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CHAPTER I

Thesis overview

In this initial chapter I provide a general overview of my doctoral dissertation as it is  

presented  throughout  this  manuscript.  I  talk  about  the  motives  behind  my  research 

interests and describe how they develop into concise scientific objectives over the course 

of my work. 

1.1 Background and motivation

Today's progress in Natural Science comes with an exponential increase in the production 

of experimental data. Consequently, there is a growing need to adapt and develop new 

computational and quantitative techniques to deal with this data in a meaningful manner. 

Machine Learning is a modern sub-field of Computer Science which combines elements 

from  applicable  mathematics,  computational  statistics,  and  decision-making.  Such  a 

quantitative discipline with powerful  computational techniques and the ability to deal 

with large amounts of digital information is an ideal tool for the “Big Data” era that Life 

Sciences have entered in the recent years. Biogeochemical studies and metabolomics are 

no exception to the Big Data phenomenon, and along with continuous progress in mass 

spectrometry instrumentation comes a steady increase in the production of complex data 

of  high  computational  demands.  High-field  Fourier  transform  ion  cyclotron  mass 

spectrometry  (ICR-FT-MS)  is  a  modern  analytical  technique  with  applications  on 

important areas of biogeochemical research, such as natural organic matter (NOM) and 
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metabolomics. One critical bottleneck in ICR-FT-MS analyses concerns the quantitative 

processing  and meaningful  visual  display  of  extremely  large  datasets.  In  the  case  of 

natural organic matter, ICR-FT-MS is the key technique to deduce molecular formulae 

from different terrestrial environments such as soils, sediments, fresh and marine waters, 

atmospheric aerosols as well as extraterrestrial NOM. Ultra-high resolution and excellent 

mass accuracy are two characteristics of ICR-FT-MS that materialise the distinction of 

more  than  tens  of  thousands  of  ions  and  several  thousands  of  assigned  molecular 

compositions directly out of complex mixtures. A precise molecular description of NOM, 

based  on  their  carbon,  hydrogen,  oxygen and  heteroatom (e.g.  nitrogen,  sulphur  and 

phosphorus)  -bearing  formulae,  facilitates  the  understanding  of  environmental 

biogeochemical processes. The elementary formula annotation of those exact masses is 

one of the most challenging tasks at hand, albeit efficient computational means are yet to 

be discovered. In addition, information-rich, structure-dependent visualisation schemes 

are  indispensable  for  any  significant  mass-spectrometric  analysis  of  NOM and  other 

complex organic mixtures. In the case of metabolomics, ICR-FT-MS produces datasets 

comparable  in  size  and complexity to  those of DNA microarrays.  The bottleneck for 

quantitative analysis of such vast datasets lies on the efficient classification of samples 

into  regions  of  varying  biological  significance  and  the  identification  of  masses 

discriminant to different metabolic states. The scopes of the two biochemical orientations 

(bio-  and  geo-)  are  inevitably  overlapping.  Efficient  elementary  formula  calculation 

algorithms can be used for annotating metabolite masses, while biological classification 

and machine learning techniques can be applied on NOM samples. Mass spectrometry 

has only recently entered the world of -omics and, consequently, bioinformatics research 

on the topic is still  at  an early stage, albeit the lack of specialised computational and 

quantitative techniques is particularly evident in the case of ICR-FT-MS data analytics.  

My academic background is in Operational Research and Machine Learning; therefore, it 

has been my objective in this thesis to combine elements from these two disciplines in 

order  to  produce  quantitative  methods  and  tools  adapted  for  mass  spectrometry  data 

mining.  In  this  work,  I  propose  a  novel  computational  methodology  to  address  the 

requirements of ICR-FT-MS data analysis more effectively. My methodology involves 
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mathematical models and algorithms adapted for the quantitative needs of two distinct yet  

related scopes of biogeochemical research: natural organic matter and metabolomics. I 

treat  the  two scopes  individually,  first  by  developing the  theoretical  frameworks and 

producing experimental results for each of them separately, then by deriving a unified 

framework through the merge of scopes and models together. The first scenario involves 

a graph-theoretical treatment of ICR-FT-MS data for the elementary formula calculation 

of  exact  masses  by  implementing  a  biochemical  network  reconstruction  that  offers 

significant advantages over conventional probabilistic annotation approaches. The second 

scenario  introduces  a  quantitative  framework  involving  complex  combinatorial 

optimisation  problem-solving for  the  purposes of  supervised  classification,  clustering, 

and other machine learning techniques contributing to discriminant signal identification.

The objectives of this thesis are the following:

(i) Using the ICR-FT-MS exact mass information of a single sampled m/z spectrum: 

To develop and standardise an efficient inference algorithm for the purpose of elementary 

formula  calculation  on  an  enhanced  graph-theoretical  model  of  biochemical  network 

reconstruction.  Depending on the nature of the dataset and the parametrisation of the 

search, results of varying efficiency can be attained. The results of our method are always 

expected to be superior to those of conventional approaches. We divide our reconstructed 

structural mass difference graphs into compositional and functional networks and refer to 

the elementary formula calculation algorithm as Netcalc (chapter III).

(ii) Using  the  ICR-FT-MS  intensity information  of  a  set  of  sampled  spectra:  To 

develop a theoretical framework which aims to unify and address the principal questions 

of non-targeted Metabolomics data analysis. The framework is based on the modelling of 

a biological scenario into an Operational Research problem, which can be treated using 

discrete mathematical optimisation and solved via metaheuristic search. As the approach 

mixes combinatorial optimisation with machine learning, I refer to it as  combinatorial  

learning.  The  first  application  of  the  framework  applies  combinatorial  learning  on 

metabolite masses and I refer to it as metabolic optimisation (chapters IV and V).

(iii) Combining the scopes of (i)  and (ii):  To propose a novel biological parameter 

which may additionally characterise a ICR-FT-MS dataset, based on the graph-theoretical 

model  of  (i).  A new  adapted  optimisation  model  is  created  by  merging  the  graph-
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theoretical scope of (i) with the optimisation framework of (ii). This application of the 

framework  of  (ii)  applies  combinatorial  learning  on  the  structural  mass  difference 

networks of (i) and I refer to it as mass difference optimisation (chapter VI).

(iv) To develop  the  software  tools  (source  code)  required  to  materialise,  test,  and 

produce results from the described theoretical models.

1.2 Structural mass difference network and the Netcalc method

In  a  mass  difference  network,  exact  masses  are  represented  by  nodes  and  chemical 

transformations by the edges existing between those nodes. Breitling et al.[1] introduces 

and  successfully  applies  the  concept  of  mass  difference  network  reconstruction  on 

unbiased mass spectrometric data. In this thesis we extend the approach by using exact 

masses of higher precision provided by our 12 Tesla ICR-FT-MS instrumentation. We 

define the rules for  compositional  and  functional  network reconstruction as well as an 

enhanced graph visualisation scheme equivalent  to  Van Krevelen diagrams.  I  refer  to 

those  networks  collectively  as  structural  mass  difference  networks  or  just  structural  

networks. In addition, we introduce the Netcalc algorithm for the efficient calculation of 

chemical  formulae  via  network  inference.  Our  results  were  superior  to  those  of 

conventional approaches and our findings were published in Tziotis et al. [2].

1.3 Combinatorial learning framework and the Metabolic optimisation model

The bottleneck in the quantitative analysis of such vast datasets lies on the identification 

of  masses  discriminant  to  different  metabolic  states  combined  with  the  efficient 

classification  of  samples  into  regions  of  varying risk.  The  conventional  “black  box” 

approaches used for these tasks have been criticised for a potential introduction of bias 

through multiple statistical assumptions and transformations, something which inevitably 

calls their efficiency into question [3]. To date, very few computational methods have 

been developed for, or adapted to, ICR-FT-MS metabolomics in order to explore the vast 

potential  of  this  modern  analytical  technique.  The  alleged  limitations  of  the  current 

“standard” techniques and the sparsity of in-depth quantitative research on the field of 
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Fourier  transform  mass  spectrometry  metabolomics  have  inspired  us  to  propose  a 

combinatorial  machine  learning  approach  to  the  problem  of  discriminant  signal 

identification and sample classification. The key aspect of this approach is the intuitive 

and  flexible  modelling  which  aims  to  minimise  the  statistical  bias  and  biological 

inconsistency of conventional “black box” approaches. Inspired by Operational Research, 

I  propose  a  combinatorial  optimisation  framework  that  uses  metaheuristic  search 

algorithms in order to improve the clustering output of a graph-theoretical model that I 

call co-intensity network. I refer to the application of this framework on exact masses as 

metabolic optimisation. We tested the method on Crohn's disease dataset [4] and received 

biologically pertinent results in the areas of semi-supervised classification, diagnosis, and 

prediction. Due to the robustness and flexibility of the approach, I believe that it has the 

potential  of  becoming  a  standard  method  for  quantitative  analysis  in  ICR-FT-MS 

metabolomics as well as other fields of bioinformatics. 

1.4 Mass difference optimisation model

Structural mass difference networks bring new insight into ICR-FT-MS data mining. The 

mass difference information of ICR-FT-MS spectra is precise to the point that it should 

be viewed as  a  significant  biological  parameter  en  par  to  metabolic  biomarkers.  The 

chemical  transformations  yielded by Netcalc  can be,  therefore,  the  subject  of  further 

analysis in order to ultimately isolate the ones which are more biologically pertinent for 

varying metabolic states. Just as metabolites of importance can be regarded as biomarkers 

which characterise a sample, mass differences of importance can be similarly detected 

and labeled “significant” in respect to the spectrum and biological context in question. 

Mass  difference  optimisation  combines  the  theoretical  framework  of  metabolic 

optimisation with structural  mass difference networks in  order to apply combinatorial 

learning on mass  difference  information and detect  the chemical  transformations  that 

improve  the  biological  clustering  output  of  the  corresponding  sample's  co-intensity 

network. The structure of this work is illustrated in figure 1.1.
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Figure 1.1: Dissertation chapter diagram.
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CHAPTER II

Prologue

This chapter  serves as an introduction to  the multidisciplinary nature of my research 

interests and objectives. I describe the wider field of Data Analytics by tracing its roots to 

the quantitative disciplines of Machine Learning, Statistics, and Operational Research. I 

write about the quantitative bottlenecks that are met in Mass Spectrometry Bioinformatics  

today, as well as the state-of-the-art techniques that are seen as the golden standard to 

treat them. My main research objective is the combination of elements from Machine 

Learning  and  Operational  Research  in  order  to  produce  quantitative  techniques 

specifically adapted to the needs of metabolomics and mass spectrometry data mining in 

general.

