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■ Abstract 
Type 1 diabetes (T1D) is a chronic autoimmune disease af-
fecting millions of people worldwide. The disease is charac-
terized by the loss of self-tolerance to the insulin-producing 
β-cells in the pancreas, the destruction of β-cells, and finally 
the development of chronic hyperglycemia at diagnosis of 
T1D. Its incidence and prevalence are rising dramatically, 
highlighting the need for immunotherapeutic strategies able 
to prevent or treat the disease in a safe and specific manner. 
Immunotherapeutic strategies are being developed, and aim 
to restore immunological self-tolerance, thereby limiting 
unwanted immunity and β-cell destruction. Foxp3+ regula-
tory T (Treg) cells exert essential functions to maintain and 
restore immunological self-tolerance. The identification of 

the transcription factor Foxp3 as the specification factor for 
the Treg cell lineage facilitated our understanding in the bi-
ology of Treg generation and function. This review high-
lights the current understanding of immunotherapeutic ap-
proaches as preventative and curative measures for autoim-
mune T1D. It includes an overview on early immunointer-
vention studies, which made use of general immunosup-
pressive agents such as cyclosporin A, followed by a discus-
sion on newly emerging clinical trials. Besides non-antigen-
specific therapies, particular attention is given to antigen-
specific generation of Foxp3+ Treg cells and their potential 
use to limit autoimmunity such as T1D. 
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Introduction 
 

 ype 1 diabetes (T1D) is a chronic autoim- 
 mune disorder characterized by specific im- 
 mune destruction of the insulin-producing 

pancreatic β-cells [1]. The inaccessibility of the 
human pancreas has led to relatively limited stud-
ies of its role in the biological mechanisms of T1D. 
Despite this limitation, several key studies have 
provided evidence for the infiltration of immune 
cells in the pancreatic islets (insulitis) before and 
at diagnosis of the disease [1]. Autoreactive T cells 
and other mononuclear cells infiltrate the islets 
initiating and maintaining insulitis, which ulti-
mately leads to β-cell death, diabetes, and a life-
long requirement for insulin therapy [1]. However, 

detailed understanding of the precise mechanisms 
dictating the immunological events that control 
autoimmune destruction is still missing and needs 
to be elucidated. 

The incidence of T1D is rapidly rising in chil-
dren, with a predicted 70% increase in incidence 
over the next 15 years in Europe. Furthermore, 
the age of onset is also decreasing, with a pre-
dicted doubling of cases in children under the age 
of 5 years during the same period, which high-
lights the dramatic impact of T1D on future public 
health. 

Despite refined treatment with insulin therapy, 
long-term complications, including nephropathy, 
retinopathy, neuropathy, and cardiovascular dis-
ease, can appear [2, 3]. It is believed that T1D de-
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velops as a result of genetic predisposition and un-
known environmental factors. Genetic susceptibil-
ity to T1D is largely conferred by the inheritance 
of the human leukocyte antigen (HLA) class II 
haplotypes of HLA-DR and HLA-DQ located 
within the major histocompatibility complex 
(MHC) on chromosome 6p21 [4]. Genome-wide as-
sociation studies (GWAS) have revealed that 25 
non-HLA-associated loci contribute additional risk 
to autoimmune T1D. The vast majority of these 
genes encode proteins that are involved in immune 
function and regulation [5, 6]. 

Recent longitudinal studies of a large cohort of 
monozygotic twins, initially discordant for T1D, 
demonstrated that 65% of twins ultimately develop 
T1D over a follow-up period of 43 years. These 
data support the suggestion that all identical 
twins will eventually become concordant providing 
they live sufficiently long [7]. The clinical defini-
tion of diabetes is determined by the appearance of 
glucose levels at which end-organ damage is 
known to occur. It does not account for the fact 
that the emergence of autoimmunity predates the 
diagnosis by several years [8]. 

The large number of identified genes supports 
the view that several signaling pathways are in-
volved in the development of autoimmunity, finally 
resulting in the loss of tolerance to pancreatic is-
lets in humans [9]. These findings have important 
implications for the development of immunomodu-
latory strategies for T1D. Since the disease is de-
pendent on the individual, not all approaches are 
equally effective in all subjects. The chronic auto-
immune process that usually precedes the devel-
opment of clinical T1D can be monitored by 
autoantibody responses. Autoantibodies per se are 
not directly pathogenic, but they represent bio-
markers for the development and status of the 
autoimmune disease [10]. It has been observed 
that individuals expressing specific autoantibodies 
reacting with 2 of 4 well-defined autoantigens (in-
sulin, glutamic acid decarboxylase (GAD65), insu-
linoma antigen (IA-2), and islet zinc transporter 
(ZnT8)) eventually progress to the development of 
T1D [6]. 

