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Abstract 

Astrocytes are cells located throughout the CNS participating in ion concentration regulation 

and in the creation of the brain environment. Astrocytes help forming synapses and regulate 

the blood flow. After an injury molecular and functional changes of astrocytes are possible. 

Reactive astrocytes surround the injured region and interdigitate their processes to separate 

this region and the surrounding cells. A severe injury can lead to a glial scar mainly consisting 

of astrocytes.  

 
Microarray experiments are used to measure gene expressions of different cell types or cell 

states. Analyses of microarrays therefore are a common field in Bioinformatics.  

 

The aim of this master thesis is to compare gene expressions of several cell types of different 

microarray profiles at once and therefore get new insights into gene regulations of 

astrocytes. Probes of several different cell types were analyzed with microarrays based on 

two different microarray platforms. As different platforms contain different genes, we split 

the work in two parts, one single and one combining dataset. To combine profiles, biological 

factors, like cell types and known biological features, or non-biological factors, like technical 

differences between the microarrays. We try to find and correct non-biological factors in the 

dataset. To avoid removing biological information instead of non-biological bias, detailed 

knowledge about the biological features is needed. 

 

We used one pipeline for the different microarray datasets. Both datasets were normalized 

and the dataset that combined several microarray profiles was additionally corrected for 

non-biological factors. We performed statistical to find similarities and dissimilarities 

between the cell types. We investigated the relationship between biological features in the 

dataset, like being astrocytes from the diencephalon or from a lesion side, using a linear 

regression model to identify differentially regulated genes. This needed broad biological 

background knowledge of the datasets to choose an appropriate collection of biological 

factors. To structure the probes of the combined dataset, we used fourteen features for the 

linear regression model calculating a t-statistic for each factor and all genes. We could 

observe which genes were expressed statistically significantly in a factor. Using the list of 

significant genes we started a functional analysis looking for enriched functions and 

pathways of the genes for each factor and we also could compare the two dataset. Next we 

used the fact that genes mostly interact in groups and integrated protein-protein interaction 

information of gene networks to the t-statistic calculation of the regression. We compared 

the significant genes before and after this network smoothing. For some biological features 

we identified further genes but in most cases the number of significant genes decreased. 

 

Finally we suggest integrating information across biological features when applying the 

network smoothing method, additionally as they can depend on each other. Therefore we 

showcase our ideas of regression smoothing on a mini-dataset with seven example genes.  



  



 
 

Zusammenfassung 

Astrozyten sind Zellen, die im ganzen zentralen Nervensystem vorkommen und die an der 

Ionenkonzentrationsregulierung und der Bildung der Hirnumgebung beteiligt sind. 

Astrozyten helfen dabei Synapsen zu formieren und regulieren den Blutfluss. Nach einer 

Verletzung ist es möglich, dass Astrozyten sich molekular und funktional verändern. Reaktive 

Astrozyten umgeben die verletzte Region und verbinden ihre Fortsätze um diese von den 

umgebenden Zellen zu separieren. Eine ernste Verletzung kann zu einer Glianarbe führen, 

die hauptsächlich aus Astrozyten besteht. 

 

Microarray Experimente werden zur Messung von Gen-Expressionen verschiedener 

Zelltypen oder verschiedener Zellzuständen verwendet. Daher werden in der Bioinformatik 

oft Microarrays analysiert.  

 

Das Ziel dieser Masterarbeit ist die Expressionen von Zelltypen verschiedener Microarray 

Profile zusammen zu vergleichen und dadurch neue Erkenntnisse über Astrozyten zu 

erhalten. Dabei wurden Proben von Astrozyten in verschiedenen Zuständen, neuronale 

Stammzellen, radiale Gliazellen, embryonale Stammzellen und Neuronen zur Verfügung 

gestellt. Diese Proben wurden mit Microarrays untersucht, wobei zwei verschiedene 

Microarray Plattformen verwendet wurden. Da auf verschiedenen Plattformen 

unterschiedliche Gene aufgetragen sind, teilten wir die Daten in zwei Datensätze auf, ein 

einzelner und ein zu kombinierender, die Expressionsprofile von Astrozyten und anderen 

Zelltypen beinhalten. Für die Kombination dieser Profile mussten viele Faktoren betrachtet 

werden. Das konnten biologische Faktoren, wie Zelltypen und bekannte biologische 

Eigenschaften, sowie nicht-biologische Faktoren, wie technische Unterschiede zwischen den 

Microarrays, sein. Wir versuchten daher die unterschiedlichen nicht-biologischen Faktoren in 

dem Datensatz zu finden und zu korrigieren. Dafür wiederum waren detaillierte Kenntnisse 

über die biologischen Eigenschaften nötig, damit wir nicht tatsächliche biologische 

Informationen entfernen.  

 

Auf beiden Datensätzen verwendeten wir eine Abfolge verschiedener Microarray 

Analysetechniken mit denen neue Erkenntnisse über Astrozyten erlangt wurden. Zu Beginn 

wurden die beiden Datensätze jeweils normalisiert und der kombinierte Datensatz wurde 

zusätzlich noch auf Unterschiede zwischen den Microarrays korrigiert. Wir führten 

statistische Analysen wie Hauptkomponentenanalyse und Clustern durch, wobei wir einige 

Ähnlichkeiten und Unterschiede zwischen den Zelltypen feststellten. Wir betrachteten die 

Beziehungen zwischen biologischen Eigenschaften, wofür wir ein lineares Regressionsmodell 

erstellen. Dies erforderte ein breites biologisches Hintergrundwissen der Daten, um eine 

geeignete Auswahl an biologischen Faktoren zu treffen, wie zum Beispiel der Faktor 

„erwachsen“ für alle Proben, die aus erwachsenen Mäusen entnommen wurden und nicht 

aus einer Zellkultur. Zur Strukturierung der Proben des kombinierten Datensatzes 

verwendeten wir vierzehn Eigenschaften, um das lineare Regressionsmodell zu erstellen. 



Dieses berechnete für jeden Faktor eine t-Statistik über alle Gene. Daraus haben wir 

abgelesen, welche Gene in einem Faktor statistisch signifikant exprimiert waren. Mit den 

Listen von signifikanten Genen führten wir eine funktionelle Analyse durch. Für jeden Faktor 

suchten wir häufig auftretende Funktionen und Pathways der Gene. Auf dieser Basis 

konnten wir auch den separierten mit dem kombinierten Datensatz vergleichen. Als nächstes 

nutzten wir die Tatsache, dass Gene meist in Gruppen agieren, und binden Protein-Protein 

Interaktion Informationen von Gennetzwerken in die Berechnung der t-Statistik der 

Regression ein. Wir verglichen die signifikanten Gene vor und nach diesem Netzwerk-

Smoothen. Für manche biologische Faktoren konnten wir weitere Gene finden, aber in den 

meisten Fällen ist die Anzahl der signifikanten Gene kleiner als vorher.  

 

Abschließend schlagen wir vor zusätzlich auch Informationen über die biologischen Faktoren 

zu berücksichtigen, da diese abhängig voneinander sein können. Wir entwickelten dafür 

Ideen, die wir auf einem kleinen Beispieldatensatz mit sieben Genen darstellen und 

durchführen.  
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1.  Introduction 

The central nervous system (CNS) is a highly complex system composed of various cell types 

together coordinating information processing and flow throughout the body. The two cell 

types forming the nervous tissue are glial cells and neurons. Subtypes of glial cells are, for 

example, oligodendrocytes, microglia, radial glial cells and astrocytes. Astrocytes can appear 

in different forms. They show differences in healthy and injured tissue. The molecular 

mechanisms of astrocytes in the CNS are still poorly understood [1]. Furthermore, it is 

unknown how mechanisms differ between embryonal and adult stage. To understand 

complex molecular interactions high-throughput screenings are used. Here we examine gene 

expression profiles across different forms of murine astrocytes in addition with neurons and 

neural stem cells during development and adulthood. 

 

Astrocytes are located throughout the CNS. They participate in the regulation of calcium ion 

concentration [2] and are involved in the creation of the brain environment. Astrocytes help 

forming synapses and regulate the blood flow. Furthermore, they play a role in maintaining 

the blood brain barrier. After an injury astrocytes can change molecularly and functionally. 

Thereby, both loss and gain of functions can alter the astroglial activities [3]. Reactive 

astrocytes surround the injured region and interdigitate their processes to separate this 

region and the surrounding cells. The activation of reactive astrocytes depends on the 

severeness of the lesion. Reactive astrogliosis is main part of a glial scar. A severe injury 

leads to cell death and the generated empty space is filled with a fine network of astrocyte 

processes [4]. This glial scar is an important part for the protection and repair of neurons [3]. 

 

Typically statistical and bioinformatical analysis of high-throughput screens are pairwise 

comparisons [5, 6]. A t-test, for example, is a method to determine a difference between 

two groups in a statistical significant way. However, for more complex experimental setups 

pairwise comparisons cannot resolve dependencies. For example, assuming probes taken 

from groups like women, men, boys and girls, a paired test of women against boys would not 

show if differences between them are caused of gender or age. We therefore needed more 

complex methods to analyze complex setups. One possible approach for this problem was 

using regression models [7]. Nevertheless, for complex datasets it was not straight forward 

to derive and design the covariables capturing several biological features and dependencies.  

In addition functional testing take place on pairwise comparisons usually. Typically, Fisher’s 

exact test or model based ontology analysis like mgsa served to find enriched functional 

terms of gene sets [8]. Those enriched terms characterized covariables. 

 

As genes function in clusters, an approach to improve the statistical analysis with biological 

knowledge was the so-called network smoothing using known protein-protein interaction 
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networks.  MATISSE, for example is a tool, which searches for co-expressed subnetworks 

that are connected significantly [5]. The network based stratification (NBS) approach 

integrates somatic tumor genomes using the mutation profiles with gene interaction 

networks [9]. A third technique applies smoothed t-statistic with a random walk kernel. This 

stSVM approach integrates a paired t-test [10]. 

1.1. Aim of this thesis 

We aimed to comprehensively summarize and describe expression profiles of cell types from 

the CNS to get new insights in the biology of astrocytes. We searched for new receptors and 

transcription factors specific for astrocytes. Additionally we wanted to find gene clusters 

typically for astrocytes and we wanted to investigate if there are more neuronal astrocytes. 

 

The Götz-lab provided five microarray profiles containing seventeen different cell types 

processed on two distinct Affymetrix microarray platforms. Therefore, we separated the 

dataset into two parts, the growth-factor-dataset containing probes of astrocytes and neural 

stem cells (NSC) treated with growth factors and the combined-dataset including samples of 

post-natal six (P6) cell cultures, direct adult lines and cell cultures of embryonal stem cells 

(ESC).   

1.2. Summary of this thesis 

The background chapter summarizes important information about biological knowledge like 

the different cell types and about statistical methods. Additionally it includes bioinformatical 

background. 

  

Chapter 3 provides detailed descriptions of datasets and methods used to generate results. 

The combined datasets underlie batches, which had to be removed, and samples were not 

matched across experiments. That is why we used the state-of-the-art empirical Bayes 

method called Combat [11] to remove batch effects and also evaluated by bootstrap in the 

combined-dataset (3.3). 

 

We applied statistical tests (3.4) to get information about similarities and dissimilarities 

between the cell types. We therefore used principal component analyses, Pearson 

correlation coefficients and Euclidean distances. Those analyses showed us some clusters of 

astrocyte samples and the other cell types. Additionally, we wanted to compare the 

relationship of biological features and generate a linear regression model for that. We used 

the three different cell types of the growth factor dataset. For the combined dataset finding 

a good representation of biological factors was difficult. The dataset was too complex to 

apply pairwise comparison. So we designed a matrix where the relationships between 

samples and biological features were indicated. However, many different features existed 

and not all could be included in the model. Our final matrix was iteratively designed in close 
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communication with the biological partners (ISF, HMGU), but other combinations would be 

possible. With this matrix we generated the linear regression model for the combined 

dataset. This calculated different statistical tests including a B-statistic and a t-statistic for 

each gene in each biological factor indicating if the gene was expressed statistically 

significantly for the specific feature [12]. A detailed description of this procedure is given in 

this section. 

 

With the lists of significant genes we applied functional analysis (3.5). Therefore we used the 

gene ontology (GO) and KEGG databases to find gene functions and pathways that were 

enriched in one of the gene lists gaining further characteristics about the cell types. Thereby 

we were able to compare the results of the growth factor and the combined dataset. 

In the next step we tried to integrate the results of the linear regression profile by including 

information of neighboring genes using a corresponding protein-protein network. Therefore 

protein-protein network information was regarded. We chose to implement a method based 

on the stSVM approach [10] where a p-step random walk kernel was used on the gene 

network, which we used for the analysis. Instead of the paired t-test, we now used the 

results of the linear regression.  For some biological features we could identify new 

significant genes and for some others we viewed a lower number of significant genes.  

 

Section 3.6 describes the smoothing of the t-statistic using gene networks. The combined-

dataset consisted of various cell types with several biological features. Therefore we 

designed covariables and applied linear regression instead of pairwise tests. We performed 

network smoothing on the t-statistic. However, the covariables partly depended on each 

other. Therefore we proposed and developed some ideas (Section 3.7) to improve the 

results of the linear regression not only by gene network information but also by integrating 

dependencies between biological features. This we tested only on a mini-dataset with seven 

example genes. Further researches on such a “regression smoothing” might further refine 

microarray analysis of multivariate experimental designs. 

 

Chapter 4 summarizes the results of the analyses for the both sets. New insights into 

astrocytes could be observed. Additionally we compared the results of the functional 

analysis of the two datasets (Section 4.3). 
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2. Background 

2.1. Transcriptome 

DNA is transcribed into messenger RNA (mRNA) which carries its genetic information to the 

ribosome. At the ribosome mRNA is translated into an amino acid sequence of a protein. 

Like DNA, mRNA is a nucleotide sequence including the nucleotide uracil instead of thymine. 

As proteins are difficult to analyze because of their three-dimensional structure, the amount 

of mRNA is used to evaluate functions of a particular cell. If a gene is active, it produces 

specific mRNAs. The amount of the mRNA from each gene in a specific cell or tissue is the 

gene expression. 

 

Microarray is a technology for measuring thousands of gene expressions qualitatively. They 

can be used to examine gene expression between different cell types or different 

populations [13]. To measure expression levels of genes of a cell type, the RNA of interest, 

the target, is extracted and labeled. Particular probe DNA sequences are affixed on a solid 

matrix. Then the DNA copy (cDNA) of the RNA sample is hybridized to these DNA sequences 

and the abundance of the nucleotide sequences is measured quantitatively. Sample material 

is fluorescently labeled such that probe expression can be inferred from imaging of the 

microarray. Therefore microarray technology is a tool for screening biological samples for 

changes in mRNA expressions [14]. 

