal cells have the ability to develop into tissues of the lymphatic or the
circulatory system. Compared to epithelial cells, mesenchymal cells are loosely aggregate
and can therefore transform into other cell types very easily, as well as integrate into
surrounding or remote tissue. Cells derived from epithelium and mesenchyme are needed
for the organogenesis [18].

Figure 1.5.: Schematic drawings and fluorescence microscopic images of mouse embryos
on day A(E6.5), B(E7.0) and C(E7.5). Day B is labeled incorrectly, instead
of E7,5 it should say E7,0 [17].

Right before the gastrulation process begins(A), the posterior epiblast cells(epi) start
to express Foxa2(Foxa2, green) and Brachyury (T, red). The outer layer consists of vis-
ceral entoderm cells (VE, yellow), which also express Foxa2. During gastrulation (B)
the progenitor cells of the mesoderm and the endoderm emigrate from the epiblast and
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1. Introduction

start to form the primitive streak (PS). The Foxa2 positive entoderm progenitor cells
intercalate into a new layer, between the epiblast cell layer and the visceral endoderm cell
layer. Those new cells, definitively become endoderm cells (DE, green) and gradually dis-
place the outer visceral endoderm cells (VE, yellow). The proximal T positive mesoderm
progenitor cells (mes, red) become mesodermal cells and manifest inbetween the epiblast
layer and the endoderm cell layer, creating the mesoderm. Ecad stands for e-cadherin, a
marker for the cell membranes, DAPI is a cellular nucleus marker and Sox2 strengthens
the anterior epiblast cells. In the last step (C), the primitive node (Primitivknoten, green)
arises [17].

The EMT process is categorized as followed: the first category takes place in embryonic
cell development and organ formation. It is associated with the process of implantation,
embryo formation and organ development. Neither causes EMT fibrosis nor does it in-
duce an invasive phenotype resulting in spread via circulation. EMT is responsible for
the creation of mesenchymal cells that can generate secondary epithelia [19]. The second
category handles the involvement of EMT in the fields of wound healing, tissue regen-
eration and organ fibrosis. Also, the EMT process is associated with rising and ceasing
inflammation. The third and last category treats EMT in the environment of carcino-
genesis, cancer invasion, recurrence and metastasis. EMT can also occur in neoplastic
cells, that have undergone genetic and epigenetic changes, specifically in genes that favor
cloned outgrowth and the development of localized tumors[20].

The epithelial and mesenchymal phenotypes are not irreversible, they convert under spe-
cific conditions between those two phenotypes. This transition process is called EMT - the
epithelial-mesenchymal transition. There are multiple similar terms, all used to describe
EMT. Also, the term itself is often applied to distinct biological events. EMT related
processes range in intensity from a transient loss of cell polarity to a total reprogramming
of a cell. The epithelial-mesenchymal transition is very fundamental to life, generating
morphologically and functionally distinct cell types. EMT has also a big influence at the
time of tumor spreading. The reverse EMT process is called the mesenchymal-epithelial-
transition process (MET), which also occurs during embryonic stem cell development.
These two processes are critical for the appropriate morphogenesis of the organs [19].

1.3.1. CD24

CD24 is widely used as a marker for differentiation of multiple lineages of cells and controls
an important genetic checkpoint for homeostasis and autoimmune diseases. Because of
its extreme resistance to heat-inactivation, CD24 was originally called the heat-stable
antigen (HSA). Since its initial discovery in 1978, CD24 has been used extensively to
study differentiation of hematopoietic cells and neuronal cells, in addition to tissue and
tumor stem cells. The CD24 gene has a diverse function due to its wide distribution,
depending both on its composition and its cellular environment [21]. It encodes a small
protein, ranging between 20 and 70 amino acids, that is heavily glycosylated and attached
to the cell membrane by a glyco-phosphotidoyl-inistol (GPI) anchor. It is expressed in a
broad range of cell types. CD24 plays crucial roles in lymphocyte maturation, neuronal
development and tissue renewal homeostasis under physiologic conditions. This molecule
has been proposed as a genetic checkpoint in T-cell homoeostasis and pathogenesis of
autoimmune disease and has been recently added to the list of putative intestinal stem
cell markers [22]. GPI-linked proteins are involved in signal transduction mediated by
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1.4. Microarrays

member of the protein tyrosine kinase (PTK) family [23]. In immune cells CD24 has been
implicated in a number of functions: regulation of proliferation and apoptosis of B cell
precursors and thymocytes [24] [25].