Insulin-specific antibodies may be detected in 
some children as young as 6-12 months of age and 
may predate the development of T1D by up to 10 
years [11]. The age of development of autoimmu-
nity in T1D is related to the burden of susceptibil-
ity genes, with individuals at high genetic risk de-
veloping autoimmunity before the age of 5 years 
[12]. In line with this view, it became clear that 
young children can progress rapidly, within 
months after the appearance of autoantibodies, to 
overt diabetes. In contrast, some children take 
more than a decade to develop the disease, with 
evidence of chronic beta-cell destruction preceding 
diabetes over years, as discussed above [6]. Several 
studies have indicated that the appearance of 
autoantibodies is acute, and during the prediabetic 
period different autoantibodies rise and fall, but 
usually more than two are expressed, sometimes 
for decades. Similarly, in the setting of the non-
obese diabetic (NOD) mouse model, the develop-
ment of insulin autoantibodies occurs at an early 
age of around 15 days after birth. However, the 
characterization of other autoantibodies has met 
with challenges when measured with highly spe-
cific assays [1]. Alternatively, the characterization 
of T-cell-mediated autoimmunity to multiple 
autoantigens is more advanced in the NOD mouse 
model than in human T1D. 

After the critical contribution of MHC in defin-
ing the risk of developing T1D, the second-most 
important locus determining T1D is the insulin 
gene. It has become evident that a polymorphism 
of a variable number tandem repeat (VNTR) 50 of 
the insulin gene, and not a variation in the insulin 

Abbreviations: 
 

AIDA - anti-interleukin-1 in diabetes action 
CsA - cyclosporin A 
CTLA4 - cytotoxic T lymphocyte antigen 4 
DPT - Diabetes Prevention Trial 
FoxP3 - forkhead box P3 protein (also known as scurfin) 
GAD65 - glutamic acid decarboxylase 65 
GWAS - genome-wide association studies 
HLA - human leukocyte antigen 
IAA - insulin autoantibody 
IA-2 - insulinoma antigen 
Ig - immunoglobulin 
IL-1β - interleukin-1β 
IMPDH - inosine monophosphate dehydrogenase 
IPEX - immunodysregulation, polyendocrinopathy, en-
teropathy, X-linked syndrome 
MHC - major histocompatibility complex 
MMF - mycophenolate mofetil 
MPA - mycophenolic acid 
mTOR - mammalian target of rapamycin 
NOD - non-obese diabetic 
OKT3 - orthoclone muromonab CD3 
PI3K - phosphatidylinositide 3-kinase 
Rag - recombination activating gene 
SCID - severe combined immunodeficiency (mouse model 
without functional T and B cells) 
T1D - type 1 diabetes 
TCR - T cell receptor 
TGFβ - transforming growth factor beta 
TNF - tumor necrosis factor 
Treg - regulatory T (cell) 
VNTR - variable number tandem repeat 
ZnT8 - zinc transporter 8 
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gene sequence itself, contributes to the risk of de-
veloping T1D. The long variant of the VNTR is as-
sociated with both greater insulin message intra-
thymically and protection from the development of 
T1D [13, 14]. Insulin autoantibodies are usually, 
but not always, the first autoantibodies to appear 
in young children developing T1D [15]. Insulin 
autoantibody levels were found to inversely corre-
late with the age at which diabetes develops [6]. 
When detected at first, insulin autoantibodies are 
of high affinity and highly predictive. Insulin 
works as a critical target of both B cells and T cells 
in human T1D and in NOD mice [16-18]. In line 
with this observation, mice which express a mu-
tant insulin gene product not recognized by T cells 
do not develop the disease [19]. In the context of 
human T1D, the extent of intrathymic insulin ex-
pression has been linked to the incidence of diabe-
tes [13]. In mice and humans, the T cell response 
to insulin is highly focused on a segment of the B-
chain encompassing residues 9-23 [16-18], and the 
human epitope is identical to that of the murine 
insulin. 

It has been shown that the removal of insulin 1, 
which is mainly expressed in the islets, is associ-
ated with a blockade of disease progression [20]. 
Conversely, removal of the insulin 2 gene greatly 
promotes disease progression, most likely because 
of a deficiency in thymic insulin expression and 
subsequent loss of central tolerance [20-22]. Fi-
nally, retroviral introduction of T cell receptor 
(TCR) genes from insulin-reactive CD4+ T cells into 
SCID NOD mice is sufficient to support the devel-
opment of insulin autoimmunity in a significant 
proportion of mice [23]. 