 

This master thesis used expression profiles of Affymetrix microarray platforms, which belong 

to the single-channel microarrays. Affymetrix GeneChips are microarrays that are available 

for different model species including human and mouse. The GeneChips use glass surfaces 

containing lots of oligonucleotides, which typically have a length of 25 nucleotides. For each 

Fig. 1: Procedure of an Affymetrix GeneChip experiment. (Scheme by http://www.dkfz.de/gpcf/24.html)  

http://www.dkfz.de/gpcf/24.html
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target (e.g. gene of interest) several probes are designed, for which each one probe 

(oligonucleotide) is built identical to the target and another with a single base mismatch in 

the middle of the sequence. The array is synthesized by photolithography and measures the 

average differences in the intensities of the target and the mismatch sequence for all probe 

pairs forming an expression index [13]. The resulting expression profile can then be 

analyzed. Fig. 1 gives a schematic overview. For comparison of the data profile with arrays 

from other experiments, such a single-channel microarray is easier to handle as there is no 

competitive hybridization of two samples. In any case, batch effects must be considered.  

2.2. Cell types and cellular growth factors 

The following segment explains a couple of cell types important in the subsequent analyses. 

Those are stem cells, radial glia and astrocytes. Additionally growth factors promoting the 

differentiation of the cells are presented. 

 Embryonic stem cells 2.2.1.

Embryonic stem cells (ESCs) are cells extracted from the blastocyst of an embryo. In general, 

they are defined as cells that are not differentiated and which have the ability to 

differentiate into one or several types of more specialized cells. Furthermore ESCs have the 

capacity of unlimited self-renewal. ESCs can generate body tissues [15]. 

 Central nervous system 2.2.2.

In the central nervous system (CNS) a distinction is made between neurons and glial cells, 

whereby glial cells include all cells in the CNS like oligodendrocytes, astrocytes, microglia and 

Fig. 2: A schematic overview of different cell types in the CNS, by Clarke, 2003 (Illustration by Cheng-Jung Lai) 

[18]. 
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radial glia that are not nerve cells [16]. Glial cells have a high heterogeneity. For example, 

astrocytes and radial glial cells both differ in various brain regions [17]. In the CNS of adult 

vertebrates mainly four cell types are differentiated. Those are neurons and astrocytes as 

well as oligodendrocytes and ependymal cells [18]. Fig. 2 shows an illustration of different 

CNS cell types.  

 Neural stem cells 2.2.2.1.

Neural stem cells (NSCs) can give rise to neurons, astrocytes and oligodendrocytes in the 

CNS [18]. NSCs are self-renewing, but this is narrowed to a limited cell division number. NSCs 

divide symmetrically and asymmetrically during development. Thereby, symmetric divisions 

give rise to two daughter cells whereas asymmetric division results in one cell identical to 

the mother cell and one other cell which is more differentiated, like a neuron [19]. NSCs 

differentiate into neurons and glial cells via neurogenesis and subsequently gliogenesis. The 

multipotency is lost [18, 20]. However, this depends on time and region. The neurons 

migrate with the help of newly generated glial cells beyond the ventricular zone guided by 

radial glia [18, 21]. The subventricular zone (SVZ) is built. In this region a high concentration 

of NSCs is shown in adult and postnatal brains [22]. The remaining neuroepithelial cells of 

the ventricular zone differentiate more glioblast. Because of some clonal studies, NSCs are 

assumed to be the main origin of glial cells. They migrate to other locations of the CNS, 

proliferate and differentiate into oligodendrocytes and astrocytes. Adult neural stem cells 

(aNSC) are identified in the SVZ [18, 23].  

 

In culture NSCs form highly dynamic and complex structures termed neurospheres. Cells of 

neurospheres show heterogeneous morphologies. In one neurosphere, for example, cells 

coexist in different cell cycle phases and various sizes [23, 24]. A bigger sphere has higher 

cell type heterogeneity [25]. Within these neurospheres the localization of the NSCs 

influence biological processes like apoptosis or mitosis. NSCs have a high plasticity and 

therefore have the ability to participate in processes transforming like maturation. They can 

migrate or differentiate into neurons and glia [22, 23]. A hypothesis is that the clustering of 

NSCs into neurospheres occurs due to survival issues in culture environment [23]. 

Neurospheres can be used for NSC assays and are valuable as a system to model neural 

development and neurogenesis [25]. Neurospheres can be established from NSCs and 

progenitor cells of the adult CNS as well as from ESCs. The cells are plated on a medium 

containing fibrous growth factors (FGF) and sometimes additionally epidermal growth 

factors (EGF) [25, 26]. Those growth factors have an influence on the size of neurospheres 

[23]. In each neurosphere cells in diverse phases of differentiation are included like neural 

progenitor cells that proliferate, postmitotic glia, neurons and certainly stem cells [25, 26]. 

Enlarged neurospheres show an increase in necrotic and apoptotic events of NSCs [23]. 
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 Radial glial cells 2.2.2.2.

Characterization of radial glial cells ensues via their morphology as well as via their astroglial 

characteristics. Like NSCs they have long radial processes where the cell body is located in 

the ventricular zone [17, 21]. The processes are connected to the ventricular zone and to the 

pial surface. They are frequently connected with blood vessels [27]. Proliferation of almost 

all radial glial cells occurs throughout neurogenesis.  

 

Radial glial cells are one of the earliest cell types in the CNS that differentiate. During the 

development of the nervous system they appear in almost all regions of the CNS [28]. NSCs 

differentiate into radial glia. Then the radial glial cells undergo asymmetric divisions, where 

on one hand radial glia cells and on the other hand intermediate progenitor cells or neurons 

arise [2]. Their main role is to guide migrating neurons. Nevertheless, during development of 

the CNS radial glial cells have a role as precursor cells that can generate neurons and glia [17, 

27, 29, 30] and give rise to adult stem cells of the SVZ, too [31].  

 

Additionally radial glia participate in patterning and act as key elements in differentiation of 

the CNS at specific regions. A role as progenitors of astrocytes is assumed as, after neuronal 

migration, a transformation of radial glial cells into multipolar astrocytes was observed in the 

mammalian CNS [17, 21, 29].  

 

Radial glial cells are non-neuronal but are involved in generation and migration of distinct 

neuronal subtypes and even may be involved in differentiation and specification of those 

subtypes [17]. Regional differences are observed for radial glia in case of their neurogenic 

potential [21, 30, 32]. Neuronal migration in the developing brain is limited through 

boundaries generated by radial glia. Most neurons in the brain are built by radial glial cells 

and the radial glial neurogenesis is timed differently in diverse regions [30]. Radial glial cells 

express some characteristic molecules of astrocytes in the CNS like GFAP, the intermediate 

filament protein [17, 29], and a close relationship between astrocytes and radial glia is 

suggested. In fact radial glial cells disappear obviously in postnatal state and to this time 

astrocytes appear [2]. 

 

In culture radial glia can be differentiated from ESCs. Therefore the cellular aggregates in the 

culture are neuronal induced with retinoic acid (RA). ESCs that are treated with RA are 

known to differentiate into various types of neural cells including neurogenic radial glia and 

neurons [33, 32]. 
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 Astrocytes 2.2.2.3.

Astrocytes are cells located all over the CNS in 

both the white matter (fibrous astrocytes) and 

the gray matter (protoplasmic astrocytes) as a 

subtype of glia cells. They have a star-shaped 

structure and are closely related to neuronal 

synapses. The neuronal cell body is surrounded 

by a network of fine branches, whereas a long 

stem branch is connected to a blood vessel  

(Fig. 3). Furthermore, astrocytes form gap 

junctions between distant processes of 

adjacent astrocytes and are linked to synapses, 

too [16, 3]. Nevertheless, astrocytes are very 

heterogenic in function and morphology. Like neurons they have potassium and sodium 

channels. However, action potentials cannot be propagated along astrocyte processes [3]. 

Similar to radial glia, astrocytes can display fast changes in the intracellular concentration of 

calcium [2]. 

 

Astrocytes are involved in brain environment creation, development of neural cells and 

during development of gray and white matter. Furthermore they are important for the 

function and formation of synapses during their development and play a role in the 

regulation of the blood flow, in homeostasis as well as in energy and metabolism. They also 

are important for the blood brain barrier. During periods of high neuronal activity and during 

periods with low glucose in the blood, neuronal activity can be sustained by astrocytic 

glycogen utilization [3, 4]. At synapses astrocytes help to control the levels of, for example, 

neurotransmitters and potassium ions in the extracellular space [16].  

 

Three subtypes of astrocytes are astrocytes in healthy central neural tissue, reactive 

astrogliosis and glial scar formation (Fig. 4, [1]). Astrocytes in healthy tissue show little 

proliferation and are hardly new generated, whereas reactive astrogliosis happens after an 

injury or infection. Thereby, astrocytes can show different changes like alterations in 

molecular expression, cellular hypertrophy or proliferation. Astrocyte activities can be 

changed through loss and gain of functions. Reactive astrocytes can have pro- or anti-

inflammatory potential, which can arouse advantages and disadvantages for the surrounding 

cells. Depending on the severity of the injury alterations in astrocytes can be different and 

reactive astrogliosis can appear in a mild to moderate form. In these form the cells have the 

potential for returning to a similar appearance as in healthy tissue after solving the triggering 

mechanism [3]. Along with severe reactive astrogliosis compact glial scars can form. The 

function of reactive astrogliosis and glial scar formation seems to be the protection of neural 

cells after an injury or infection and therefore play an important role in CNS inflammation 

Fig. 3: Morphology of a protoplasmic astrocyte.  

A large stem branch is connected to a blood 

vessel and the neuronal cell body is surrounded 

by a dense network of thin branches.  

Adopted by [3]. 
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regulation [3, 1]. According to Sirko et al. reactive astrocytes “can form self-renewing and 

multipotent neurospheres in vitro” [34].  

 

Cell death begins directly after a lesion. Thereby, both neuronal and glial cells die including 

astrocytes. In the beginning this is restricted to the torn region, but after a few days the 

lesion spreads more and more. Macrophages are the first cells that arrive from the 

bloodstream and from the surrounding tissue microglia are migrating. A few days later 

further other cells are recruited from the environment and astrocytes get activated and start 

proliferating towards the site of injury. Finally, the glial scar consists of a network of 

predominantly astrocytes interdigitating their processes. This meshwork is entangled and 

bound together by tight und gap junctions and surrounds the injured region like a wall. 

Therefore, the glial scar has an inhibitory influence on axonal regeneration [4, 35].   

 

Astrocytes near the lesion upregulate the production of nestin and vimentin [3].  Nestin and 

vimentin are intermediate filaments which exist in different cell types in the CNS like 

astrocytes [36]. This characteristic also applies to radial glia cell showing their relationship 

[17]. Mature astrocytes contain vimentin and another intermediate filament, the “Glial 

fibrillary acidic protein” (GFAP), but no nestin anymore. Especially in reactive astrocytes in 

the CNS this is documented [36]. GFAP is essential in reactive astrogliosis and glial scar 

formation processes and therefore is useful for immunohistochemical identification for 

targeting astrocytes. Within an astrocytic reaction, an up-regulation of this protein can be 

observed.  In combination with vimentin GFAP characterize the glial scar [4]. Another 

sensitive chemical marker for astrocytes is the protein Aldh1L1..  

 

In the diencephalon multipotent precursor cells can be found. If EGFs are withdrawn those 

precursors can be differentiated into neurons and glia. Neuronal cells are built by stimulating 

the precursors with FGF2 and additionally a medium that is conditioned by a cell line of 

astrocytes [37]. Proliferation of CNS stem cells is induced by FGF family members. In addition 

Fig. 4: Images of immunohistochemical staining of GFAP.  

A) Astrocytes in healthy tissue is shown. B) shows a moderate form of reactive astrogliosis and in C) severe 

astrogliosis along with glial scar formation can be viewed. Adopted by Sofroniew, 2009 [1]. 
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FGFs can initiate stem cells to differentiate into astrocytes and neurons [37]. Diencephalic 

astrocytes are glial cells that are differentiated postmitotically. Adult NSCs and hGFAP:GFP+ 

cells, however, contain progenitor cells and proliferating stem cells [24]. 

 Cellular growth factors 2.2.3.

Growth factors are proteins that are transferred as signals from one cell to another and 

thereby convey information. Beside their function as signal proteins they are important in 

the development of multicellular organisms.  

 

One important member of the growth factors is the fibroblast growth factor (FGF) family 

belonging to the polypeptide growth factors. In human and mice altogether twenty-two 

FGFs are known. FGFs are conserved through different species especially in vertebrates for 

example in zebrafish, mouse and human. Similarities in amino acid sequence and gene 

structure are revealed [38, 39]. There are four tyrosine kinase receptors, the FGF receptors 

(FGFR1-4), in mice and humans. FGFs play a role in embryonic development, cell division and 

cell growth, tissue repair, angiogenesis, cell differentiation, cell migration and proliferation 

[40]. Originally two FGF could be isolated. One was the acidic FGF (FGF1) and the other the 

basic FGF (FGF2) [38, 39]. FGF2 seems to play a role in the production of CNS neurons mostly 

generated during early development [41]. Usually FGF2 has a mitogen activity and promotes 

the proliferation of NSCs. This is transmitted by the FGF receptors and some signaling 

pathways to regulate astrocyte specification. Thereby FGF2 influences the NSC potential to 

undergo gliogenesis. Additionally FGF signaling is involved in radial glia generation. These 

radial glia cells are later differentiated into astrocytes. For proliferation an FGFR signal is 

delivered by a MAP kinase pathway [20]. A tight regulation of the FGF signaling is necessary. 

Thereby many of FGF-regulating factors are controlled by FGFs themselves by a negative 

feedback loop [40]. 

 

Another growth factor is the epidermal growth factor (EGF). Together with FGF2, EGF 

stimulates proliferation in astrocytes and DNA synthesis. The MAP kinase pathway is 

activated if astrocytes are stimulated with EGF and other mitogens. This again induces the 

cells to change their genetic expression pattern required for proliferation. In astrocytes, EGF 

stimulation leads to the expression of FGF2 [42]. EGF improves tissue regeneration and 

wound healing in several adult organs. In the CNS EGF is involved in the neuronal 

development. It has trophic and mitogen actions. EGF participates in cell division and 

proliferation [41], [43]. Progenitor cells that give rise to glia and neurons respond to EGF 

[43]. Often EGF and FGF2 are used to promote the production of neurospheres [22]. 

Together they induce neural precursor cell proliferation from specific brain regions [44]. 

Furthermore they seem to stimulate embryonic or adult precursors of the CNS to divide. 

Both EGF and FGF2 interact with tyrosine kinase receptors inducing the activation of the 

MAP kinase pathway [44] and participate in neurogenesis forming neurospheres as well as in 

gliogenesis. 
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2.3. Statistical Background 

 Principal component analysis 2.3.1.

