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Zusammenfassung

Neuronale Stammzellen besitzen die Fähigkeit sich durch Teilung zu erneuern
und in verschieden Zelltypen (Neuronen und Gliazellen) zu differenzieren.
Durch diese Eigenschaften spielen sie eine wichtige Rolle in der Pathogenese
und Behandlung diverser neuronaler Erkrankungen wie Multiple Sklerose
oder Demenz. Dabei ist der Differenzierungsprozess dieser Zellen noch nicht
vollständig verstanden. Ein Forschungsgebiet der Neurowissenschaft befasst
sich daher mit dem Teilungsverhalten von neuronalen Zellen. Beeinflussen
Zellen die sich teilen andere Zellen bezüglich deren Teilungswahrscheinlichkeit
und wirken sich damit auf den Regenerations- bzw. Differenzierungsprozess
aus? Bilder mit gefärbten Stammzellen und sich teilende Zellen können
helfen räumliche Abhängigkeiten aufdecken. Die Aufgabe einzelne Zellen zu
finden und deren räumiche Abhängigkeiten statistisch auszuwerten macht
es notwendig rechenintensive Methoden für Quantifizierung und Analyse
einzusetzen.

In dieser Arbeit präsentieren wir eine halb-automatische Pipeline um dreidi-
mensionale Bilder von Zebrafisch Gehirnhälften zu bearbeiten und Einzel-
zellen auf den Gehirnhälften zu quantifizieren. Die Bilder stammen aus
Experimenten des Zebrafish Neurogenetics Departments (Helmholtz Zen-
trum Mün-chen). Die Pipeline beinhaltet Verringerung von Bildverzerrungen
und das Identifizieren von dreidimensionalen Zentroiden für jede Einzelzelle.
Diese Zentroide können dazu benutzt werden um die Oberfläche der Gehirn-
hälfte abzuschätzen, auf der sich die Stammzellen befinden. Die Abschätzung
ist nötig, da die Oberfläche uneben ist und die Gehirnhälfte eine gebogene
Form hat. Wenn wir die Oberfläche mit den Zellpositionen kombinieren,
können wir Zellabstände unter Berücksichtigung der Oberflächenstruktur
berechnen. Wir benutzen die Abstände zwischen sich teilenden Zellen um
räumliche Teilungsmuster zu identifizieren, die wiederum Aufschluss über
ein zugrundeliegendes biologisches Modell geben können, d.h. inwiefern Zel-
lenteilung benachbarte Zellen hinsichtlich Teilungswahrscheinlichkeit beein-
flussen.

Mittels verschiedener statistischer Methoden können wir zeigen, dass Zell-
teilungen von neuronalen Vorläuferzellen höchstwahrscheinlich einem sich
anziehenden Muster folgen, d.h. sich teilende Zellen befinden sich bevorzugt
in der Nähe anderer sich teilender Zellen. Für sich teilende Stammzellen
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hingegen können wir keine signifikante Aussage treffen, jedoch ist ein Trend
zu anziehenden Mustern erkennbar. Um den biologischen Mechanismus hin-
ter diesem Muster zu verstehen schlagen wir Folgeexperimente mit mehreren
Färbungen vor.
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Abstract

Neural stem cells are able to self renew via symmetric division and can give
rise to differentiated cell types (neurons and glial cells). Due to these proper-
ties they play an important role in parthenogenesis and treatment of several
neural diseases as multiple sclerosis or dementia. However, the differenti-
ation process is not fully understood. A research field in neuroscience is
thus the division behavior of neural cells. Do dividing cells impact on other
cells in terms of division probability and therefore influence the regeneration
or differentiation process? Differently stained stem cells and dividing cells
of zebrafish hemispheres can reveal spatial dependencies of divisions. The
complex task to identify single cell locations and statistically evaluate them
makes it necessary to apply computational methods for quantification and
analysis.

In this thesis we present a semi-automatic pipeline to process three-dimensio-
nal images of zebrafish hemispheres and quantify single cells that lie on the
hemisphere based on experiments from the Zebrafish Neurogenetics Depart-
ment (Helmholtz Zentrum München). The pipeline covers noise reduction in
the image data and identifying three-dimensional centroids for every single
cell. These identified centroids are used to estimate the hemisphere surface,
on which the stem cells are located. This estimation is necessary since the
surface is rough and the hemisphere has a bent three-dimensional structure.
Concatenating the surface with cell locations we are able to calculate dis-
tances between cells on the surface. Distances between dividing cells are
used to identify spatial division patterns, which then in turn can give rise to
an underlying biological model how dividing cells influence neighboring cells
in terms of division probability.

We can show that dividing progenitor cells follow most likely an attractive
pattern i.e. dividing cells are located preferably nearby other divisions. For
dividing stem cells in contrast we cannot significantly identify a spatial pat-
tern, but they tend to follow an attractive pattern as well. To understand
the underlying biological mechanism of the pattern we propose follow-up
experiments using multiple stainings.
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1 Introduction

Many common neurological disorders, such as stroke, Parkinson’s disease and
multiple sclerosis, are caused by a loss of neurons and glial cells [1], two cell
types that are important for signal transduction and myelin formation in the
brain [2, 3]. It is thus important to understand how populations of neurons
can be maintained. One way to counter the loss of neurons is the targeted
differentiation of neural stem cells (NSC) into neurons, which has been suc-
cessfully performed in culture [4].
NSCs are stem cells in the nervous system that can self-renew (proliferate)
and give rise to progenitor cells, which differentiate into neurons and glial
cells (see Figure 1.1). In 1989 Sally Temple [5] described neural stem cells
in the subventricular zone of the mouse brain and in 1992 they were iso-
lated for the first time [6]. NSCs are predominantly in a quiescence state
and need to be activated to divide and/or differentiate [7]. Commonly it is
assumed that differentiated cells are generated via asymmetric cell divisions,
where the mother cell divides into a stem cell and a differentiated cell [8].

Self-renewing

neural stem cell

Progenitor cell

Neuron Glial cell

Quiescent

neural stem cell

Figure 1.1: Process of neural stem cell (NSC) self-renewal and differentia-
tion. Once they are activated from quiescence NSCs are able to retain the
stem cell population via self-renewing, while they can give rise to progenitor
cells, which can differentiate to neurons or glial cells.
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The ability to differentiate is essential for maintaining the pool of mature,
functional cells, and generating diverse cell types during development. The
differentiation of NSCs to neurons (neurogenesis) or glial cells (gliogenesis)
is a broad research field as the two mechanisms are complex and detailed
knowledge is important for further clinical applications [9, 10].

In order to examine NSC differentiation and division patterns, brains of
several model organisms like zebrasfish, mouse, C. elegans or drosophila have
been imaged [11, 12, 13, 14]. The huge advantage of the zebrafish (Danio
rerio) is its optical translucence, which allows imaging of the interior without
slicing it [15]. As the brain is not flat three-dimensional (3D) imaging can
reveal additional spatial information and thus increase the understanding of
the imaged cells and structure. The additional spatial information received
from 3D imaging allows e.g. to reconstruct lineages during zebrafish devel-
opment [16] to monitor neural activity in the brain [17], or to analyze the
spatial positions of neural cells on the brain hemispheres [18].
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Aim of this thesis

Chapouton et al. addressed the question whether NSCs that are undergo-
ing a division influence neighboring cells in terms of division probability [18].
Based on several local snapshots of few cells in the zebrafish brain the authors
proposed a repulsive division model, in which cells near a previous division
are less likely to divide. We therefore set out to evaluate the proposed model
against other hypotheses by quantitatively examining spatial influences for
dividing cells of brain hemispheres.

The data used in this thesis was generated at the Zebrafish Neurogenetics
Department (Helmholtz Zentrum München) by P. Chapouton. The dataset
comprised three zebrafish hemispheres with a GFP staining identifying stem
cells. Additionally, dividing cells were labeled by adding EdU, a thymidine
analogue that is incorporated in the DNA during the replication phase. For
our computational analysis, we developed an analysis pipeline consisting of
two main steps:

• In order to identify single cells in the 3D image stacks of zebrafish hemi-
spheres an bioimage informatics pipeline is required. The implemen-
tation should cover noise reduction in the image data and 3D centroid
identification for every single cell. The NSC centroids can then be used
to estimate the locally uneven and bent hemisphere surface. The iden-
tified centroids and the hemisphere surface approximation allow proper
calculation of cell to cell distances on the hemisphere.

• Using the distances between dividing cells, we will apply different statis-
tical methods for spatial analysis to test for three hypotheses: spatially
random distributed divisions, attractively distributed divisions and re-
pulsively distributed divisions.

3
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2 Experimental data

2.1 Cell staining

Adult zebrafish (4-5 month, Figure 2.1BA) were anesthetized in 0.002% tri-
caine and fixated for the staining process one day before the image acquisi-
tion. To distinguish between different cell types, stem cells and dividing cells
are stained differently. For this purpose the transgenic gfap:GFP zebrafish
strain was used, where the green fluorescent protein (GFP) is tagged to a gfap
enhancer element and inserted into the genome randomly [19]. Consequently
GFP is expressed according to the endogenous gfap, which is only expressed
in NSCs and is therefore able to mark stem cells (see Figure Figure 2.1BB).
To identify dividing cells thymidine analogue 5-ethynyl-2-deoxyuridine (EdU)
was used [20]. EdU is spuriously incorporated in the DNA by replacing
thymidine during DNA replication phase (S-Phase). Hence even cells that
did not divide at the time point of image acquisition could be marked EdU
positive. But they will divide in near future, since they were already at least
in S-Phase.