2.1 Computer Science and Bioinformatics

2.1.1 A description of Computer Science

Computer  Science  is,  to  date,  one  of  the  fastest-growing  sectors  of  scientific  and 

industrial  research,  serving  as  the  substratum  of  technological  advancement  and 

economic activity worldwide. Contrary to popular belief, this vast field of study is not 

restricted  to  the  development  of  software  and  hardware  systems.  As  a  matter  fact, 

applications  of  computer  science,  such as  computational  data  analysis,  are  nowadays 

deeply  rooted  in  almost  every  branch  of  engineering  and  science,  such  as  physics, 
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chemistry,  biology,  medicine,  economics,  and statistics (in recent  years,  the merge  of 

computer science and statistics for the purpose of “Big Data Analytics” with industrial 

applications  has  been  called  “Data  Science”).  While  the  strictly  applied  scope  of 

computer science is directly related to the development of computer systems, it should be 

noted  that  its  theoretical  basis  constitutes  a  whole  distinct  branch  of  mathematical 

research (figure 2.1). The need to import quantitative techniques from computer science 

into  other  engineering  and  scientific  disciplines  emerged,  perhaps,  within  Artificial 

Intelligence research and the ambition of man to create intelligent machines [5][6]. It was 

then observed that the algorithms and computational methods that had been developed for  

the purposes of  machine learning would be easily adaptable and applicable to generic 

problems  of  data  analysis  in  other  disciplines.  A more  recent  example  of  such  an 

adaptation would be pattern recognition, where the ability of a robot to perceive visual 

patterns in artificial  intelligence was adapted to DNA sequence alignment and protein 

structure  prediction  in  bioinformatics.  The  quantitative  and  computational  techniques 

used and developed within the scope of computer science (collectively known as  data 

mining) are today among the most advanced data-analytical tools in existence.
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Figure 2.1: Computer science schema.

The applications of computer science outside its scope.
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2.1.2 A description of bioinformatics

The  complexity  of  biological  data  offers  a  very  challenging medium for  quantitative 

research.  The adaptation of data  mining methods and tools to the needs of biological 

research  is  commonly  known  as  bioinformatics and,  in  some  cases,  computational  

biology. While bioinformatics is a very loosely defined term, it is generally associated 

with every applied or theoretical aspect borrowed from computer science and adapted to 

the needs of biology and natural science in general. As a result, bioinformaticians are 

people coming from various backgrounds (figure 2.2) who do not necessarily share the 

same  scientific  expertise  and  research  focus.  The  applied/engineering  side  of 

bioinformatics involves technical aspects from computer engineering, ranging from the 

installation of databases to the development of specialised software services, while, the 

theoretical/quantitative  side  involves  techniques  from  artificial  intelligence  (mostly 

machine  learning),  statistics,  and  applied  mathematics,  adapted  to  requirements  of 

modern biological problems.
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Figure 2.2 : Bioinformatics schema.

The link of computer science to natural science.
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2.1.3 Mass spectrometry bioinformatics

Bioinformatics is fundamental for the elaboration of complex mass spectrometric data 

[7], whilst it has been traditionally associated to the identification and characterisation of 

proteins. In this thesis, I apply the term mass spectrometry bioinformatics to comprise all 

computational and quantitative methods developed for (or adapted to) any type of mass 

spectrometry data analysis scenario. I focus on the development of quantitative models 

and  techniques  adapted  to  datasets  produced by Ion  Cyclotron  Resonance  Fourier  

Transform Mass Spectrometry (ICR-FT-MS). I make a distinction between mass-based 

and intensity-based techniques, in accordance to the two main output parameters of ICR-

FT mass spectrometry. In a later section, I write about the state of the art on the field of  

mass spectrometry data analysis and I describe some of the concepts used in my research, 

through which  I  aim to  create  a  quantitative  and computational  framework for  mass 

spectrometry and the evolution of what I like to call mass spectrometry bioinformatics.

2.2 Data production in mass spectrometry bioinformatics

In this section, I describe terms and concepts of analytical chemistry that are associated to 

my computational and quantitative method development. More specifically, I talk about 

the mass analysis technique known as  Fourier transform ion cyclotron resonance mass  

spectrometry and its applications on  natural organic matter and  metabolomics,  which 

results to the production of highly complex datasets.

2.2.1 Fourier transform ion cyclotron resonance mass spectrometry

Fourier transform ion cyclotron resonance mass spectrometry (ICR-FT-MS) is an ultra-

high  resolution  technique,  which  can  be  used  to  determine  masses  with  very  high 

accuracy. This kind of mass spectrometry  determines the mass-to-charge ratio (m/z) of 

ions by measuring their cyclotron frequency in a fixed magnetic field [8]. The continuous 
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development  of  mass  detectors  has  improved  pumping  technologies,  while  stronger 

magnetic fields enable ultra-high  mass resolution and enhanced mass accuracy in ICR-

FT-MS.  Mass  resolution is  very important  when dealing  with  complex samples  as  it 

enables  the differentiation of closely located signals (m/z -  mass per charge) [9].  All 

datasets used in this thesis have been produced with an ICR-FT-MS (solariXTM, Bruker - 

Bremen, Germany) equipped with a 12 Tesla superconducting magnet in direct injection 

experiments.  Details  about  the  advantages  of  ultra-high  mass  accuracy  in  mass 

spectromery bioinformatics are provided in a different chapter.

2.2.2 Natural organic matter

Natural organic matter (NOM), the most abundant fraction of organic carbon in the bio- 

and geo- sphere, ranges among the most complex mixtures of organic molecules on earth 

[10]. In contrast to biopolymers with known fundamental building blocks, NOM are non-

repetitive complex systems [2].  The formation of organic matter (OM) in space and on 

earth  preceded  has  terrestrial  life.  Through  the  ages,  coevolution  between 

prebiotic/abiotic  molecules,  OM,  and  primitive  and  higher  forms  of  life  resulted  in 

evolutionary,  pre-validated biomolecules eventually deriving from a genetic code, and 

complex  biogeochemical,  non-repetitive  “natural”  organic  matter  (NOM)  being 

generated, within the general constraints of thermodynamics and kinetics, from molecules 

of geochemical or,  ultimately,  biogenic origin.  Apart  from the man-made, non-natural 

exploration of the chemical space, through e.g. diversity oriented organic synthesis and 

combinatorial chemistry, the antipodes of natural organic complexity are represented by 

biomolecules  resulting  from  abiotic  chemical  evolution,  with  extraterrestrial  organic 

matter  found in carbonaceous chondrites as a  credible end-member.  Terrestrial  NOM, 

formed by the combined action of biotic and abiotic reactions as a characteristic of the 

respective  ecosystems, ranges  in  between.  However, the  intricacy  of  terrestrial  NOM 

molecular  signatures  already  approaches  the  limits  defined  by  the  laws  of  chemical 

binding [10].

In  recent  years,  high-field  Fourier  transform  ion  cyclotron  mass  spectrometry  most 

convincingly  demonstrated  the  enormous  molecular  intricacy  of  NOM:  ultrahigh 
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resolution  and excellent  mass  accuracy  characteristic  of  high  field  ICR-FT-MS mass 

spectra  enabled  the  distinction  of  more  than  tens  of  thousands  of  ions  and  several 

thousands of assigned molecular compositions directly out of non-fractionated NOM [11]

[12][13].

2.2.4 Metabolomics

Metabolites are compounds of low molecular weights and varying concentrations that 

participate  in  metabolic  reactions.  These  compounds  are  attributed  with  diverse 

physicochemical characteristics, ranging from ionic to hydrophobic properties [14]. The 

cellular  pool  of  all  metabolites,  known  as  the  “metabolome”,  is  the  product  of  a 

permanent chemical transformation in which metabolites are precursors, intermediates, or 

end  products  [15][16].  The  exact  number  of  metabolites  in  mammalians,  plants  and 

microbes is still unknown, however, estimates vary from several hundred thousand up to 

one million [17][18].  Groups of metabolites are  assembled in  pathways in  which the 

product of one reaction serves as a substrate for the next reaction while interconnected 

pathways are forming highly linked metabolic networks [19]. Our current knowledge of 

the metabolome covers approximately only 10% of estimated existing metabolites and it 

is assumed that currently “unknown” compounds might truncate and modulate known 

pathways as well as point to the existence of new metabolic  pathways [1]. Reasonably, 

the process of metabolic adaptation to an external stimulus (e.g. an infection) can have an 

impact on the regulation of unknown metabolites. Similarly, intermediates from a novel 

pathway may influence regulation, activation or inhibition of a known pathway (figure 

2.3) and the discovery of such intermediates in an infection or disease would offer new 

therapeutic prospects.  

The functional phenotype of a system is  characterised by its  metabolites.  Changes in 

metabolite patterns reflect environmental and genetic perturbations [9], thus, the analysis 

of  metabolites  is  an  important  step  towards  the  deeper  understanding  of  cellular 

regulation and adaptation processes.  A metabolomics investigation can be regarded as 

targeted or  non-targeted depending  on  whether  it  aspires  to  verify  a  pre-established 
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theory  or  generate  a  novel  hypothesis.  Currently,  metabolomics  is  able  to  monitor 

changes in metabolic activity in response to genetic and nutrient perturbations, in addition 

to  decode  unknown  gene  functions  [20][21][22]  as  well  as  investigate  processes  in 

disease,  infection  and  treatment  [23].  Moreover,  metabolomics  can  contribute  to 

diagnosis and therapeutics by offering: (a) discovery of (pre-) disease markers inferred by 

metabolite shifting, (b) easier differentiation between cancerous and healthy tissue, (c) 

monitoring of drug responses, (d) discovery of new lead structures for novel therapeutic 

agents, (e) identification of microorganisms via fingerprinting techniques. The integration 

of  metabolomics  data  into  the  “omics”  disciplines  (proteomics,  transcriptomics, 

genomics),  along  with  the  combination  of  all  available  molecular-biological  and 

phenotypic knowledge, can provide a more comprehensive understanding of biological 

processes [9][24].

Figure 2.3: A reconstructed metabolic network over a network of KEGG metabolic pathways.
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2.4  ICR-FT-MS data analysis: classical intensity-based methods

In this section I present the state of the art in classical “intensity-based” approaches used 

in ICR-FT-MS data analysis. Much of these approaches have been borrowed from other 

disciplines and applied on a mass spectrometric context where the intensity information 

of a m/z spectrum is the most vital parameter in the analysis. This may seem somewhat 

paradoxical  if  we consider  that  the  power  of  this  instrument  lies  on  ultra-high  mass 

accuracy rather than sensitivity; nonetheless, this approach becomes inevitable when we 

are  dealing  with  a  multi-dimensional  space  of  variables  produced  by  several 

measurements over a number of samples. A m/z spectrum of a single sample comes in the 

form  of  two  lists,  one  being  the  exact  masses  and  the  other  their  corresponding 

intensities,  yet  in  the  case  of  multiple  samples  (such measurements  over  a  group of 

individuals) the exact mass information is only used in data preparation by comparing 

mass values between different samples and creating a mass-sample intensity matrix. The 

information in this matrix is that of intensity values corresponding to masses on rows and 

samples on columns (as explained in the next section). It has been one of my goals, in this 

thesis,  to  integrate  the exact  mass information in ICR-FT-MS data mining in  a  more 

meaningful way (Chapter I, objective (i)).