1.4. Microarrays

Microarray experiments generate vast amounts of data for functional genomics. Nowa-
days, they are available for almost every organism. The amount of an expressed gene can
be measured using the quantity of the existent correspondent mRNA amount in the cell.
This expression level can vary from cell type to cell type, also within the same cell, due
to physiological influences.

Microarrays can measure the expression of large numbers of different genes simultane-
ously. There are several different types of microarrays. The underlying principle for all
types works as described in the following: Microarrays consist of short DNA fragments
attached to a spot on a plate. Depending on the type, the type of fragments may change
from DNA to RNA, peptide fragments, antibodies, etc. The position of the spot and the
sequence of every fragment is known. After labeling the mRNAs of the sample with flu-
orescent tags which will transmit a signal, if the mRNA hybridizes with a correspondent
DNA fragment. This signal can be detected and measured. The intensity of the signal
correlates with the quantity of bound mRNA, in case of DNA fragments. Also depending
on the microarray type, the fluorescence can also be tagged on the attached fragment.

Figure 1.6.: Description of a microarray experiment using cDNA fragments tagged with
fluorescent labels and RNA targets [26].

In order to compare different microarray experiments, the intensities need to be prepro-
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1. Introduction

cessed and normalized. Optimally, all the experiments contain about the same quantity of
mRNA. In this case, only the brightness needs to be adjusted. Usually, more complicated
steps are needed, involving different factors, as expression levels of known housekeeping
genes or assumptions about the behavior of genes.

1.5. Motivation

In this thesis we try to understand the differentiation process, more precisely how the
split between endoderm and mesoderm is regulated. This split seems to be a epithelial-
mesenchymal respectively mesenchymal-epithelial transition process. Preliminary in vitro
studies by Ingo Burtscher from the Institute of Diabetes and Regeneration Research (IDR)
at Helmholtz Zentrum Muenchen showed, that mesodermal cells seem to go through
the classical epithelial-mesenchymal transition process and stay mesenchymal. During
in mouse embryo live imaging endodermal cells give the appearance to transform from
epithelial to mesenchymal cells and than to retransform back to epithelial cells. As this
EMT-MET process doesn’t express EMT core signaling factors (e.g. SNAIL1), endoder-
mal cells don’t seem to go through the typical EMT followed by MET. One of the aims
of this thesis is to create the gene expression signatures of the endoderm differentiation
process regarding the EMT process. CD24 was used to subclassify between early and
late stages of embryonic stem cell development. CD24 is used as a cell-surface marker to
distinguish stem cells, which express both, Foxa2 and Brachyury, and also to distinguish
Foxa2 respectively Brachyury expressing stem cells to identify individual groups within
those groups themselves.

Indeed we observe that CD24 clarifies whether the stem cell is in an early or late
developmental stage, independently of the time of in vitro measurement.
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2. Materials & methods

This chapter contains both the nature of the given information and the statistical methods
that were applied. The fast development in wide areas of biotechnology and computation
induce new types of data, increasing in storage size, resolution and complexity, it includes
not only unexpected conclusions, but also new challenges in terms of data processing.
These challenges require improved analysis tools and complex software.

2.1. R & Bioconductor

In the 1990s Ross Ihaka and Robert Gentleman developed a programming language ’R’
due to lack of practical statistical software for their needs. It is a programming language
requiring the use of a command line. Since its arrival, scientists have provided nearly
6000 packages for all kind of special needs. These packages allow users to just use already
existing code, without having to invent the wheel erverytime.

Bioconductor is an open-source, open-development software project for the analysis
and comprehension of high-throughput data in genomics and molecular biology. It is
based on the statistical programming language R and includes 934 interoperable packages
contributed by a global community of scientists [27]. The version 3.1.2 of the programming
language R and the Bioconductor version 3.0 (BiocInstaller 1.16.2) were used for the
statistical analysis in this thesis.

2.2. Mapping

As a result of incorrectly adapted Affymetrix packages for the microarray type used in this
thesis, a json-file containing the latest mapping data from Affymetrix provided by Martin
Preusse, was used to map the corresponding gene IDs with their gene names. JSON is an
open standard language-independent file format, consisting of attribute-value pairs [28].
The package ’rjson’ was used to import the json file.