A B

Figure 2.1: NSCs in the zebrafish brain. (A) Superior view of a zebrafish
with the brain located directly between its eyes (white circle). (B) Sagittal
view of the zebrafish brain. The GFP stained stem cells are located com-
pletely on top of the hemisphere. Adapted from Chapouton et al. [18]. Scale
bar: 100 µm
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2.2 Image acquisition

24h after adding EdU (see Figure 2.2) the zebrafish were anesthetized with
0.4% tricaine, sacrificed on ice and decapitated. For image acquisition two
confocal laser scanning microscopes (Olympus FV1200, Leica sp5) using 20X
glycerol-immersion and water-immersion objectives were used, respectively.
The chosen resolution suffices to identify single cells, while still one hemi-
sphere of the brain is covered nearly completely by the microscopes field of
view (i.e. one image). To account for the bending of the brain hemispheres,
a 3D image stack was acquired. Therefor several images were taken in 2D
in small distances in z-direction (see Table 1) ending up with a stack of 2D
images, which can be combined to a 3D representation of the hemisphere. A
full 3D stack comprised two color channels, the first channel shows labeled
stem cells (Figure 2.3A), located on the surface of the hemisphere (see Figure
2.3A). The second channel shows cells, which were at least in S-Phase or had
already divided between EdU addition and imaging (Figure 2.3B).

24h1h

time

EdU

Addition Imaging

Figure 2.2: 24h after adding EdU the zebrafish is imaged.

Table 1: Experiments used for analysis. We used both hemispheres of one 4
month old fish and one hemisphere of a second 5 month old. The resolution
is given in pixel in x and y directions and the number of images in the stack
(s). Every data set was named according to ZFx[LR] where x was the number
of the zebra fish and L/R identified the left/right hemisphere.

Name Resolution(x,y,z) Voxelsize in µm Animal age in month

ZF1L 1024px x 1024px x 158s 0.37 x 0.37 x 0.71 5
ZF2L 1600px x 1600px x 45s 0.39 x 0.39 x 2.00 4
ZF2R 1600px x 1600px x 46s 0.39 x 0.39 x 2.00 4
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A B C

Figure 2.3: Overview of GFP and EdU staining in experiment ZF1L. (A)
The GFP labeled stem cells on the hemisphere surface. (B) The EdU labeled
cells where the marker was incorporated in the S-phase of the cell circle. (C)
Combining both channels we could identify dividing stem cells observing
both markers in one cell. If only the EdU was visible the cells were dividing
progenitors. Non dividing stem cell gave rise to a GFP-only signal. Scale
bars: 50 µm

3 Methods

3.1 Data preprocessing

3.1.1 Deconvolution

During the acquisition process the image is blurred by the light spreading
from one pixel to its neighbors. Deconvolution of an image can improve its
quality by correcting for the noise incorporated by light spreading.
In general the aim of deconvolution is to find the solution of a convolution
equation of the form:

fg = h (3.1)

where h is the observed image and f is the original image convolved via a
certain function g. Many different methods are available to deconvolve an
image [21]. The most common methods are blind deconvolution and several
point spread function (PSF) based ones. In general a PSF can be used to de-
scribe the light spreading pattern on an image. There are several possibilities

7
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A
B

Image

PSF

Object

Figure 3.1: Acquisition parameters can be used to obtain a point spread
function (PSF) to deblur the images taken by the respective microscope.
(A) Schematic setting of a microscope which images the sample through
an immersion layer and acover slip. The information about the microscope
setting can be used for PSF generation. (B) During deconvolution a blurred
image is combined with a PSF to restore the original objects.

to obtain a PSF, like measuring the light spreading of a point-sized bead or
estimating the acquisition parameters via blind deconvolution [21]. Since ac-
quisition parameters were known for our setup, we determined a microscope
specific PSF, which is influenced by microscopic parameters like the immer-
sion or numerical aperture (see Figure 3.1A). To restore the unblurred picture
the noisy image has to be deconvolved with the PSF as shown in Figure 3.1B.

In order to determine the most appropriate deconvolution method on our
data we applied 3D segmentation on the resulting images (after deconvolu-
tion). We compared the observed cell numbers to manually counted cells in
three regions of the image stack (see Figure 3.2A). The cells were counted by
a biological expert on the 2D maximum intensity z-projection (MIZP). The
Richardson-Lucy (RL) method [22, 23] outperformed all other methods on
our data (see Figure 3.2B).

RL is a PSF based method and to obtain the PSF we applied an ana-
lytic technique called the Gibson and Lanni Optical Model, which describes
the scalar-based diffraction that occurs in the microscope [24]. It accounts
for the immersion, the cover-slip and the sample layers. This model defines

8
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A B

Figure 3.2: Evaluation of deconvolution methods. (A) The selected regions
in experiment ZF1L (white rectangles) were used to evaluate different decon-
volution methods. Cells that could be identified on the 2D projection were
counted by an expert and were compared to identified cells after applying
the particular deconvolution method. (B) The comparison of the deconvolu-
tion methods yields the Richardson-Lucy (RL) method as best approach fol-
lowed by Landweber and Blind deconvoulution. The Tikhonov-Miller (TM)
approach performed even worse than without deconvolution, making this
method inappropriate for our data.

a PSF (p) by the following equation:

p =

∣

∣

∣

∣

∣

C

zd

∫ 1

0

J0

[

kNAρ
(x2 + y2)0.5

z

]

ejW (ρ)ρ dρ

∣

∣

∣

∣

∣

2

(3.2)

with

W (ρ) = knsts

[

1−

(

ρ

ns

)0.5]

.

We use the refraction index of neuronal cells (ns = 1.377) as the refraction
index of the sample layer [25]. See Table 2 for further parameter information
.
The resulting PSF can then be used in the Richardson-Lucy approach, which
uses an iterative process to obtain the most likely pixel values (u) at every
position j given vi as the observed pixel values at position i and pij being
the PSF (the fraction of light coming from true location j that is observed
at position i):

u
(t+1)
j = u

(t)
j

∑

i

di
ci
pij (3.3)
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Table 2: Parameters used to create a microscope and image specific PSF.

NA Numerical Aperture of the objective lens.
ns Refractive index of the sample layer.
ts Axial location of the point source within the sample layer.
λ Wavelength of the light emitted by the point source.
ρ Normalized radius in the back focal plane.
k Wavenumber in vacuum of the emitted light, k = 2π/λ.
x, y Lateral position for evaluating the PSF at the detector plane.
zd Axial distance between the detector and the tube lens.
W The Gibson and Lanni phase aberration.
C A normalizing constant.
J0 Bessel function of the first kind.

with
cj =

∑

j

piju
(t)
j .

3.1.2 Laplace of Gaussian filter

The Laplace of Gaussian (LoG) is a 2D isotropic measure of the 2nd spatial
derivative of an image. The LoG of an image highlights regions of rapid
intensity change and is therefore often used for edge detection. Applying
the LoG on the MIZP we are able to detect possible cell edges (see equation
(3.4)). First the image is convolved using a Gaussian kernel at a scale d (d
is linked to the diameter of one cell) resulting in a scale space representation
(SSR). Afterwards the second derivative of the SSR is calculated to reveal
regions which change fast and hence show significant edges, which in turn
surround blobs that can be possible cell candidates.

LoG(x, y; d) = −
1

πd4

[

1−
x2 + y2

2d2

]

e
x2+y2

2d2 (3.4)

with x and y being coordinates of the image.

3.2 Local maximum/minimum detection

The local maximum/minimum search detects extreme regions in given data.
We can use the method to detect cell-sized blobs by applying it to the re-
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sulting LoG representation of the image:

(x̂, ŷ; t̂) = argmaxminlocal(x,y;t)(LoG(x, y; t)). (3.5)

3.2.1 3D segmentation

3D segmentation is used to detect objects on 3D images. We perform 3D
segmentation to identify single cells on the 3D image stack. The method
uses a certain pixel intensity threshold and all pixels that have an intensity
below this threshold become background pixels and all pixels having a higher
or same intensity foreground. Foreground pixels are then connected to pixel
clusters by starting at a random pixel and moving in all directions (x, y
and z). Every directly reachable foreground pixel is added to the cluster.
The clustering continues until all foreground pixel are inside clusters. Two
further thresholds, one lower and one upper, identify clusters as possible cells
by excluding the clusters that have a lesser amount of pixels than the lower
bound or more than the upper bound.