2.4.1 Multivariate analysis in metabolomics

Non-targeted  experiments  generate  large  amounts  of  data,  which  can  be  handled  by 

computational  and  statistical  techniques  in  order  to  discover  reccurring  patterns.  The 

experimental setup involves the mass spectrometric measurement of m samples yielding 

an equal number of m/z spectra, one for each sample. The exact mass values of all spectra  

are compared in order to detect a number of n metabolites that were found to be present 

in all m samples. The intensity information corresponding to those n common metabolites 

is represented in the form of a  n×m matrix, where the intensity value of mass in row i 

corresponds to the identity of sampled subject in column j. In conventional approaches, 

mass information is ignored once this preparatory process is achieved. Standard analysis 

–  16  –



procedure  involves  data  pre-treatment,  such  as  statistical  transformations  and 

normalisation, the latter being important when the intensities of detected features vary in 

several orders of magnitudes. The key objectives of the analysis are simple: classification 

of sampled subjects into biologically pertinent  groups and identification of individual 

metabolites with biological significance in respect to those groups or the dataset as a 

whole.  There  are  two  approaches  to  the  problem  of  classification  via  supervised  or 

unsupervised algorithms, depending on whether or not we are willing to consider the 

experimental knowledge of the biological grouping that we expect to observe on the data. 

In the unsupervised case, where this prior knowledge is chosen to be ignored, the purpose 

of  the  process  is  to  examine  how  easily  the  data  can  form  patterns  of  biological  

significance. Whether or not these patterns can be formed successfully is an indicator of 

the data's complexity and biological clusterability. In the supervised scenario, a part of the 

data is used in order to train a predictor model which is meant to be consequently applied 

to classify the rest of the data (cross-validation). In theory, this predictor can be also used 

to classify unknown datasets of the same nature, albeit with questionable efficiency. In 

both cases, however, we are able to pin down the masses which had the biggest impact on 

each of the different biological groups. Those metabolites of interest are also referred to 

as  biomarkers.  In  the  rest  of  this  section  I  describe  the  two  standard  methods  of 

multivariate  analysis  used  to  deal  with  the  above-mentioned  problematics  in 

metabolomics: Principal Component Analysis and Partial Least Squares regression.

2.4.2 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is currently one of the standard algorithms used for 

unsupervised feature extraction in metabolomics. The PCA transformation is a simple, 

non-parametric method which reduces the dimensionality of the data while preserving 

relevant information by converting highly correlated variables into linearly uncorrelated 

ones. PCA's dimensionality reduction has deemed it a valuable tool for data compression, 

with many applications in fields such as image recognition and computer graphics. On 

the other hand, PCA has limited classification as well as visualisation capabilities, and 

has  been  criticised  for  not  being  an  optimal  method  for  feature  extraction  [25]. 
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Nonetheless, the approach has gained popularity due to its simplicity and ease of use and 

has led many data analysts to overlook its downsides [25][26]. In addition,  PCA runs 

under the assumptions that (a) the dimensionality of data can be efficiently reduced by 

linear transformation and (b) critical information is stored in the directions where input 

data variance is maximum; conditions which are not always met [27].

2.4.3 Partial Least Squares regression (PLS)

The  complexity  of  metabolomics  data  usually  calls  for  a  supervised  technique.  The 

method of preference is known as partial least squares regression (PLS), a combination 

of PCA and  multiple linear regression. PLS is a multivariate projection-based method 

used with data that contain correlated predictor variables. The algorithm constructs new 

predictor  variables  as  linear  combinations  of  the  original  predictor  variables  while 

considering the observed response values, leading to a model with predictive capabilities 

[28] that can be used for classification/discrimination problems, even though it was not 

originally designed for this purpose [29]. Unlike PCA, where the variance of a single 

dataset is maximised, PLS maximises the covariance between two datasets by searching 

for linear combinations of their variables.  These linear combinations are called  latent  

variables, while the weight vectors used to compute them are called loadings [29]. The 

variant  method  known  as  partial  least  squares-discriminative  analysis (PLS-DA)  is 

applied when the response variable is categorical. The main advantage of PLS is that it 

involves no assumption about the data distribution or scale of measurement, however, it 

possesses  several  drawbacks  that  deem  it  unsuitable  for  some  scenarios  [3].  The 

limitations  of  both  PCA and  PLS  along  with  my  motivation  for  coming  up  with 

alternative methods are discussed in a different section.

2.5 ICR-FT-MS data mining: Graph theory and mass-based methods

In this section I describe some of the modern “mass-based” quantitative methods that 

have been applied on ICR-FT-MS data mining. These are all relatively new techniques, 
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which are largely based on the discipline of graph theory. I provide a brief introduction to 

graph  theory  and its  generic  applications  in  bioinformatics  before  I  move  onto  their 

adaptation on mass spectrometry. The described network analysis techniques are, to date, 

mostly focusing on the exact mass information of an m/z spectrum. One of the goals in 

this thesis was to enhance these graph-based approaches as well as to integrate mass and 

intensity information in one single quantitative framework (Chapter II,  objectives (ii), 

(iii)).

2.5.1 Graph theory and network analysis in Bioinformatics

Graph theory is widely used in bioinformatics due to its ability to provide efficient means 

of modelling, visualising, and solving real-world scenarios. Many  pragmatic situations 

can be represented in the form of a diagram consisting of a set of points (nodes) and a set 

of lines (edges) connecting parts of these points; a mathematical abstraction which yields 

the  concept  of  a  graph  [30]  (figure  2.4).  Such  an  abstraction can  be  represented 

graphically,  and  through  this  graphical  representation  we  are  able  to  study  some its 

properties. A graph (also called a  network) is in addition associated with a specialised 

matrix which allows us to store it inside computers and apply mathematical methods to 

analyse our data more thoroughly; a procedure known as network analysis [77].

Network analysis is a sub-field of graph theory which offers a quantifiable description of 

the  networks  that  characterise  various  real-world  systems.  A  number  of  network 

properties allows us to compare and characterise different  types of complex networks. 

The most elementary property of a node is its degree (or connectivity), k, which tells us 

how many links a node has to other nodes. Based on this property, the degree distribution 

P(k) gives the probability that a selected node has exactly k links. The degree distribution 

allows us to distinguish between different topologies of networks [31]. The majority of 

biological  networks  belong to the scale-free  topology,  which  means that  their  degree 

distribution approximates a power law [31]. Scale-free networks are highly non-uniform 

and most of the nodes have very few links. Only a small number of nodes have a very 

large number of links, these nodes are known as 'hubs' as they hold the network together. 

The scale-free topology is linked to the growth of the network in which new nodes are 
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preferentially  attached  to  highly-connected  already  established  nodes  [32].  Such  an 

inhomogeneous  and  modular  system displays  tolerance  to  random errors,  as  well  as 

fragility against the removal of its most connected nodes [33]. As it can be seen in the 

plots,  the  degree  distribution  P(k)  of  our  networks  approximates  a  power  law in  all 

samples, a property claimed by complex systems of all types, notably real, large systems 

with many autonomous and interacting components. Complex phenomena are distributed 

in a highly skewed manner, rather than following the normal, Gaussian pattern. It has 

been  previously  observed  in  metabolic  and  biochemical  networks  that  few  highly-

connected molecules play a central role in mediating interactions among numerous, less 

connected molecules [34][35]. 

It is through chemical and physical interactions that molecules influence one another and 

carry out biological functions. However, some of these influences may have a greater 

impact than others, therefore a hierarchical characterization of their relative importance 

can be very useful in exploring their functional architecture [36]. Network analysis plays 

an important role in the exploration of complex interactional systems. The potential of 

network analysis lies on the usage of our network's properties in order to (a) provide a 

hierarchical characterization of masses [37][33], (b) detect meaningful clusters of masses 

which display biological pertinence (already observed in metabolic networks [37]).

Figure 2.4: A sample graph with five nodes and five edges.
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2.5.2 Structural mass difference network reconstruction 

Network analysis can be applied on almost every scenario of FTMS spectra in a number 

of ways. An important approach involves the mass difference networks, in which each 

node represents an exact experimental mass and each edge  represents a selected mass 

difference either taken from a predefined list of potential transformations, or detected on 

the fly through mass difference clustering and correlation analysis [1]. Such a network 

model can be  divided into  compositional and  functional networks [2]. In the case of 

structural  networks,  a  list  of selected theoretical mass  differences  is  used  in  order to 

determine  the  adjacency  relation  between  the  nodes,  i.e.  detected  transformations 

between  the  experimental  masses.  The  resulting  network  can  be  described  as  a 

reconstruction of the real biochemical system which can reflect the structural information 

expressed in an ICR-FT/MS dataset. Through graph inference we are able to perform an 

efficient, network-based formula calculation technique known as Netcalc [77].

2.6 Machine learning and prediction

The subfield of  Artificial Intelligence (in turn a subfield of Computer Science) which 

studies computational methods for computer reasoning is known as machine learning. It 

can be said that machine learning is a discipline dealing with making predictions from 

data. Another discipline which also deals with prediction-making is regression analysis, a 

subfield of Statistics. Naturally, machine learning and computational statistics are closely 

related and often overlap,  the main difference being that they were developed within 

different research scopes. The applications of statistics have been traditionally linked to 

social science, e.g. predicting how will a certain financial indicator react under certain 

conditions.  Machine  learning,  on  the  other  hand,  is  closely  related  to  the  Artificial  

Intelligence hype of the 1950s and the ambition of building conscious and intelligent 

machines,  therefore,  prediction-making  in  this  case  has  to  do  with  how a  computer 

perceives its surroundings, e.g. by means of face or voice recognition.
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A prediction can be described as the act detecting patterns in an “unknown” dataset, 

based on your knowledge of observed patterns in a “known” dataset. The assumption is 

that  both  datasets  should  behave  similarly. In  a  temporal  context,  where  all  data  is 

associated to sequential points in time, you observe patterns that happened in the past in 

order in order to use that knowledge and infer what may happen to something similar in 

the future. This context  is  known as  time-series forecasting.  What I just  described as 

“past” and “future” is basically expressed in machine learning terms as “known data” 

(training set) and “unknown data” (prediction set). A “prediction” comes in two forms: 

regression and  classification – depending on whether the output of the predictor is in 

continuous  or  discrete  form.  The  research  objectives  of  this  thesis  focus  more  on 

classification and less on regression, although some classifiers work by discretising the 

continuous output of a regression analysis.

Classification is a key concept from machine learning which extends to the generic needs 

of data mining and statistical inference. We mentioned classification in a previous section 

and described its function in the context of multivariate analysis. In machine learning 

terms,  the  two  most  common  subdivisions  of  classification  are  supervised  and 

unsupervised learning. There are numerous classification algorithms with wide usage in 

bioinformatics but there is no clear emerging consensus regarding their performance [38]. 