Based on considerable evidence for the impor-
tance of insulin as an autoantigen in NOD and 
human T1D, and combined with the fact that in 
humans T1D incidence is rising dramatically, es-
pecially in young children, intensive efforts have 
been made to develop self-antigen-specific (e.g. in-
sulin-specific) immunotherapies, with the ultimate 
goal of achieving a safe and specific prevention of 
T1D. Indeed, some advances have been made in 
the development of self-antigen-specific immuno-
therapy. However, translating these strategies 
from bench to bedside has met with challenges. 
Also, the success of clinical trials using natural 
self-antigens for induction of self-tolerance, e.g. 
natural insulin in T1D, has been limited. Thus far, 
three trials of secondary immunoprevention in 
T1D using whole insulin have been completed: 

 
1. DPT-1 (oral [24] and parental [25]) 

2. Intranasal Insulin Trial I [26] 
3. Intranasal Insulin for Prevention of T1D 

trial [27] 
 
These studies using oral or intranasal insulin 

therapy in humans have had either no or limited 
clinical benefit in human T1D [28, 29]. Subsequent 
subgroup analysis of data from the DPT-1 trial 
supported the hypothesis that patients with high 
insulin-specific antibody titres who received oral 
insulin had a delay in progression to T1D [24]. The 
beneficial side-effect profile of oral and inhaled in-
sulin in secondary immuneprevention trials has 
led to the establishment of a Phase I trial (named 
Pre-POINT) to assess the effects of mucosal insu-
lin therapy for primary immunoprevention [30]. 

However, thus far the applied immunomodula-
tory approaches did not address the question of 
whether the choice of antigen, the time point and 
route of administration were suitable to induce 
tolerance in the respective population at risk of 
developing T1D. Furthermore, no specific protocols 
for the conversion of naïve T cells into Foxp3-
expressing regulatory T (Treg) cells have been ex-
plored. Therefore, it has been proposed that dis-
ease state, antigen dose, route of administration, 
study cohort, and the choice of antigen, e.g. insulin 
vs. insulin B chain peptides, work as critical pa-
rameters in inducing tolerance [28, 29]. Moreover, 
an improved understanding of the requisites for an 
efficient induction of human self-antigen-specific 
Foxp3+ Treg cells in an autoimmune setting such 
as T1D is needed. 

When developing a novel T1D immunothera-
peutic approach, it must build on known ap-
proaches for manipulating autoimmune mecha-
nisms to devise novel therapeutic strategies that 
address these unmet medical requirements, as out-
lined above. In the context of the young patient 
population increasingly affected by T1D, the chal-
lenge is to achieve clinical efficacy in the absence 
of chronic immunosuppression to avoid compromis-
ing the host’s defense against infections and tu-
mors. Ultimately, the scientific efforts should re-
sult in a range of immunotherapeutic options that 
combine short-term β-cell preservation with long-
term modulation of autoimmunity by the restora-
tion of immunological self-tolerance. As in other 
immune-mediated diseases, it is unlikely that a 
single treatment will be effective in all patients. 
Biomarkers indicating clinical and immunologic 
efficacy will be required, along with the identifica-
tion of combinatorial approaches that can guide 
immunotherapy for individual patients. In the 
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present review, we discuss the requisites and op-
portunities for immunotherapeutic strategies to 
interfere with autoimmunity such as T1D, with 
particular emphasis on the generation of self-
antigen specific Foxp3+ Treg cells. 

Non-antigen-specific immunomodula-
tive approaches 

Based on the autoimmune etiology of T1D, 
early intervention strategies employed the use of 
immunosuppressive agents to interfere with the 
development of an autoreactive immune response. 
Some of these approaches were successful in in-
ducing and prolonging clinical remission. However, 
protective effects were lost upon drug removal 
since their effect relied on general immunosup-
pression and was not based on long-term induction 
of tolerance. Moreover, the application of these 
drugs was frequently accompanied by deleterious 
side effects, limiting their broad application for 
prolonged time periods. 

Cyclosporin A 

One of the earliest compounds applied as an 
immunosuppressing agent in patients with T1D 
was cyclosporin A (CsA). CsA is an 11-amino acid 
cyclic peptide of fungal origin with a strong immu-
nosuppressive capacity. It is a calcineurin inhibi-
tor that interferes with TCR-mediated signal 
transduction, thereby inhibiting T cell activation, 
and the production of interleukin 2 (IL-2) by T 
cells, which is then able to limit the amplification 
of immune responses [31]. In T1D, CsA provided 
the first proof of concept that T-cell-directed im-
munosuppression was capable of preserving β-cell 
function and insulin production. Based on results 
from pilot studies [32, 33], two randomized phase 
II placebo-controlled studies were conducted [34, 
35]. Based on these studies, it was concluded that 
treatment with CsA had no long-lasting effect on 
the course of T1D, persisting upon removal of com-
pound administration [34, 36]. The need for 
chronic drug administration, the potential renal 
and pancreatic β-cell toxicity, and the cost for the 
drug led to the consensus that the risks out-
weighed the benefits, and the approach was 
dropped. 

