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ABSTRACT

Summary: Decreasing costs of modern high-throughput experiments
allow for the simultaneous analysis of altered gene activity on various
molecular levels. However, these multi-omics approaches lead to a
large amount of data, which is hard to interpret for a non-bioinforma-
tician. Here, we present the remotely accessible multilevel ontology
analysis (RAMONA). It offers an easy-to-use interface for the simultan-
eous gene set analysis of combined omics datasets and is an exten-
sion of the previously introduced MONA approach. RAMONA is based
on a Bayesian enrichment method for the inference of overrepresented
biological processes among given gene sets. Overrepresentation is
quantified by interpretable term probabilities. It is able to handle
data from various molecular levels, while in parallel coping with redun-
dancies arising from gene set overlaps and related multiple testing
problems. The comprehensive output of RAMONA is easy to interpret
and thus allows for functional insight into the affected biological
processes. With RAMONA, we provide an efficient implementation
of the Bayesian inference problem such that ontologies consisting of
thousands of terms can be processed in the order of seconds.
Availability and implementation: RAMONA is implemented as
ASP.NET Web application and publicly available at http://icb.helm
holtz-muenchen.de/ramona.
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1 INTRODUCTION

Decreasing costs of large-scale molecular profiling studies, such
as transcriptomics or proteomics, allow for the joint analysis of
several molecular levels in parallel. The crucial step in the ana-
lysis of such diverse data is to combine the different levels such
that a comprehensive insight in the response of genes to these
conditions can be assessed. This in turn can be directly linked to
the underlying biological processes affecting the activity of genes
on several molecular levels. However, these kinds of analyses are
not straightforward, and often the molecular levels are treated as
independent to allow the use of single-omics analysis techniques.

In practice, gene response is initially determined by using
statistical methods. Among the resulting set of altered genes,
one usually searches for overrepresented biological processes
by applying common gene set enrichment methods (Boyle
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et al., 2004; Subramanian et al., 2005) that incorporate functional
annotations from databases like Gene Ontology (GO)
(Ashburner et al., 2000) or the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa et al., 2011). Even though
there exists a multitude of easy-to-use Web-based enrichment
tools (Huang et al., 2007; Zhang et al., 2005), they are only
capable of analyzing a single molecular level. Furthermore, no
Web tool is available that properly deals with term redundancies
appearing frequently, e.g. due to the tree structure of GO.

To provide a powerful method to integrate multilevel gene
response data for the determination of altered biological
processes, we recently introduced the multilevel ontology analysis
(MONA) (Sass et al., 2013). MONA is a model-based Bayesian
method, which is able to integrate datasets from multiple mo-
lecular levels by simultaneously dealing with term redundancies
and related multiple testing problems.

However, the usage of the standalone MONA application can
be a cumbersome process, as the user has to specify the data
structure of the activated genes and their term annotations by
himself/herself. Furthermore, it lacks a comprehensive visualiza-
tion of the results and can be run only on Windows machines, as
it depends on the .NET library.

Here we introduce a Web-based implementation of MONA,
called remotely accessible MONA (RAMON A), which is designed
with the focus on practical usability for any applied researcher. It
offers three models to analyze most common experimental
setups. The Web interface is capable of processing many given
gene identifiers as well as of automatically mapping them to
widely used ontologies derived from GO and KEGG. The
detailed output of RAMONA includes an interactive visualiza-
tion of the inferred active terms in the context of their respective
pathways or ontology hierarchy. This provides functional insight
into the activity of biological processes and the role of associated
genes responding to the given conditions by providing relevant
details on the resulting processes.

2 OVERVIEW

RAMONA is a Web-based application whose interface is imple-
mented in the Mono ASP.NET framework. The underlying
MONA application is written in C# and is based on the
Infer.NET framework (Minka et al., 2012).

MONA currently provides three models of molecular inter-
actions (Fig. 1). The single-level model can be used when
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Fig. 1. RAMONA workflow. The user has to specify the input according
to the selected model. He can choose between GO and KEGG as
ontologies. Using a Bayesian modeling approach, the tool is able to
infer non-redundant-enriched terms among the given gene lists

measurements are available only on a single level. This corres-
ponds to the principle of the model-based gene set analysis
(Bauer et al., 2010). The cooperative model accounts for studies
where measurements of two different levels are available, which
may be regarded as independent noisy observations (e.g. mRNA
and protein) of an underlying common gene response. The in-
hibitory model is applicable when two species are measured, but
they could not be interpreted as independent measurements of
the hidden gene function. A prominent example is the post-tran-
scriptional modulation of an mRNA expression by miRNAs.