Principal component analysis (PCA) is an unsupervised technique that identifies directions of 

largest variance within high-dimensional data. It can be used to simplify and to visualize data 

globally. Using only components, which explain most of the variance in the data, allows 

reducing the dimensionality. When applying PCA to gene expression dataset, the variations 

that can be detected between the high-dimensional samples are captured in vectors, the 

principal components, which are linear combinations of the genes. By design, the second 

principal component captures less variation then the first, the third less than the second and 

so on. For visualization usually the first two principal components are used [6]. In this thesis 

we manually analyzed the number of principal components explaining largest fraction of 

variance in the data. The standard deviation of the principal components shows how much 

of the data is described by each principal component. 

 Distances measures 2.3.2.

Distance measures like Pearson correlation coefficient, Euclidean distance or mutual 

information indicate the degree of similarity.  

 

The Pearson correlation coefficient is defined as a linear correlation measure of two random 

variables X, Y [6] with means  ( )  ( ) and standard deviations      , respectively. 

   (   )  
   (   )

    
 

 

with    (   )    (   ( ))  (   ( )) . The result is a value between -1 and 1. 

Thereby -1 represents negative correlation, 0 random correlation and 1 positive correlation 

[45].  

 

Another distance measure is the Euclidean distance, which determines the distance between 

two points. The points denote the genes in multidimensional space, whereas each sample 

represents one axis where each gene has a coordinate according to its gene expression in 

this sample [6]. The pairwise distances between the observations of the random variables X, 

Y are then calculated with the following formula: 

 (   )  |   |  √∑|     | 
 

   

 

 Clustering techniques 2.3.3.

Clustering approaches can be supervised or unsupervised [6, 46]. They are used to cluster 

probes with similar expression patterns and to assign dissimilar patterns in different clusters 

[5]. Supervised clustering algorithms define categories a priori and objects are assigned to 
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them [46]. Example methods are nearest-neighbor analysis and support vector machines. 

Unsupervised clustering methods try to find relationships and structure in the data, for 

example, on the basis of the expression profiles. PCA is an unsupervised clustering technique 

as well as k-means clustering or hierarchical clustering [6]. 

 

For hierarchical clustering, distance measures like Pearson correlation coefficient or 

Euclidean distance are usually applied. In an iterative procedure high correlated genes 

(according to their expression measurements) are grouped together until clusters of genes 

are formed and a dendrogram can visually represent their hierarchical clusters. A 

dendrogram is like a branching tree, where the leaves are the genes. The longer the 

branches the higher the dissimilarity is [6, 46]. Here, we used the package ‘gplots’ and the 

function heatmap.2 to cluster the samples according to their distance measurements 

hierarchically.  

 Linear regression model  2.3.4.

A regression model shows the linear relationship between response variable   and the 

explanatory variables in X defined as 

       

  is a design matrix of     dimensionality with   samples and   covariables. To test 

gene-wise significance in microarray analysis,   represents the different gene expressions. A 

lot of different variations choosing the coefficients are possible [12].   is a vector of length  

  representing the expression coefficient of the factor   corresponding to one biological 

feature.   is called error term and is a vector of length  . It represents all other factors 

besides the ones indicated in   that influence  . By calculating the linear model the 

coefficients are corrected for each other.  

 Hypothesis testing 2.3.5.

To determine if groups show relationships ‘null hypothesis’-tests can be applied. Therefore 

the opposite is assumed claiming no relationships between the groups. If the p-value for this 

test is very low, the null hypothesis can be rejected and the relationships are said to be 

significant. Otherwise the null hypothesis is assumed to be true [47]. Null hypothesis are 

statistical tests like significance tests. 

 

An example method to determine a difference between two groups     in a statistical 

significant way is the t-test [46]. This statistical test tries to identify genes which have a 

different expression value at different conditions. There is the ordinary t-test which is based 

on the fold change.  
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with    is the gene expression value of gene g for covariable X and    for covariable Y.    

represents the standard deviation of gene g. A similar test is the adjusted t-test (modified t-

statistics) where the standard deviation is adjusted.  

 

The moderated t-test is implemented in the R package ‘limma’ [12]. The expected gene 

expression of a gene can be defined for pairwise comparison of two subgroups of samples 

(   ) for a gene g. Given a prior distribution, in our case a normal distribution, the standard 

deviation is calculated. The moderated t-statistic uses a Bayes approach based on the 

ordinary t-statistic but applying the posterior variance instead of the sample variance [13]. 

 ̃   
     

  √   

 

 

with     is the value of gene g in coefficient j. The p-value is a statistical measure to rate an 

observation. These rates are compared to a confidence threshold (typically 0.01 or 0.05 are 

used). If the observed score, for example the t-statistic, has a p-value smaller than the 

chosen threshold, the observation is said to be statistically significant.  

 Multiple hypothesis testing 2.3.6.

When multiple tests are performed on the same dataset, we drastically overestimate the 

error rate. If many hypotheses are tested on one dataset, the probability increases that one 

of them is assumed to be true, even if it is wrong. Therefore a multiple testing correction is 

needed [47]. 

 

This can be done using the Bonferroni correction, which minimizes the family-wise error 

rate. On the other hand this method could be too strict. A further correction possibility to 

adjust the p-value is using false discovery rate (FDR). For a set of tests the error rate is 

controlled by FDR. Therefore it is calculated regarding a collection of different scores [47]. 

FDR gives the expected proportion of null hypotheses that are rejected and which are false 

positives. Therefore, a FDR of zero indicates that all null hypotheses are not rejected [46]. 

FDR can be computed with the Benjamini-Hochberg procedure from the p-values.  

2.4. Software 

We use the programming language R (version 3.1.2.). Additional packages are downloaded 

either from the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/) or 

from the Bioconductor server (http://www.bioconductor.org/). 

2.5. Bioinformatics Background 

Bioinformatics combines computer science and mathematics to study biological data and is 

useful especially for big datasets. It is applied in many different fields of biological analyses 

particularly genetics and genomics. Example fields are sequencing analyses, structural 

http://cran.r-project.org/
http://www.bioconductor.org/
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bioinformatics or system biology. In the following an overview about different 

bioinformatical tools and approaches is given that are relevant. 

 Webservers/Databases 2.5.1.

Several databases exist to collect, summarize and provide structured information on e.g. 

genes and their product function. Some common databases which are used later for 

functional and other analyses are presented here. 

 

Gene ontology (GO) is a database for describing the biological roles of genes and gene 

products in different species using ontology terms structured in a hierarchical ontology [48]. 

The database is hierarchically structured with three major ontologies called biological 

process, molecular function and cellular component. Molecular function refers to the 

biochemical activity of a gene product, for example ‘ligand’, ‘enzyme’ or ‘adenylate cyclase’. 

Biological process is defined as the process the gene product or gene contributes to. Often 

physical or chemical interactions are involved like ‘signal transduction’ or ‘cAMP 

biosynthesis’. Cellular component indicates the location of an active cell product in a cell and 

reflects the cell structure of eukaryotes. The association of an ontology class and a gene 

product is then defined in the ‘GO annotation’. All annotations are evidence supported and 

the type of evidence can be examined [48, 49]. We used version of September 2014, where 

a total number of 41,775 GO terms were included in the database as well as 4,185,487 

annotations [49]. The webserver can be found at http://geneontology.org/. 

 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database established in Japan 

(http://www.genome.jp/kegg/). Originally KEGG was established to be a reference 

knowledge base of cellular processes like metabolism. Its goal is to be able to interpret 

genome sequence data biologically [50]. In principal KEGG is a collection of gene catalogs for 

mainly completely sequenced genomes which are linked to functions of the cell and 

organism [51].  

 

The PATHWAY database contains cellular processes like metabolism or cell cycle and is 

represented in a graphical way. Additionally information about pathway motifs, which are 

conserved sub-pathways, are included in PATHWAY. This can be used for gene function 

prediction. Assigning a function in KEGG is a process where a set of genes in a genome is 

linked with a network of, for example, a complex, a pathway or other molecules in the cell 

that interact. We used the packages ‘mogene20sttranscriptcluster.db’ and ‘mouse4302.db’ 

for our pathway analyses both based on version of March 2011. 

 

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is another public 

database. This network resource includes both known and predicted interaction data for 

more than 1100 different species [52]. Known interactions correspond to experimental data 

as well as to text-mining and transferred-interactions. Thereby about five million proteins 

http://geneontology.org/
http://www.genome.jp/kegg/


 
 

15 
 
 

and more than 200 million interactions are stored. Protein interactions often base on the 

associations of their corresponding genes on the genome. If genes often occur in close 

proximity to each other, functional interactions tend to be encoded and they may be part of 

the same metabolic pathway or the same protein complex or others. Physical and functional 

interactions can be found at STRING, which can be viewed in both the web interface 

(http://string-db.org/) and in the R package ‘STRINGdb’ as colored network where each node 

represents a protein and each edge an interaction with another protein. Evidences for the 

interactions are given as different scores and combinations with other tools like GO analysis 

or other databases like KEGG are possible [53, 52]. 

 Normalization of microarray data 2.5.2.

Normalization is used to adjust measured intensities from the samples for comparability. For 

each probeset the relative levels are represented by the normalized data. Different 

approaches for normalization exist like using the overall brightness of the scanned 

microarray images, nonlinear techniques or others [6, 54]. Another technique is the robust 

multi-array average (RMA). For a detailed explanation of the RMA method, see [55]. RMA is 

based on a log scale model which is linear additive. It corrects perfect match intensities with 

the background and applies the base-2 logarithm. Then based on a robust average of these 

corrected and log scaled intensities, RMA estimation is done.  

 Removing biological biases 2.5.3.

If two or more different microarray experiments are performed on the same platform but at 

different days or even different people, non-biological biases are introduced even for 

repeated experiments. This can also happen within one experiment when large samples 

have to be made over some months or even a year [56]. This can be due to several different 

facts like the environment during sample preparation for example room temperature or like 

the conditions when the biological samples are stored. In fact, all experimental factors will 

add some biases that vary between different microarrays [11, 57, 58, 59]. Therefore, batch 

effects can be defined as all systematic technical differences that occur during processing 

and measuring in different batches. Furthermore, the differences are not associated to 

biological variation in the microarray experiment [60]. These differences (batch effects) have 

to be corrected before the microarrays can be compared to avoid misleading results [56]. 

Batch effects are typically and easily identified using principal component analysis, 

visualization techniques or linear models and so on [57].  

 

“Combatting Batch Effects When Combining Batches of Gene Expression Microarray Data”, 

in short ComBat, is based on an empirical Bayes (EB) method [11]. This method is part of the 

Bioconductor package ‘sva’. ComBat estimates parameters for location and scale adjustment 

of each batch for each gene independently. There are two methods, one using a 

parametrical prior by assuming a normal distribution together with an inverse gamma and 

another using a non-parametrical prior [11, 58, 60]. The distribution of the estimated 

http://string-db.org/
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parameter is calculated based on the prior. Afterwards the method applies a parametric 

shrinkage adjustment. Therefore, the data is standardized gene-wise first to get similar mean 

and variance overall datasets. Standardization is needed because probe sensitivity and 

mRNA expression level expression values could be different across genes. After that, EB 

batch effect parameters are estimated using the parametric/non-parametric empirical 

priors. The procedure estimates the location and scale adjustment parameters of each batch 

for each single gene independently. Finally the data is adjusted for batch effects, where the 

batch effects estimated with EB are removed on a similar way like the methods distance 

weighted discrimination, singular value decomposition and location and scale adjustments 

[11].  

 

EB methods are very useful as they can handle high-dimensional data like microarray 

problems very robustly even when sample sizes are small. The estimation uses information 

across genes and experimental conditions [11, 57, 56]. Beside of the here used EB method, 

there are several other methods for removing batch effects like simply taking group and 

time as variables or methods based on singular-value decomposition, distance weighted 

discrimination and location and scale adjustments. Another method would be the surrogate 

variable analysis [11, 59, 56]. However, those methods need large batch sizes. The EB 

method was shown to be more robust as the location and scale batch estimates shrink when 

combining information across genes [11, 57, 58, 60]. In an evaluation of different batch 

adjustment methods ComBat outperformed five other programs [58]. 

 Functional analyses 2.5.4.

After statistically significant enriched genes have been found the question remains about 

regulated biological functions. Therefore, respective gene products are mapped to their 

function commonly using GO or KEGG. Like described in 2.5.1 a lot of functional terms exist, 

captured in ontologies or pathways. 

 

Often the methods are based on gene set enrichment or Fisher’s exact test, which tests for 

significant enriched genes in each term [61]. Hypergeometric distribution is the basis of 

Fisher's exact test. A 2x2 contingency table is used and for each configuration the probability 

for observing it is calculated [62].  

 

However there is a lot of redundancy due to the hierarchical structure of GO which also 

results in problems at multiple testing corrections as GO terms are dependent on each other 

[8, 63, 64]. Therefore model-based methods were implemented [64]. Initially such 

approaches are premised on a combination of penalization and model likelihood. Maximum 

likelihood approaches maximize the likelihood given a set of parameters and some observed 

data with respect to the active GO terms set. However, they are not very robust because the 

calculation ignores alternative solutions only finding a local maximum. Afterwards Bayesian 

modelling approaches were introduced for optimization [8]. An example approach is the 
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multi-level ontology analysis (MONA) which uses a Bayesian approach approximating the 

marginal posteriors of the terms for a set of genes. This is done by applying the expectation 

propagation algorithm [64]. Another tool is the model based gene set analysis (MGSA) 

algorithm, which we used in this thesis (3.5). MGSA employs a robust Markov Chain Monte 

Carlo approach. It estimates marginal posterior probabilities, which determine if categories 

are active. Therefore the Metropolis-Hastings algorithm was implemented. MGSA makes a 

gene-category analysis leading to a reduction of the number of redundant categories. 

 

In contrast to Fisher’s exact test, which only finds enrichments in each term, MGSA is a 

global approach. It tries to find a combination of GO terms which can explain the observed 

biological response in the best way. MGSA approaches tests all terms/categories 

simultaneously in one test, thus there is no need for multiple testing corrections. MGSA 

embeds a Bayesian network where a function of biological categories activation is modeled 

representing the gene response. It can be applied with GO, KEGG and with every other 

ontology list, too [8, 63].  

 Network smoothing 2.5.5.

Related methods 

Expander is a tool for microarray analysis, integrates a graph-theoretic algorithm called 

“Module Analysis via Topology of Interactions and Similarity Sets” (MATISSE) which looks for 

co-expressed subnetworks that are connected significantly [5]. Another method is the 

network based stratification (NBS) approach, which integrates somatic tumor genomes using 

the mutation profiles with gene interaction networks. Therefore a binary state profile (1,0) 

represents the mutations, where 1 indicates a gene with a mutation. The profile is smoothed 

with a network so instead of binary states the proximity to the mutated gene is shown. 