2.3. Quality control

Quality control analysis needs to be performed in order to detect arrays with lower or
poor quality. This analysis normally includes checking the signal intensity, signal vari-
ance, border elements, RNA degradation and array-to-array correlation. The overall aim
is to eliminate problematic arrays mostly arising from problems during the microarray
experiment. These arrays need to be removed from the statistical analysis, one could
encounter bias in the results.

Gene expression can vary from cell type to cell type; even within the same cell it may
vary due to changes in physiological circumstances. Depending on the type of microar-
ray/data, the raw data must be normalized to be comparable across the given arrays.

Johannes Höffler, 2015 9



2. Materials & methods

Generally spoken, quality control is all about adjusting the overall brightness/intensities
of each microarray experiment and checking in a very early stage of the statistical analy-
sis, whether the given data is usable, or if the experiment should be redone. In addition
there are several sources of noise in microarray data.

Unprocessed probe intensities

By comparing the raw probe intensities across all arrays, you can determine the over-
all signal intensities by box-plotting the log2-intensities of every array. Commonly, this
measurement is not very sensitive, as problematic arrays may appear as counterparts of
arrays with better quality, but it delivers a first and quick check, if something went totally
wrong during the experiment. Additionally you perform a histogram to identify distribu-
tions of signal intensities which behave different, like having a higher/lower density or a
wider/smaller amplitude. For these tasks, the basic R functions ’boxplot’ and ’hist’ were
used.

RNA degradation plots

RNA has participated at the ’end of it’s life’ in many protein synthesis. Gradually the
RNA become degraded by the synthesizing enzymes. Some experiments may have been
using bad or old RNA samples. By plotting the RNA degradation, it is very easy to
identify those possible defective experiments. The probes are ordered from the 5’ end
of the targeted transcript to the 3’ end. A strong degradation results in a systematic
shift towards lower signal values of the probes closer to the 5’ end, as RNA degradation
starts from the 5’ end of a transcript. The bioconductor packages ’affy’ and ’affydata’
were used for this analysis. The function ’AffyRNAdeg’ calculated the signal values and
the function ’plotAffyRNAdeg’ plotted the results of the just named method. Different
array types may result in array-typical individual results. So it is important to compare
all the given arrays. If they have similar results, the gene comparisons may be valid. If
the results show different degrees of RNA degradation, pointing out a possible bias in the
experiments.

2.4. Preprocessing and normalization

The main goal of this step is to gain reliable gene expression values. Preprocessing and
normalization of expression microarrays consist roughly of three major components: back-
ground correction, between-array normalization and reporter summarization. Background
correction is done by adjusting the intensities for non-specific signals. It has an increasing
sensitivity effect on the array’s signals. The between-array normalization fits the intensity
values between the arrays for technical variability, which is created by differences when
handling the experiments, in labeling and hybridization steps or in the scanning process
of the microarray. The last component consists of computing a gene expression value in
summary for each gene from all the features on the array that targets its transcripts [29].
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2.5. Principal component analysis

2.4.1. Preprocessing

Relative log error

The RLE plot shows the relative expression for each gene. Every gene is defined as the
difference of an estimated gene expression and the median expression across all given
arrays. Problematic arrays are indicated by larger spread out, by significantly shifted
location of the boxplot regarding the zero line on the y-axis, or both [30].

Normalized unsorted standard error

NUSE stands for the normalized unsorted standard error. It represents the individual
probe error, fitting the Probe-Level Model (PLM). PLM models expression measures,
using different estimators and regression models. The median values for each probe are
set to 1, so a boxplot of the data can easily detect, whether a probe has a low quality,
or not. A boxplot near the one-value on the y-axis, indicates a good quality, whereas a
boxplot centered further away from the one-value on the y-axis or a boxplot with a higher
spread of NUSE distribution relative to the other probes, are signals for a low quality
probe [30].