3.3 Geometric concepts

3.3.1 Distance between cells on hemisphere surface

Euclidean distances can be used to calculated distances in 3D but as the stem
cells are located completely on the hemisphere surface we need a method to
calculate distances with respect to the surface. The fitted surface polynomial
(see Section 4.1.3) can be used to calculate cell distances on it.
The distance between two cells on a surface is calculated via a recursive
procedure explained for a 2D example in Figure 3.3. First the midpoint
between the two cells (a) is calculated in euclidean space and projected to
the surface (b). This procedure is repeated for the two original points with
the new one respectively (d). The number of points in between depends
on the initial euclidean distance of the two cells. The number of points is
calculated via dividing the euclidean distance by 4µm which is about one cell
diameter. The final distance is then calculated by summing up all euclidean
distances between neighboring points.

3.3.2 Delaunay triangulation

The Delaunay triangulation for a set of points is a triangulation such that
no point in the set is inside the circumcircle of any triangle in the triangula-
tion (Delaunay condition) [26]. The result is for example used in computer
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Figure 3.3: Calculating distances distances between two cells on surface
(thick curve). The center of the direct link between the two cells (a) is
projected to the surface (b). The resulting point is then linked to the initial
cells. Afterwards each center (c) is projected to the surface (d) and linked
to the end point of the previous link (b).

graphics to obtain high quality triangular meshes. We can use the method
to derive the area of the hemisphere surface. We hence calculated the De-
launay triangulation of all cells. In the end we sum up all triangle areas to
approximate the overall area.
The incremental approach to reach a triangulation adds all points step by
step. The respective triangle, an added point lies in, is split up and the
new point is connected to the triangle vertices. This can harm the Delaunay
condition and it has to be checked if edges need to be ”flipped” (see Figure
3.4). The new edges can in turn lead to a harming of the Delaunay condition
in the neighboring triangles and consequently it could be that we need to
propagate through the whole triangulation.

3.3.3 Lasso regularization

Lasso regularization can be used for model selection, in particular to prevent
overfitting by penalizing models using extreme parameter values [27]:

min
β0,β

( 1

2N

N
∑

i=1

(

zi − aTi β
)2

+ λ

p
∑

j=1

|βj|
)

(3.6)

with N being the number of points, zi the response values of the response
vector z, ai the combination of x- and y-values for different orders, λ the
regularization parameter and β the coefficient vector.

12



Valerio Lupperger 3 Methods

A B

Figure 3.4: Edges harming the Delaunay condition need to be flipped. (A)
The edge in the middle harms the Delaunay condition as its circumcircle
includes the two other not adjacent points. (B) Accordingly the edge is
flipped and the Delaunay condition is fulfilled.

With rising λ more parameters are set to 0 while keeping the mean square
deviation to the response vector as low as possible. We used the regulariza-
tion to find an upper bound for the order of our surface fitting (Section 4.1.3)
by hopefully excluding x,y combinations with huge order. The input in our
special case were all stem cell coordinates as target array and the matrix of
all possible combinations of x and y up to a given order (see Table 3).

Table 3: Matrix used for Lasso input. The z-values for every cell are the
response vector and all columns represent different combinations of x and y
coordinates.

z x y xy x2y xy2 x2y2 x2 ...

z1 x1 y1 x1y1 x2
1y1 x1y

2
1 x2

1y
2
1 x2

1 ...
z2 x2 y2 x2y2 x2

2y2 x2y
2
2 x2

2y
2
2 x2

2 ...
... ... ... ... ... ... ... ... ...

3.4 Spatial Statistics

3.4.1 Spatial patterns

The spatial organization of points or cells can be described by different spatial
pattern. We focus on complete spatial randomness (CSR), attractiveness and
repulsiveness. CSR describes points that are distributed over an area as if
they are drawn randomly out of all possible positions (see Figure 3.5A).

13
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Points following an attractive pattern in contrast are forming clusters (see
Figure 3.5B), while points of a repulsive pattern repel each other and points
are predominantly separated (see Figure 3.5C).

3.4.2 Nearest neighbor distance statistics

Nearest neighbors methods are used to find the nearest point of a set to a
given point under a certain distance measure. We use a nearest neighbor
method in terms of distances on the hemisphere surface (see Section 4.1.3)
by looking for the nearest division of every dividing cell (ci):

di = min
i 6=j

dist(ci, cj)

3.4.3 F-Function by Andrey et al.

A spatial method introduced by Andrey et al. [28] used a so called F-function
to detect spatial properties like CSR, attractive or repulsive patterns with the
help of evaluation points. Evaluation points are typical positions of the con-
sidered system the hemisphere in our case). The F-function can be described
as a cumulative distribution function (cdf) of the distance d′ between evalu-
ation points on the hemisphere surface and its closest point in the observed
pattern:

F (d) = P (d′ < d)

As evaluation points we used all non-pattern cells on the hemisphere sur-
face, since they represent typical cell locations. For each evaluation point we
determine the distance to the nearest point of the observed pattern (Figure
3.6A). Using this distances the cdf is obtained by the proportion of evalua-
tion points with distance smaller than distance d.

CSR p tte
tt ct e

p tte
Rep e

p tte

A B C

Figure 3.5: Different spatial patterns. (A) Completely spatially random
(CSR) pattern distributes points randomly. (B) In an attractive pattern
points cluster together. (C) Points are separated if they form a repulsive
pattern.
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A

ti p i t

tte

B

Figure 3.6: The F-function can categorize the data in different patterns.
(A) To calculate the F-function evaluation points (donated by +) are dis-
tributed over the whole area. For every evaluation point the nearest neighbor
distance to the points of the pattern is calculated. The distances are predom-
inantly small for regular patterns and large for aggregated patterns. (B) The
simulation (Section 4.4.1) of repulsive, attractive and CSR patterns visualizes
how the cdf of the F-function represents the different pattern.

The resulting cdf is compared to a CSR distribution conditioned on the
observed pattern size np and the overall cell number nc. To achieve compa-
rable completely random pattern we draw ns = 10000 samples out of all cells
with sample size equal to np. We determine the mean of every quantile and
compare the cdf to the observed one. Figure 3.6B shows the cdfs of attrac-
tive and repulsive pattern compared to CSR pattern. Repulsive pattern are
found on the left side of the random sampled mean cdf as every non-pattern
cell position finds a relatively near cell of the repulsively distributed cells of
the pattern. In contrast attractively sampled cdfs are found on the right of
the sampled mean cdf as non-pattern cells often lack of a near cell of the
pattern as they are only found in a few clusters.
To evaluate the difference of CSR and the observed pattern we calculated
the maximal deviation of the two cdf curves. Low values correspond to light
developed pattern while high values indicate strong pattern.

3.4.4 Ripley’s K

Ripley’s K function is a spatial analysis method, which can describe point
patterns occurring over a given area (A) of interest [29]. It has been used to
to summarize a point pattern, test hypotheses about the pattern, estimate
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parameters and fit models. In our case the point patterns are dividing cells
and the area is the hemisphere surface. It is important to mention that we
evaluate the K function on a surface with non-uniform cell appearance prob-
abilities as divisions can only appear at cell locations. Ripleys K function is
calculated at multiple distances to see how point pattern distributions change
with scale:

K(d) = λ−1[number of extra events within

distance d of an event] (3.7)

with λ being the density of events corresponding to the ratio of the num-
ber of all occurring divisions and the area on which the divisions could appear
(np/A). In our case the area is approximated by Delaunay triangulation (see
Section 3.3.2) and the overall number of events is counted. According to
equation (3.7), we can estimate the K function for our data with

K̂(d) = N−1
∑

i

∑

j 6=i

I(d′ij < d) (3.8)

where d′ij is the distance between the ith and jth cells, and I(x) is the in-

dicator function with value 1 if x is true and 0 otherwise. The estimated K̂(d)
function can be compared to K̂(d) functions of simulated patterns. With our
simulation tool (see Section 4.4.1) we check whether our data fits to patterns
for (CSR), repulsiveness or attraction (see results in Section 4.4.4).
Increasing d can lead to the inclusion of regions where no events can occur.
To take this case into account we use edge correction, which corrects for the
proportion of the circle with radius d outside of the area where events can
occur. The edge effect is important for large d because it is more likely that
large circles reach the outside of the surface. We used a self implemented
approach to calculate the cut of the circle with the hemisphere surface. To
approximate the area of the hemisphere surface we used the previous cal-
culated Delaunay triangulation (see Section 3.3.2) to first identify the cells
defining the border (we picked all edges that just appear once). By traversing
the border edges we identified the regions where the circle around the current
event cuts the border defined for the hemisphere (J1, J2 in Figure 3.7). The
intersections and border points inside the circle could approximately deter-
mine the slice plane of surface and circle by adding up all triangles defined
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t i e

i i e

e p i t

Figure 3.7: Edge correction Calculating the proportion of the circle around
an event (red dot), which is not part of the surface. Using the polygonal line
of cells defining the border of the hemisphere we obtain the two intersections
(I1, I2) where the circle cuts the border. To obtain the grey area outside the
hemisphere we sum up the area of the triangles defined by the border points
inside the circle and the intersection points with the center (dashed edges).
Subtracting the resulting area from the pitch circle with angle α we receive
the desired area with which we calculate the proportion of the circle lying
inside the surface.