Mycophenolate mofetil 

Mycophenolate mofetil (MMF) is an immuno-
suppressive drug which has been applied in the 

context of organ allograft rejection. It became clear 
that MMF possesses significant cytostatic effects 
on lymphocytes [37]. MMF functions as a pro-drug 
of mycophenolic acid (MPA), which is an inhibitor 
of inosine monophosphate dehydrogenase 
(IMPDH). IMPDH is the rate-limiting enzyme in 
the de novo synthesis of guanosine nucleotides, 
thereby playing a critical role in controlling the 
proliferation of T and B cells [38]. However, de-
spite its efficacy in organ transplantation, a com-
bination of MMF and a monoclonal antibody (da-
clizumab) targeting CD25, the alpha chain of the 
IL-2 receptor, which is widely used in transplanta-
tion [39], did not preserve β-cell function in newly 
diagnosed patients with T1D [40]. Also, there was 
no decrease in insulin requirement or improve-
ment in metabolic control. One-third of patients 
treated with the combination of daclizumab and 
MMF suffered from serious adverse events. Al-
though negative, these data are relevant as they 
highlight that it is not just any immunosuppres-
sive regimen that can effectively treat T1D. The 
failure may be explained by the consideration that, 
by targeting CD4+CD25+ regulatory T cells (Tregs), 
daclizumab removes a cell subset from the im-
mune system that plays an essential role in the 
maintenance of self-tolerance in T1D [41, 42]. 

Anti-CD20: rituximab 

Rituximab is a chimeric antibody that targets 
the CD20 transmembrane receptor, which is ex-
pressed on all immature and mature B cells. Ini-
tially, rituximab was used for the treatment of 
non-Hodgkin’s B cell lymphoma [43]. With respect 
to autoimmunity, rituximab has been combined 
with anti-proliferative agents to treat systemic lu-
pus erythematosis and rheumatoid arthritis. How-
ever, these studies showed that both diseases pre-
sent with relapses upon withdrawal of drug appli-
cation. This result supports the concept that the 
effects are immunosuppressive but do not induce 
long-term tolerance [44, 45]. 

In a phase II clinical trial, rituximab was tested 
in patients with recent onset T1D. It became clear 
from these experiments that the treatment effect 
of rituximab was most prevalent within the first 3 
months of application. Over this time period, the 
treatment was able to reduce the loss of C-peptide 
and insulin requirements. Later on, analyses re-
vealed that the effects on C-peptide responses did 
not prevail. There was no statistically significant 
difference between patients that had received ri-
tuximab and the placebo-treated groups [46]. 
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Cytotoxic T-lymphocyte-associated protein 4 
immunoglobulin (CTLA4-Ig): abatacept and 
belatacept 

CTLA4-Ig is a fusion protein consisting of the 
extracellular domain of CTLA4 and the Fc domain 
of an IgG1 antibody [47, 48]. It is well established 
that CTLA4 is expressed by activated CD8+ T cells. 
However, CTLA4 exerts its main function as a 
negative costimulatory molecule leading to the in-
hibition of helper T cell activity and enhancement 
of Treg immunosuppression. Its ligands comprise 
CD80 and CD86, which bind to CD28, thereby de-
livering the costimulatory signal needed for T cell 
activation. Moreover, CTLA4 is a target gene of 
Foxp3. It was shown that a Treg-cell-specific 
CTLA4 knockout or blockade is able to inhibit the 
ability of Tregs to control autoimmune reactions 
and anti-tumor immunity. 

In the NOD mouse model of T1D, the applica-
tion of CTLA-Ig showed conflicting results with re-
spect to the progression of diabetes, while in some 
settings the administration of murine CTLA4-Ig 
worsened the development of diabetes [49-51]. In 
humans, CTLA4-Ig (abatacept) has been success-
fully used to treat psoriasis and rheumatoid ar-
thritis [51]. In rheumatoid arthritis, a combined 
application of abatacept and methotrexate was ap-
propriate to treat patients who did not respond to 
anti-tumor necrosis factor (TNF) agents. Abata-
cept has no tolerogenic characteristics and 
monthly infusions are sufficient to maintain im-
munosuppressive properties [53-56]. Application of 
abatacept was tested in a multicenter, double-
blind, randomized controlled trial with recent on-
set diabetes patients. The drug was applied at 
doses of 10 mg/kg on days 1, 14, and 28, followed 
by monthly injections for a total of two years [57]. 
Abatacept treatment resulted in an estimated de-
lay in C-peptide reduction of about 10 months. A 
longer follow-up is necessary to determine whether 
there is a persisting treatment effect maintained 
after cessation of application. 