Some of  those  techniques,  such as  k-means clustering and  artificial  neural  networks, 

were  developed within  machine  learning  while  others,  such as  Principal  Component  

Analysis and  Partial  Least  Squares  regression,  stem  from  the  field  of  multivariate  

statistics. In this section I describe some key methods from the former category, i.e. the 

algorithms from Artificial  Intelligence.  In  this  thesis  I  developed  various  supervised, 

unsupervised,  and  semi-supervised  learning  models,  using  discrete  mathematical 

modelling. 

Artificial Neural Networks (ANN) is a powerful machine learning family of algorithms 

which  was  used  in  this  work  for  both  supervised  and  unsupervised  classification. 

Extensive background work was performed on Artificial Neural Networks in the context 

of exploring the potential of existing prediction techniques and how they would perform 

in a discrete  optimisation framework.  The results  produced with the  Artificial  Neural 
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Networks known as Self-Organizing Maps are presented in chapter IV. It should be noted 

that  I  performed considerably more work on Artificial  Neural  Networks than what is 

included  in  this  manuscript.  I  developed  custom  supervised  models,  algorithms,  and 

source code, however, I chose not to include such work in this document in order to put 

the focus on my own methods.

2.6.1 Supervised learning

In  a  typical  unsupervised  classification  scenario,  a  dataset  of  correctly-identified 

observations is divided between a training set and a test set, usually at the rates of 30% 

and  70% respectively.  A learning  algorithm known as  a  classifier is  applied  on  the 

training set in order to build a mathematical model that is called a predictor function and 

can  be subsequently used to  classify the observations of  the test  set.  If  the predictor  

performs on the test set with a satisfactory success rate, it can be then assumed that the 

model may be applied on a new similar dataset whose true classification is unknown. In 

other  words,  the  training  data  is  used  for  model  fitting  and  the  test  data  in  model  

validation; a technique widely known as  cross-validation. The process of model-fitting, 

where the target values of the outputs in the fitted data are known, is called supervised 

learning [38].  The  rest  of  this  section  provides  a  brief  description  of  the  supervised 

classification algorithms that were used in the course of this work. I developed my own 

source code for every machine learning method presented in this section (as for most 

algorithms seen in this work).

Artificial Neural Networks - Linear perceptron :

The  linear  perceptron  is  a  single-layer  Artificial  Neural  Network  (ANN). It  is  a 

supervised linear classifier  which uses a linear predictor function to combine a set  of 

weights with a feature vector and map a single input x to an output class y. It belongs to 

the family of algorithms known as artificial neural networks; a machine learning model 

inspired  by  biological  neural  networks.  As  a  feed-forward  neural  network,  the  linear 
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perceptron passes its inputs to a single layer of output nodes via a series of weights. This 

algorithm and its variants form the basis of more complex learning algorithms with wide 

usage in artificial intelligence, such as the multi-layer perceptron. Outside the scope of 

computer science, neural networks have found applications in bioinformatics especially 

within the field of biological sequence analysis [39], though the linear architecture was 

eventually deemed limited [38]. The extended background research which I performed on 

Artificial Neural Networks and the Linear Perceptron was not included in this work.

Figure 2.7: The Artificial Neural Network known as the Linear Perceptron. Input layer nodes represent  

input variables and the output layer node represents an artificial neuron. The Linear Perceptron uses a  

single artificial neuron in the output layer to perform binary classification via linear combination and a  

sign activation function g(.).

Artificial Neural Networks - Multi-layer perceptron (MLP) :

This type of Artificial Neural Network can be thought of as an enhanced version of the 

single-layer perceptron and is represented by a directed graph with several sequentially 

interconnected layers of nodes, where each of these nodes is a neuron associated to a 
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nonlinear  activation  function.  The  training  process  is  achieved  by  means  of  a 

mathematical  optimisation  algorithm  known  as  backpropagation.  A  multi-layer 

perceptron is able to map several sets of input data to a set of outputs and, unlike the 

single-layer perceptron, classify data that is not linearly separable. This algorithm has 

found popularity in artificial  intelligence fields such as pattern recognition and, more 

recently,  in  bioinformatics for  prediction of  protein secondary structure [38][40].  The 

extended background research which I performed on Artificial Neural Networks and the 

Multi-layer Perceptron was not included in this work.

          

Figure  2.8:  The  Artificial  Neural  Network  known  as  the  Multi-layer  Perceptron.  Input  layer  nodes  

represent input variables while hidden and output layer nodes represent artificial neurons. The Multi-layer  

Perceptron is composed out of multiple inter-connected Linear Perceptrons and uses one or more hidden  

layers in order to approximate virtually any continuous function and perform nonlinear classification and  

regression.
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k  -Nearest Neighbours (  k  -NN)   :

The  k-nearest neighbours is a nonparametric unsupervised learning algorithm used for 

classifying objects based on the closeness of training samples (supervised information) in 

the feature space. In the training step of the algorithm all training samples are represented 

as vectors in a multidimensional feature space holding their known class labels. In the 

classification step, each object from the test set is sequentially introduced as a vector in 

the feature space and classified according to the most frequent label among its k nearest 

neighbouring training samples. The nearest neighbour class of estimators is one of the 

simplest machine learning algorithms and a type of  instance-based learning [38]. The 

source code I developed for the method was not included in this manuscript.

Figure 2.5: A graphical representation of k-NN classification. The green circular object in the middle will  

be classified along with circular objects on the right as there are two such objects in close proximity.

Naive Bayes classifier :

The  naive Bayes classifier is a probabilistic classification algorithm which applies the 

Bayes theorem under loose assumptions of independence (naiveness). The classifier uses 

a conditional probabilistic model which can be trained efficiently in a supervised learning 
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setting  where  parameter  estimation  is  usually  achieved  via  the  method  of  maximum 

likelihood.  Despite  its simplicity,  the algorithm treats real-world Artificial  Intelligence 

problems with substantial efficiency [38]. The source code I developed for the method 

was not included in this manuscript.

Figure 2.6: A graphical representation of the naive Bayes classifier. The Bayes rule is used to calculate the  

probability that an unknown object belongs to a certain class label. The parameters of the Bayes rule are  

estimated from the training sample, where object class labels are known.  

Hidden Markov Models (HMM) :

A Bayesian  network  is  a  probabilistic  directed  acyclic  graph that  represents  a  set  of 

random  variables  and  their  conditional  dependencies.  A Hidden  Markov  Model  is  a 

dynamic  Bayesian  network in  which  a  system  is  modelled  as  a  Markov  process  (a 

stochastic  process  possessing  the  Markov  property),  i.e.  the  conditional  probability 

distribution of future states depends only on the present state and not on the past. HMM is 

a stochastic generative model for time series that is defined by a finite set of states, a 

discrete alphabet of symbols, a probability transition matrix, and a probability emission 
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matrix.  Such  a  system  evolves  randomly  from  one  state  to  another  while  emitting 

symbols from the alphabet according to the probabilities defined in the transition and 

emission  matrices,  respectively.  The random walks between states are hidden but  the 

emissions are observable, while the first-order Markov assumption is that both emissions 

and transitions depend solely on the current states and not on past ones. The hidden states 

are represented as hidden/latent variables underlying the observations [38]. HMM can be 

powerful  supervised  learning  tools  with  applications  in  speech  recognition,  often 

combined  with  reinforcement  learning.  In  bioinformatics,  they  have  been  used  in 

biological sequence applications where the alphabet comprises the twenty-letter amino 

acids  for  proteins  and  the  four-letter  nucleotides  for  DNA/RNA  problems.  In 

metabolomics,  the  alphabet  can  be  be  composed  by  a  set  of  chosen  metabolites  or 

reaction-equivalent mass differences [38]. The source code I developed for the method 

was not included in this manuscript.

Figure 2.9: A graphical representation of HMM. The edges of the Bayesian network represent the transition  

and emission probabilities between different states and associated class labels (nodes).

Decision tree learning :

A tree is a common recursive data structure in Computer Science. A Decision tree in 

symbolic  learning (not  to  be  confused  with  Bayesian  decision-making  trees)  is  a 

hierarchical network that implements a divide-and-conquer strategy and can be used for 
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both  classification  and  regression.  In  supervised  learning,  a  decision  tree  is  used  a 

predictive graph model composed of internal decision nodes and terminal leaves. Every 

decision node implements a test function with discrete outcomes that labels the branches 

(edges). The algorithm starts at the root of the tree and iterates recursively until a leaf 

node is found (the value of that node is yielded as the output) [41]. A variant method is 

the random forest classifier, an algorithm that involves mixing and iterating over several 

decision trees and has many applications in metabolomics.  

Figure 2.4: A graphical representation of a Decision Tree used for weather prediction. The interior nodes  

of the tree correspond to input variables with edges linking to children nodes for the possible values of  

those input variables.

Support Vector Machines (SVM) :

Support  vector  machines are  a  group of  algorithms within the  wider  kernel  methods 

family, in which a feature space is operated by kernel functions that calculate the inner 

products of the images of all points; an approach which can be computationally lighter 

than computing the points' coordinates. A basic linear SVM algorithm acts on a set of 
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input data as a binary linear classifier which predicts two possible classes (figure 2.5).  

This model can be extended to a non-linear multi-class algorithm via the kernel trick (the 

application of kernel functions on a multi-dimensional feature space).  

Figure 2.5: A graphical representation of a linear SVM. The dashed lines represent the two support vectors  

found at the edges of the two classes (triangular and circular shapes). The red line found in the midpoint of  

the two support vectors is the optimal hyperplane that separates the dataset.

2.6.2 Unsupervised learning (Clustering)

Unsupervised classification, commonly known as clustering, is a fundamental technique 

in data mining aimed at extracting underlying patterns from within the data without the 

input of some prior knowledge. Data is grouped into classes (or clusters) based on some 

measure  of  inherent  similarity,  typically  by  modelling  data  points  as  vectors  in  a 

Euclidean space [38]. In this case, learning and classification are performed as a single 

process on the whole dataset without having to divide it into training and test parts. As the 
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target  values  of  the  outputs  in  the  fitted  data  are  unknown  or  ignored,  the  terms 

unsupervised or self-organisation are used to describe the classification [38].

The starting point of a typical  clustering algorithm is the construction of a matrix of 

pairwise similarities between the objects to be clustered. The choice of similarity metric 

is crucial and can have an impact on the algorithm's output. Examples of distance metrics 

are  the  Euclidean  distance  and  the  Pearson  correlation  coefficient,  which  is  the  dot 

product  of  two  normalised  vectors  (or  the  cosine  of  their  angle).  Depending  on  the 

situation,  every  measure  of  similarity  has  its  own  advantages  and  drawbacks;  a 

correlation  metric,  for  instance,  captures  similarity  in  shape  but  does  not  place  any 

emphasis on the magnitude of the two series of measurement while it remains sensitive to 

outliers [38]. A distance metric, though theoretically unit-dependent, can be normalised 

and expressed in the form of a correlation value in the range of zero and one. I describe 

my study on the performance of different clustering algorithms combined with varying 

similarity metrics in a different chapter. The clustering algorithms that were vital to the 

outcome of this work are briefly described below.