by neighboring border points and the center c:

w(pi, d) = 1− (d2π)−1
(

d2απ −

n−1
∑

i=1

A(pi, pi+1, c) + A(J1, p1, c) + A(pn, J2, c)
)

(3.9)
where pi is the ith border point inside the circle, α is the angle between I1,
center and I2 and A(x, y, z) is the area of the triangle defined by the three
point coordinates of x, y and z.
To account for the fact that our surface is no rectangle our approach differs
from the normally used one [30]. Normally the edge correction is calculated
depending on proportion of the circumference of the circle that fall into the
study area, while our approach calculates the proportion of the circle area
falling into the study surface.
Including the edge correction in Equation (3.8) we get:

K̂(d) = N−1
∑

i

w(pi, d)
∑

j 6=i

I(d′ij < d). (3.10)
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3.4.5 Active regions

To get a visual impression of the regions where dividing cells are over-
represented, we tiled the 2D projection and calculated sub-images. To cre-
ate these sub-images the image was divided in 16x16=256 squares (using a
squared image).
For every sub-image i the number of cells was counted (Ci) and the fraction
of dividing cells to all cells was determined. To take into account that the
cells are not distributed equally we sampled the number of dividing cells on
all cell locations (ns = 1000). For every sample n we counted the number
of cells inside every square Di again. Having a background distribution of
dividing cells per sub-image we can calculate an empirical p-value [31] for
the over-representation of dividing cells per sub-image over ns simulations:

pi = n−1
s

∑

n

I

(

Di

Ci

>
Din

Ci

)

(3.11)

with Din being the number of dividing cells in sub-image i in simulation n
and Di the respective number of dividing cells in the original image.
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4 Results

4.1 Image processing pipeline to identify single cells in

3D confocal image stacks

To quantitatively estimate cell patterns we first had to identify single cells
and make sure that the identified cells were not biased by image artifacts.
Furthermore we had to calculate distances between cells, for which we ap-
proximated the hemisphere surface on which the cells were located. This was
necessary since the hemisphere was not flat and we needed to account for un-
evenness on it. To solve this tasks, we implemented a pipeline (see Figure
4.1), that we explain exemplary for experiment ZF1L in the following.

4.1.1 Exclusion of uninformative regions

Due to experimental setup and imaging conditions some areas of the im-
age stack were not of interest for further analyses. We thus excluded non-

ec v lution

Exclusion of

uninformative regions

Identification of

single cells

Fit of high order

surface

Fit of 3rd order

surface

Removal of

outliers

12

Figure 4.1: Overview of the pipeline that describes all preprocessing steps
which were explained in detail in Section 4.1.
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hemisphere regions of the image, which showed microscopic artifacts or the
other hemisphere. We also excluded overexposed regions, where single cells
cannot be distinguished (see Figure 4.2A). The masked area for ZF1L was
∼ 15% of the whole image, while it covered ∼ 45% and ∼ 42% in ZF2L and
ZF2R, respectively, due to large non-hemisphere regions.
All pixels that were part of the masked area were set to background intensity
(see Figure 4.2B), which had an intensity of 3 for an 8 bit image. The mask
identified on the MIZP was processed to the whole image stack.

4.1.2 Identification of single cells

After isolating informative hemisphere regions single cells need to be identi-
fied in the images, to derive their exact coordinates in 3D for later analysis.
A first attempt to segment cells with a 3D method (see Section 3.2.1) failed,
as only around 60% of all cells were correctly identified (see Figure 4.3).
This could be the consequence of the image quality, the distance between
the image stacks or the low contrast of single cell staining in each single
slice. Consequently we developed an approach, based on MIZP of the full
image stack, where the single cell staining is intensified in the projection and
the according intensity profile in z.
After performing the Laplace of Gaussian method (see Section 3.1.2) on the

A B

Figure 4.2: Masking of uninformative regions. (A) The GFP stained
(green) image stack of ZF1L as MIZP. The arrow marks an overexposed
region, which had to be excluded. (B) Same image after masking. On the
top left side overexposed regions were excluded. On the bottom left as well as
on the bottom right side uninformative regions were masked (dashed line), to
prevent inclusion of image artifacts. Roughly 15% of the image are masked.
Scale bars: 50 µm
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Figure 4.3: The result of the 3D segmentation overlapped with the MIZP
(grey background image). Green circles denote identified cell locations. The
3D segmentation did not identify cells that could be identified on 2D projec-
tion by an expert, especially in the blue marked area, where only ∼ 60% of
cell can be identified. Scale bar: 50 µm

MIZP images 3380 blobs (cell candidates) were identified. From every de-
tected blob we used its x,y centroid, for further analyses. The next step was
to find a z-coordinate for each blob. A search for the maximum intensity in
z direction could lead to false positives due to noise in the image acquisition
e.g. via single glowing pixels with high intensity. To discard possible signals
from neighboring cells, we only used pixel information inside a cell sized cir-
cular area of radius rc = 2µm around the centroids in every image (Figure
4.4A). The combination of circles of all slices formed a tube in z-direction
(Figure 4.4B). On every image we calculated the mean intensity inside the
respective circle and fitted a Gaussian distribution in z-direction to it (see
Figure 4.4C). We took the mean of the distribution as the z coordinate of
the cell. Additionally the standard deviation was used to filter whether the
detected blob was able to represent a real cell or arose only from an image
artifact like glowing single pixels. If the range of two standard deviations σz

was smaller than an average cell radius rc the blob was excluded as a false
positive.
Analogously we fitted a two dimensional Gaussian distribution in x-y dimen-
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x

A B C

μm

Figure 4.4: Detection of cell centers in z-direction. For every identified
blob (circles in (A)) a tube in z-direction was formed (B). (C) The mean
intensities inside the circle per slice in z-direction were calculated (blue line).
We fitted a Gaussian distribution to this curve (red line). Using the mean
of the distribution in z-direction as z-coordinate of the cell, we robustly
determined cell centers in z.

sion we excluded artificial blobs with 2σi < rc with i ∈ (x, y).
Compared to the direct 3D segmentation method this approach can identify
100% of all manually counted cells. Additionally cells being close to each
other, like recently divided cells, can be identified as two cells while the 3D
segmentation would exclude them as one too big object.

4.1.3 Approximation of the hemisphere surface

The hemisphere of a zebrafish is not planar but curved and has also grooves
on it (Figure 4.5A). As euclidean distances do not represent the real distances
between cells on the surface, it was important to take the structure of the
hemisphere surface into account. We used the x,y,z centroids for every cell
and fitted a general polynomial regression model to all centroids to approxi-
mate the hemisphere surface.
For choosing the right polynomial order we had to consider two issues. (i)
Image artifacts (marked white in Figure 4.5A) could result in outliers and
attract the fitted surface (as shown in Figure 4.5B); (ii) lower orders could
be too general to approximate the unevenness of the hemisphere. Hence, we
decided to apply a two step approach. First we used the approximation of
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A B C

Figure 4.5: Identification and filtering of segmentation artifacts. (A) An
exemplary region of erroneously segmented foreground objects (inside white
border) on a 3D rendered image stack, which could influence subsequent
analyses if they were not excluded. (B) The 4th order polynomial could be
attracted to outliers resulting from image artifacts, which was the reason for
using a two step approach. We started with fitting a 3rd order polynomial
(C) to the data, which only roughly approximated the surface. We then
excluded the outliers (arrows) and fitted a higher order polynomial to the
remaining data.

the hemisphere surface with a low order (n=3) to exclude image artifacts and
afterwards we fitted a higher order polynomial to the surface to account for
local unevenness.
The previously mentioned outlier problem was fixed by repetitively exclud-
ing the cell furthest from the surface (see marked spots in Figure 4.5C) and
recalculating the surface until no spot was further away than 8µm (approxi-
mate two cell diameters) and the median of all distances to the surface was
smaller than 0.1 µm. The resulting surface was then used to eliminate all
remaining image artifacts by applying an upper and a lower bound to the
calculated surface with z-distance of 12 µm (approximate three cell diame-
ters) each. Every pixel outside this borders was set to background intensity
(intensity of 3 for a 8-bit image).
Afterwards the segmentation (Section 4.1.2) was redone and a higher order
polynomial was fitted to the data to consider unevenness of the brain surface.
To evaluate the order we applied a lasso fit (see Section 3.3.3) to the cen-

troids. The lasso fit should reveal which low orders were too general and
which higher orders lead to overfitting. We applied the lasso fit to combina-
tions of polynomial terms up to 30th order (see Table 3). In the best case
lasso excluded all high order polynomial combinations and we could use the
highest lasso order as the polynomial order for our fitting. Unfortunately the
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fitted lasso term still included high order terms (up to 28th order) and the
resulting mean square error of all centroids was only slightly lower than the
one calculated for the fitted surface of order 8. Hence the lasso term was
not usable and we had to define the order manually. We did this by looking
for increasing orders and evaluating whether they cover all visible cells on
z-projection. The smallest order covering all cells was taken. The order for
ZF1L was 8, for ZF2L 10 and for ZF2R 12.