2.4.2. Normalization

Robust multi-array average

Robust multi-array average (RMA) is an algorithm to create an expression matrix from
affymetrix microarray data. RMA calculates background-adjustments, normalization and
log-transformation of PM values. PM stands for perfect match. Typically every gene
is represented by a 16-20 pairs of oligonucleotides, also called ’probe sets’. These pairs
are divided into two groups, which are ’perfect matches’ PM and ’mismatches’ MM.
Mismatches are generated by changing the 13th base, to measure the the non-specific
binding property of the probe pair. RMA computes background-corrected PM intensities
for every PM cell on every array-spot [31]. After this step, the log2 of every value computed
in the step before is calculated and normalized using a quantile normalization [32]. RMA
uses a linear model to fit the normalized data and gains in that way an expression measure
for every probe set on every array [31].

2.5. Principal component analysis

Principal component analysis (PCA), invented in 1901 by Karl Pearson [33], is a math-
ematical way of identifying patterns in data and expressing the data, highlighting their
similarities and differences. Mostly used for exploring huge interrelated data sets and
for predictive models, this statistical procedure reduces the dimensionality of the data,
transforming the given data orthogonally into new data sets of linearly uncorrelated and
ordered variables, the so called ’principal components’. The first principal component
retains the most of the original variation [34] [35]. For all calculations we used the bio-
conductor packages ’affy’, ’affycoretools’, ’limma’ and ’simpleaffy’.
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2. Materials & methods

2.6. Regression Model

The regression model was calculated using the bioconductor package ’limma’, more pre-
cisely the functions ’lmFit’, ’eBayes’ and ’topTable’. lmFit fits a linear model for every
gene and eBayes performs an empirical Bayes moderation of the standard errors [36]. The
function ’topTable’ lists for a given number n the n most differentially expressed genes.
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3. Results

3.1. Data

The data for this thesis has been produced by Ingo Burtscher and Heiko Lickert from the
Institute of Diabetes and Regeneration Research (IDR) at Helmholtz Zentrum Muenchen
. The microarray data is available in the CEL format, an Affymetrix file format. It is
produced by the Affymetrix microarray scanning software. 20 CEL-files representing the
different times of measurement and marker, were imported into R using the Bioconductor
package.

3.1.1. Experimental data overview

Figure 3.1.: Overview of the different times of measurements.

To reach the goal of exploring in vitro embryonic stem cell differentiation of mice towards
endoderm and mesoderem, embryonic stem cell lines were used, expressing Foxa2 and
T. Those proteins were fused with flourescence tags in order to report their intracellular
expression levels. Additionally, cell surface staining for CD24 was performed, which al-
lows to sort the stem cells for three different markers, ’Foxa2’, ’T’ and ’CD24’. Protein
expression level were measured for three times, resulting in twenty CEL-files, containing
a Foxa2 or T positive respectively negative expression states, as well as a CD24 high, low
or negative expression states, as listed in the following table.
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3. Results

CEL-file name time Foxa2 T CD24

ES-09.CEL Day 0 negative negative NA
ES-34.CEL Day 0 negative negative NA
F–CD24lowMC-D2-13.CEL Day 2 positive negative low
F–CD24lowMC-D2-25.CEL Day 2 positive negative low
F–CD24highMC-D2-28.CEL Day 2 positive negative high
F–CD24highMC-D2-29.CEL Day 2 positive negative high
F-T-D2-27.CEL Day 2 positive positive NA
F-T-D2-33.CEL Day 2 positive positive NA
T-CD24low-D2-05.CEL Day 2 negative positive low
T-CD24low-D2-22.CEL Day 2 negative positive low
F–CD24lowMC-D4-04.CEL Day 4 positive negative low
F–CD24lowMC-D4-14.CEL Day 4 positive negative low
F-CD24high-D4-10.CEL Day 4 positive negative high
F-CD24high-D4-18.CEL Day 4 positive negative high
F-T-D4-17.CEL Day 4 positive positive NA
F-T-D4-24.CEL Day 4 positive positive NA
T-CD24low-D4-06.CEL Day 4 negative positive low
T-CD24low-D4-23.CEL Day 4 negative positive low
T-CD24neg-D4-03.CEL Day 4 negative positive negative
T-CD24neg-D4-19.CEL Day 4 negative positive negative

Table 3.1.: Overview of all the celfiles, regarding their properties.

To identify the samples, the CEL-file names were used in the following plots.
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3.2. Quality control

3.2. Quality control

3.2.1. Unprocessed probe intensities

First we performed a boxplot of the raw probe intensities across all arrays, to determine
the overall signal intensities by plotting the log2-intensities of every array.
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Boxplot of the raw celfiles

Figure 3.2.: Boxplot of all the raw data sets.