Anti-TNF therapy 

Anti-TNF therapy has been established for the 
treatment of chronic pro-inflammatory autoim-
mune diseases such as rheumatoid arthritis and 
Crohn’s disease. In NOD mice, the effect of TNF 
blockade varies depending on the age at which 
treatment is applied. The development of autore-
active T cells was demonstrated to be modulated 
by TNF treatment, suggesting an effect on the de-
velopment of the intrathymic autoimmune reper-

toire [58-60]. However, the critical factors, which 
delineated the timing of the TNF effects, are far 
from being understood in detail. Therefore, trans-
lation of these findings to the clinic remains a 
challenge. 

Treatment with a soluble recombinant TNF re-
ceptor fusion protein that binds TNF (etanercept) 
did not prevent T1D in humans [61, 62]. In a dou-
ble-blind, placebo-controlled pilot study, 18 chil-
dren with new-onset T1D were included and pa-
tients received placebo or etanercept twice a week 
[63]. After 24 weeks, a clear reduction in the re-
quired insulin dose could be observed in the 
etanercept group. No serious adverse effects were 
seen in this group. Further studies in a larger set 
are required to confirm this promising result. 

Anti-interleukin-1 (IL-1) therapy: anakinra 

Anti-IL-1 therapy has primarily been used for 
the treatment of rheumatoid arthritis [64]. Results 
from studies using models of T1D support the con-
cept that anakinra exerted direct protective effects 
on β-cells, rather than on insulin resistance, which 
led to the observed improvement in metabolic con-
trol [65]. The improvement in C-peptide responses 
persisted for up to 39 weeks after cessation of 
treatment [66]. It is hypothesized that the positive 
effects from anakinra result from the blockade of 
pro-inflammatory signals from immune cells and 
islet cells, thereby limiting the IL-1β-mediated in-
duction of β-cell death. 

Preliminary studies in NOD mice suggest that 
anti-IL-1 application is able to lower the incidence 
of T1D. Results from IL-1 receptor (IL-1R) defi-
cient NOD mice showed a delay, but not protec-
tion, from T1D development. This observation 
supports the view that anakinra will probably not 
be sufficient as a single agent to achieve full 
treatment success [67]. The anti-interleukin-1 in 
diabetes action (AIDA) study is about to test feasi-
bility, safety, and efficacy of anti-IL-1 therapy in 
maintaining and/or enhancing β-cell function in 
people with new-onset T1D [68]. 

Canakinumab (anti-interleukin-1β) 

Canakinumab is a fully human anti-
interleukin-1β (anti-IL-1β) monoclonal antibody 
(IgG-1 class). Canakinumab is designed to bind to 
human IL-1β resulting in the functional neutrali-
zation of this proinflammatory cytokine. In a re-
cent trial, repeated injections of canakinumab 
were assessed for their ability to preserve β-cell 
function in patients with recent onset T1D. 
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Anti-CD3 therapy: teplizumab and otelizumab 

Studies in mouse models of T1D were suppor-
tive of the concept that the application of CD3-
specific mAbs is able to promote tolerance induc-
tion to β-cell antigens in the pancreas [69]. OKT3, 
also called muromonab-CD3, was the first genera-
tion of antibodies developed for the prevention of 
solid organ transplant rejection [70, 71]. However, 
its application was associated with a severe cyto-
kine release syndrome, which resulted from 
crosslinking and activation of T cell receptors by 
the binding of the murine antibody Fc portion to 
Fc receptors on human cells [72]. To limit the side 
effects caused by the mitogenic potential of mAbs, 
humanized CD3-specific Fc mutated mAbs were 
developed. Teplizumab, also called hOKT3γl, a 
FcR-non-binding, and otelixizumab (chAglyCD3), 
an aglycosylated FcR non-binding CD3-specific Ab, 
were tested in clinical trials on patients with re-
cent-onset T1D. They demonstrated significantly 
reduced side-effects [73, 74]. Based on preclinical 
studies in the NOD mouse setting, two phase II 
trials―one of which was placebo controlled―were 
performed and showed a clear effect, with best 
success seen in patients with higher functional β-
cell mass before the start of otelixizumab treat-
ment [75-77]. Following up on these findings, 
phase III clinical trials (otelixumab, tolerx, 
GlaxoSmithKline trial, and teplizumab, Macro-
Genics/Eli Lilly trial) were performed. However, 
the design of these studies differed significantly 
from those of the completed phase II clinical trials. 
Both studies failed to meet their primary end point 
at 1 year. Importantly, when a post-hoc analysis of 
the data of the teplizumab study was performed, 
using the conventional end points by previous 
studies (C-peptide production and insulin needs), a 
clear treatment effect became apparent [78]. 