Therefore a random walk on the given network is simulated. The result is then clustered and 

the patients can be stratified into subtypes [9].  

Network smoothing using stSVM 

A third tool called “smoothed t-statistic SVM” (stSVM), implemented in the ‘netClass’ 

package, uses a random walk kernel to smooth t-statistic of genes along a network [10]. For 

network information, originally the PathwayCommon Database and the KEGG database as 

well as the MicroCosm database is utilized. The stSVM algorithm starts with an undirected 

graph   (   ).   is the adjacency matrix of this graph   and   is the diagonal matrix of 

node degrees with       (   (  )    (  )     (  )) for node        . Here nodes 

are genes and edges are interactions like protein-protein interactions between them. 

Furthermore, the Laplacian matrix is defined as      . A normalized version of   is 
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With this formula the p-step random walk kernel   used in stSVM is defined as 
 

           ((   )    
 
    

 
 )  

 

  is a constant, whereas   represents the number of random walks that are used [65].  

 

A random walk is a finite Markov chain. For a given node in a graph a random neighbor is 

selected to which it is moved. Then for this node a random neighbor is chosen, too. The 

resulting sequence of nodes and movements between them is then the random walk. 

Assuming to start in root vertex r the probability can be computed that a random walk ends 

in node e with a given length for the random walk. 

 

To finally smooth the t-statistic (t-statistics for each gene are considered as vector  ) of a 

paired t-test, the t-statistic is multiplied with the kernel:  

 

 ̃        ̃  ∑     

 

   

 

 

By applying this scalar multiplication the t-statistic is smoothed with the network 

information denoted in the kernel. To decide the statistical significance of the smoothed t-

statistic a permutation test is applied. Therefore the data is permuted to design some 

pseudo-datasets based on the original. Afterwards the original observed values are 

compared to the pseudo-values and the deviation is tested to decide if a value is significant 

[46].  
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3. Materials and Methods 

In this section we provide a description of the dataset provided by the Götz lab (Institute of 

stem cell research, HMGU) and a detailed description of the implemented methods used to 

understand molecular mechanisms of astrocytes.  

 

The provided datasets spanned multiple profiling projects with individual aims, but all 

centered on the question to understand molecular mechanisms of astrocyte regulation. We 

initially had to understand and review the data in order to design our analysis strategy 

accordingly. For example, we had cells from adult mice that were taken from injured brain 

regions (lesions), where both astrocytes and cells, that were not astrocytes, were sampled. 

Therefore, many features must be considered for astrocytes like being reactive astrocytes, 

being taken from lesion and being cells from an adult line and not from a cell culture 

generated with cells from young mice. Additionally very complicated was that datasets were 

measured on two microarray platforms. This is hardly feasible to integrate on probeset, or 

gene level [66]. We decided to analyze two “datasets” separately and then only compared 

them functionally. 

 

As genes function in clusters, we tried to improve result interpretation by smoothing the t-

statistics with gene network information. We used the t-statistics of the linear regression 

and smoothed it given protein-protein interactions as prior network. As the regression was a 

very complex setup, we proposed ideas for “regression-smoothing” considering the nested 

covariables to include dependencies between them. 

3.1. Transcriptome datasets 

In this section we provide a description of the five projects, which were for the first time 

jointly analyzed. The datasets consist of mRNA expression profiles of microarray 

experiments. In here we give an overview over the samples and the different groups of cells. 

The data represented in the following consists of gene expression profiles which were done 

on two different platforms of Affymetrix Microarrays. Fig. 8 is a sketch summarizing all 

datasets and experimental conditions. We grouped the five project datasets into two 

datasets of different data source given by their microarray platform.  

 Growth factor stimulation of astrocytes 3.1.1.

The growth-factor-dataset was performed on microarray platform “MOUSE GENE 2.0 st” 

and contained probes of astrocytes treated with FGF (SAF) and probes treated with both EGF 

and FGF (SAFE). Third there is a subset including probes of neurospheres (SN). Astrocytes 

treated with growth factors should show changes in the activity of astrocytes that might be 

similar to reactive astrocytes or neural stem cells. It is reported that growth factors can 

induce astrocytes to proliferate [42].  
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 Combining various cell types  3.1.2.

Further microarray experiments were performed on the Affymetrix microarray platform 

“MOUSE GENOME 430 2.0” including four different batches. Those batches are given by 

project-based datasets. 

 

Cells of post-natal six (P6) mice that were cultured are part of one project dataset. Samples 

were taken after 4 hours, 24 hours and 48 hours after culturing as well as after six days 

which is called 24 hours delayed (Fig. 5). 

Fig. 6 shows microscopy images of astrocytes at two different time points, 24 hours and 24 

hours delayed. 

  

4
h 

24
h 

48
h 

0
h 

24h del 

4 days 

Fig. 5: Timepoints of taking probes from P6 mice cell cultures.  

Probes were taken after 4 hours, 24 hours and 48 hours. Furthermore probes where taken 6 days after time 

point 0 which is called 24 hours delayed. 

Fig. 6: Pictures of astrocytes provided by the Götz Lab. 

Left picture is taken after 24 hours and right after 24 hours delayed. 

Green coloring: GFAP (glial fibrillary acid protein, an astrocyte marker) 

Blue coloring: DAPI (a marker for nuclei) 

Scale bar: The white bar at the bottom right in each picture corresponding to 50µm in the picture 
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The next two project-derived datasets are based on cells of adult mice:  

i) One batch consists of samples of diencephalic astrocytes that were isolated from 

hGFAP:GFP mice and of neural stem cells isolated from the SVZ. 

ii) The other batch was divided in three subgroups. First it included astrocytes which were 

taken from healthy tissue of Aldh1l1:GFP mice. Therefore these cells are non-reactive 

and represent the wildtype form. Furthermore there were cells isolated from regions of 

focal lesion of hGFAP:GFP mice. Thereby GFP-plus cells represent reactive astrocytes, 

where GFP-minus represents cells from injured regions that are negative for GFP. 

Therefore they are identified as being non astrocytic. 

 
Finally, the last project dataset consists of cultured embryonic stem cells (ESCs). There are 

cellular aggregates (CA) four days before retinoic acid (RA) was added and six days after the 

first add of RA. Both are ESCs. Samples of CAs eight days after adding RA can be considered 

differentiated radial glial cells. The forth group was taken fourteen hours past plating of the 

radial glial cells. After seven days past plating those cells differentiated into neurons. Fig. 7 

shows a schematic overview of the ESC cultures. 

 

Besides of the NSC of the SVZ and astrocytes of the diencephalon (DIEC) all cells were 

extracted from the cortex.  

  

Retinoic 
acid 

 

6 days 
after RA 

8 days 
after RA 

4 days 
before RA 

7 days 
past plating 

plating 

14 hours 
past plating 

ESCs Radial glia Neuron
s 

Fig. 7: Overview of probes from the embryonic stem cell culture. 
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Fig. 8: Graphical representation of the datasets. 

The upper three subsets that are encircled belong to the growth factor dataset. The second circle includes all 

datasets of the combined set. Different colors represent different batches and the color grade indicates known 

differences in a batch like being ESCs, radial glia or neurons for the five subsets at the bottom. 
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3.2. Normalization of the microarray expression profiles 

For the growth factor dataset we used packages ‘oligo’ and ‘pd.mogene.2.0.st’ for reading 

raw files and the package ‘mogene20sttranscriptcluster.db’ to obtain probeset annotations. 

For the combined-dataset we combined raw files before normalization. We added the ESC 

cell culture samples to separate ‘P6’ and ‘adult’ from cell culture and direct line as the ESC 

culture consisted of cell culture probes, too, but the cells were not from P6 mice. In the 

following probes starting with “p” represent the first batch, “a1” the second batch (DIEC and 

NSC), “a2” the third (GFPminus, GFPplus and Wildtype) and “e” the forth batch belonging to 

the ESC line. For the “combined”-dataset the packages ‘affy’ and ‘mouse4302.db’ were used.  

 

We utilized the function rma (Robust Multi-array Average) to normalize both datasets. The 

quality control of the microarray expression profiles was performed for the combined 

dataset in detail. We used different quality control methods, like the density plot or RNA 

degradation for both the raw and the normalized data. We identified differences in the 

quality between the two cell culture lines and the two direct lines before normalization  

(Fig. 9). The RNA degradations from 5’-3’ were different for adult lines than when compared 

with P6 or ESC lines. Especially two samples, a2GFPminus_11 and a2GFPminus_12, with high 

3’ degradation rate indicate a less quality for the cells taken directly from adult mice than for 

the samples derived from the two cell culture lines. 
 

Fig. 9: RNA degradation of the 45 samples before normalization showing the mean intensity. 

RNA degradations from 5’-3’ are different for adult direct lines compared to the P6 or ESC cell culture lines. 
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After normalization we still observed differences between those two groups (Fig. 10). From 

the distribution of the density histogram we identified some diverse distributions especially 

for the samples of ‘a2’. Above all the samples a2GFPminus_11 and a2GFPminus_12 showed 

a distinction to the other samples. The first peak of the densities was shifted to the right but 

the second small peak was not visible. 

 

Fig. 10: Density Histogram for each of the 45 samples after normalization.  

Differences between the quality of batch 1 and batch 4 to batch 2 and batch 3 can be viewed. 

Fig. 11: Boxplot of the normalized log intensities for each of the 45 sample after normalization. 
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Furthermore, we produced boxplots of the normalized log intensities for each sample shown 

in Fig. 11. In general the normalization step results in comparable mean and standard 

deviations of the fold changes. The samples of ‘a2’ differed a lot in the boxplots indicating 

less quality. Again especially the two same samples as in the density histogram are different 

to the others. As these two arrays had low quality in other quality tests, too, we removed 

them for further analysis. Therefore 43 samples remained for the combined-dataset.  

3.3. Removing non-biological bias 

All probesets included for experimental reasons were removed for the expression analysis 

from the combined-dataset. We aimed to remove batch effects to make the different sets 

comparable. Therefore, we used the empirical Bayes method ComBat [11]. To relay the 

program which batches were included in the dataset, we generated a sample info file, 

indicating which samples belong to which of the four project datasets. As we tried to find 

and remove technical noise in the dataset, we had to be careful not to remove real biological 

information. For the biological background information we designed a matrix indicating the 

biological cofactors of the samples. Rows showed all, in this case 43, samples, the columns 

cofactors. The cofactors represented the biological factors in the dataset that should be tried 

to remain when removing the batch effects. For ComBat we chose the different cell types, 

which were included in the dataset, as cofactors. Thereby, “1” labeled every member of a 

cell type in the corresponding column of the matrix and “0” otherwise. Table 1 provides an 

example extract of the design matrix. The complete matrix is shown in the appendix (Table 

10). 

 a1DIEC a1NSC a2GFPm a2GFPp a2WT … 

a1DIEC_1 1 0 0 0 0 … 

a1DIEC_2 1 0 0 0 0 … 

a1DIEC_3 0 0 0 0 0 … 

a1DIEC_7 1 0 0 0 0 … 

a1NSC_6 0 1 0 0 0 … 

… … … … … … … 

Table 1: Example extract of a design matrix generated for ComBat. 

Rows show the samples, where columns represent the used cofactors. 1 indicates that a sample belongs to a 

cofactor otherwise this is denoted with 0. Zero lines (i.e. for a1DIEC_3) were made for computational reasons.  

There had to be at least one “zero line“ for each batch like for row a1DIEC_3. Otherwise 

using ComBat was not possible as the cofactors and batches were computationally singular. 

To choose a design matrix we performed a robustness test of ComBat. Therefore, we built 50 

different design matrices using 20% random “zero lines”. Afterwards we ran ComBat with 

each random design matrix to remove the batch effects on the combined-dataset. Results 

are provided in section 4.2.1. We chose one of the matrices which showed a high similarity 

in robustness to the others. This matrix contained eight “zero lines” and was used to correct 

the combined-dataset for further analyses 
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3.4. Statistical analysis 

To perform a principal component analysis (PCA) in R we used the function prcomp. We 

applied PCA to structure and visualize the expression profiles. For each principle component 

we used standard deviations to assess the percentage of variance explained in the data. We 

used PCA to examine the robustness of ComBat. For each iteration using the random design 

matrices we calculated the PCA and compared the distributions of PC1 for the design 

matrices over the samples. In addition we applied PCA to visualize the clustering of the 

samples as well as the genes of the datasets with the first two principle components.  

 

To perform a hierarchical clustering of the samples we measured similarity by calculating 

pairwise Pearson correlation coefficients as well as Euclidean distances of respective gene 

expression measurements. Samples for which gene expressions were more similar than to 

others clustered together hierarchically. We visualized these clusters representing the 

similarities and dissimilarities with heatmaps using the package ‘ggplot2’. In a heatmap we 

depicted both the dissimilarity measurements and the dendrogram representing the 

clusters. Resulting clusters indicated possible similarities between the cell groups. 

 

Relationships between the biological features of the datasets were searched. Therefore, we 

utilized a linear regression model using the ‘limma’ package (linear models for microarray 

data) [7]. To model gene expression, we needed a design matrix that indicated biological 

covariates and associated samples. For the growth-factor-dataset this design matrix was 

generated using the three included cell types themselves. So we segmented the design 

matrix into ‘SAF’, ‘SAFE’ and ‘SN’. To differentiate influences of FGF and EGF we created a 

second design matrix for another linear regression model including these two coefficients for 

the samples.  

 

For the combined-dataset we had to overcome a couple of difficulties to generate a design 

matrix. Many biological features were included in this dataset and pairwise comparisons 

were not possible. We inspected the most meaningful features and designed many different 

matrices by hand. Example features would be ‘adult’, ‘ESC’ or ‘p4h’. Another issue in finding 

the right matrix was the hierarchical structure of the biological features. All samples of the 

first batch, for example, were cells from post-natal six (P6) cell cultures. We wanted to 

include both the factor ‘P6’ as well as the different time points P6 after four hours (p4h), 

twenty-four hours (p24h), forty eight hours (p48h) and after six days (pDel). All time-points 

together represented ‘P6’ once again and at least one of the five features had to be removed 

for computing the model. After some considerations we excluded ‘p24h’ indicating the 

baseline level of ‘P6’ samples. Finally we used fourteen covariates with nested structure (see 

Table 2 in results chapter (4.2.2). Additional to the design matrix with the biological factors, 

we constructed a contrast matrix to answer specific biological questions. The contrast matrix 

defined which comparisons between the samples or factors had to be performed. In this 

case, the matrix included the features of the design matrix themselves. For the combined set 
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we also added ‘Astrocytes’ as coefficient, which is a combination of all samples belonging to 

the coefficients ‘P6’, ‘aDIEC’, ‘aGFPp’ and ‘aWT’. 