Given the user input, the MONA algorithm infers the mar-
ginal posterior probability of the term activity using a Bayesian
network as described in Sass et a/. (2013). The user has to specify
the input of RAMONA according to the selected model. In gen-
eral, this must be a set of genes that show a special behavior like
the response to a certain condition and a set of measured genes,
which is referred to as background. A typical example for an
input would be two lists of differentially expressed genes between
two conditions for both mRNA and protein level. For the co-
operative model, two lists of differentially expressed genes to-
gether with a background of all measured genes have to be
provided. The probabilistic nature of RAMONA allows for
the analysis of experiments, where different numbers of genes
are measured (e.g. usually the case for mRNA and protein
data). For the inhibitory model, a set of inhibited genes has to
be specified in addition to the responding genes and background.
All these sets can be provided by the text field input or text file
upload. The user can manipulate the shape of all priors via the
expert settings to gain a sparser result; uniform priors are used as
default settings for the single and cooperative case. In case of the
inhibitory model, weakly informative priors are used as discussed
previously (Sass et al., 2013).

RAMONA supports a variety of common gene identifiers for
several organisms that are mapped to specific terms. These terms
include biological processes, molecular functions and cellular
components from GO (Ashburner et al., 2000) as well as path-
ways from KEGG (Kanehisa er al., 2011).

The actual MONA process runs in a background thread on
the Web server with runtime depending on the size of the input
and the selected ontology. For common setups, RAMONA runs
no longer than a minute. In addition to the term probabilities
provided by the model-based enrichment analysis, P-values for
enrichment of the individual terms are calculated by using
Fisher’s exact test on each molecular level separately when the
cooperative model is chosen.
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GO:0006096 1 glycolysis 63 40 38 0.0%
GO:0045639 1 positive regulation of myeloid cell differentiation 64 27 36 0.0%
GO:0060761 1 negative regulation of response to cytokine stimulus 31 13 2 0.0%
G0:0051503 0,98 adenine nucleotide transport 5 2 5 0.0%

adenine nucleotide transport
The directed movement of adenine nucleotides, ATP, ADP, and/or AMP, into, out of

or within a cell, or between cells, by means of some agent such as a transporter or pore.
Genes altered in list 1 (2/5)
CALHM1, SLC25A17

Genes altered in list 2 (5 / 5)

Term probability: 0.98
p-value gene list 1: 5.63e-2 (Bonferroni adj. p=1.00e+0)
p-value gene list 2: 4.04e-6 (Bonferroni adj. p=4.96e-2)

0,0% of genes in the smaller background set were missing.

Fig. 2. The RAMONA output. (A) Resulting term probabilities are
shown in a barplot. (B) If the cooperative model is chosen, a scatterplot
can be displayed that shows the P-values for each term determined by the
traditional gene set analysis (Fisher’s exact test) on the two input gene
lists individually. The color and size of the points correspond to the
RAMONA term probability. (C) The tabular representation gives an
overview of all relevant term information. (D) Additional information
can be obtained by clicking on the terms in any of the three panels.
This information includes the set of altered genes for each level as well
as the decision whether a term is active (red) or not (black) for
RAMONA or Fisher’s exact test

The output of RAMONA consists of three parts: a plot panel,
a table and a panel for further term information (Fig. 2). If the
cooperative model was chosen, the user can switch between a
barplot (Fig. 2A) and a scatterplot (Fig. 2B) to illustrate the
results of RAMONA. Otherwise, only the barplot is shown,
which displays the term probabilities for the top 30 terms. The
scatterplot displays the P-values of the Fisher tests, which are
performed on the two input lists individually, in comparison with
the term probabilities. This representation allows the user to
determine the effect of the two individual input gene lists on
the RAMONA outcome. In addition, it exposes the redundan-
cies that arise from the traditional gene set analyses and that do
not appear in the RAMONA results. The table (Fig. 2C)
provides an overview of all relevant information on the terms,
namely, the number of assigned genes and the number of altered
genes in the given gene list(s). Additionally, the percentage of
assigned genes is shown, which were missing in the smaller back-
ground set.

By selecting a term, in the barplot, scatterplot or table, detailed
information for the respective term can be displayed (Fig. 2D).
This includes for each molecular level a list of regulated genes
assigned to this term as well as the percentage of missing genes in
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case of the cooperative model. Furthermore, a link to the term
database is provided, which allows for a graphical mapping of
the results. In case of KEGG, the respective pathway is dis-
played, and the regulated genes are marked by a color for each
molecular level. If GO was selected, the GO tree will be shown
illustrating the term hierarchy, including all active terms
(P>0.5).

3 CONCLUSION

The integration of data from multiple molecular levels for gene
set analysis is becoming more and more important and therefore
requires appropriate methods, which are easy to use for applied
researchers. Important challenges we address with RAMONA
include dependencies between terms with an ontology and inter-
actions between molecular levels. We provide an easy-to-use
Web application that can be used to infer non-redundant biolo-
gical processes either from multiple molecular levels or from a
single molecular level.
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