Hierarchical clustering :

Hierarchical clustering is an unsupervised classification algorithm that seeks to build up 

clusters  through  a  hierarchical  branching  process.  The  method  groups  data  over  a 

similarity matrix by creating a cluster tree or  dendrogram, which is not a single set of 

clusters but rather a multilevel  hierarchy in which clusters at  one level  are linked as 

clusters at the next level [42]. As the output of the algorithm is a tree and not a set of  

clusters, it is not always so obvious how to define clusters from the dendrogram as they 

are derived by cutting branches at arbitrary points [38]. There are two strategies for the 

generation  of  a  clusters  from the  branches  of  a  hierarchical  tree:  agglomerative  and 

divisive. In the agglomerative approach, each cluster starts at every individual branch at 

the  bottom of  the tree and pairs  of clusters are  joined together  by moving up in  the 

hierarchy.  The divisive  approach is  a  top-down strategy,  in  which  a  single  cluster  is 

recursively split  up by moving down the tree hierarchy.  Alternative strategies include 

mathematical optimisation and heuristic algorithms.
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The agglomerative hierarchical clustering algorithm follows the following general steps 

[42]: 

1. Initialisation  : Find the similarity or dissimilarity between all pairs of objects in the 

data set according to a similarity metric that has been chosen. A similarity matrix is 

created from this step.

2. Linkage  :  Group the objects into a binary hierarchical cluster tree.  Objects in close 

proximity are linked together via the distance information in the similarity matrix until 

a hierarchical tree is constructed.

3. Clustering  :  Determine  where  to  cut  the  hierarchical  tree  into  clusters.  In  the 

agglomerative strategy, branches are pruned off the bottom of the hierarchical tree and 

assign  all  objects  below  each  cut  to  a  single  cluster.  The  data  is  partitioned  by 

detecting natural groupings or by cutting off the hierarchical tree at an arbitrary point.

Outside  the  scope  of  Artificial  Intelligence,  hierarchical  clustering  has  found  many 

applications  in  bioinformatics  for  sequence  analysis,  phylogenetic  trees,  and average-

linkage cluster analysis. 

k  -means clustering   :

The  k-means clustering algorithm partitions objects in a data set into  k clusters, where 

every object  belongs to the cluster of the nearest  mean (after a mean value has been 

calculated for each cluster). Classification is achieved by minimising the sum of squares 

of distances between data points and the corresponding cluster centroid. In the canonical 

implementation of  k-means, the number of clusters is fixed to a value  k as part of the 

algorithm's  input.  A number  of  k representative  points,  called  centroids,  are  selected 

during  the  step  of  initialisation,  then  at  each  iteration  the  algorithm  performs  the 

following steps until convergence [38]:

–  32  –



1. Assignment  : Each point in the data is assigned to the cluster of the closest centroid.

2. Update  : New centroids are computed by aggregating (averaging or taking the centre of 

gravity) the members of each computed cluster. 

In most occasions, k-means acts as an online variant of the generalised EM (expectation 

maximisation) algorithm, where the assignment step is also referred to as  expectation  

step and the update step as maximisation step. 

In computational complexity theory, the described problem of k-means clustering is NP-

hard, i.e. a class of problems which are too complex to be efficiently treated by exact 

algorithms;  however,  there  exist  efficient  heuristic  methods,  such as  the  expectation-

maximisation algorithm, that can be employed in order to yield an optimal solution. As a 

nondeterministic heuristic algorithm, there is no guarantee that it will always converge to 

a global optimum nor that it will always yield the exact same results on the same dataset 

(mathematical  optimisation  theory  is  explained  in  the  last  section  of  this  chapter). 

Nonetheless, in practice k-means is one of the most efficient clustering algorithms in both 

terms of speed and quality of classification. 

Artificial Neural Networks -   Self-Organizing Maps   :

A Self-Organizing Map (SOM) (or a  Kohonen network) is a type of  Artificial  Neural 

Network, in which training is achieved via unsupervised learning in order to produce a 

low-dimensional representation of the multi-dimensional input space that is called a map. 

This dimensionality  reduction is achieved by a data compression technique known as 

vector  quantisation. Unlike  other  clustering  algorithms,  SOMs follow the  practice  of 

supervised  learning  techniques  which  involves  a  training  and  testing/mapping  steps. 

However, in contrast to other neural networks, the SOM algorithm manages to classify 

the data without supervision, preserve all topological information of the training set, and 

offer meaningful visualisation of high-dimensional data. SOMs can deal efficiently with 

very large datasets and are, to date, regarded as one of the most efficient unsupervised 

learning  methods.  Its  principal  downsides  are  the  difficulty  to  pinpoint  clusters  with 
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precision  and  the  often  high  computational  demands  of  the  training  process.  My 

background research on Artificial Neural Networks was not included in this manuscript.

Community structure partition (graph clustering) :

The  community  structure partition of  a  network consists  of finding natural  groups of 

nodes with dense connections within the groups and sparser connections between them 

(figure 2.5). An optimal community structure partition consists of maximising the number 

of  within-module  connections  while  minimising  the  number  of  between-module 

connections. Therefore, for any given node in such a partition there is a higher probability 

to have a connection inside the same module rather than outside it. By using a type of 

activation function that sets a threshold value on a similarity matrix, any given dataset 

can be represented in the form of a modular network whose optimal community structure 

partition is a cluster analysis of its input space. As in the case of k-means, the problem of 

finding an optimal  community structure partition is  NP-hard and can be only  solved 

efficiently via combinatorial optimisation. 

There are many computational techniques to extract a community structure partition from 

a modular network ranging from hierarchical clustering to various optimisation models. 

One of the most optimal ways to achieve this task (and the one used in this work) is the 

so-called  modularity optimisation  model. The  modularity  of a network, computed as a 

real number between zero and one, is a measure of how efficient a given community 

structure partition of a network may be in terms of inter-modular and and intra-modular 

connectivities and can be though of as an objective function which measures the quality 

of  a  particular  division  of  a  network  into  several  clusters.  The  arising  optimisation 

problem consists of maximising that function.

Due to the lack of specialised software tools, community structure partition is, as of yet, 

not a standardised method for data clustering. As shown in a different chapter, however,  

the output of this clustering is similar to,  or outperforms, most conventional methods 

while  offering  a  number  of  additional  advantages.  This  clustering  algorithm was the 

method of choice for the computational frameworks developed in this work.
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Figure 2.5: A community structure partition of a graph with three modules (highlighted in red dashed  

circles).  The  clusters  of  densely  interconnected  nodes  are  called  “communities”  and  reveal  natural  

patterns in the data.

2.7 Mathematical optimisation

So far, we have mentioned the term optimisation in a quantitative context many times in 

this  chapter,  albeit  without  having clarified  what  it  stands  for.  Indeed,  mathematical  

optimisation (also known as mathematical programming) is a very important concept in 

machine  learning,  used  by  most  computational  training  algorithms.  In  this  section  I 

describe in more detail the background of mathematical optimisation in the context of 

computational and quantitative research. In a later chapter, I describe how mathematical 

programming  can  be  used  to  build  up  a  whole  new  framework  to  deal  with  the 

quantitative problems of metabolomics and possibly other fields of bioinformatics. 
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2.7.1 Optimisation in Operational Research

The term optimisation refers to the search for an optimal state; a very old and important 

concept  in  our  world.  The  process  of  optimisation  is  part  of  life  and a  fundamental 

principal in nature, e.g. how atoms try to form bonds in order to minimise the energy of 

their  electrons,  how  molecules  form  solid  bodies  during  the  process  of  freezing  by 

assuming energy-optimal crystal structures, or how biological evolution leads to a better 

adaptation of the species to their environment. In addition, optimisation has pervaded all 

spheres of human endeavor and extends into daily life where humans try to optimise their 

resources by minimising their cost while maximising their gain [43]. It has, therefore,  

become imperative to plan, operate and manage resources in an optimal manner, yet with 

the  advent  of  computer  science  it  is  possible  to  exploit  optimisation  theory  to  its 

maximum extent [44]. To date, the quantitative discipline which has incorporated and 

developed the study of mathematical optimisation is known as Operational Research.

In  mathematics,  an  optimisation  process  searches  for  optimal  states  of  maxima  or 

minima. For complex systems where many decisions need to be made simultaneously, it 

becomes necessary to take optimal decisions based on prior knowledge and heuristics. 

Mathematical optimisation theory provides a scientific alternative for decision-making in 

complex situations where the system can be modelled mathematically [43]. Optimisation 

algorithms were  developed  to  provide  solutions  to  optimisation  problems  (known as 

mathematical  programming  problems) in  linear,  nonlinear,  unconstrained,  and 

constrained  domains.  Eventually,  special  strategies  were  designed  for  the  purpose  of 

seeking  global optima to those complex problems, where older programming methods 

would  get  stuck  at  a  local  optimum [44].  Global  optimisation focuses  on  complex 

optimisation,  where  the  goal  is  to  find  the  best  possible  elements  x* from  a  set  X 

according  to  a  set  of  criteria  F =  {  f1,  f2,  …,  fn }.  These  criteria  are  expressed  as 

mathematical  functions,  known  as  objective  or  evaluation functions.  Formally,  an 

objective function  f  : X  → Y with Y⊆R is a mathematical function which is subject to 

optimisation. The range Y of an objective function f must be a subset of the real number 

set  R, while the domain X of  f (known as the problem space) can represent any type of 
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object such as numbers, vectors, sets, etc. Objective functions can often be in the form of 

complex algorithms, significantly more complicated than plain mathematical expressions. 

Global optimisation involves all algorithms that can be used to find the optimal element 

x* in X with respect to the criteria of f∈F [43].

Optimisation can be described as a three-step decision-making process [45] :

(i)  Process modelling: Represent a real-world system as a mathematical problem and a 

potential solution to that problem as a mathematical object

(ii)  System evaluation: Find a measure of system effectiveness via an objective function 

which evaluates a potential solution to the problem

(iii) Model optimisation: Apply specialised search algorithms to maximise or minimise the 

objective function and provide an optimal solution to the problem 

Optimisation problems can be divided into continuous or discrete, depending on whether 

the variables may take on real or discrete values, respectively [46].

2.7.2 Continuous optimisation

Continuous  optimisation deals  with  the  case  of  mathematical  programming  where 

variables can take on any values permitted by the constraints [46]. Depending on the 

mathematical  model  involved,  continuous  optimisation  can  be  linear  or  nonlinear in 

nature.  In  linear  programming,  an  optimisation  problem  consists  of  minimising  or 

maximising  a  linear  function  under  linear  constraints,  which  comes  down  to  a 

mathematical problem P0 of the form: 
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Minimise objective function f (x) under the constraints:

       P0          

g i( x)=0, i∈ I 0

g i( x)≤0, i∈ I -

g i (x )≤0, i∈I +

                     x=(x1, x 2,... , xn)
r≥0   

where functions f , g i(i∈ I=I 0∪ I +∪I -) are linear functions of the variables x1, x2, ... , xn  

[47]. 