Figure 3.2 indicates, that there are no potentially defective data sets, as all boxplots
range in a very similiar value, relative to each other. The next figure shows a boxplot of
already normalized data, indicating a nearly perfect adjustment of the intensity values,
to make all datasets comparable to each other.
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Figure 3.3.: Boxplot of the normalized data.

A histogram of the raw data distributions of signal intensities can identify data sets
with different behavior, relative to all other datasets. The histogram demonstrates no
abnormal behavior. Especially, the probe and control sets of every data sets correlate
strong to each other, indicating well performed experiments.
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3.2. Quality control
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Figure 3.4.: Histogram of the log intensity versus the density of the raw celfiles.

3.2.2. RNA degradation plots

Similar results confirm valid intensity values due to not degraded RNA samples. As
Figure 3.5 demonstrates, all microarrays have very similar degrees of RNA degradation
compared to its control dataset, indicating proper experimental data sets.
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3. Results

RNA degradation plot
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Figure 3.5.: RNA degradation plot, comparing all the datasets.

A plot of the summary of the RNA degradation function shows datapoints, representing
the individual datasets. These datapoints indicate a bias in the experimental data, if
moved to much away from zero value on the y-axis. Figure 3.6 presents excellent values
for every dataset, indicating a valid condition of the used datasets.
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3.3. Data preprocessing & normalization
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Figure 3.6.: RNA degradation plot, plotting the values computed by the summary-
function of the AffyRNAdeg-function.

3.3. Data preprocessing & normalization

RLE - relative log error

The RLE plot shows the relative expression for each gene of every dataset. Every gene
is defined as the difference of an estimated gene expression and the median gene expres-
sion across all given arrays. Problematic arrays have a larger spread-out or a location
significantly different from a zero value on the y-axis, or both. Figure 3.7 shows neither
significantly large spread-outs, nor significantly shifted y-values, as they range between
about -0,5 to 0,4.
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Figure 3.7.: Relative error log plot of the unprocessed datasets.

NUSE - Normalized unsorted standard error

As described in the previous chapter, a boxplot near the one value on the y-axis indicates
a good quality, while a boxplot centered further away or a boxplot with a higher spread,
relative to the other probes, is a signal for a low quality probe. Figure 3.8 shows again
the validity of the datasets.
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3.3. Data preprocessing & normalization
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Figure 3.8.: NUSE-plot of the raw data.
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3. Results

3.4. Statistical analysis

3.4.1. Principal component analysis

Principal components: PC1,PC2,...,PC20
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Figure 3.9.: Overview of the percentage distribution of the original variation among the
principal components and the PCA plot legend.

The barplot in the right half shows the percentage distribution of the original variation
among the principal components. PC1 (35.30 %) , PC2 (29.10%) and PC3 (24.85 %) add
up to 89.25% of the total variance and thus they are sufficient for applying the gained
knowledge by only regarding PC1, PC2 and PC3, to the entire dataset.

For every variable the principal component analysis calculates a specific value, which has
to be multiplied to the standardized original value in order to get the score of the principal
component. These specific values are called ’loadings’ and were plotted, resulting in the
so called rotation matrices. The value indicates how much the value has to be corrected to
be part of the principal component. Thus this rotation matrix outliers indicate genes with
high changes in variance, allowing a first glance at maybe regulatory important genes.
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Figure 3.10.: PCA plot showing the principal components 1 and 2.
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3. Results

Figure 3.10 indicates that PC1 distinguishes between non Foxa2 positives samples and
Foxa2 positive samples, while PC2 separates CD24 high and CD24 negative respectively
low samples, pointing out, that double positive samples (Foxa2 positive and T positive),
seem to behave like late endoderm (CD24 high) samples. Interestingly, CD24 doesn’t
cluster concording to the time of measurement (D0/D2/D4), thus we assumed that CD24
segregates by the progress of embryonic development.