 

We used the function lmFit for generating the linear regression model in addition with the 

factors of the contrast matrix. Finally, we added empirical Bayes parameters to the linear 

regression and built scatterplots of the pairwise coefficients. Additionally, we utilized the 

function topTable which summarized the results of the linear model and performed 

hypothesis tests like computing the moderated t-statistic for each gene and each contrast 

[12]. For each coefficient of the contrast matrix we got a list of genes, which were expressed 

differentially. The t-statistic of a gene of one coefficient represented if the gene expression 

of this gene was up-regulated or down-regulated in comparison to all other features. A 

corresponding p-value showed if the t-statistic of the gene was significant. As multiple 

comparisons existed, we needed a multiple testing correction and adjusted the p-values with 

the false discovery rate (FDR). We defined all genes, which had a t-statistic with a p-value 

smaller than 0.01, as significant and considered only these genes for further functional 

analysis. We used some graphical representations of the fitted results like scatterplots and 

volcano plots. Furthermore, we plotted the different numbers of significant genes for the 

coefficients. 

3.5. Functional analysis 

To find specific functions for the gene lists suggesting characteristics of the biological 

features, we mapped the genes to their biological functions using the databases GO and 

KEGG (2.5.1). Therefore we used the package ‘mgsa’ [63]. Initially, we downloaded GO 

annotations from the gene ontology website (http://geneontology.org/page/download-

annotations). Those annotations were stored in a “Gene Annotation Format” (GAF). We used 

the readGAF function to read the downloaded data of mouse GO-annotation. With this we 

could keep the hierarchical structure of the GO database. We computed functional 

enrichments of the gene lists for biological processes only. For KEGG pathway annotation we 

simply generated a list with known pathway-annotations of mice. Then we ran mgsa on each 

gene list for both annotations. An active function in a gene set is an annotation which is 

overrepresented for the genes in the list. For each function an “estimated” value was 

calculated and we only chose terms as significant with an “estimated” value of at least 0.5. 

The result was a list for each coefficient with significant enriched GO or KEGG annotations 

showing their possible characteristics.  

 

The results of the functional analysis were discussed for both datasets separately (section 

4.1.2 and 0). Additionally, we performed a comparison of the results to show relationships 

and differences between the features of the two sets (chapter 4.3). 

 

 

http://geneontology.org/page/download-annotations
http://geneontology.org/page/download-annotations
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3.6. Network smoothed t-statistics 

A linear regression model is a statistical way to relations different coefficients (strength of 

covariate influence estimated using regression coefficients) and response variables, in our 

case the biological features and gene expression, respectively. A gene expression is typically 

modeled independently of interacting or neighboring genes. Nevertheless genes and 

proteins interact with each other and usually function in pathways or complexes. Thereby 

network information like protein-protein interaction networks can improve the analysis. 

Network modules can be identified, if the expression data is combined with a network, like 

combining similar expression patterns with connected subnetworks. Therefore the 

neighborhood of genes in a network is accounted for. Furthermore, results of such a 

combined analysis are more reliable as there is a higher probability that the function of the 

genes in a module is linked somehow.  

 

To enhance the statistical analysis on single-gene level with biological knowledge, we added 

network information of protein-protein-interactions to the t-statistic of the linear regression 

model based on the stSVM approach [10]. We downloaded the network information for 

mice, which have the species ID 10090, with the ‘STRINGdb’ package using the STRING 

version 9.1. Interactions in STRING are scored and we only admitted interactions with a 

score of at least 400. For using the ‘STRINGdb’ package the probeset IDs had to be mapped 

to the STRING IDs. For some probeset IDs and gene symbols no corresponding STRING ID 

existed and we excluded them from the dataset. Furthermore, some probeset IDs referred 

to the same gene. In such a case we combined the expression values of the probesets by 

taking the expression value with the highest variance resulting in one expression per gene. 

For remaining genes a subnetwork of the mice network was built, where nodes represented 

the genes and edges the interactions between them.  

 

Then we generated an adjacency matrix of the network. All nodes which had no edges to any 

other node were removed from the network. Finally, we used the ‘netClass’ package [65] to 

calculate the p-step random walk kernel (2.5.5). We determined the kernel with the 

calc.diffusionKernelp function using one iteration and the constant value α=1. The original 

implementation performed a paired t-test resulting in one single vector of t-statistics for 

smoothing ( ̃      ), but we applied the linear regression model again. Thereby, we only 

used genes included in the kernel. We extended the original stSVM implementation for our 

t-statistics for different coefficients. So instead of a vector with one t-statistic per gene, we 

created a vector of t-statistics for each coefficient separately using linear regression. The 

matrix   (     , with n genes and p coefficients) combined the resulting t-statistics of the 

different coefficients. We divided the t-statistics of each coefficient by its maximum and 

calculated the smoothed t-statistic by: 

 ̃       
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Afterwards, we divided  ̃ again by the maximum per coefficient like in the original 

implementation of stSVM. 

 

To decide which of the new t-statistics were significant we calculated p-values using a 

permutation test, similar to the original implementation of stSVM. For each permutation we 

had to run the linear regression anew by randomizing the samples of the design matrix and 

smoothed the resulting       afterwards, too. This we performed 1000 times. Then we 

compared the resulting t-statistics  ̃     with the observed smoothed t-statistics  ̃. For each 

gene entry we tested if  ̃     was higher than  ̃ given an error rate of 5%. 

 

We compared the total number of significant genes before and after smoothing. Chapter 

4.2.3 contains our results of a mini-example with seven genes and four coefficients as well as 

the results of the complete dataset. 

3.7. Methods proposal for regression smoothing 

So far we used gene network information to improve the regression only across genes within 

one coefficient. Coefficients were treated independently for smoothing but in our expression 

analyses many biological features were included in the model, which were partly nested. 

Therefore, we considered smoothing the t-statistics over the coefficients, too. As not all 

factors depended on each other combining all coefficients in a single vector for smoothing 

did not make sense. Instead we thought that only the dependencies between the 

coefficients must be regarded. For example coefficients like ‘P6’ and ‘Adult’ were 

independent, but ‘p4h’ or ‘p48h’ both depended on ‘P6’. As the linear regression model 

assumed linear independency of the coefficients, we tried to take this separation with 

smoothing into account by using dependent coefficients. We performed different attempts 

to add information across coefficients. This we ran for a small set of depending coefficients 

using ‘P6’ and its sub-coefficients ‘p4h’, ‘p48h’ and ‘pDel’ and a small number of genes. 

Aggregated smoothing 

For the first two attempts we tried summarizing the t-statistic vectors of the linear 

regression to combine the dependent coefficients. Vector addition is commonly used for a 

linear combination of vectors. In the first approach the t-statistic was smoothed with the 

network like before. The dependent coefficients were combined by taking the smoothed t-

statistic vector of the coefficient, which included multiple sub-coefficients, and summed it 

with the observed, but not smoothed, t-statistic vector of the sub-coefficient. For example, 

the smoothed t-statistic of coefficient ‘p4h’ would be calculated in the following way: 
 

 ̃      
    

 ̃             ̃   
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However, with this approach all coefficients depending on the same factor were altered in 

the same way. The network information was not used on all factors, but only on the 

dependent one. So the “smoothed” t-statistic of ‘p4h’ was not smoothed with the kernel 

itself, but calculated by adding the unsmoothed t-statistic of ‘p4h’ with the smoothed t-

statistic of ‘P6’.  

 

In the second approach we again summed the dependent t-statistics, but this time we 

performed this before smoothing with the network. Therefore, we used absolute t-statistic 

values. This time we tried to treat the two dependent factors equally in contrast to the first 

approach. For example, the new t-statistic for the coefficient ‘p4h’ would be:  

             (    )      (   ) 

The same was performed on the other coefficients. For ‘P6’ the t-statistics of ‘p4h’, ‘p48h’, 

‘pDel’ and ‘P6’ were summed. Then the new t-statistic vectors all were combined in a matrix 

      and were smoothed with the kernel. 

 ̃            
    

Using aggregated smoothing the kernel remained like before and vector addition was 

performed to combine t-statistics of dependent coefficients.  

Regression smoothing with extended network 

We now tried to use the t-statistic of one gene for a coefficient    and include the t-statistic 

of the same gene, but for a dependent coefficient   . To accomplish using the dependent 

coefficient for smoothing as well, we can readily extend the original network by adding a 

second set of nodes, duplicating the network. To illustrate the idea, imagine a network with 

three genes A, B and C with two dependent coefficients    and   . Now assume that we 

wanted to smooth the t-statistic of    for gene A, which is node    in the network. As 

   and    were dependent factors we used the information about the t-statistic of    for the 

same gene (  ), too. Then we used all nodes   , B and C to smooth   . Thereby, we 

enlarged the t-statistic for    by concatenating it with the t-statistic of   . Additionally this 

gene of   ,   , was also included in the network as node interacting with   . The original t-

statistic matrix was extended for all coefficients to duplicated length for each coefficient. 

The proposed approach extends the protein-protein interaction network and added a node 

for one dependent t-statistic. 

 

For each gene of    the corresponding t-statistic of    was concatenated, so the t-statistic of 

   had double length than before as each gene got a second t-statistic value.  
 

       
  (   

    
) 
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Additionally, we extended the network. For each gene we added a new node which linked 

gene   of coefficient     to gene   of coefficient   . This was performed for all nodes like 

shown in Fig. 12.  

Therefore, the network increased to double size as each gene was included twice. Then we 

generated the adjacency matrix of the extended network by using the original adjacency 

matrix and added the duplicated nodes to it. Thereby, an interaction was included for    to 

   and so on. Then we calculated the kernel for the extended adjacency matrix. With this 

kernel we finally smoothed the concatenated t-statistics.  
 

 ̃  
        

           
 

Note that we now included information of coefficient   , when computing smoothing of   , 

since we had the       gene-gene “interaction” in the network. 

 

Again two approaches were tested on a mini-example. Thereby, we extended ‘P6’ with a 

vector of zeros as it depended on more than one other coefficient and would need an 

extension with the t-statistics of ‘p4h’, ‘p48h’ and ‘pDel’ and therefore three additional 

nodes per gene. First, the t-statistics were concatenated before dividing by the maximum 

per coefficient and the other time the divided t-statistics were concatenated with each other 

before multiplying t-statistic and kernel. The first method seemed to depend more on the 

dividing step. If the dependent t-statistic included the highest value, the t-statistics of the 

other coefficient, for example ‘p4h’, got lower values than dividing it with the highest value 

of itself. Therefore, it might be that t-statistic values of ‘p4h’ got less important than in the 

second approach. 

 

  

  

 

  

 

Fig. 12: Illustration of extending a network for regression smoothing. 

A, B and C are genes, where 1 indicates the original network for one coefficient and 2 the extension for the 

dependent coefficient, duplicating the nodes. For example, 𝑨𝟏 got a new neighbor 𝑨𝟐 to include the t-statistic 

of the dependent coefficient. 
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4. Results 

The first part shows the result for the growth factor dataset including statistical and 

functional analysis. In the second part we describe how the combined set is changed when 

removing batch effects and analyze the resulting expression profile statistically and 

functionally. In the third part, we show the results of network smoothing on the combined 

set. In the fourth part we investigate the novel approach for regression smoothing on a mini-

network. In the final part of this section we compare the results of the functional analyses of 

both datasets with each other. 

4.1. Growth factor dataset 

For the growth-factor-dataset we performed statistical and functional analysis to test how 

similar astrocytes treated with different growth factors are in comparison to neural stem 

cells (NSC). 

 Statistical analyses 4.1.1.

The principal component analysis (PCA) showed a clear separation between astrocyte cells 

and cells from the neurosphere in the first principal component (Fig. 13). For the second 

principal component no clear division of the data was visible. The plot shows a clear 

clustering of ‘SAF’ and ‘SAFE’ indicating that adding EGF had no influence on the gene 

expression. 

Fig. 13: The first two principal components for the samples are plotted. 

Separation into astrocytes and NSCs can be viewed. 
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Fig. 14 b) shows that only the first principle component divided the dataset like it was 

already detected in Fig. 13. The standard deviation of the principle components suggested 

that only the first principle component described more than 50% of the variance of the data. 

The separation into astrocytes and NSC appeared to be the main expressional difference.  

 

The PCA of the genes (Fig. 14 a)) showed ten genes marked as relevant genes. Those were 

Col1a2, three probesets referring to the gene Bgn, Lyz2, Serpina3n, Ptgs2, H19, Mgp and 

Anxa1. Bgn for example is the short form of biglycan and is a small proteoglycan containing 

two glycosaminoglycan chains.  

 

We analyzed sample similarity using hierarchical clustering of global gene expression using 

Euclidean distances (Fig. 15). We identified the same division into NSC and astrocytes as for 

the PCA. Again the method could not separate ‘SAF’ and ‘SAFE’.  

 

This indicated that EGF did not change the characteristic of the astrocytes much if at all. 

Furthermore NSCs from the neurospheres seemed to have a high difference to astrocytes. 

 

We next analyzed gene expression using linear regression modelling. For the coefficient ‘SN’ 

no significant genes were detected. For ‘SAF’ and ‘SAFE’ more than 3000 genes had a 

significant p-value for their t-statistic, which also were similar (Fig. 16).  

  

Fig. 14: PCA rotation matrix of genes and the standard deviations of the principle components. 

The left plot shows the first two principal components for the genes. Top 10 genes that have largest influence 

in the respective component are marked. 

The right plot shows the standard deviations of the principal components. The y-axis represents how much of 

the data is explained by the appropriate principal component. 

a) b) 
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Fig. 16: Number of genes which t-statistics are statistical significant with a p-value <0.01 for the 

coefficients ‘SAF’, ‘SAFE’ and ‘SN’.  

No genes were found for ‘SN’ and more than 3000 for the other two coefficients. 

Fig. 15: Global sample clustering using Euclidean distances. 

‘SAF’ and ‘SAFE’ samples are clustered. 
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To investigate the correlation between sample-specific gene regulation, we analyzed three 

coefficients using pair-wise scatterplots (Fig. 17). We could not detect any correlation 

between ‘SAFE’ and ‘SN’. The same applied to ‘SAF’ and ‘SN’. ‘SAF’ and ‘SAFE’, however, 

again had same genes being regulated.  Nearly all genes seemed to be expressed the same 

way. In addition the volcano plot of ‘SAF’ and ‘SAFE’ showed similar fold changes over the 

logs odds (Fig. 18). Additionally we observed a high overlap between those two coefficients 

indicated in the Venn diagram sharing more than 2700 genes. Each of them had about 500 

genes only significant for the one coefficient.  

 

Altogether this dataset showed a high similarity between the coefficients ‘SAF’ and ‘SAFE’ 

meaning that FGF is a predominantly influencing gene regulation and EGF only a bit. 

However, ‘SN’ differed from those. Therefore astrocytes treated with growth factors showed 

hardly, if any neural stem cell characteristic in all statistical analyses.  