4.1.4 Identification of dividing stem cells

After the identification of all GFP expressing stem cells we applied the same
algorithm on EdU stained dividing cells. Stem cells with EdU will be called
double positive cells in the following. To identify them we compared the
locations of all dividing cells with the positions of all stem cells and if they
were closer than one cell diameter (4µm) they were labeled as double positive.

4.1.5 Application of the pipeline to three hemispheres

We applied the final pipeline to a total of 3 hemispheres. In Figure 4.6
all three hemispheres are displayed showing the identified GFP, EdU and
double positive cells. We obtained 2668 GFP positive cells, 86 EdU positive
cells and 17 double positive cells for experiment ZF1L. Experiment ZF2L
shows 2466, 90 and 14 respectively, while ZF2R results in 2349 GFP positive
cells, 175 EdU positive cells and 12 double positive cells (Table 4). The cell
numbers were comparable between the different experiments except for the
EdU count of ZF2R, which was about the twice as much as in the two other
hemispheres. This could influence the comparability of the results between
the experiments in the following analyses.

Table 4: Number of stem cells (GFP positive), dividing cells (EdU positive)
and dividing stem cells (GFP and EdU positive), quantified in three indepen-
dent image stacks. Names of experiments follow the scheme ZFx[LR], where
x is the number of the zebrafish while L/R stands for left/right hemisphere.

#GFP #EdU #GFP+EdU

ZF1L 2668 86 17
ZF2L 2466 90 14
ZF2R 2349 175 12
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A B

C

Figure 4.6: Results of the segmentation for the three hemispheres displayed
on the MIZP raw image stack. (A) Experiment ZF1L with 2668 GFP positive
cells (green circles), 86 EdU positives (blue circles) and 17 double positives
(white circles). (B) Experiment ZF2L with 2466 GFP cells, 90 EdU cells
and 14 double positives.(C) Experiment ZF2R with 2349 GFP positive cells,
175 EdU positive cells and 12 double positive cells. Scale bars: 50 µm
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4.2 Doublet statistics

Within the group of EdU positive cells, many cells close by appear, which
we defined as doublets that were already split and could be identified on
the MIZP of the EdU staining as close neighboring dividing cells (see Fig-
ure 4.7A). Doublets can be composed of three different cell combinations:
(i) Both stay stem cells, (ii) both developed to progenitors or (iii) one stem
cell and one progenitor cell (see Figure 4.8). We found that doublets, which
consisted of two progenitor cells clearly form the majority with 80%, 75%
and 80% for ZF1L, ZF2L and ZF2R respectively. Asymmetric divisions ap-
peared to be the second largest combination (15%, 8% and 13%). The third
combination were two stem cells with 5%, 17%, 6% respectively.
Interestingly divisions leading to two progenitors did not necessarily have

a stem cell as mother cell (compare Figure 4.8B,C). The observed doublet
results can still change as stem cells that are still in the division process could
give rise to additional progenitor cells.

A B

33

6

2
ZF1L

9

1

2

ZF2L

12

2

1
ZF2R

Two progenitors
One progenitor, one stem cell
Two stem cells

Figure 4.7: Cell divisions could give rise to three different cell combinations.
(A) Cutout of a z-projected image stack showing EdU stained doublets on
the maximum intensity projection (blue blobs). Scale bar: 10 µm (B) Two
progenitors clearly form the majority with 80%, 75% and 80% for experiments
ZF1L, ZF2L and ZF2R respectively, while asymmetric divisions tend to be
the second largest combination (15 %, 8 % and 13%). The third combination
were two stem cells with 5%, 17%, 6% respectively.
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To verify the results of the cell identification we compared our results to
the observations of an unpublished study on zebrafish stem cells by Barbosa
et al. We estimated the average length of the S-phase using their results.
The study states that around 12% of stem cells undergo asymmetric division
and 1% symmetric divisions within two weeks. Transferred to experiment
ZF1L, where we observed 2668 stem cells we expect a number of 2668x0.13
= 346.84 stem cell divisions within 14 days. The time required to observe
17 dividing stem cells is thus (17x14)/346.84 = 0.68 days which is about 16h
to incorporate EdU. The respective results for ZF2L and ZF2R were about
18h and 20h. Since EdU can be incorporated during the whole S-Phase the
stem cell can be at the beginning of the S-Phase (Figure 4.8E) or at the
end of the S-Phase (Figure 4.8D) and thus the temporal window increases to
approximately the length of two S-Phases. Consequently we calculated the
length of two S-Phases and the resulting S-Phases are 8h, 9h and 10h long.

2 h

d

ddition Imaging

rogenitor cell

hase

tem cell

A

B

C

D

E

F

G

ells

ell division

1h

time

i

i

ii

iii

Figure 4.8: Cells observed at the imaging time point could have different
origins. Observing an EdU stained cell could either be a progenitor cell that
already passed its S-Phase (A) or was at least one part of an earlier division
(B)-(D). A dividing stem cells could arise from an undivided cell (F), from
a symmetric stem cell division (E) or from an asymmetric division (D). A
GFP only cell could just be the consequence of a quiescent stem cell (G).
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4.3 Distances to surface

To examine if dividing cells are still located on the hemisphere surface as
addressed from Chen et all [32], we calculated the shortest distance of every
dividing cell to the surface .
As shown in Figure 4.9 we found 12 clearly visible neuroblasts residing under
the hemisphere surfaces (> 20 µm which is about 5 cell diameter) probably
moving in direction of the inner brain to a region where new neurons were
needed [32]. 95% of dividing stem cells were found under the hemisphere,
but they were located only up to three cell diameters (≈ 12 µm) below the
surface, which could be a consequence of the division process. Possibly the
cells need more space to divide and move away from the neighboring cells for
this purpose. To evaluate the surface fitting we also compared the locations
of non-dividing stem cells to the himsphere surface. As expected they were
found equally distributed under and above the calculated hemisphere surface
with a maximum distance of 2 cell diameter.
Noticeably was a subset of dividing cell residing clearly above the surface (up
to 30 µm) in ZF2R. This could be a consequence of the lack of stem cells in
the lower left region of the hemisphere (see Figure 4.6C). As there were not
enough stem cell the fitted surface drops before it reaches the outer regions.
Following all dividing cells in the lower left regions were found above the
calculated surface.

4.4 Spatial patterns of dividing cells

To categorize the spatial patterns of dividing cells on the hemisphere sur-
face we applied three statistical methods. We applied all methods on two
cell populations: dividing stem cells (identified by a GFP and EdU signal)
and all dividing cells (identified by an EdU signal). The first method com-
pares statistical properties of nearest neighbor distance distributions. The
second method reveals relationships between randomly distributed points on
the surface to locations of dividing cells. Ripley’s K as the third method
describes more complex relationships between the dividing cells by taking
into account that cells at the border of the hemisphere can have no adjacent
divisions outside the hemisphere.

4.4.1 Spatial pattern simulation

We compare the observed patterns with three different scenarios: (i) the di-
vision rate p is identical for every cell, which means that every cell has the
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F1 F2 F2R

Figure 4.9: Distances of cells to the surface of all three experiments for
all dividing cells (d), dividing stem cells (ds) and stem cells (s). 12 dividing
progenitors can be clearly found below the surface (distance > 20 µm ≈ 5
cell diameters) while non-dividing stem cells were located near the surface.
In contrast 95% of dividing stem cells were found under the hemisphere with
a distance of three cell diameters (≈ 12 µm) at most.

same probability to divide at every time point (complete spatial randomness
(CSR) scenario). (ii) A cell division increases the chance that a cell divides
nearby (attractive scenario). (iii) Cells that divide decrease the probability
of neighboring cells to divide (repulsive scenario).
The impact of a division on other cells can be influenced by the two param-
eters ”influence radius” r and ”influence strength” s. Thus in the attractive
scenario, the division probability pi for a certain cell ci is a function of

pi = ps
∑

j 6=i

I(d(ci, cj) < r) (4.1)

with p being the CSR division probability and d(ci, cj denotes the distance
between cell ci and cell cj. In the repulsive scenario the division probability
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pi for a certain cell ci is a function of

pi = p
(

s
∑

j 6=i

I(d(ci, cj) < r)
)−1

(4.2)

As input the simulation gets the locations of all cells (regardless of their
state) and the surface on which they were located (see Section 4.1.3). The
simulation works by drawing a random not yet divided cell and simulates a
division, which simply increases or decreases the probability of neighboring
cells to be drawn. The drawing of a cell takes into account that cells can
have different probabilities to divide and adjusts the drawing accordingly.
With the simulated spatial cell distributions of dividing cells we were able to
compare different settings to real data and fit the two model parameters to
the data by optimizing the influence of radius and strength.