Self-antigen-specific immunomodula-
tive strategies 

Foxp3+ regulatory T (Treg) cells 

Proper functioning of the immune system im-
plies a tightly balanced regulation of effector 
mechanisms to avoid immune pathologies and 
autoimmunity. A variety of control mechanisms 
have been identified, including negative feedback 
circuits, which impact on activation, survival, or 
functioning of effector cells [79-82]. Treg cells, 
which can suppress self-reactive responses, are a 
vital and essential component in the maintenance 
of immunological self-tolerance [83, 84]. Early 

studies identified Treg cells as CD4+CD25+ T cells 
[85]. The identification of the X-chromosome-
encoded transcription factor Foxp3 permitted a 
clearer understanding of Treg cell biology [86-88]. 
The pivotal impact of Foxp3+ Treg cells in the 
maintenance of immunological self-tolerance was 
further highlighted by the fatal autoimmune syn-
drome found in patients with immunodysregula-
tion, polyendocrinopathy, enteropathy, X-linked 
(IPEX) syndrome, which develops in humans har-
boring mutations of the Foxp3 gene [89]. Likewise, 
scurfy mice, which lack a functional Foxp3+ protein 
because of a natural mutation, suffer from various 
spontaneous and early-onset organ-specific auto-
immune diseases due to hyperactivation of CD4+ T 
cells [90]. It became clear from Treg adoptive 
transfer experiments in scurfy mice that Treg cells 
are essential in the avoidance of autoimmunity in 
mice. Moreover, enforced continuous expression of 
Foxp3 in conventional CD4+ T cells was able to 
confer a phenotype and function resembling Treg 
cells. In turn, conditional deletion of the Foxp3 
gene reprograms Treg cells into pathogenic T cells 
[91, 92]. These results supported the view that 
Foxp3 functions as a specific marker of Treg cells, 
and acts as their lineage specification factor or 
master regulator. 

Extrathymic differentiation of Foxp3 express-
ing Treg cells 

Recognition of agonist TCR ligand works as a 
key element for the initiation of Treg cell genera-
tion, a developmental program which can run in-
tra- [93, 94] or extrathymically [95-100]. Studies 
on extrathymic Treg cell generation in the periph-
eral adult immune system can have an important 
therapeutic potential. Our group has carefully es-
tablished protocols for antigen-specific Treg con-
version. It became clear that extrathymic conver-
sion of naïve CD4+ T cells into Foxp3+-expressing 
Treg cells can be achieved in vivo by the delivery of 
strong-agonist TCR ligands under subimmuno-
genic conditions [95-100] (Figure 1). The concept of 
de novo induction of Foxp3+ Treg cells, rather than 
the expansion of already committed Treg cells, was 
further supported by the fact that Foxp3+ Tregs 
were absent in Rag-/- TCR-transgenic animals ex-
pressing only one particular TCR in the absence of 
a co-expressed TCR-agonist ligand. Cellular prolif-
eration was found to function as a limiting factor 
for Treg conversion since the best conversion is 
seen in T cells that undergo only limited prolifera-
tion. Whereas, higher doses of TCR agonists in-
duce robust proliferation and diminished conver-



 

74  The Review of DIABETIC STUDIES Weigmann et al. 
  Vol. 9 ⋅ No. 2-3 ⋅ 2012 

 

Rev Diabet Stud (2012) 9:68-81  Copyright © by Lab & Life Press/SBDR 

sion into Treg cells [99]. 
Recent data support the 
concept that such high 
doses of TCR ligands re-
sult in an activation of 
the PI3K/Akt/mTOR 
pathway [101], which 
could interfere with ex-
trathymic Foxp3 induc-
tion [102]. Early block-
ade of PI3K signaling 
through the use of PI3K-
mTOR inhibitors was 
found to promote Treg 
cell induction in vitro 
[98, 103] and in vivo 
[98]. In accordance with 
this concept, sustained 
Akt activation inhibited 
the stable induction of 
Foxp3 in peripheral 
Foxp3-CD4+ T cells [104]. 

The induction of 
Foxp3 upon subimmuno-
genic antigen exposure 
in vivo requires TGFβ receptor signaling and is in-
versely correlated with cellular proliferation, as 
mentioned above [99]. Extrathymically induced 
Foxp3+ Treg cells can prospectively be generated 
for suppression of unwanted immune responses 
since it has become clear that they are stable and 
independent of further antigen supply used to gen-
erate these cells [105, 106]. Recent studies support 
the concept that the extrathymically induced 
Foxp3+ Treg cells are stable upon subimmunogenic 
antigen delivery [106], and maintain their function 
even in an immunogenic context [107]. Re-
encounter of antigen under immunogenic condi-
tions does not cause loss of Treg cells or loss of 
their activity [105], but permits the expansion of 
Treg cells [99]. 