  

Fig. 17: Gene regulation comparisons of the coefficients ‘SAF’, ‘SAFE’ and ‘SN’. 

Only for ‘SAF’ against ‘SAFE’ gene regulations were correlated. 

Fig. 18: Volcanoplots for ‘SAF’ and ‘SAFE’ and comparison of the significant genes of these two coefficients.  

Ten genes with highest t-statistic values are marked in the volcano plots. A high overlap between the 

significant genes can be viewed. 
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Next we investigated the influences of FGF and EGF separately. No significant genes were 

found for EGF. In fact, all adjusted p-values had a value bigger than 0.9. Nevertheless we 

examined the best 1000 genes and compared them to the 5163 genes found for FGF  

(Fig. 19). 341 of the 1000 genes for EGF overlapped with the significant genes of FGF. This 

indicated that separating ‘SAF’ and ‘SAFE’ is hardly feasible.  

 Functional analysis 4.1.2.

We next examined characteristics of the coefficients by analyzing gene functions and 

pathways of the significant genes. As ‘SN’ showed no significant genes, we could not search 

any gene functions or pathways that might be enriched for this coefficient. For ‘SAF’, the 

method mgsa identified six terms using GO biological processes. Those are “intracellular 

signal transduction”, “macromolecule localization”, “cellular component organization or 

biogenesis”, “cellular metabolic process”, “single-organism metabolic process” and “cell 

adhesion”. For ‘SAFE’ exactly the same GO-functions were significant with a slightly different 

estimation value.  

 

Furthermore, using KEGG we identified twenty-one pathways for ‘SAF’ and twenty-eight 

pathways for ‘SAFE’ including “Spliceosome”, ”ribosome biogenesis in eukaryotes”, “cell 

cycle”, “p53 signaling pathway” and twelve other pathways in both features. For ‘SAF’ 

additional four pathways occurred. Those are “aminoacyl-tRNA biosynthesis”, “lysine”, 

“degradation”, “other types of O-glycan biosynthesis” and “sulfur metabolism”. For ‘SAFE’ 

we could report eleven pathways that were not significant for ‘SAF’. The appendix contains 

the complete list (Table 11).  

 

As ‘SAF’ and ‘SAFE’ both were astrocytes, those functions and pathways indicated possible 

characteristics of astrocytes. 

  

Fig. 19: Comparison of FGF and EGF using scatterplot and Venn diagram. 

EGF and FGF gene regulation were uncorrelated. Significant genes of FGF overlap only with a small part of the 

best 1000 genes of EGF, for which no gene was significant. 
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4.2. Combined dataset analysis 

In this part we investigate the expression profiles of the combined-dataset.  

 Removing biological bias 4.2.1.

After normalization we found non-biological difference between the subsets. The problem in 

combining different datasets was that there were some predominantly due to the fact that 

we combine data from different projects from the Götz lab. However, those differences 

showed no real biological differences. As a consequence for the analysis it was necessary to 

remove these so called batch effects. We used the empirical Bayes method ComBat to 

generate a couple of random design matrices for testing the robustness of the program. For 

all 50 different design matrices, which randomly included 8 samples with zeros only we 

analyzed the PCA. Fig. 20 illustrates the distributions of the first principal component (PC1) 

over the 43 samples for each of the 50 iterations. The additional red line corresponds to the 

first principal component for the samples of the normalized dataset which is not yet 

corrected for non-biological biases. For the different iterations we observed similar 

Fig. 20: Robustness of samples localized in PC1 using ComBat with 50 random design matrices  

The x-axis indicates all 43 samples for which the first principal component is shown on the y-axis. The red line 

marks the distribution of the normalized but uncorrected dataset. Iterations show similar distributions 

indicating that ComBat is robust. 
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distributions of the first principle components. Therefore, the method appeared to be robust 

and we chose one design matrix to correct the combined dataset. In the following analyses 

we used the corrected dataset.  

 Investigate the corrected dataset with statistical analyses 4.2.2.

Besides looking at the distribution of one principal component, we used the first two 

components to visualize the clustering of the samples. Fig. 21 a) depicts the PCA before 

correcting the dataset with ComBat. This plot shows the separation into the project-

datasets. The right plot, Fig. 21 b), draws the first two principal components, PC1 and PC2, 

after correcting the combined-dataset. In the following we name the adult line containing 

diencephalon astrocyte (DIEC) and neural stem cell (NSC) samples ‘a1’ (red circles) whereas 

the other line including GFP-minus, GFP-plus and wild-type astrocyte samples is named ‘a2’ 

(green crosses). ‘P6’ (violet quadrats) represents all samples of post-natal six cell cultures 

and ‘ESC’ (blue diamonds) samples of the cultured embryonic stem cell project-dataset.  

 

Obviously, before correcting the dataset for batch effects, the four subsets were clustered 

into the project-datasets. However, after removing batch effects the clustering was more 

mixed up indicating that non-biological biases were removed which separated the datasets 

before. Only the ‘P6’ samples still clustered, which indicated a close relationship between 

them independent of time. Most obvious was the clustering of neurons to NSC. Additionally 

Fig. 21: PCA result for the 43 samples. The first two principal components are plotted.  

Red circles and green crosses indicate samples from the adult cell line, where diencephalic astrocytes and NSCs 

are the red ones, whereas GFP-minus, GFP-plus and Wildtype are shown in green. Blue diamonds show the ESC 

samples. Violet quadrats mark all samples of the P6 cell line. 

a) shows the PCA for the normalized but not-corrected dataset, whereas  
b) shows the result for the dataset corrected for non-biological bias.  

Diversion of the datasets can be viewed in a) whereas clustering got more mixed up in b) indicating tthat non-

biological bias was removed. 

a) b) 
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diencephalon astrocytes were closer to NSC than to the ‘P6’ astrocytes of the cortex. This 

indicated similarities between the neural stem cells and neurons. Furthermore the results 

showed astrocytes from the diencephalon had more characteristics like neural stem cells. 

‘a1’ and ‘a2’ samples got separated. So although they both came from adult lines the 

features neural stem cells and astrocytes of the diencephalon differed from normal or 

reactive astrocytes. Like expected ESCs, which were samples from cellular aggregates four 

days before and six days after adding retinoic acid, cluster together. Next neighbor were the 

samples eight days after adding RA. Although these ‘eCAd8’ samples were identified as 

radial glia cells, the plated radial glia showed a closer relationship to neurons and NSC than 

to ‘eCAd8’ samples. Nevertheless plated radial glia were more or less separated to all other 

clusters. Overall the first principal component distinguished between astrocytes together 

with NSC and neurons and samples which consisted of ESC or radial glial cells derived from 

ESC. The second principal component then divided the dataset into different astrocytic 

conditions. 

 

In Fig. 22 a) we showed the clustering of the genes. Almost all genes clustered together. 

Relevant genes were marked and named. Those were Cd24a, Zfp711, Atp1a2, 

A730054J21Rik, Cdh1, Lin28a, Mapt, Pbx3 and Tac1. The right plot (Fig. 22 b)) illustrates that 

about 90% of the data was already described by the first principal component whereas the 

second still described about 60%. Starting with the fourth principal component, each 

component could explain less than 50% of the data. 

 

Fig. 22: PCA rotation matrix of genes and the standard deviations of the principle components. 

The left plot (a) shows the first two principal components for the genes. Genes that do not cluster central are 

marked as outliers.  

At the right (b) the standard deviations of the principal components are plotted. The y-axis represents how 

much of the data is explained by the appropriate principal component. The firs principal component describes 

more than 90% of the data 

a) b) 
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Now we investigated sample similarities with hierarchical clustering using Pearson 

correlation coefficients (Fig. 23). Euclidean distances resulted in a very similar plot 

(appendix, Fig. 38). Additionally to the colored map the dendrogram illustrates the clustering 

structure of the samples. Thereby we could observe a similar clustering like in the PCA result 

(Fig. 21). Especially the ‘P6’ samples clustered together and ‘a1’ samples clustered with 

neuron samples. Furthermore ‘P6’ and ‘a1’-neuron samples were neighbors in the tree. 

Maybe the astrocytes of the ‘P6’ samples therefore had some properties and capacities like 

neural stem cells or neurons. The cellular aggregate samples formed another cluster. 

Neighboring samples were the radial glia after plating. This was different to the clustering in 

the PCA, where the radial glial cells past plating were closer to diencephalon astrocytes or 

NSC and neurons than to the cellular aggregates. Finally ‘a2’ samples formed a cluster which 

divided into its different cell types GFP-plus together with GFP-minus and wild-type. It is 

worth mentioning that one GFP-plus sample clustered with the ‘P6’ cluster, which might be 

due to the fact, that this sample was one of the “zero lines” in the design matrix when 

applying ComBat. This showed that batch effects must be treated very carefully.  

Fig. 23: Hierarchical clustering of the Pearson correlation coefficients for the corrected dataset.  

All 43 samples are shown and a dendrogram show the clustering of the samples. 



 
 

41 
 
 

For both PCA and hierarchical clustering astrocytes showed some similarities to NSC and 

neurons like the astrocytes sampled from the diencephalon. Additionally ‘P6’ astrocytes 

seemed to have some characteristics of NSC.  

  

We next investigated the relationship between the biological features for the combined 

dataset. Deduced from the biological features we generated a design matrix (Table 2). Rows 

show all samples, whereas columns show the different biological features we finally chose 

for this complex dataset. Those were ‘p4h’, ‘p48h’ and ‘pDel’ for post-natal six cell cultures 

at different time points and ‘P6’ as factor they shared. Respectively we included a coefficient 

‘Adult’ for samples of the two adult lines (‘a1’ and ‘a2’) and the sub-coefficients ‘aNSC’ for 

NSC, ‘aWT’ for non-reactive astrocytes in healthy tissue, ‘aGFPp’ for reactive astrocytes and 

‘aDIEC’ for astrocytes taken from the diencephalon. Additionally we added ‘Lesion’ to the 

matrix for all cells taken from a lesion independent if they were astrocytes or not. Finally for 

the ‘ESC’-line ‘eCA4d’ was added for non-treated ESCs, ‘PastPl’ for all cell of this cell line that 

were plated, ‘eNd7’ a part of the ‘PastPl’ feature indicating neurons and ‘radialGlia’ for all 

samples that included radial glial cells. However other features like ‘p24h’ or ‘ESC’ would be 

possible, too. 
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a1DIEC_1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

a1DIEC_2 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

a1DIEC_3 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

a1DIEC_7 0 0 0 0 1 0 0 0 1 0 0 0 0 0 

a1NSC_6 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

a1NSC_9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

a1NSC_12 0 0 0 0 0 1 0 0 1 0 0 0 0 0 

a1NSC_15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

a2GFPminus_10 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

a2GFPminus_33 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

a2GFPplus_08 0 0 0 0 0 0 1 0 1 1 0 0 0 0 

a2GFPplus_09 0 0 0 0 0 0 1 0 1 1 0 0 0 0 

a2GFPplus_35 0 0 0 0 0 0 1 0 1 1 0 0 0 0 

a2Wildtype_2 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

a2Wildtype_3 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

a2Wildtype_4 0 0 0 0 0 0 0 1 1 0 0 0 0 0 

eCAd4_1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

eCAd4_2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

eCAd4_3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

eCAd6_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eCAd6_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eCAd6_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eCAd8_1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

eCAd8_2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

eCAd8_3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

eP14h_2b 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

eP14h_3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

eP14h_5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

eNd7_2 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

eNd7_3 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

eNd7_5 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

pCtrl04h_83 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl04h_220 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl04h_262 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl04h_269 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24h_34 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24h_75 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24h_89 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl48h_34 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl48h_71 0 1 0 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24hdel_180 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24hdel_193 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

pCtrl24hdel_200 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

Table 2: Design matrix used for linear modeling.  

Rows show the samples, whereas columns represent the coefficients. 0 indicates that the specific sample is not 

part of the coefficient. For example both the samples of GFPminus and of GFPplus are taken from a region of 

focal lesion and therefore have 1 at coefficient “Lesion”, whereas all other samples have 0 at this column. 
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We could report a different number of genes which were statistically significant in the 

different coefficients. Fig. 24 shows the number of genes for each in form of a barplot. Like 

expected summarizing features like ‘P6’ with 12022 and ‘Adult’ with 11758 significant 

enriched genes had a higher number than more specialized terms like ‘p4h’ or ‘p48h’. 

However, diencephalon astrocytes and also neural stem cells had a high number with 10447 

and 7446 genes as well. Additionally past plating cells including radial glia and neurons got 

9220 significant genes. For ‘p48h’ and for the ‘aWT’ samples we only identified a low 

number of significant genes which were fifteen and seven, respectively. For the additional 

feature ‘Astrocytes’, which was the combination of the biological features defining astrocyte 

samples (‘P6’, ‘aDIEC’, ‘aGFP’ and ‘aWT’), 3259 genes showed up. The top five significant 

genes identified for ‘Astrocytes’ were Klrd1, Prmt2, Sall4, Lin28a and Scrn1.  

  

Fig. 24: Number of significant genes for the coefficients of the combined dataset. 

On the x-axis all coefficients used at linear modeling are drawn. The y-axis represents the number of genes that 

are significantly up- or down regulated using the t-statistic of LIMMA and an adjusted p-value < 0.01. For ‘p48h’ 

and ‘aWT’ a few genes are statistically significant.  
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To investigate how much of the genes overlapped between different features, we generated 

Venn Diagrams for the two and for the four features that had the highest number of genes in 

the regression together with the factor ‘Astrocytes’. Fig. 25 showed the two diagrams 

including ‘P6’, ‘Adult’ and ‘Astrocytes’ in the left diagram and the same three coefficients 

together with ‘aDIEC’ and ‘PastPl’ in the right. We could observe a high overlap between 

‘P6’ and ‘Adult’ sharing about 6500 genes with each other. As both ‘P6’ and ‘Adult’ 

contained astrocytes samples the high overlap between the two coefficients and ‘Astrocytes’ 

does not surprise. Nevertheless 368 genes were identified for ‘Astrocytes’ that did not 

overlap with ‘P6’ or ‘Adult’. For ‘aDIEC’ and ‘PastPl’ we could observe that many of their 

significant genes overlapped with another coefficient. For both still more than 2500 genes 

existed for each of these two coefficients not overlapping with the other coefficients in the 

plot. 

 

We analyzed highly significant genes which also showed a magnitude fold-change using 

volcano plots. Fig. 26 shows the result of coefficient ‘Astrocytes’. Ten genes that had the 

highest t-statistic value were marked in the plot. We observed a large fold change for “Kird1” 

or “Bai3”, too.  

  

Fig. 25: Overlap of significant genes for coefficients ‘P6’, ‘Adult’ and ‘Astrocytes’ on the left. On the right 

‘DIEC’ and ‘PastPl’ are added, too. 
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We investigated similarities of regulated gene between the coefficients using scatterplots. 