The top six genes were ’Foxl2OS’, ’Rpusd3’, ’Prkaa1’, ’Bola3’, ’Gbp5/Gbp2b’ and
’Fbxo24’. Foxl2OS(located in the top right corner of Figure 3.11) is an unclassified non-
coding RNA gene, with no significant coding region. OS stands for opposite strang, as in
mouse tow isoforms result from alternative adenylation. Foxl2 is a forkead transcription
factor for eyelid development as well as in development and adult function of the ovary in
mammals [37]. Due to its position, this gene seems to have an impact in PC1 as well as
in PC2. Also found in a similar position on the rotation matrix, the gene Rpusd3 encodes
a RNA synthase, involved in the intramolecular conversion of uridine to pseudouridine
within an RNA molecule. This post-transcriptional base modification occurs in tRNA,
rRNA, and snRNAs. Prkaa1, found in the top center, is an AMP-activated protein kinase.
Due to its functionality, it is involved in many regulatory activities, e.g. also in the reg-
ulation of neuronal structure in developing neurons [38]. This function is consistent with
the PCA, as the genes position indicates a late embryonic developmental stage. Bola3,
a protein encoding gene, is found und the very right of the rotation matrix. Its human
homolog is involved in the production of iron-sulfur clusters and for the assembly of the
mitochondrial respiratory chain complexes [39]. Gbp5 respectively Gbp2b (positioned
slightly below Prkaa1) , are guanylate binding proteins, with no further known relation
regarding embryonic stem cell development [40]. Fbxo24 is a member of the F-box protein
family, localized in the bottom center of Figure 3.11. Its human homologe, constitutes
one of the four subunits of the ubiquitin protein ligase complex [41]. Slightly above we
find ’Scaf1’, a SR-related CTD-associated factor. Its human homolog may be considered
as a new prognostic marker for breast and ovarian cancer [42]. ’Alg11’ and ’Acp5’, which
are found on the left side of Figure 3.11 have no notable known function or involvement
in embryonic stem cell development, but seem to be important in the early embryonic
stem cell development, regarding their position. Slightly above, you find ’Vopp1’, which is
involved in regulation of transcription and signal transduction and is also over expressed
in cancer [43]. Whereas slightly below, you find ’Adh6a’, an alcohol dehydrogenase, with
no further known thematic involvement.
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3.4. Statistical analysis

−60 −40 −20 0 20 40

−
20

0
20

40
60

PC1 vs. PC3

PC1

P
C

3
ES_09.CEL
ES_34.CEL
F__CD24lowMC_D2_13.CEL
F__CD24lowMC_D2_25.CEL
F__CD24lowMC_D4_04.CEL
F__CD24lowMC_D4_14.CEL
F_CD24high_D2_28.CEL
F_CD24high_D2_29.CEL
F_CD24high_D4_10.CEL
F_CD24high_D4_18.CEL
F_T_D2_27.CEL
F_T_D2_33.CEL
F_T_D4_17.CEL
F_T_D4_24.CEL
T_CD24low_D2_05.CEL
T_CD24low_D2_22.CEL
T_CD24low_D4_06.CEL
T_CD24low_D4_23.CEL
T_CD24neg_D4_03.CEL
T_CD24neg_D4_19.CEL

Figure 3.12.: PCA plot showing the principal components 1 and 3.
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Johannes Höffler, 2015 25



3. Results

Figure 3.12 shows the PCA plot of the principal components 1 and 3. PC3 distinguishes
between ESC samples and the rest. PC3 also separates the non ESC samples between
endodermal and mesodermal disregarding the CD24 expression level, having the only T
positive samples on one side, going over with a center filled with double positive samples
(Foxa2 and T) and ending with only Foxa2 positive samples.

Besides some of the already discussed genes, we find in the rotation matrix (Figure
3.13) some other high variance genes: ’Speer1-ps1’, ’Vmn2r99’, ’Smco3’ and ’Snx4’. The
pseudogene speer1-ps1 (spermatogenesis associated glutamate (E)-rich protein 1, pseu-
dogene 1) found in the bottom of the rotation matrix, is expressed tissue specifically in
the testis of mice [44]. Vmn2r99 is a vomeronasal receptor, needed for primarily chemi-
cal detection of pheromones [45]. Smco3 (single-pass membrane protein with coiled-coil
domains 3) encodes a transmembrane transfer protein [46]. No indication towards an
involvement in embryonic development was found for all discussed genes. Snx4 encodes
a protein involved in the endocytic recycling process, but also is found in the process of
epidermal growth factor receptor binding [47].
Figure 3.14 shows the PCA plot of PC2 and PC3, confirming the already described prop-
erties. PC2 separates early endodermal samples from late endodermal and double positive
(Foxa2 and T) samples. Also the described fact, that those double positive samples seem
to behave like CD24 high samples, is shown clearly. PC3 behaves also as already de-
scribed, separating the ESC samples from the other samples. Those samples show also
in this plot the gradually distribution within the non ESC samples from Foxa2 positive
samples going over to double positive samples and ending with the T positive samples.