4.4.2 Nearest neighbor statistics

To analyze the patterns of dividing stem cells and all dividing cells on the
zebrafish hemisphere we first looked at the nearest neighbor distances (dNN).
Figure 4.11A displays distributions of dNN for dividing stem cells on ZF1L.
We observed 10 (59%) small distances (< 20 µm ≈ 5 cell diameters) but also
one (3%) large one (> 50 µm ≈ 12 cell diameters). Figure 4.11B shows 63
small distances (73%) and 6 (7%) large ones for all dividing cells. Compar-
ing both cases we could state that dNN of all dividing cells contained more
extreme values.
We next compared the observed dNN to a background distribution. For
the respective number of points in the patterns np, we randomly sampled
ns=1000 cells distributed over all possible cell positions to generate a back-
ground distribution of dNN (see Section 3.4.2). Using this distribution we
could compare mean, median and standard deviation between observed and
sampled distances.
An empirical p-value was calculated by counting the values of the background
distribution being higher or lower than the observed value and dividing it by
the number of samples ns [31]. As shown in Figure 4.11C,G the observed
median and mean of ZF1L were below all sampled values, suggesting that
the empirical p-value was smaller than 0.001. Similar empirical p-values
were calculated for mean (empirical p-value = 0.011) and median (empir-
ical p-value < 0.001) of dNN for all dividing cells (Figure 4.11C,G). Both
empirical p-values suggested that we observe significantly more small dNN

than by distributing cells randomly. Consequently every cell that was part
of the observed pattern had at least one dividing cell nearby, but they not
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necessarily needed to cluster all together. Looking at standard deviation of
dNN we observed different patterns (Figure 4.11E-F). Standard deviations
of dividing stem cells tended to be smaller than the randomly sampled dis-
tribution (empirical p-value = 0.013), while dNN of all dividing cells had a
significantly greater standard deviation compared to random sampled ones
(empirical p-value < 0.001). This was surprising, as this implied that divid-
ing stem cells cluster always together while all dividing cells include some
cells that were not near any other division.

A B

C

Figure 4.10: Simulation cell division patterns for three different scenar-
ios. Green circles represent stem cells while blue circles represent division
events (A) The division appearances of cells were sampled randomly e.g.
without influencing each other. (B) Cells that divided decrease the division
probability for their neighboring cells and a repulsive pattern appears. (C)
An attractive pattern appears by increasing the division probability for cells
located near other divisions.
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The observed dNN of dividing stem cells for experiment ZF2L showed 8
(57%) small distances and 3 (21%) large ones, while for all dividing cells
47 (52%) dNN were small and 3 (3%) large (see Figure 4.12A,B). Compar-
ing mean dNN to the background distribution we observed small values in
both cases with p-values of 0.012 and 0.013 for dividing stem cells and all
dividing cells, respectively (Figure 4.12C,D). The standard deviations were
in this case significantly higher than expected (empirical p-values of 0.019
for dividing stem cells and 0.001 for all dividing cells, Figure 4.12E,F). The
biggest deviation between dividing stem cells and all dividing cells in ZF2L
was found comparing dNN medians. While the dividing stem cells showed
a significantly smaller median (empirical p-value < 0.001), the median of
all dividing cell was not significantly different from the sampled distribution
(empirical p-value of 0.111, Figure 4.12G,H).
Comparing dNN on ZF2R we found 2 (17%) small distance and 4 (34%)
large ones for dividing stem cells (Figure 4.13A). For all dividing cells we
obtained 100 (58%) small dNN and 3 (2%) large ones (Figure 4.13B). The
mean of dNN of dividing stem cells was significantly smaller than the back-
ground distribution (empirical p-value of 0.003, Figure 4.13C). The mean
dNN of all dividing cells in contrast was insignificant (empirical p-value =
0.143, Figure 4.13D). Also the standard deviation of dNN of dividing stem
cells was not significant (empirical p-value = 0.149, Figure 4.13E) while it
was significantly larger than expected by the background distribution for all
dividing cells (empirical p-value = 0.019, Figure 4.13F). The empirical p-
values calculated for the median of dividing stem cells was insignificant with
0.045 and also insignificant for all dividing cells (empirical p-value = 0.386).
In summary we could state that means of dividing stem cells were signif-
icantly smaller than expected by the background distribution in all three
experiments, while the standard deviations showed no conclusive tendency
in the three experiments. For all dividing cells only the standard deviation
showed a conclusive tendency by being significantly higher than expected by
the background distributions for all hemispheres. This indicates that divid-
ing stem cells tend to form predominant cluster but also include a 1-2 cells
that stand alone. All dividing cells also form cluster but they include much
more cells that have no near neighbor.

4.4.3 F-function by Andrey et al.

Nearest neighbor statistics only consider the nearest neighbor distances but
not the hemisphere as a whole and the location of the dividing cells on it.
To analyze non-local patterns on the hemisphere we applied the F-function,
which uses the distances of all non-dividing stem cells to its nearest cell in
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Figure 4.11: Nearest neighbor statistics performed on experiment ZF1L.
(A)-(B)Nearest neighbor distances dNN observed for both patterns, showing
10 (59%) small distances (< 20 µm ≈ 5 cell diameter) but also one (3%)
large one (> 50 µm ≈ 12 cell diameter) for dividing stem cells. The dNN

for all dividing cells contained 63 small (73%) and 6 (7%) large distances.
In (C)-(H) the red line indicates the observed value while the white bars
are the background distribution. (C)-(D), (G)-(H) Mean and median of
the nearest neighbors distances compared to background distributions. Both
patterns showed significantly smaller mean and median values compared to
the background distribution (empirical p-values < 0.001, except (D) with
p-value = 0.011). (E)-(F) The standard deviation differs between both
pattern. The dividing stem cells tended to have a small standard deviation
(empirical p-value = 0.013) compared to background distribution while all
dividing cells showed a significantly larger standard deviation (empirical p-
value < 0.001).

34



Valerio Lupperger 4 Results

Figure 4.12: Nearest neighbor statistics performed on experiment ZF2L.
(A)-(B) Nearest neighbor distances dNN observed for both pattern, showing
8 (57%) small distances (< 20 µm ≈ 5 cell diameter) but also 3 (21%) large
ones (> 50 µm ≈ 12 cell diameter) for dividing stem cells. The dNN for
all dividing cells had 47 small (52%) and 3 (3%) large distances. In (C)-
(H) the red line indicates the observed value while the white bars are the
background distribution. (C)-(D)Mean of the dNN compared to background
distributions. Both patterns showed significantly smaller mean values as
the background distribution with empirical p-values of 0.012 and 0.013 for
dividing stem cells and all dividing cells respectively. (E)-(F) The standard
deviations were significantly higher than expected resulting in empirical p-
values of 0.019 for dividing stem cells and 0.001 for all dividing cells. (G)-
(H) Median distances differed for both cases as dividing stem cells had a
significantly lower median dNN as expected (empirical p-value < 0.001) and
all dividing cells had an insignificant median (empirical p-value = 0.111).
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Figure 4.13: Nearest neighbor statistics performed on experiment ZF2R.
(A)-(B)Nearest neighbor distances dNN observed for both patterns, showing
2 (17%) small distances (< 20 µm ≈ 5 cell diameter) but also 4 (34%)
large ones (> 50 µm ≈ 12 cell diameter) for dividing stem cells. The dNN

for all dividing cells had 100 (58%) small and 3 (2%) large distances. In
(C)-(H) the red line indicates the observed value while the white bars are
the background distribution. (C)-(D) The mean of dNN of dividing stem
cells were significantly smaller than the background distribution showing an
empirical p-value of 0.003. The mean value of all dividing cells in contrast was
insignificant (empirical p-value = 0.143). (E)-(F) The standard deviation of
dNN of dividing stem cells was insignificant (empirical p-value = 0.149) while
it was significantly higher than expected for all dividing cells (empirical p-
value = 0.019). (G)-(H) The empirical p-value calculated for the median of
dividing stem cells was significantly smaller than expected with 0.045, while
it was insignificant for all dividing cells (empirical p-value = 0.386).
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the pattern and evaluates the cumulative distribution function (cdf) of these
distances by comparing it to the cdf of completely spatial random (CSR)
pattern [28]. For more details see Section 3.4.3.
For experiment ZF1L the resulting cdfs (Figure 4.14A,B) implied that for
both patterns the cdfs differs from the cdf of a CSR, as the cdf function all
dividing stem cells lay outside the 95% envelope of CSR cdf and the cdf of
dividing stem cells cut the envelope only in a small interval for dNN >100.
For experiment ZF2L the cdf of dividing stem cells cut the 95% envelope of
the CSR cdf in the small interval for dNN >150 (Figure 4.14C), while the cdf
of all dividing cells lay to the right of the whole CSR cdf (Figure 4.14D). For
experiment ZF2R the cdfs of dividing stem cells as well as all dividing cells
were found completely to the right of the CSR cdf (Figure 4.14E,F). Cuts
for dNN < 5 were negligible as until this distance no neighboring cell can be
found and thus the cdf curves had to overlay.
In summary cdfs of all dividing cells were found to right of the CSR cdfs
and thus tend to form attractive pattern. Cdfs of dividing stem cell were
predominately found right of CSR cdfs and we can conclude that they tend
to form only slight attractive pattern.