Three of the scatterplots are shown in Fig. 27. For ‘aNSC’ against ‘Astrocytes’ only a small 

dependency if any could be viewed between the two coefficients. For ‘aDIEC’ and ‘aNSC’ 

there was a strong correlation showing the similarities between astrocytes of the 

diencephalon and NSC of the subventricular zone. Additionally ‘aDIEC’ showed a correlation 

to ‘Lesion’, not identified between ‘aDIEC’ and ‘GFPp’. The ten most relevant genes, when 

plotting ‘aNSC’ against ‘Astrocytes’, were Rreb1, 2210016F16Rik2, Gemin8, Vps29, Pcm1, 

Ubtf, Cdkn2d, Tmem255a, Acsl4, Wnt9b. Further volcano and scatterplots can be viewed in 

the appendix (Fig. 39). Scatterplots which showed only few if any dependencies are not 

printed. 

 

For the fifty most significant genes of feature ‘P6’ we generated a heatmap of the expression 

profile (Fig. 28). Thereby we plotted only the nested samples of ‘P6’ together with the 

samples of ‘ESC’ before treated with retinoic acid. Those ‘ESC’ samples served as outliers. 

We observed that genes with lower expression values in ‘P6’ mostly had higher values in the 

Fig. 27: Regulation comparison of the coefficients ‘aNSC’ and ‘Astrocytes, ‘aDIEC’ and ‘aNSC’ as well as 

‘aDIEC’ and ‘Lesion’. 

Correlations between diencephalic astrocytes and NSC was observed and also with cells from lesion sides. Only 

a slight correlation could be viewed for ‘aNSC’ against ‘Astrocytes’. 

Fig. 26: Volcano plot of the coefficient ‘Astrocytes’ of the linear regression model.  

The x-axis represents the fold change, whereas y-axis shows the log odds. Ten genes with highest t-statistics  

are marked. Klrd1 and Bai also show a magnitude fold change. 
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‘ESC’ samples and vice versa. Furthermore we identified a high similarity between the ‘P6’ 

samples.  

 

Using linear regression a few similarities between astrocytes and NSC were observed, 
especially for diencephalon astrocytes. Diencephalon astrocytes also showed some 
characteristics like cells from injured regions. To other cell types like ESC, radial glia or 
neurons, astrocytes showed no relationships.  

 Functional analyzes 4.2.3.

We analyzed if the genes shared biological features and searched for enriched gene ontology 

(GO) terms and KEGG pathways. We identified two terms for feature ‘Astrocytes’ in the 

analysis using mgsa with GO of biological processes. These were “organelle organization” 

and “nervous system development”. “Organelle organization” was also observed for ‘aNSC’ 

and ‘aDIEC’ as well as for ‘Adult’ in general indicating that there might be a relationship 

between astrocytes and NSC. We found five terms for ‘P6’, too. Its sub-groups ‘p4h’, ‘p48h’ 

and ‘pDel’ alone had no significant terms. The five terms for ‘P6’ were “synaptic 

transmission”, “intracellular signal transduction”, “cellular component organization or 

biogenesis”, “macromolecule localization” and “cellular metabolic process”. 

 

Fig. 28: Expressions of the 50 most significant genes of ‘P6’.  

Only ‘P6’ samples are plotted with ‘eCAd4’ as outgroup showing high similarity between all ‘P6’ samples. 
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Searching KEGG pathways, we observed that ‘P6’-genes participated in the “spliceosome” 

pathway as well as in “RNA transport” and “cell cycle”. We already knew that astrocytes 

form gap and tight junctions which also appeared in feature ‘P6’ with the enriched pathway 

“tight junction”. The complete list of ‘P6’ can be viewed in Table 3. In addition we identified 

two pathways enriched for ‘Astrocytes’ which were “Ribosome” and “DNA replication”. The 

appendix lists GO-terms and KEGG pathways of other coefficients (Table 12 and Table 13). 
 

P6 

Spliceosome Pyrimidine metabolism 

RNA transport Tight junction 

Cell cycle Nucleotide excision repair 

Ribosome biogenesis in eukaryotes Cyanoamino acid metabolism 

mRNA surveillance pathway Purine metabolism 

Cysteine and methionine 

metabolism 

Arrhythmogenic right ventricular cardiomyopathy 

(ARVC) 

Ribosome Basal transcription factors 

Homologous recombination  

Table 3: KEGG pathways for ‘P6’ 

 Network smoothing using a regression model 4.2.4.

In the following, we describe the approach of network smoothing on the basis of a small real 

data example. Therefore, we searched a small group of genes interacting with each other. 

Fig. 29 shows the interaction network of seven genes Prelp, Smoc2, Fmod, Bgn, Tnc, Mmp2 

and Ptn, the mini-example contained.  

Fig. 29: One cluster as example network with nodes Prelp, Smoc2, Fmod, Bgn, Tnc, Mmp2 and Ptn. 
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Table 4 prints the kernel that was calculated for this network.  

 

  Smoc2 Mmp2 Fmod Prelp Tnc Ptn Bgn 

Smoc2 1 . 0.58 . . . . 

Mmp2 . 1 . . 0.41 . 0.41 

Fmod 0.58 . 1 0.58 . . 0.33 

Prelp . . 0.58 1  . . 

Tnc . 0.41 . . 1 0.58 0.33 

Ptn . . . . 0.58 1 . 

Bgn . 0.41 0.33 . 0.33 . 1 

Table 4: Kernel matrix for the mini-network with nodes “Prelp”, “Smoc2”, “Fmod”, “Bgn”, “Tnc”, “Mmp2” 

and “Ptn” 

We built a nested design matrix as an exemplary subset of the original design matrix  

(Table 2) including the four ‘P6’ features as well as the corresponding samples and one 

outlier sample of the ESC line. The matrix   (Table 5) showed the observed t-statistic after 

linear regression and the smoothed t-statistic ( ̃) for the small network and the four 

example coefficients. For example Mmp2 had two neighbors Bgn and Tnc. Looking at one 

coefficient like ‘p4h’ we observed that in   the t-statistics of the two neighbors were higher. 

Therefore the smoothed t-statistic of Mmp2 in  ̃ was also increased. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: t-statistic matrices divided by the maximum per coefficient before ( ) and after smoothing ( ̃). 

Table 6 represents the two matrices  , which included the p-values of the linear regression, 

and  ̃ with the p-values for the smoothed t-statistics of the permutation test. Thereby we 

marked p-values smaller than 0.05.  

  

  p4h p48h pDel P6   ̃ p4h p48h pDel P6 

Smoc2 0.13 0.13 0.11 0.13  Smoc2 0.46 0.3 0.2 0.44 

Mmp2 0.21 0.05 0.01 0.22  Mmp2 0.4 0.36 0.3 0.57 

Fmod 1 0.6 0.29 1  Fmod 1 0.63 0.37 1 

Prelp 0.47 0.34 0.12 0.48  Prelp 0.69 0.43 0.2 0.66 

Tnc 0.44 0.85 0.69 0.94  Tnc 0.52 1 0.98 0.87 

Ptn 0.16 1 1 0.21  Ptn 0.27 0.94 1 0.47 

Bgn 0.54 0.41 0.28 0.74  Bgn 0.72 0.58 0.44 0.92 
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  p4h p48h pDel P6   ̃ p4h p48h pDel P6 

moc2 0.7 0.79 0.88 0.48  Smoc2 0.58 0.86 0.93 0.61 

Mmp2 0.7 0.86 0.97 0.3  Mmp2 0.78 0.85 0.9 0.62 

Fmod 0.08 0.15 0.74 0.001  Fmod  0 0.8 0.94 0 

Prelp 0.38 0.38 0.88 0.04  Prelp 0.29 0.61 0.87 0.37 

Tnc 0.38 0.048 0.24 0.001  Tnc 0.78 0 0.31 0.43 

Ptn 0.7 0.04 0.09 0.3  Ptn 0.74 0.02 0 0.52 

Bgn 0.38 0.33 0.74 0.003  Bgn 0.44 0.73 0.9 0.17 

Table 6: p-values for the t-statistics of the linear regression ( ) and for the smoothed t-statistics calculated 

via permutation test ( ̃). 

In   we identified six significant values. After smoothing with the kernel, the genes Tnc and 

Ptn of coefficient ‘p48h’ still were significant. For coefficient ‘p4h’ gene Fmod and for ‘pDel’ 

gene Ptn were now significant. Both coefficients had no significant gene before. For ‘P6’, 

however, three of the four significant genes got lost after smoothing. Only Fmod remained. 

 

We analyzed expression profile for the seven genes (Fig. 30). Differences between samples 

could be hardly observed. Nevertheless the heatmap already showed decreased expression 

values of Fmod especially for the ‘p4h’ samples and the ESC sample. This indicated that we 

could improve the t-statistic with the network information. 

  

Fig. 30: Expression values for the mini-network. 
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We next analyzed the results for the network smoothing on the combined dataset. Initially, 

mapping the probeset IDs and gene symbols to the STRING IDs resulted in 34170 genes. 

17038 genes remained after combining probeset-IDs according to the STRING ID and only 

15381 genes of those showed an interaction with another gene.  

 

To test the performance of the network smoothing, we performed a scatterplot of the 

observed t-statistic (t) to the smoothed t-statistic (tx) (Fig. 31) resulting in a plot a volcano-

like appearance. Like for ‘p48h’, all coefficients showed such a dependency between the two 

statistics in the scatterplot suggesting that the original information still is included. Thereby 

it is worth mentioning that when including all nodes without any interaction this was not the 

case. 

 

In the next step we investigated the number of genes that were significant before and after 

smoothing. Table 7 gives an overview of the results. The first column showed the 

coefficients. For the linear regression model of the mapped and combined expression profile 

we set the p-value threshold to 0.05. The second column gives the numbers of significant 

genes before smoothing. Thus the third column represents the numbers of significant genes 

after smoothing and the last column the number of genes that were significant before and 

after smoothing. For most coefficients more significant genes were found before smoothing. 

However, we identified new significant genes for ‘p48h’, ‘pDel’ and ‘aWT’. The number of 

overlapping genes of these coefficients was equal to the number of significant genes before 

smoothing. For example for ‘p48h’ there were 172 genes significant after and 83 before 

smoothing with 89 new significant genes. Coefficients ‘p4h’ and ‘eCA4d’ had more 

Fig. 31: Comparison of the t-statistics for coefficient ‘p48h’ before and after smoothing.  

The x-axis corresponds to the originally observed t-statistic (t) and the y-axis to the smoothed version (tx). 

Comparison of the t-statistics show that the original information is still included indicating a good 

performance of network-smoothing.  
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significant genes before smoothing, however, they got a few new genes, too. For the other 

coefficients, the number of genes significant in both variations was identical to the number 

of significant genes after smoothing. No new genes were added only some genes were not 

significant after smoothing. 

 

So far we identified 89 new significant genes for the feature ‘p48h’ in the analyses. Fig. 32 

plots their expression values. Expressions showed similarities in samples of ‘p4h’, ‘p24h’ and 

‘p48h’. For ‘pDel’ they showed some differences. The outlier samples of ‘eCAd4’ exhibited 

distinctions to the expressions of the other samples. 

 

Fig. 33 shows the neighboring network of those genes. Yellow nodes represented genes that 

were significant after smoothing but not before, whereas blue nodes showed the original 

significant values with linear regression only. Many genes were added to the original gene 

network extending it to a big cluster. Nevertheless also some genes were now significant 

which did not have any interaction partners in the gene network of ‘p48h’.  

 

 

 

 

 

 

Table 7: Number of significant genes before and after smoothing.  

Rows indicate the coefficients. The second column shows the number of significant genes before smoothing. 

The third column represents the number of genes significant after smoothing with the network information 

and the last column shows the number of genes that are significant in both statistics. Threshold for significance 

is 0.05. 

Coefficient #sig 𝑷 < 0.05 #sig 𝑷̃ < 0.05 overlap 

p4h  466 170 167 

p48h  83 172 83 

pDel  12 194 12 

P6  8082 101 101 

aDIEC  6903 269 269 

aNSC  5826 221 221 

aWT  19 302 19 

aGFPp  2476 4 4 

Adult  8002 861 861 

Lesion  5007 105 105 

eCA4d  1359 19 18 

PastPl  4921 217 217 

eNd7  2492 36 36 

radialGlia  717 46 46 

Astrocytes  3643 180 180 
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Fig. 32: Gene expressions of 89 genes significant after smoothing for coefficient ‘p48h’, which were not 

significant before. 
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Fig. 33: Neighborhood network of the significant genes of ‘p48h’.  

In yellow the 89 genes, which were significant after smoothing but not before. The original cluster (blue nodes) 

is extended. 
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Fig. 34: Protein-protein interaction network of the significant genes of ‘Astrocytes’. 

One big gene cluster can be viewed and some additional smaller clusters. No genes were significant after 

smoothing but not before.  
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Additionally, Fig. 34 shows the protein-protein interaction network with significant genes of 

coefficient ‘Astrocytes’ including one big gene cluster and a couple of smaller ones. No 

significant genes exist after smoothing, which were not significant before. The network was 

only reduced. 

 Novel approaches for regression smoothing 4.2.5.

We analyzed four methods using the same mini example as in 4.2.4. 

 

First we investigated the two aggregation methods. Table 8 shows the final t-statistics and p-

values for those on the same mini-example like before. Next we analyzed our approaches of 

regression smoothing using extended networks. As the t-statistic of ‘P6’ was extended with 

zeros, they were the same in both approaches. Table 9 shows the results. 