Extrathymic induction of Treg cells in auto-
immune T1D 

In models unrelated to autoimmune disease, it 
was demonstrated that naïve CD4+ T cells can be 
extrathymically converted into Foxp3+ Treg cells in 
vivo if they are exposed to strong-agonistic anti-
gens under subimmunogenic conditions [94-99]. 
Such extrathymic Treg cell induction strategies 
were used to prospectively generate transplanta-
tion tolerance in female mice to various male tis-
sues [100]. However, initial studies investigating 

the feasibility of prospective extrathymic Foxp3 
Treg generation in the prevention of the develop-
ment of T1D by subimmunogenic delivery of natu-
ral insulin B chain epitopes in the NOD mouse 
showed only a short delay of disease progression. 

As a possible scenario, it is believed that T1D 
and other autoimmune diseases develop when T 
cells with specificity for weakly binding TCR ago-
nists, which may include self-antigens, escape 
thymic negative selection and evade into the pe-
riphery where they cause an autoreactive process 
[96, 108-112]. Specific modes of presentation and 
recognition have been proposed for certain self-
antigens in the course of autoimmunity [108-116]. 
Also, higher epitope abundance in the respective 
organ (e.g. pancreatic islets) and local differences 
in peptide processing/truncating and/or presenta-
tion could possibly facilitate the activation of these 
self-reactive T cells in the periphery [114, 118]. 

It became clear from various studies that in 
autoimmune T1D insulin has a critical role as a 
self-antigen [19, 119]. As discussed above, in mice 
and humans, the T cell response to insulin is fo-
cused on the B-chain residues 9-23. In NOD mice, 
characterizing the relevant epitope(s) for the T 
cells within the insulin B:9-23 peptide has been a 
challenge. This difficulty underlines the signifi-
cance of the concept that the insulin B-chain pep-
tide may bind to the murine MHC class II mole-

Strong-agonistic
ligand

T cell receptor

Naive CD4+ T cell

MHC class II
molecule

Dendritic cell

subimmunogenic
TCR stimulation 

CD4+CD25+Foxp3+

regulatory T cell

immunogenic
TCR stimulation 

Treg-conversion Treg-expansion

CD4+CD25+Foxp3+

regulatory T cells
 

Figure 1. Generation of extrathymic regulatory T (Treg) cells. Efficient in vivo genera-
tion of Foxp3+ Treg cells in the mouse system requires delivery of strong-agonistic T cell 
receptor (TCR)-ligands under subimmunogenic conditions and avoidance of activation 
of antigen-presenting and T cells. Immunogenic antigen stimulation is able to expand 
Treg cells once converted. 
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cule I-Ag7, and may be recognized by T cells in sev-
eral overlapping binding registers [17, 113, 114, 
120-122]. 

In a model proposed by John Kappler, the insu-
lin B chain peptide was presented by I-Ag7 mole-
cules in an unfavored low-affinity binding register, 
which resulted in weak agonistic activity of the 
peptide-MHC complex. The poor binding to I-Ag7 
molecules was the result of an incompatibility be-
tween the p9 amino acid of the insulin epitope (ar-
ginine = R) and the particular I-Ag7 p9 pocket 
polymorphisms, which are highly linked with sus-
ceptibility to T1D [113, 114]. In this unfavored 
binding register, an arginine residue (=R) of the 
insulin epitope met another arginine (=R) in the 
positively charged p9 pocket of I-Ag7, thereby gen-
erating a highly unfavorable match [113, 114, 123, 
124]. While these data represent a compelling 
model, it is challenged by other investigators who 
propose that binding of the insulin epitope to I-Ag7 

largely takes place in 
other low-affinity regis-
ters [122]. 

In human T1D, the 
susceptibility MHC class 
II allele, HLA-DQ8, 
shares very similar bind-
ing pockets for peptide 
presentation with the 
homologous molecule in 
NOD mice, I-Ag7 [125]. 
The unique feature, 
which confers disease 
susceptibility in NOD 
mice, was equally identi-
fied in the peptide bind-
ing groove of human 
HLA-DQ8. It became 
clear that the polymor-
phism, which affects the 
presentation of insulin in 
NOD mice, i.e. the lack of 
one specific amino acid in 
the B chain of the MHC 
molecule, was identical in 
human HLA-DQ8 and I-
Ag7 of NOD mice [123, 
125]. Therefore, both may 
exhibit similar peptide 
binding interactions and 
similar modes of antigen 
presentation. 