4.4.4 Ripley’s K

One weakness of the F-function is that it can not distinguish between the
cases of having two equally sized clusters and having a small and a huge
cluster. The distances between evaluation points and nearest points in the
clusters would be nearly identical for both cases although the patterns are
different. We thus applied a more complex spatial method called Ripley’s K
[29] (see Section 3.4.4), that takes the environment of every cell in the pattern
into account. Specifically, all divisions around every cell in the pattern are
counted within circles around every point of the pattern:

K(d) = (np/A)
−1[number of extra divisions within

distance d of an dividing cell] (4.3)

with np being the number of points in the pattern and A the hemisphere
area. Applying Ripley’s K to dividing cells we were able to compare them
to simulated completely spatially random (CSR) distributed, repulsively dis-
tributed and attractive distributed cells.
To evaluate the Ripley’s K properly, we needed to estimate the whole area
of the surface the cells were located on. For this purpose we applied the
Delaunay triangulation algorithm (see Section 3.3.2 and Figure 4.15).
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Figure 4.14: The cumulative distribution function (cdf) of the F-function
distances. The blue line indicates the observed distances, while the black
dashed line represent randomly sampled mean distances. The cdf of dividing
stem cells as well as all dividing cells arise right to the respective random
sampled mean cdf, which indicates that both patterns show a trend to form
an attractive pattern. (A),(B) In experiment ZF1L the maximum distances
between both curves were about 24 µm each. (C),(D) For experiment ZF2L
we observed 46 µm and 31 µm maximum deviation for dividing stem cells
and all dividing cells respectively, while (E),(F) ZF2R even showed 101 µm
and 74 µm deviation. 38
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Figure 4.15: Visualization of the Delaunay triangulation of the hemisphere
surface of experiment ZF1L. The triangles were used to calculate the area of
the surface on which the cells were located.

We first used Ripley’s K to analyze whether the locations of stem cells
on ZF1L were following a CSR pattern. We thus compared Ripley’s K of all
stem cells to CSR distributed points on an area with equal size as the area
determined by triangulation. It can be seen in Figure 4.16A that the differ-
ence in K(d) is only barely visible due to the large range of the Y axis. But
we can calculate L(d) = (K(d)/π)(1/2) [30] as var(L(d)) is approximately
constant under CSR and under CSR L(d)− d = 0. Looking at L(d)− d two
departures of CSR can be observed (Figure 4.16B). The difference for small
d values can be explained by the cell diameter around 4µm and therefore
constituted the minimal observed distance between cells. The deviation for
d > 10 indicated a difference between the stem cell distribution and com-
pletely spatial randomness. To take this uneven distribution of cells into
account, we used the stem cell locations as possible points where divisions
could appear for further calculations. Additionally, since the L(d)− d func-
tion was way more practical to compare distributions than the K(d) function
we restricted the following analyses to the L(d)− d function.
We first tried to optimize the parameter of the attractive and repulsive

sampling (see Section 4.4.1) for dividing stem cells and all dividing cells
(see Figure 4.17). We evaluated several influence strength and radius com-
binations (s, r) to detect the one with the lowest root mean square distance
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A B

Figure 4.16: Ripley’s K and L(d)−d function performed on all stem cells of
ZF1L (blue line) compared to completely random distributed locations with
the mean as black line and the 95% envelope as dashed lines. (A) Ripleys’K
compared to a completely random distribution of the same number of points
can not be distinguished on the K(d) plot but comparing L(d) − d (B) a
deviation is visible. The small observed distance (< 2) is huge enough to
state that the stem cells are not completely spatially random distributed.

(RMSD) between sampled mean K(d) values and observed ones:

RMSD =
(

N−1
∑

d

(Ks(d)−Ko(d))
2
)0.5

(4.4)

with Ks(d) being the sampled K function for distance d, Ko(d) the observed
K function for distance d and N the maximal considered distance.
The RMSD for attractive sampling for all dividing cells showed no clear
tendency in one direction but small values above certain r, s combinations.
(Figure 4.17A). The optimal parameters used for the simulation were s=
2.1 and r 21 µm. RSDM optimized for repulsive sampling on all dividing
cells showed a slight drift towards small radii and small intensities, but the
observed RMSDs were about twice as high as for the attractive sampling
(Figure 4.17B). The resulting chosen parameters were s= 2 and r= 6 µm.
Attractive sampling on dividing stem cells showed a tendency for high radii
combined with high intensity (Figure 4.17C). The chosen parameters were
S= 3.8 and R= 80 µm. The optimization for repulsive sampling on dividing
stem cells revealed no trend and no such small RMSDs as for the attractive
sampling (Figure 4.17D). The parameter combination with the lowest RMSD
within the sampled grid were S = 3.3 and r = 5 µm. For the following sim-
ulations we used these parameters.

40



Valerio Lupperger 4 Results

A

Influence strength s (a.u.)
1.1 1.5 1.9 2.3 2.7 3.1 3.5 3.9

R
ad

iu
s 

r 
in

 µ
m

100

90 

80 

70 

60 

50 

40 

30 

20 

10 

R
M

S
D

 o
f K

(t
)

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B

Influence strength s (a.u.)
1.1 1.5 1.9 2.3 2.7 3.1 3.5 3.9

R
ad

iu
s 

r 
in

 µ
m

100

90 

80 

70 

60 

50 

40 

30 

20 

10 

R
M

S
D

 o
f K

(t
)

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C

Influence strength s (a.u.)
1.1 1.5 1.9 2.3 2.7 3.1 3.5 3.9

R
ad

iu
s 

r 
in

 µ
m

100

90 

80 

70 

60 

50 

40 

30 

20 

10 

R
M

S
D

 o
f K

(t
)

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D

Influence strength s (a.u.)
1.1 1.5 1.9 2.3 2.7 3.1 3.5 3.9

R
ad

iu
s 

r 
in

 µ
m

100

90 

80 

70 

60 

50 

40 

30 

20 

10 

R
M

S
D

 o
f K

(t
)

×104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 4.17: Optimizing sampling parameters.(A) The root mean square
deviation (RMSD) from the observed K(d) values is shown for attractively
sampled K(d) values with different influence strength (s) and influence radii
(r) for all dividing cells. No clear tendency in one direction was visible. The
chosen parameters were s= 2.1 and r= 21 µm. (B) Repulsive sampling on
all dividing cells showed a slight RMSD drift towards small radii and small
intensities, but the observed RMSDs were about twice as high as for the
attractive sampling. The resulting parameters were s= 2 and r= 6 µm. (C)
Attractive sampling on dividing stem cells show a tendency for high radii
combined with high intensity. The resulting parameters were s= 3.8 and r=
80 µm. (D) The optimization for repulsive sampling on dividing stem cells
revealed no trend and no such small RMSDs as for the attractive sampling
were observed. The parameter combination with the lowest RMSD were an
intensity of 3.3 and a radius of 5 µm.
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The L(d)− d function of the observed dividing stem cells clearly differs from
the CSR as well as from repulsive sampling as the curve is located completely
above the 0.95% envelopes from the samplings (Figure 4.18A). Compared to
the attractive scenario the curve cuts the envelope in the region between 5
and 25 µm. Comparing the CSR and repulsive sampling L(d) − d function
of all dividing cells to the observed pattern we observed no cut of the 95 %
envelopes (Figure 4.18B). The 95% envelope of attractive sampling in con-
trast included the complete observed curve. The huge span of the envelope
of attractive sampling was probably the result of the possible chain effect
that could arise. One cell divides and the region around it granted twice the
probability for further divisions. If another cell divides nearby the regional
probability doubles again. This can lead to a huge cell cluster in a small
region. When the radius around one cell reaches this region the K(d) value
increases strongly.
The same analysis performed on ZF2L showed similar results as ZF1L for

CSR and repulsive sampling for dividing stem cells (Figure 4.19A) as the
observation curve was located completely above both 95% envelopes. Com-
paring the attractive scenario to the observed pattern we saw a difference to
ZF1L as the L(d) − d function of all dividing cells cut the envelope of the
attractive sampling L(d) − d function in the regions from 5 to 70 µm with
small peak outside the envelope around 8 µm. The L(d)− d function of all
dividing cells lay again nearly completely inside the 95% envelope (Figure
4.19B). Only the small intervals between 0 and 8 µm as well as between 18
and 22 µm were found outside it. Around 50 µm the curve even reached
the middle of the envelope and stayed there. Compared CSR and repulsive
sampling the observed L(d)−d function was located clearly above their 95%
envelopes, respectively.
Ripley’s K performed on ZF2R showed different results compared to ZF1L
and ZF2L for CSR and repulsive sampling for dividing stem cells (Figure
4.20A) as the L(d) − d curve cuts both 95% envelopes between 15 and 60
µm. Compared with attractive sampling we observed a small cut of the 95%
envelope between 10 and 32 µm. The L(d)− d function of all dividing cells
was found again nearly completely inside the 95% envelope for attractive
sampling (Figure 4.20B). Only the small interval between 5 and 8 µm was
found outside. Surprisingly we observed also a long cut between the observed
L(d)−d function and the CSR 95% envelope. Starting at 20 µm the envelope
covered the curve except for two small intervals between 27 and 28 µm and
35 and 42 µm. The 95% envelope of repulsive sampling instead cut the ob-
served curve only in small regions between 0 and 4 µm, which was negligible
as in this region no neighboring cell could appear. Noticeable here is the form
of the CSR curve as it raises straight up to a L(d) − d value of 10 instead
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B