The rotation matrix contains mostly already described labeled genes, indicating a con-
sistence within the principal component analysis.
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Figure 3.14.: PCA plot showing the principal components 2 and 3.
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3.5. Regression model

In order to gain for every gene(γ) a time (’TIME’ = D0, D2, D4) and feature (T positive
/ Foxa2 positive / CD24 high / CD24 low / CD24 negative) dependent expression value,
a regression model was designed as described below:

γ ∼ β0 + β1Foxa + β2T + β3CD24high + β4CD24low + β5CD24neg + β6TIME

γ is composed, adding the different gene expression values, if the feature is expressed
and represents in that way the overall regulatory activity of this gene on a specific time
(Day 0, Day 2, Day 4). The used functions ’lmFit’ and ’eBayes’ fit a linear model for
every gene and perform an empirical Bayes moderation of the standard errors, resulting
in p-values for every gene.

Design matrix

The design matrix contains a column ’intercept’, to guarantee that every cel-file is being
used in the calculation of the gene expression values. A zero value causes a disregard of
the correspondent feature.

Figure 3.16.: Design matrix representing the experimental data. The design matrix was
needed for the calculation of the regression model.
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Volcano plots

A volcano-plot is usually used to plot an effect-measurement on the x-axis (in our case the
log fold change) and the statistical significance on the y-axis (in our case the log odds).
Figure 3.17 shows a volcano plot of the genes most regulatory active, when T is expressed,
indicating which genes have the highest statistical relevance and the highest log fold. The
30 most outlying genes were labeled using the latest mapping data from Affymetrix.
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Figure 3.17.: Volcano plot of ’T’.

Figure 3.17 shows some familiar genes as Foxl2OS, Prkaa1, Gbp5/Gbp2b, Scaf1 and
Fbxo24, confirming their regulatory activity in samples, in which T was expressed. Some
new ones appear, like ’Spef1’, a protein coding gene for a sperm flagellar, apparently
nothing vital regarding the embryonic stem cell development. Another one is ’Zar1’,
which encodes the protein ’zygote arrest 1’, a gene, critical for the oocyte-to-embryo
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transition [48].
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Figure 3.18.: Volcano plot of ’Foxa2’.

This figure (Figure 3.18) contains also some already described genes, as Foxl2OS or
Prkaa1. ’Dmxl2’ encodes a protein involved in cell junction process, ’Muc15’ or ’Tnpo2’
on the other hand are GO annotated as a integral component of membrane respectively
functioning in intracelllular protein transport.
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Figure 3.19.: Volcano plot of ’CD24 high’.

In Figure 3.19 we find again Scaf1, Foxl2OS, Rpusd3, Gbp5/Gbp2b, Spef2 and Fbxo24.
New highlighted genes are e.g. ’Stambpl1’, a STAM binding protein needed in the process
of proteolysis according to its GO annotation or also ’Gm6180’, a predicted pseudogene
with no known function.
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Figure 3.20.: Volcano plot of ’CD24 low’.

The volcano plot for CD24 low (Figure 3.20) contains only one known labeled gene
Foxl2os, but the results are very similar to the volcano plot for CD24 negative (Figure
3.21). Several genes are represented in both plots, but also Figure 3.21 contains some
genes, represented in Figure 3.19 and not labeled in Figure 3.20. Figure 3.20 and figure
3.19 contain the gene ’Clec5a’, involved in the activation of myeloid cells [49]. ’Gm6180’,
is a predicted pseudogene with no known function [50].
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Figure 3.21.: Volcano plot of ’CD24 neg’.

The volcano plot for CD24 negative smaples, contain several already described genes.
Mostly all of them are already represented in Figure 3.19 and 3.20.
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Figure 3.22.: Volcano plot of ’TIME’.