A continuous optimisation problem has a feasible solution when its objective function is 

analytical and differentiable. As this is not the case with the models in this work, further 

information on continuous optimisation is outside the scope of this manuscript. 

2.7.3 Discrete optimisation

In discrete optimisation, whether integer or combinatorial, variables may take on discrete 

(typically integer) values. Those problems are usually computationally hard and require 

the use of smart algorithms to be solved [46].

In  this  work,  we  deal  mainly  with  the  subset  of  global  optimisation  known  as 

combinatorial optimisation that consists of finding an optimal object from a finite set of 

objects using a single criterion f ∈ F. Combinatorial optimisation makes use of discrete 

models which are based on  combinatorics (the branch of mathematics dealing with the 

study  of  finite  or  countable  discrete  structures)  rather  than  analytical  differentiable 

functions as in the case of continuous optimisation. A real-world scenario is modelled as a 

combinatorial  problem whose near-optimal  solution needs to  be found. Combinatorial 

problems are classified according to their individual complexity, which is calculated by 

the time a deterministic/exact search algorithm requires in order to find the one and only 

optimal solution to that problem; a branch of computer science and mathematics known 

as  computational  complexity  theory.  Complexity  theory  is  a  central  topic  in  the 

theoretical  foundations  of  computer  science,  concerned with  the general  study of  the 
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intrinsic complexity of computational tasks (algorithms). When the dimensionality of the 

search is high, it becomes almost impossible to solve a problem deterministically by an 

exhaustive enumeration of the search space. The complexity of an exact search algorithm 

would in most cases be too high to ever reach a convergence point, therefore “smarter” 

stochastic  algorithms  are  considered.  A  heuristic in  combinatorial  optimisation  is  a 

function which makes an algorithm “smarter” by providing some prior information that 

will guide the search. A metaheuristic algorithm is a method for solving general classes of 

problems by combining heuristics and objective functions in an abstract but efficient way, 

which significantly reduces search space. This combination is typically performed as a 

stochastic process by using statistical and probabilistic information from the search space 

itself,  or by imitating the optimisation patterns of a natural phenomenon (e.g. Genetic 

Algorithms, Ant Colony Optimisation algorithms, etc.).  

2.7.4 Approximation and metaheuristic algorithms

Gradient descent :

The  basic  descent  method  is  a  generalisation  of  the  gradient  descent  algorithm for 

continuous optimisation. In gradient descent optimisation, a differentiable function ϕ0( x)

is  minimised by moving along the direction of the negative gradient of the objective 

function at a starting point x1, i.e.−∇ ϕ0(x1) . The algorithm iterates from an initial guess 

until it converges to a maximum iteration count nmax :

∀ t∈{1,2,. .. , nmax }, x t+1← x t−γt∇ ϕ0(x t )

The smaller the step size γt is, the slower the algorithm will converge but if the step size is 

too big then the algorithm may fail to converge (divergence). The gradient ∇ ϕ0 is the 

neighbourhood structure operation  N in the basic  framework. For a non-differentiable 

function  that  cannot  be  minimised  analytically,  the  neighbourhood  operation  N is 

implemented by means of an intelligent algorithm, a concept which gives birth to the 

basic descent search method. The principle of the basic descent method is to start from a 

solution λ and choose a solution λ' in the neighbourhood of λ, such that ϕ0(λ ' )≤ϕ0(λ) . 
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The step size γt is implemented within the neighbourhood structure  N.  The algorithm 

usually examines all neighbour solutions and picks out the best one. If the quality of the 

solution  does  not  increase  after  a  certain  number  of  iterations,  then  a  stochastic 

neighbourhood structure Ns is employed in order to escape a possible local optimum after 

a  fixed  number of  iterations  without  improvement.  The  source  code  I  developed  for 

Gradient Descend variants was not included in this manuscript. 

Simulated annealing :

Simulated  annealing is  a  global  optimisation  algorithm  with  many  applications  in 

statistical mechanics. It is a Monte Carlo method that can be applied to arbitrary search 

and problem spaces [43]. Its name comes from metallurgy and material science, where 

annealing is a heat treatment of matter with the purpose of affecting properties such as 

hardness [43].  Metals  that  have been cooled down slowly (annealed)  are  harder than 

metals that have been cooled rapidly, therefore the magnitude of macroscopic strength is 

proportional to the molecular states of lower energy [38]. Heating the metal increases the 

energy of the ions and their diffusion rates [43]. As in the case of the gradient descent, the 

algorithm requires a single initial solution as a starting point of the search [43]. Contrary 

to gradient descent, the closeness of this initial solution to the global optimum of the 

search space should not theoretically have an impact on the outcome of the optimisation. 

The simulated annealing algorithm calculates iteratively the energy of the state of a metal 

during its cooling process in respect to a function known as annealing schedule. As the 

temperature decreases, the energy of every state is calculated by the problem's objective 

function and the algorithm converges to an optimal solution. It has been shown [48] that 

for a logarithmic annealing schedule of the form:

 T t= K
log (t )

, t≥1  

where T t is the temperature at time t, the algorithm does almost certainly converge to one 

of the  ground states,  for some constant  value  K. In  practice,  a  logarithmic annealing 

schedule is slow and impractical as it suggest that a very large number of all possible 
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states  is  visited,  making  it  equivalent  to  an  exhaustive  search  [38].  In  the  case  of 

combinatorial optimisation, a metaheuristic is usually applied to a problem which is of 

NP-hard complexity, where the number of possible solutions increases exponentially with 

the size of the problem and therefore an exhaustive search needs to be avoided. In order  

to  use  simulated  annealing  in  metaheuristic  search  with  positive  results,  we  use  a 

geometric annealing schedule of the form: 

T t = μT t−1 , 0<μ<1    [38]

A positive result in this case would be an approximate solution corresponding to points of 

low energy and not necessarily a global optimum [38]. However, it has been additionally 

shown  that  Simulated  Annealing  algorithms  with  appropriate  cooling  strategies  will 

manage  to  asymptotically  converge  to  the  global  optimum  [43].  The  source  code  I 

developed for Simulated Annealing was not included in this manuscript.

Genetic Algorithms :

Genetic Algorithms  (GA) are a subclass of  evolutionary algorithms, a broad family of 

optimisation algorithms whose source of inspiration is the Darwinian theory of evolution. 

Evolutionary algorithms try to simulate the inner mechanisms of the evolution of the 

species as it is understood to date. These algorithms are characterised by the generation of  

random perturbations  (called  mutations)  and the  presence  of a  fitness  function which 

evaluates  the  quality  of  a  given  solution.  Genetic  Algorithms,  one  of  the  broadest 

subclasses of evolutionary algorithms, simulate the evolution of populations of points in 

fitness space. In Genetic Algorithm terminology, a potential solution to an optimisation 

problem is called a chromosome or individual, whereas a set of solutions from which new 

individuals  will  have  to  emerge  is  called  a  population.  An individual  is  canonically 

modelled in the form of a binary vector, where every bit is subject to change and is called 

a  gene. In addition to gene mutations, individuals are produced by simulating genetic 

operators and reproduction, such as crossover, which involves the recombination of bits 

from selected  solutions  [38].  Genetic  Algorithms are  specifically  designed for  global 

optimisation by producing an entire new population (set of candidate solutions) on every 

–  41  –



iteration,  without  the  need nor  possibility  of  using  a  heuristically  good solution as  a 

starting point.

The generic process of a canonical Genetic Algorithm applies the following steps:

Step 1: Initialisation – An initial population is created, usually as a random process using 

a defined fitness function.

Repeat until convergence:

Step  2:  Selection/Evaluation  –  A subset  of  the  fittest  individuals  is  chosen from the 

current population.

Step 3: Mating/Crossover – A new population is created by the reproduction of the fittest 

individuals picked out during selection.

Step  4:Mutation  –  The  genetic  makeup  of  each  newly-born  individual  produced  in 

crossover are subject to mutation given a defined mutation probability. 

Sample applications of GA in molecular biology biology can be found in [49][50][51]. 

The source code I developed for  Genetic Algorithms was not included in this manuscript.
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CHAPTER III

Structural mass difference networks and the Netcalc method

This chapter presents the part of my work mentioned in the Overview (section 1.1) as the  

structural network approach. I describe the enhanced structural mass different network 

reconstruction scheme and the  Netcalc algorithm for network-based formula annotation 

of exact masses. I present my reconstruction and inference algorithms along with our 

results and applications on real-world data. At the end of the chapter, I present a stand-

alone software application which materialises the main points of our approach and allows 

for a more flexible algorithm parametrisation.

3.1 Method description and application on organic aerosol

3.1.1 Abstract

Here, we propose a novel computational and visual approach for the analysis of high field 

Fourier  transform  ion  cyclotron  resonance  mass  spectra  (ICR-FT-MS)  based  on 

successive  and  multiple  atomic  and  Kendrick-analogous  mass  difference  analyses. 

Compositional and functional networks enable improved assignment options of elemental 

composition and classification of organic complexity with tunable validation windows. 

The approach is demonstrated through the analysis of a 12T ICR-FT-MS mass spectrum 

of an intricate water soluble extract of a secondary organic aerosol with a previously 

established abundance in CHNOS molecules [2]. 
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3.1.1 Introduction

A precise molecular description of NOM, based on their carbon, hydrogen, oxygen and 

heteroatom-bearing  formulae,  facilitates  the  understanding  of  environmental 

biogeochemical processes. One critical bottleneck in the ICR-FT-MS characterisation of 

NOM concerns the handling and meaningful visual display of large datasets. Information-

rich, composition- and structure-dependent visualisation tools are indispensable for any 

significant  mass  spectrometric  analysis  of  NOM and other  complex organic  mixtures 

[52].  Van Krevelen visualisations [53][54] and Kendrick mass analyses [53][55] were 

initial methods of choice to depict the chemical diversity in various NOM and to provide 

unequivocal assignment of CHO, CHNO, CHOS, and CHNOS molecular series [11][56]

[57]  and  functional  group  equivalent  frequencies  [1],  respectively.  A Van  Krevelen 

diagram illustrates  the  hydrogen/carbon  (H/C)  ratio  of  molecules  against  their 

oxygen/carbon (O/C) ratio. The initial motivation behind this scheme was to describe the 

composition of coal, though it is currently in widespread use in the fields of petroleomics 

and NOM research [58][10]. In addition, it has been reported that the information in Van 

Krevelen diagrams may reveal patterns of metabolite classes [11][59].

Mass difference analysis  allowed assignment  of  higher m/z peaks in  mass spectra of 

NOM by extrapolating from lower mass numbers within recurring molecular series [60]. 