Figure 4.18: The L(d)−d function (blue line) for ZF1L dividing stem cells
and all dividing cells compared to three sampled patterns. The different
colored patches represent the 95% envelope for the three compared pattern.
(A) The L(d)−d function of the dividing stem cells differs from the CSR and
the repulsive sampling as the curve is located completely above the 0.95%
envelopes. Compared to the attractive L(d)− d function the curve cuts the
envelope in the region between 5 and 25 µm. (B) Comparing the CSR and
repulsive sampling L(d) − d function of all dividing cells to the observed
pattern we observed no cut of the 95 % envelopes with the observed curve.
The 95% envelope of attractive sampling in contrast completely includes the
observed curve.
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Figure 4.19: The L(d)−d function (blue line) for ZF2L dividing stem cells
and all dividing cells compared to three sampled patterns. The different
colored patches represent the 95% envelope for the three compared pattern.
(A) The L(d)−d function of the dividing stem cells differs from the CSR and
the repulsive sampling as the curve is located completely above the 0.95%
envelopes. Compared to the attractive L(d)− d function the curve cuts the
envelope in the region between 5 and 8 µm and from 10 to 70 µm . (B)
Comparing the CSR and repulsive sampling L(d)− d function of all dividing
cells to the observed pattern we observed no cut of the 95 % envelopes with
the observed curve. The 95% envelope of attractive sampling in contrast
includes the nearly the complete observed curve (except the region between
18 and 22 µm.
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staying around 0. This could be an effect of the overall cell distribution on
the hemisphere in experiment ZF2R.

In summary we can conclude that only for all dividing cells a consistent
result for all three experiments was obtained. We found that CSR and re-
pulsive sampling was unlikely, as the L(d)− d functions for observed values
were never inside the respective 95% envelopes, while the 95% envelopes of
attractive sampling often covered the L(d)− d function for observed values.
Dividing stem cells in contrast behaved completely different experiment-wise
as their L(d)− d curve cut the attractive scenario 95% envelope in all three
experiments while it cut also the CSR and repulsive sampled 95% envelope
in ZF2R. Additionally, as we obtained only small optimal radii (5 and 6 µm)
for repulsive sampling, we observed similar curves for repulsive sampling and
CSR.

4.4.5 Active hemisphere regions

Ripley’s K describes the whole data in terms of statistical pattern properties.
To visualize these features on the images we implemented a method that de-
tects and displays regions of the hemisphere that were more active than one
would expect at random (see Section 3.4.5). Specifically we calculated an
empirical p-value for the presence of dividing cells for 256 sub-images of the
image and visualize them using a contour plot (see Figure 4.21A,B).
On the left side of the ZF1L hemisphere low p-value regions arose. Figures
4.21C-F display that both other experiments show significantly lower empir-
ical p-values as expected at the medial sides. The medial side is the side of
the hemisphere that is near to the other hemisphere and it is assumed that
the medial site of the hemisphere is more active than the dorsal one (per-
sonal communication). Our results showed that the cell location probably
also impacts the division rate.
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Figure 4.20: The L(d)−d function (blue line) for ZF2R dividing stem cells
and all dividing cells compared to three sampled patterns. The different
colored patches represent the 95% envelope for the three compared pattern.
(A) The L(d) − d function of the dividing stem cells cuts the CSR and the
repulsive sampling 95% envelope between 15 and 60 µm. Compared to the
attractive L(d)−d function the curve cuts the envelope in the region between
9 and 32 µm. (B) Comparing the repulsive sampling L(d)−d function of all
dividing cells to the observed pattern we observed only a small cut of the 95
% envelopes with the observed curve between 0 and 5, while we observed two
small cuts with the CSR sampled L(d) − d function between 20 and 35 µm
and a long cut starting at 40 µm. The 95% envelope of attractive sampling in
contrast includes nearly the complete observed curve (except for the region
between 5 and 8 µm).
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Figure 4.21: (Caption next page.)
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Figure 4.21: (Previous page.) Contour plot showing empirical p-values
for cell divisions in sub-images (frames). The number of local divisions was
compared to randomly sampled divisions to reveal active regions of the hemi-
sphere. (A) Raw image of experiment ZF1L. (B) Inn experiment ZF1L on
the medial (here left) side clearly visible low p-value regions were obtainable.
(C) Raw image of experiment ZF2L. (D) In experiment ZF2L on the medial
(here right) side clearly visible low p-value regions were obtainable. (E) Raw
image of experiment ZF2R. (F) On experiment ZF2R the medial (here left)
side clearly visible low p-value regions were obtainable. Scale bars: 50 µm
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5 Discussion & Conclusion

Neural stem cells (NSCs), especially NSC divisions and differentiation, play
an important role in the treatment and prevention of neurological disorders
[33, 34, 35]. We focused in this thesis on detecting spatial patterns of NSC
divisions in the zebrafish brain. Our aims were to identify single cells on
zebrafish hemispheres surface and use statistical methods, on surface depen-
dent distances between dividing cells, to conclude spatial patterns of dividing
cells. The underlying data was provided by the Zebrafish Neurogenetics De-
partment at the Helmholtz Zentrum München.

We developed a cell identification pipeline based on the segmentation of the
maximum intensity z-projection of the image stack. The identified 2D cell
centroids were utilized to determine the cell positions in 3D using intensity
profiles in z direction. The pipeline outperformed an automatic 3D approach
by identifying about 60% more cells correctly. We identified stem cells, di-
viding progenitor cells and dividing stem cells on three hemispheres. The
cell numbers were comparable between the different experiments except for
the count of dividing cells in one experiment, which was about twice as much
as in the two other hemispheres. This huge number could be explained by
a short active phase of the hemisphere in which many divisions appeared,
since EdU marks only cells in a small temporal interval [36]. Additionally
we detected already divided cells, so called doublets, of which 86% divided
symmetrically and 14% asymmetrically. We inferred the average length of
the NSC S-Phase transferring the proportion of stem cell doublets observed
by Barbosa et al. (unpublished data) to our data. The resulting lengths of
8h-10h correspond to the results from Dekens et al. [37].
We used the stem cell locations to estimate the hemisphere surface and com-
pared the locations of dividing cells to it. Observed dividing progenitor cells
were located predominately below the hemisphere, probably moving into the
brain to further differentiate [32]. Even dividing stem cells were located
slightly below the surface. We guess that they possibly need space to divide.
It is possible that with increasing image quality a 3D approach would become
more practical than our implemented two step method. To increase quality
we could consider using light sheet-based fluorescence microscopy (LSFM)
for reduced photo-bleaching and photo-toxic effects compared to any other
form of microscopy [38]. Using a direct 3D segmentation could determine
the 3D structure of each cell, which would allow further investigations by
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mapping cell shapes to different cell types.

In the next step we analyzed spatial features of NSC divisions and divisions in
general. Our nearest neighbor approach revealed that dividing NSCs and all
dividing cells form cluster on all three experiments but all dividing cells also
include several spatially isolated divisions. The F-function showed that di-
viding NSCs and all dividing cells differ from completely spatial randomness
and tend to form attractive pattern. Ripley’s K evaluated on a surface with
non-uniform cell appearance probabilities in contrast indicated an attractive
pattern only for all dividing cells, in which dividing cells have an influence
radius of 20 µm (∼ 4 cell diameters). Ripley’s K found no clear spatial or-
ganization of dividing stem cells, which could be the consequence of having
only few divisions per experiment. We could extend the pattern simulation
for more complex features like combining attractive and repulsive behavior
for different distances. Additionally we could adapt the simulation to in-
clude explicit biological interaction models like delta-notch signaling [39]. In
summary the results conflict with the hypothesis of a repulsive pattern from
Chapouton et al. [18] as the repulsive pattern was refused by all applied
methods.
We also could consider other reasons for an observed attractive pattern than
the influence of a dividing cell on other cells. Theoretically there could be
a sub-population of strongly dividing cells where a cell divides and after-
wards their daughter cells divide and their daughters as well. The result
would be an attractive pattern as observed, since sister cells would divide
approximately at the same time when they show similar generation time.
This would also explain the observed single divisions as they could represent
the first dividing generation. This scenario could be tested with two staining
time points approximately one generation apart or by continuous time lapse
measurements with appropriate markers.

An interesting observation by Barbosa et al. (unpublished data) is the possi-
bility that stem cells directly differentiate into progenitor cells without prior
division. From our perspective it would be interesting to test whether NSCs
need to rearrange their DNA in S-Phase before the conversion. To identify
such a direct conversion we need the measurement of two time points: At the
first time point we need to observe a dividing stem cell, while at the second
time point the cell should be marked only as dividing cell without performing
a division. If the two time points are far enough from each other so that we
can be sure that the cell will not divide at all we would have observed such
a direct conversion.
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It would especially be interesting to analyze and compare cell division pat-
terns during aging. NSCs of young and old animals could have diverging
division patterns due to cellular changes or due to changed requirements
of new stem cells or differentiated neural cells. In that way, our analyses
can be an important contribution for understanding the parthenogenesis of
neurological disorders.
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