This volcano plot contains nearly only still not discussed genes. ’Ttc9b’, a tetratricopep-
tide protein coding gene, is GO annotated within in the process of chaperone-mediated
protein folding. ’Arrb1’ encodes β-arrestin, a protein involved in initiation and progres-
sion of myeloid leukemia [51], while ’Pou6f1’, a POU domain class 6 transcription factor 1
encoding gene is GO annotated within the area of regulation of transcription, functioning
as a DNA binding protein [52].
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3.6. Conclusion

We were able to dissect gene regulation from mouse ESC differentiating to endoderm and
mesoderm. We calculated the most regulatory active genes not only for early and late
embryonic developmental stages, benefitting from the sub segregation using the CD24
as marker, but also for mesodermal and endodermal stem cells, using Foxa2 und T as
markers. We found out, that Foxa2 and T positive samples behave like late endodermal
cells and that CD24 indeed distinguish early and late endoderm and not as assumed
in vitro measurement time dependent embryonic stem cell development. The problem
with not expressed endoderm differentiation core signaling factors of EMT is still present.
We did not find any genes involved in EMT, nor genes that could be regulating the
reverse transition process. On the other hand, high regulated genes, don’t need to be the
most functional important ones. If a biological process is developed in a efficient way,
core signaling proteins, don’t need to be expressed in a high level. I strongly suggest
to investigate the found genes more profoundly. These genes may have a still unknown
important regulatory role in embryonic stem cell development, but surely have a still
hidden complex relationship. Also a ’reverse search’, meaning the search of already known
EMT-related proteins within the resulting data, would give better outlook, where to
possibly find the interesting genes for the reverse EMT process.
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Johannes Höffler, 2015 39

http://www.ncbi.nlm.nih.gov/gene/388962
http://www.informatics.jax.org/marker/MGI:2429943
http://www.informatics.jax.org/marker/MGI:2429943


Bibliography

[41] C. Cenciarelli, D. S. Chiaur, D. Guardavaccaro, W. Parks, M. Vidal, and M. Pagano.
Identification of a family of human F-box proteins. Current Biology, 9(20):1177–1179,
1999.

[42] a Scorilas, L Kyriakopoulou, D Katsaros, and E P Diamandis. Cloning of a gene (SR-
A1), encoding for a new member of the human Ser/Arg-rich family of pre-mRNA
splicing factors: overexpression in aggressive ovarian cancer. British journal of cancer,
85(2):190–198, 2001.

[43] More Resources, Submit Data, Analysis Tools, and Contact Us. http://www.

informatics.jax.org/marker/MGI:2141658. (40):4–5.

[44] Andrej-Nikolai Spiess, Norbert Walther, Nadine Müller, Marga Balvers, Christoph
Hansis, and Richard Ivell. SPEER–a new family of testis-specific genes from the
mouse. Biology of reproduction, 68(6):2044–2054, 2003.

[45] I Rodriguez, P Feinstein, and P Mombaerts. Variable patterns of axonal projections
of sensory neurons in the mouse vomeronasal system. Cell, 97(2):199–208, 1999.

[46] More Resources, Submit Data, Analysis Tools, and Contact Us. http://www.

informatics.jax.org/marker/MGI:2443451. (27):4–5.

[47] More Resources, Submit Data, Analysis Tools, and Contact Us. http://www.

informatics.jax.org/marker/MGI:1916400. pages 15–16.

[48] Xuemei Wu, Maria M Viveiros, John J Eppig, Yuchen Bai, Susan L Fitzpatrick, and
Martin M Matzuk. Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for
the oocyte-to-embryo transition. Nature genetics, 33(2):187–191, 2003.

[49] a B Bakker, E Baker, G R Sutherland, J H Phillips, and L L Lanier. Myeloid DAP12-
associating lectin (MDL)-1 is a cell surface receptor involved in the activation of
myeloid cells. Proceedings of the National Academy of Sciences of the United States
of America, 96(17):9792–9796, 1999.

[50] http://www.informatics.jax.org/marker/MGI:3643972. page 3643972, 2015.

[51] M. Fereshteh, T. Ito, J. J. Kovacs, C. Zhao, H. Y. Kwon, V. Tornini, T. Konuma,
M. Chen, R. J. Lefkowitz, and T. Reya. Â -Arrestin2 mediates the initiation and
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