We showed that upon 
subimmunogenic applica-
tion of a strong-agonistic 

insulin B-chain variant to young NOD mice, effi-
cient insulin-specific conversion of naïve T cells 
into Foxp3+ Treg cells could be achieved. This ap-
proach has the ability to prevent the development 
of T1D [97]. In contrast to the natural insulin epi-
tope, subimmunogenic Treg conversion with the 
strong-agonist mimetope resulted in high numbers 
of stable Foxp3+ Treg cells. These findings are sup-
portive of the concept that low doses of strong-
agonistic antigens are able to induce stable Foxp3+ 
Treg cells with high efficacy. Whereas, even high 
doses of poorly agonistic ligands fail to generate 
stable Foxp3+ Treg cells. These results indicate 
that ligand density cannot compensate for dimin-
ished agonistic activity in determining the efficacy 
and stability of induced Foxp3+ Treg cells [97, 126]. 

We studied the development of diabetes in NOD 
mice as a function of insulin autoantibody (IAA) 
indices at a young age before Treg-induction. We 
observed that autoantibody indices present in mice 

 

Generation of Treg cells: 

•  Subimmunogenic application of 
self-antigens 

•  Strong-agonistic variants of critical 
self-antigens 

•  TGF-beta 

•  Inhibitors of the PI3K/Akt/mTOR 
pathway 

Suppressive function of Treg cells: 

•  Compounds such as FTY-720 
(fingolimod) 

•  miRNAs (e.g. miRNA-155, 146a) 

Expansion of Treg cells: 

•  Cytokines (e.g. low-dose IL-2) 

•  IL-2/IL-2ab complexes (JES6-1) 

•  Immunogenic TCR stimulation 

Survival/stability of Treg cells: 

•  PI3K/Akt/mTOR inhibitors 

•  DNA methyltransferase inhibitors 

 
 
Figure 2. Approaches for the targeting of regulatory Foxp3+ CD4+ (Treg) cells. Stud-
ies in various model systems have helped to develop strategies suitable for the effi-
cient manipulation of Foxp3+ Treg cells. To achieve efficient Foxp3+ Treg cell genera-
tion subimmunogenic application of antigens, e.g. strong-agonistic variants of self-
antigens, is required. Enhancement of Treg induction can be achieved using trans-
forming growth factor beta (TGF-beta), inhibitors of the phosphoinositide 3-kinase 
(PI3K)-Akt-mTOR pathways [98], or microRNAs [127]. Low doses of interleukin 2 (IL-
2) [128, 129], specific IL-2/IL-2 antibody complexes, and immunogenic stimulation 
with antigen were found to help the expansion of Treg cells [98, 130]. Strategies for 
an increase of Treg cell suppressive function might be supported by the use of com-
pounds such as fingolimod (FTY720) [131-134]. Additionally, an improvement in 
Treg cell survival and stability can be supported by PI3K-Akt/mTOR-inhibitors or by 
the use of DNA methyltransferase inhibitors [98]. 
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at 4 weeks of age impact the development of T1D 
in these mice. A correlation became apparent in 
that mice with higher IAA indices developed T1D 
earlier. We showed that the natural insulin B 
chain epitope conferred only limited protection 
from T1D development irrespective of the applied 
dose. In contrast, application of subimmunogenic 
doses of the strong-agonistic insulin variant in 
NOD mice with moderate levels of IAA prevented 
T1D. In NOD mice with high IAA indices at a 
young age of 4 weeks, Treg generation using the 
insulin variant was not able to achieve complete 
prevention of disease development. These data 
support the view that NOD mice at an age of 4 
weeks and with very high indices of IAA show in-
sulin-specific T cell activation, which consequently 
impairs efficient Treg conversion [97]. 

Concluding remarks 
In autoimmunity such as T1D, it became evi-

dent that efficient induction of insulin-specific 
Foxp3+ Treg cells can be accomplished when 
strong-agonistic variants of insulin B chain epi-
topes are used under subimmunogenic conditions. 
The development of humanized mice models for 
the careful study of immunotherapeutic ap-
proaches in vivo will facilitate our understanding 

of these approaches in the presence of a human 
immune system. Based on the mechanistic insight 
that high doses of antigens promote cell prolifera-
tion and activation, it appears reasonable to de-
velop approaches which are able to inhibit T cell 
activation. These approaches can also be combined 
with antigen-specific interventions for long-term 
tolerance induction. Such efforts could result in 
combinatorial strategy able to limit factors that 
interfere with the efficient generation of Foxp3+ 
Treg cells, while maintaining antigen-specificity. 

An overview on general approaches for the en-
visioned targeting of Foxp3+ Treg cells is provided 
in Figure 2. Future studies will continue to im-
prove our understanding of the involved molecular 
mechanisms of tolerance induction, with the goal 
to increase specificity and efficacy of therapies. 
This will be necessary to meet the complexity of 
the human immune system. 
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