In this chapter, I present a new approach of network reconstruction and visualisation of 

high  field  ICR-FT-MS mass  spectra  which  offers  expedient  assignment  of  elemental 

formulae with improved coverage. In addition, network analysis of intricate mass spectra 

offers  new  unambiguous  means  to  depict  relationships  between  functional  group 

equivalents, transformations and organic molecular complexity in general.

3.1.2 Materials and methods

Samples and mass spectrometric analysis

The  negative  electrospray  12  T  ICR-FT-MS mass  spectrum  of  a  secondary  organic 

aerosol (SOA) has been previously acquired as described in Schmitt-Kopplin et al [57]. 

With a time domain of 4 megawords and a transient of 1.6 sec, it shows a resolution in 
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excess  of  400.000 at  m/z  400 in  full  scan  mode,  allowing for  a  decent  coverage  of 

reliably  assigned  elemental  compositions  after  internal  sub-100ppb  linear  calibration 

using  fatty  acids  in  the  m/z  range  150 to  600.  All  analysed  ions  were  found singly 

charged.

Computational analysis

To model the mass spectrum of SOA we used a large undirected graph G=(V, E) in which 

the set of vertices V represents the obtained exact masses from a m/z list, and the set of 

edges E represents predefined differences Δm from a transformation list. During network 

reconstruction,  a  polynomial-time  online  algorithm  performed  an  exhaustive  search 

across  the  m/z  list  of  experimental  masses  comparing  all  differences  between  those 

masses and the theoretical mass differences Δm found in the transformation list, within an 

adjustable error margin (set to 100 ppb here). Any match detected between experimental 

and theoretical Δm established a conditional relationship and stored specific colour-coded 

values inside an adjacency matrix according to mass fragment specifications. Network 

reconstruction,  statistical  analysis,  and  network-based  formula  calculation  were 

programmed in Matlab. Visualisation was performed on Mathematica using the algorithm 

of Hu [61]. The source code I developed for the algorithms used in the method was not  

included in this manuscript.

3.1.3 Empirical results

Generation of mass difference networks

Our networks are created out of exact mass differences in a way similar to the process 

described in Breitling et al [1]. The ICR-FT-MS mass spectrum of SOA initially served to 

produce a mass list by standard good practice [12][13][56][62]. A transformation list of 

preselected  mass  differences  Δm corresponding  to  abundant  specific  small  molecular 

units has been independently proposed. This level of abstraction provides information on 

the chemical variation in the sample under study by depicting sort (Δm) and site (m) of 

transformations  between  different  network  modules.  Two  types  of  mass  difference 

networks were computed via this semi-targeted approach:

–  45  –



(i) Compositional  network  reconstruction  was  applied  using  an  element-based 

transformation list (figure 3.1). A mass difference network was constructed on the fly out 

of the m/z list and a transformation list composed solely of selected elements (i.e. C, H, 

O, N, S, P) and mass differences between two main isotope pairs (ΔC:  13C-12C, and ΔS: 
34S-32S). The resulting sparse matrix can be used without further analysis to characterise 

any complex bio(geo)chemical system; this will be exemplified by a mass spectrometric 

analysis of  a secondary organic aerosol in the following section (figure 3.1). The goal of 

this model is the visual and mathematical evaluation of organic molecular complexity in 

terms of elemental composition; an approach that permits explicitly defined relationships 

between different samples.

(ii) Functional network reconstruction was applied using a restricted list of selected small 

molecular units with defined  Δm, corresponding to common chemical functional group 

equivalents (which can be commonly inserted in between any C-C and C-H bond, such 

as: CH2, H2, O, CO2, S, SO3, NH, PO3,  ΔC and  ΔS) and transformations. Expansion to 

include any further elements (e.g. B, Cl, Br, Fe, Mn,…), isotopes (e.g. 35/37Cl, 79/81Br,…) 

and combinations thereof is rather straightforward and easily implemented.  Functional  

network reconstruction corresponds to a multiple Kendrick analogue mass defect analysis 

and generates all homologous series according to chosen transformations simultaneously. 

Specific colours are attributed to any Δm; for figure 3.2, blue (CHO compounds), green 

(CHOS), orange (CHNO) and red (CHNOS) were used. 

Network topology and visualisation

Compositional  and  functional  network  visualisation  in  two  or  three  dimensions  was 

enabled by means of a multilevel, force-directed, layout algorithm[61]. Highly connected 

nodes were arranged near the center and less connected nodes towards the periphery. Our 

networks display a  modular  structure  with a  power-law degree  distribution,  i.e.  node 

connectivity is high for very few nodes and low for the majority of nodes. This so-called 

“scale-free” topology has been previously found characteristic of this type of network [1]

[31]. The numerous clusters of nodes that can be observed on a visualised network are the  

result of its community structure partition, i.e. the natural grouping of highly connected 

nodes.  The  visual  display  of  functional  networks,  in  which  the  colours  of  edges 
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correspond to specific transformation groups (Δm), can be decomposed according to Δm. 

Recognition of additional fragments with given mass differences will gradually add new 

connections to the system (figure 3.2). Applying this functional network analysis to the 

water soluble fraction of SOA enabled us to confirm the particular sulfur and nitrogen 

functionalisation of secondary organic aerosols, which had been previously established 

from element-edited van Krevelen diagrams [57].

Network-based elementary formula calculation (Netcalc)

In the analysis of SOA [53][57], a reconstructed mass difference network enabled the 

assembly of dense, larger graphs with a wealth of connectivities (figure 3.2C, 3.2E, 3.2F) 

and dissection down to individual, open subgraphs, which then provided only a very few 

different types of transformations (Δm; figure 3.2A, 3.2D). In general, a network-based 

elemental formula calculation for any individual (disconnected) subgraph, in which all 

edges are assigned specific  Δm (transformations), is feasible if only a single elemental 

formula is known (figure 3.2D).

Our initial “starting point” formula of SOA analysis was selected randomly from a list of 

calibrated formulas obtained from the m/z signals in its ICR-FT-MS mass spectrum via 

classical methods presented in our previous study [57]. About 70% of those m/z were 

detected  in  the  largest  subgraph  of  our  compositional  network  (figure  3.2F).  For 

validation, we selected those masses of the calibrated list present in the largest subgraph 

of the network and compared one-by-one the formulas assigned by Netcalc to those of the 

classical method. 99.57% of the formulas were found to be similar between the classical 

and network-based approaches at 0.1 ppm. Using carbon (13/12C) and sulfur (34/32S) 

isotope  filtering  methods  and  additional  imposed  H/C,  N/C,  S/C  and  O/C ratio  and 

valency restrictions, we managed to refine the results by eliminating false annotations out 

of the total formula attributions of the main subgraph, leaving us with a larger count of 

acceptable formula annotations than previously obtained with the classical approach [57]. 

Applying  this  network  analysis  on  the  water  soluble  fraction  of  SOA enabled  us  to 

confirm the particular sulfur and nitrogen functionalisation of secondary organic aerosols 

(figure 3.2F), which had been previously established from element-edited van Krevelen 

diagrams [57].
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3.1.4 Conclusion

Mass  difference  network  analysis  of  high  field  ICR-FT-MS mass  spectra  offered 

improved  visualisation  and  evaluation  tools  for  mass  spectra  of  complex  organic 

mixtures,  such as  NOM.  Compositional and  functional networks  created  out  of  mass 

difference network analysis were complementary to any of the methods currently in use, 

such as van Krevelen diagrams and single fragment Kendrick mass analyses. 

Adjacency  relationships  between  nodes  in  compositional  and  functional  networks 

allowed  to  mathematically  model  and  visually  depict  organic  molecular  complexity. 

Compositional networks enabled assignment of elemental formulae out of mass spectra 

and allowed alignments according to compositional relationships.

Edge-coloured functional networks offer not only visually attractive but essentially very 

informative assessment of relationships between functional groups in complex organic 

mixtures, which can be adapted to any  CHNOPSZ containing functional group (Z: any 

chemical element or combination thereof) to elucidate, e.g. selective reaction mechanisms  

or abundance windows according to element composition. Network analysis expands the 

classical single fragment Kendrick mass analysis and finely complements element-edited 

van Krevelen diagrams and other mass-dependent visualisation schemes (figure 3.3).

With the example of SOA characterisation, functional network analysis demonstrated that  

sulfur and nitrogen functionalities were present in two different molecular populations. 

Furthermore,  we were  able  to  confirm and improve our  previous  results  [57]  on  the 

annotations of elemental composition.  
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Figure  3.1:  (a)  Compositional  network  derived  from  a  negative  electrospray  12T  ICR-FT-MS  mass  

spectrum of a secondary atmospheric aerosol (SOA) with 9199 interconnected nodes out of 16933 masses  

and 35123 connections (edges). Given nodes represent assigned compositions, whereas connecting edges  

represent identified atomic transformations between pairs of masses. (b, c) Successive expansions down to  

individual compositions and element transformations.

        

–  49  –



 

Figure 3.2: Functional network derived from SOA (cf. figure 1): The visualisation can be adapted to depict  

selected parts of the network, i.e. a range of choice for multiple transformations characterized by specific  

Δm. (a)  functional network solely based CH2 and SO3 transformations;  (b)  inclusion of CO2 (nominal  

carboxylation) produces more numerous extended networks; (c) nominal oxygenation produces a few large  

networks, which are then further integrated and condensed (figure 2e) by recognition of nitrogen, sulfur  

and phosphorus functionalities; (f) filtering according to isotope pairs 13/12C and 34/32S (ΔC and ΔS) removes 

false positive assignments; differential opacity enables in-depth view.
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Figure 3.3: Comparison of (a) classical and (b) Netcalc computation of molecular compositions of SOA  

with mass-edited H/C ratio (left) and element-edited van Krevelen diagrams (right). 
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3.2 Models and Algorithms

3.2.1 Network-reconstruction algorithm

Structural network reconstruction requires a list of n exact masses and a list of m known 

chemical transformations which are supposed to be taking place between those masses. 

An exhaustive comparison is performed between all possible mass differences of the  n 

masses and the  m transformations in order to detect which transformations are taking 

place between which pair of masses. In every iteration, the algorithm calculates a mass 

difference  and  compares  it  to  all  m potential  transformations  within  a  certain  ppm 

window  until  a  match  is  detected  (normally  there  should  be  only  one  match).  The 

information of detected transformations between pairs of exact masses is stored as non-

zero values  inside  a  n×n sparse matrix.  In  a  sparse  matrix  only  non-zero values  are 

accounted, hence the real amount of memory allocated by this process is far smaller than 

the  maximal  value  of  n×n which  a  full  adjacency  matrix  would  require.  All  matrix 

algebra in my algorithms assumes that calculations are made over a full adjacency matrix 

A of size n×n, noted as A=[aij ]n×n , whereas in reality the memory usage corresponds to 

that of an adjacency matrix SA of size:

∑
i=1

i=n∑
j=1

j=n
aij  

For a n number of exact masses and a m number of transformations, The reconstruction 

algorithm performs a total of 
n2×m

2  iterations.