 

    p4h p48h pDel P6      p4h p48h pDel P6 

Smoc2 0.32 0.37 0.39 0.31  Smoc2 0.868 0.83 0.76 0.94 

Mmp2 0.43 0.43 0.44 0.34  Mmp2 0.86 0.87 0.82 0.95 

Fmod 1 0.98 0.9 1  Fmod 0 0.41 0.52 0 

Prelp 0.59 0.62 0.56 0.57  Prelp 0.49 0.44 0.55 0.56 

Tnc 0.71 1 1 0.97  Tnc 0.66 0 0 0.36 

Ptn 0.35 0.78 0.84 0.83  Ptn 0.69 0.1 0.07 0.07 

Bgn 0.78 0.84 0.84 0.78  Bgn 0.39 0.29 0.29 0.39 

 

    p4h p48h pDel P6      p4h p48h pDel P6 

Smoc2 0.45 0.42 0.41 0.43  Smoc2 0.73 0.82 0.81 0.86 

Mmp2 0.51 0.53 0.54 0.51  Mmp2 0.78 0.76 0.76 0.84 

Fmod 1 0.94 0.89 0.94  Fmod 0 0.62 0.66 0.65 

Prelp 0.67 0.63 0.57 0.63  Prelp 0.32 0.41 0.52 0.39 

Tnc 0.76 1 1 1  Tnc 0.61 0 0 0 

Ptn 0.4 0.7 0.7 0.74  Ptn 0.62 0.13 0.12 0.06 

Bgn 0.86 0.87 0.86 0.84  Bgn 0.27 0.27 0.33 0.35 

Table 8: Results of regression smoothed t-statistic using aggregation. 

     and     are the smoothed t-statistic results and the corresponding p-value using the first aggregation 

method and     and     for the second. 
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    p4h p48h pDel P6      p4h p48h pDel P6 

Smoc2 0.27 0.23 0.18 0.34  Smoc2 0.91 0.94 0.98 0.72 

Mmp2  0.31 0.3 0.25 0.51  Mmp2 0.95 0.95 0.97 0.68 

Fmod 0.95 0.81 0.65 1  Fmod 0.3 0.43 0.65 0 

Prelp 0.61 0.53 0.4 0.59  Prelp 0.44 0.54 0.71 0.43 

Tnc 0.66 1 0.93 0.9  Tnc 0.6 0 0.29 0.37 

Ptn 0.24 0.73 0.7 0.38  Ptn 0.83 0.16 0.17 0.6 

Bgn 0.69 0.67 0.57 0.92  Bgn 0.5 0.52 0.68 0.22 

 

    p4h p48h pDel P6      p4h p48h pDel P6 

Smoc2 0.31 0.24 0.19 0.34  Smoc2 0.89 0.96 0.97 0.72 

Mmp2 0.34 0.3 0.27 0.51  Mmp2 0.93 0.95 0.98 0.72 

Fmod 1 0.76 0.59 1  Fmod 0 0.57 0.76 0 

Prelp 0.63 0.5 0.35 0.59  Prelp 0.49 0.64 0.83 0.41 

Tnc 0.63 1 1 0.9  Tnc 0.67 0 0 0.36 

Ptn 0.25 0.82 0.87 0.38  Ptn 0.88 0.12 0.09 0.55 

Bgn 0.72 0.65 0.57 0.92  Bgn 0.45 0.59 0.72 0.22 

Table 9: Results of regression smoothed t-statistic using extended networks. 

     and     are the smoothed t-statistic results and the corresponding p-value using the first extended 

network approach and     and     for the second. 

Both aggregation methods and the second extension method showed significant t-statistics 

for coefficient ‘p4h’ gene Fmod and for ‘pDel’ gene Tnc. Furthermore, all four approaches 

showed gene Tnc significant for ‘p48h’ and Fmod for ‘P6’ was significant in all but the second 

aggregation approach. Those were the only two genes we could find with linear regression 

before smoothing (Table 6), but for the second aggregation method additionally Tnc was 

significant for ‘P6’ like before.  

 

For network smoothing without coefficient information the results were more similar. 

However, significance for Ptn got lost with regression smoothing for both ‘p48h’ and ‘pDel’, 

but we gained Tnc for ‘pDel’ as new gene.  However, those methods were not yet fully 

analyzed and a further look on “regression smoothing” is necessary.  
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4.3. Comparison of functional analyses 

So far we analyzed the growth factor and the combined dataset separately. To make a 

comparison between them we investigated the functional analyses of both sets. Using mgsa 

we got enriched GO or KEGG terms together with an estimated value. Fig. 35 plots the 

estimated values of all GO-terms that were enriched significantly in at least one of the 

features. Only ‘SN’ of the growth factor dataset was not included, because no significant 

genes were observed for functional investigations. Therefore we were not able to compare 

the NSC from the neurosphere (SN) to the NSC from the direct adult line (aNSC) or any other 

feature of the combined dataset.  

 

The strongest overlap of ‘SAF’ and ‘SAFE’ of the growth factor set could be viewed with ‘P6’ 

of the combined set. Four of the six terms significant for ‘SAF’ and ‘SAFE’ were significant for 

‘P6’, too. Additionally one term overlapped with ‘Adult’ and one with ‘PastPl’. Altogether we 

identified different functions for the different features. For some features like ‘p4h’ or ‘aWT’ 

no specific functions were observed. The similarity between ‘SAF’ and ‘SAFE’ to ‘P6’ 

indicated that even if astrocytes were treated with growth factors they were similar to 

Fig. 35: Estimations of GO-annotations by MGSA for both growth factor dataset and combined dataset. 

Astrocytes treated with growth factors show similar functions as ‘P6’ astrocytes. 



58 
 
 

untreated astrocytes of P6 cell cultures independent of different time-points. The four 

shared terms were “intracellular signal transduction”, “macromolecule localization”, 

“cellular component organization or biogenesis” and “cellular metabolic process”. 

 

Besides the relationships shown for astrocytes treated with growth factors and ‘P6’ 

astrocytes, only ‘P6’ and ‘Adult’ showed similarities, but no coherences between astrocytes 

and other cell types were observed with functional analyses of GO terms. 

 

With KEGG pathways we could not identify a strong similarity between ‘P6’ and growth-

factor astrocytes (Fig. 36), where some pathways overlapped between the features and 

some did not. KEGG pathways of ‘SAF’ and ‘SAFE’ showed more similarities to a couple of 

‘aNSC’ and ‘Adult’ pathways, but still many differed. 

  

 

  

Fig. 36: KEGG-pathway estimations across the two datasets. 

Similarities of ‘SAF’ and ‘SAFE’ to ‘P6’, ‘NSC’ and ‘Adult’ can be observed.  
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5. Conclusion  

In this work we successfully managed to combine various project-datasets for a combined 

analysis of several cell types getting new insights into astrocytes. We combined four 

microarray expression projects and dealt with strong non-biological biases.  

 

We implemented a pipeline, which we applied to both the growth and the combined dataset 

separately. The pipeline included statistical analyses like clustering of the samples showing a 

relationship between astrocytes of P6 cells taken at different time points and astrocytes 

from the diencephalon with NSC. A linear regression model was applied, after we captured 

the complex experimental and biological setup in a design matrix with nested covariates. As 

a result genes that are significant for the biological features were found. We used functional 

analysis to find enriched gene functions and pathways for the biological features. Using 

functional analysis, we were finally able to compare the growth factor and the combined 

dataset, which revealed a functional similarity between astrocytes treated with growth 

factors and astrocytes of post-natal six mice. 

 

Additionally the t-statistic calculated in the linear regression model of the combined dataset 

was corrected using gene network information. In the original method t-statistics were 

calculated with a paired t-test. Therefore we extended the original method technically using 

a t-statistic matrix with several cofactors instead of a single factor. Finally, we added gene 

networks to the calculation. As a result, while several genes were remained to have a 

significant coefficient (but the number of hits shrank), several genes became significant. The 

newly identified genes were indeed ranked higher, due to their connections to significant 

genes. The network of the significant genes showed a big and some small clusters for 

astrocytes. 

 

As we used several dependent biological factors for the linear regression, we finally 

suggested improving the t-statistics by adding information across the biological features, 

additional to the improvement across genes. Therefore we developed a few ideas like 

aggregation methods or extending the network with one node per gene. 

 

For the growth factor dataset we could not observe any relationship between astrocytes and 

NSC. In addition ‘SAF’ and ‘SAFE’ could hardly be separated indicating a low influence of EGF.  

In the combined dataset, we could identify a few similarities between astrocytes and NSC, 

especially for diencephalic astrocytes. Functional analysis showed similarities of ‘SAF’ and 

‘SAFE’ to ‘P6’ in biological processes. In the KEGG pathways regulations were similar 

between ‘P6’, ‘Adult’ and ‘NSC’. 
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In future it might be interesting to investigate “regression smoothing” further. Additionally a 

cross-analysis of different Affymetrix microarray platforms would be useful. In such a case it 

would be possible to make a direct comparison of the astrocytes treated with growth factors 

and the other astrocytes in the linear regression. Therefore characteristics of astrocytes 

could be detected more accurate. Additionally, the NSC from direct lines and neurospheres 

could be compared and a better comparison of astrocytes and NSC would be possible. 

Furthermore, NSCs and astrocytes of direct lines and cell cultures would be included in one 

dataset removing the need to add another dataset like the cells from the ESC line, which was 

done in this thesis. 
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6. Appendices  

ComBat: Design Matrix  

Sample 
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a1DIEC_1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

a1DIEC_2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

a1DIEC_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a1DIEC_7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

a1NSC_6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

a1NSC_9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

a1NSC_12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a1NSC_15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a2GFPm_10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

a2GFPm_33 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

a2GFPp_08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

a2GFPp_09 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

a2GFPp_35 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

a2WT_2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

a2WT_3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

a2WT_4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

eCAd4_1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

eCAd4_2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

eCAd4_3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

eCAd6_1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

eCAd6_2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

eCAd6_3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

eCAd8_1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

eCAd8_2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

eCAd8_3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

eNd7_2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

eNd7_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

eNd7_5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

eP14h_2b 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

eP14h_3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

eP14h_5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

p04h_83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

p04h_220 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

p04h_262 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

p04h_269 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

p24h_34 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

p24h_75 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

p24h_89 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

p24hdel_180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

p24hdel_193 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

p24hdel_200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

p48h_34 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

p48h_71 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Table 10: Design matrix for ComBat. Columns represent the covariates/coefficients and rows the samples. 
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Pearson correlation coefficient and Euclidean distances  

 

  

Fig. 37: Hierarchical clustering of the Pearson correlation coefficient of the samples of the  

growth-factor-dataset. 

Fig. 38: Hierarchical clustering of the Euclidean distances of the samples of the combined-dataset. 
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Volcanoplots & Scatterplots of combined Dataset 
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Fig. 39 : Volcano- and Scatterplots for biological factors of the combined-dataset. 
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MGSA – List of KEGG pathways for the growth factor dataset 

SAF SAFE 

Ribosome biogenesis in eukaryotes Spliceosome 

Spliceosome Ribosome biogenesis in eukaryotes 

p53 signaling pathway Steroid biosynthesis 

Steroid biosynthesis Cell cycle 

RNA transport p53 signaling pathway 

Cell cycle Citrate cycle (TCA cycle) 

Pyrimidine metabolism Osteoclast differentiation 

Terpenoid backbone biosynthesis Terpenoid backbone biosynthesis 

Citrate cycle (TCA cycle) Pancreatic cancer 

Aminoacyl-tRNA biosynthesis Focal adhesion 

Mismatch repair Arginine and proline metabolism 

RNA degradation Amyotrophic lateral sclerosis (ALS) 

Lysine degradation Glycosaminoglycan biosynthesis - chondroitin sulfate 

Other types of O-glycan biosynthesis Fc gamma R-mediated phagocytosis 

ECM-receptor interaction Leukocyte transendothelial migration 

Insulin signaling pathway Axon guidance 

One carbon pool by folate Insulin signaling pathway 

Notch signaling pathway RNA transport 

Pancreatic cancer ECM-receptor interaction 

Focal adhesion Wnt signaling pathway 

Sulfur metabolism RNA degradation 

  Mismatch repair 

  Salivary secretion 

  Notch signaling pathway 

  One carbon pool by folate 

  Pyrimidine metabolism 

  TGF-beta signaling pathway 

  Alzheimer's disease 

Table 11: KEGG pathways for features ‘SAF’ and ‘SAFE’ of the growth-factor-dataset  
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MGSA - GO-tables and KEGG-tables of the combined dataset 

aDIEC "estimate" "term" 

"GO:0044711" 0.9337274 single-organism biosynthetic process 

"GO:0044260" 0.918305 cellular macromolecule metabolic process 

"GO:0006996" 0.9174946 organelle organization 

"GO:0051234" 0.6127546 establishment of localization 
 

Adult "estimate" "term" 

"GO:0006996" 0.9214686 organelle organization 

"GO:0007268" 0.8876466 synaptic transmission 

"GO:0033036" 0.7746822 macromolecule localization 

"GO:0031175" 0.5411174 neuron projection development 
 

GFPp "estimate" "term" 

"GO:0016192" 0.8232686 vesicle-mediated transport 
 

NSC "estimate" "term" 

"GO:0006396" 0.9709584 RNA processing 

"GO:0046907" 0.6008218 intracellular transport 

"GO:0006996" 0.5268798 organelle organization 
 

CA4d "estimate" "term" 

"GO:0003002" 0.8394006 Regionalization 

"GO:0045664" 0.5560274 regulation of neuron differentiation 
 

Nd7 "estimate" "term" 

"GO:0048708" 0.8257066 astrocyte differentiation 

"GO:0001709" 0.73124 cell fate determination 
 

Past Plating "estimate" "term" 

"GO:0044712" 0.9853062 single-organism catabolic process 

"GO:0033554" 0.876392 cellular response to stress 

"GO:0007268" 0.7010686 synaptic transmission 

"GO:0022008" 0.6068308 Neurogenesis 

"GO:0007010" 0.590417 cytoskeleton organization 

"GO:0000278" 0.5223514 mitotic cell cycle 

"GO:0035556" 0.509544 intracellular signal transduction 
 

radialGlia "estimate" "term" 

"GO:0045165" 0.7262164 cell fate commitment 

Table 12: GO annotations for features of the combined-dataset. 
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aNSC Adult 

Spliceosome Spliceosome 

Protein processing in endoplasmic reticulum Ribosome biogenesis in eukaryotes 

Proteasome RNA transport 

RNA transport Cell cycle 

Cell cycle Tight junction 

mRNA surveillance pathway Proteasome 

Base excision repair Homologous recombination 

Ribosome biogenesis in eukaryotes Alanine, aspartate and glutamate metabolism 

Long-term potentiation Proximal tubule bicarbonate reclamation 

RNA degradation Base excision repair 

Basal transcription factors Long-term potentiation 

Gap junction Cysteine and methionine metabolism 

Nucleotide excision repair RNA polymerase 

Purine metabolism Basal transcription factors 

Cardiac muscle contraction RNA degradation 

Cysteine and methionine metabolism Mismatch repair 

 DNA replication 

 

GFPp radialGlia Neuron 

Glycosaminoglycan 

degradation 

Maturity onset diabetes of 

the young 

Proximal tubule bicarbonate 

reclamation 

  Synthesis and degradation of 

ketone bodies 

Pentose and glucuronate 

interconversions 

 

aDiec Lesion PastPl 

Ribosome Proximal tubule bicarbonate 

reclamation 

Axon guidance 

Oxidative phosphorylation Spliceosome Glutathione metabolism 

Spliceosome Protein export ECM-receptor interaction 

Protein processing in 

endoplasmic reticulum 

Proteasome Lysosome 

Proteasome Peroxisome Amino sugar and nucleotide 

sugar metabolism 

Basal transcription factors Pyruvate metabolism MAPK signaling pathway 

Long-term potentiation N-Glycan biosynthesis   

Renal cell carcinoma     

Table 13: KEGG pathways for features of the combined-dataset. 
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