The complete reconstruction algorithm is provided below :
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ALGORITHM 1: Structural network reconstruction

Let X={x1, … , xi ,… , xn}  be a vector representing n exact experimental masses.

Let Y={y1, … , y i ,… , ym }  be a vector representing m transformation masses.

Let Tppm be a parts per million tolerance factor between two given masses.

Let f sparse  be a sparse matrix constructor function and ℤ  be the integers set. 

Input: exact mass vector [X], transformation vector [Y], ppm factor [Tppm]

Output: sparse matrix AS =[ a ij
S ]n×n

I ←{} , J ←{} , K ←{}

∀ i∈{1,... , n}, i∈ℤ  

∀ j∈{i+1, ... , n}, j∈ℤ  

Δm←∣x i−x j∣

T ←
T ppm×( x i−x j)

2
×10

−6

∀k∈{1, ... , m}, k∈ℤ

if [Δm< y k+T ]∧[Δm> yk−T ]

I ←{I∪ i }

J ←{J∪ j }

K ←{K∪ k }

end-if

end-for

end-for

end-for

AS = f sparse( I , J , K )
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My source code on various reconstruction algorithms was not included in this manuscript.

3.2.2 Disconnected subgraph clustering algorithm

The sparse matrix created by the network-reconstruction algorithm can be used to either 

visualise or further analyse the mass difference network of the input spectra. In order to 

perform network-based  formula  annotation,  the  mass  difference  network  needs  to  be 

clustered into its all its disconnected graph components (subgraphs). For this purpose, I 

implemented a subgraph clustering algorithm which breaks down a disconnected graph. 

The algorithm outputs matrices IC and JC, which hold the indices of all connections of all 

disconnected subgraphs, such that:

Aq
S = f sparse( CI ( q ,∗) , CJ (q ,∗))

where Aq
S

 is the sparse matrix of disconnected subgraph number q (all columns of row q 

in matrices IC and JC). 

The number of rows in IC and JC (which are of equal size) is the number of disconnected 

subgraphs discovered in SA, and the number of columns is the number of connections in 

the largest of these subgraphs. Thanks to the sparsity property, the large unused space in 

the the matrices of smaller subgraphs is not stored in computer memory.
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ALGORITHM 2: Disconnected graph clustering

Let  I and  J vectors be the homonymous output vectors of  Algorithm 1,  holding the 

indices of the sparse matrix SA representing a mass difference network.

Let  IX  and  JX be  vectors  of  variable  size  holding  the  i-indices  and  j-indices  of  a 

disconnected subgraph,  tS and  t-1S being the sizes of that component at time t and  t-1, 

respectively, where time is represented by the iteration counter c∈Z .

Let and IC and JC be two matrices of unknown size holding the i-indices and j-indices of 

all disconnected subgraphs of a mass difference network, where each row corresponds 

to a subgraph and each column to a pair of nodes i and j, respectively. 

Input: vectors [I], [J] holding the indices of network sparse matrix SA.

Output:  index  matrices  [ CI ],  [ CJ ],  holding  the  sparse  matrix  information  of  all 

disconnected subgraphs of SA.

c←1

CI ←∅

CJ ←∅

while I≠∅

XI ←∅

XJ ←∅

St ←∣ XI ∣

Q←1

while Q=1

∀k∈{1, ... ,∣I∣} , k∈ℤ

if ( I k≠0)∧( XI ≠∅)

if ( I k∉ XI )∨( J k∉ XI )∨( I k∉ XJ )∨(J k∉ XJ )
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XI ←{ XI , I k }

XJ ←{ XJ , J k }

I k ←0

J k←0

end-if

end-if

if ( I k≠0)∧( XI =∅)

XI ← I k

XJ ← J k

I k ←0

J k←0

end-if

end-for

St−1 ← St

C t ←∣ XI ∣

if St > St−1

Q←1

end-if

if St = St−1

Q←0

end-if

end-while

if CI ≠∅

CI (c ,∣ XI ∣)←0
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CJ (c ,∣ XJ ∣)←0

CI (c ,{1...∣ XI ∣})← XI

CJ (c , {1...∣ XJ ∣})← XJ

end-if

if CI =∅

CI (1,∗)← XI

CJ (1,∗)← XJ

end-if

c←c+1

end-while

My source code on the disconnected graph clustering algorithm was not included in this 

manuscript.

3.2.2 Netcalc algorithm

Once  all  disconnected  subgraphs  are  extracted  from  the  sparse  matrix  of  the  mass 

difference network, the network-based formula calculation algorithm can be applied on 

each of these graph components in order to annotate the masses represented by graph 

nodes. This unique annotation technique, which I call  Netcalc, is an efficient Breadth-

First Search (BFS) algorithm that uses a node of known elementary composition as a 

starting point  and,  given the known formulae of all  chemical reactions on the edges, 

calculates  by  inference  the  compositions  of  all  other  nodes  within  the  same  graph 

component. The computational complexity of a typical BFS strategy is, at the worst case, 

linear  in  the  number  of  nodes  and  edges.  However,  Netcalc's  performance  is  further 

boosted via its inference algorithm which significantly reduces the number of untreated 
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nodes at every iteration by a Gaussian trend. 

On  a  list  of  nodes  whose  neighbours  are  known,  the  Netcalc  algorithm  applies  the 

following steps:

• Search from the top of the list until you find a mass of known composition.

• Annotate all direct neighbours of that node and mark it as treated.

• Continue the search until the end of the list.

• Repeat steps one to three until all nodes in the list are treated.

Note that in the first  iteration of the algorithm the known elementary composition is 

provided  as  heuristic  knowledge.  My  source  code for  the  Netcalc  algorithm was  not 

included in this manuscript.

3.2.3 Netcalc-filtering

The list of elementary compositions yielded by Netcalc on an experimental mass have a 

rate of false annotations that can be used as an indicator of the quality of data calibration. 

In theory, the lower the rate of false annotations and the optimal ppm threshold used by 

the Netcalc algorithm, the better calibration we get. The optimal ppm threshold can be 

determined simply by launching several runs; starting from a very low value (such as 0.1) 

and gradually augmenting it while the rate of false annotations decreases. As a rule of the 

thumb, we can assume to have reached an optimal ppm at the run prior to the one where 

the rate of false annotations started increasing. Depending on the dataset, false 

annotations are detected by applying the filters presented in [63].

Some additional filters used by the Netcalc algorithm can be seen in table 3.1.
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H/C > 3

O/C ≥ 1 

H/N < 2

S/C > 3

N/C > 1

Nitrogen rule

13C isotope removal

S isotope removal (34S – 32S)

Experimental exact mass 

comparison

Table 3.1: Core Netcalc filters

For the application of filters, we have developed two different Netcalc-filtering strategies:

– Static  filtering:  The  filters  are  applied  on  every  individual  formula  after  the 

Netcalc algorithm has converged.

– Dynamic filtering: The filters are applied on every individual formula while the 

Netcalc algorithm is running.

In the case of dynamic filtering, the application of a filter is integrated inside Netcalc and 

once a node is annotated its formula is checked for validity. If the formula is discarded 

then the node is not marked as treated, meaning that there is a chance for it to receive an  
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acceptable annotation during another iteration. The downside of this algorithm is that, in 

the case of nodes representing artefacts without a possible annotation, some paths in the 

graph  may  be  blocked  and  not  accessible  for  annotation.  I  have  observed  that  the 

efficiency of each strategy depends on the nature of the dataset in question.

3.2.4 Iterative Netcalc

The Netcalc algorithm uses a  starting mass of  known elementary composition as the 

heuristic information for inference and annotation of all graph nodes. This mass can be 

either provided exclusively by the programmer/user or picked out in a targeted fashion 

out of a list of known theoretical compounds using the lowest error margin as a criterion. 

The error margin of the starting mass' composition may have an important impact to the 

algorithm's performance. In order to overcome that issue, the basic Netcalc algorithm can 

be iterated over several starting points and, using dynamic filtering, maximise the number 

of correct annotations. The process becomes slower and more targeted in comparison to 

the  standard  heuristic  Netcalc  applied  on  a  single  subgraph,  however,  the  output  of 

correct  annotations  may  increase  significantly.  This  variant  of  Netcalc  is  still  at  an 

experimental stage.

3.2.5 Unsupervised network reconstruction

A strictly  non-targeted  scenario  for  network  reconstruction  is  the  one  applied in  [1], 

where no transformation list is provided to the algorithm. Instead, a local search clusters 

the most frequently occurring mass differences and constructs a transformation list on the 

fly.  I  re-implemented the  algorithm of R.  Breitling [1] and used it  to mine “hidden” 

transformations  between  all  disconnected  subgraphs  (yielded  by  Algorithm  2)  in  an 

attempt to unify the entire network structure into a single graph, which would allow us to 

annotate both newly discovered transformations as well as all disconnected subgraphs in 

a single run. This method is experimental and its results are to date under evaluation. My 

source code for hidden link mining and unsupervised network reconstruction algorithms 

was not included in this manuscript.
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3.3 Netcalc standalone application

I developed a user-friendly Graphical User Interface, which can be compiled and used as 

a standalone application for mass difference network analysis (figure 3.4). The software 

was written in MATLAB and takes its name after the Netcalc algorithm. 

Figure 3.4: Graphical user interface of the Netcalc software showing all screens, input, and output options.
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The  application  is  divided  in  three  output  screens  and  four  user-interface  panels, 

described below:

The algorithm's input and parametrisation panel. The user loads a mass spectrum in text 

or  .xls  format  (load  m/z  spectrum),  a  transformation  list  in  .xls  format  (load 

transformation list), and a reference list from which Netcalc will automatically choose an 

annotated mass as its starting point (load reference file). The 'network ppm tolerance' 

field sets the ppm tolerance value used during the network reconstruction process. The 

'Netcalc ppm tolerance' sets the ppm tolerance value used by the Netcalc algorithm when 

reading  a  starting  mass  from  a  reference  file  containing  one  or  more  theoretical 

compounds (in the case where there are many compounds, the one with the lowest error 

is chosen). The network type,  structural or  functional,  basically determines whether a 

structural user-defined or the integrated functional transformation list will be used. By 

default,  the  'structural'  button  is  pressed,  meaning  that  the  user  has  to  use  the  'load 

transformation list' button and indicate a transformation file in the correct format: three 

columns  with  description,  exact  mass,  and  elemental  composition.  If  the  'functional' 

button is pressed, then the algorithm will use its built-in, Kendrick-based transformation 

list. The Netcalc coverage option indicates whether Netcalc will be applied exhaustively 

on all disconnected graph components or heuristically only on the the largest component. 

In the former case, Netcalc is launched as many times as the number of disconnected 

graph components, which can be a slow process. In the default heuristic case, Netcalc is 

run only once on the largest disconnected network subgraph under the assumption that it  

contains the vast majority of nodes and all masses of interest.  On heuristic mode, the 

'subgraph  cut-off'  field  defines  the  value  which  will  be  used  as  a  threshold  by  the 

disconnected subgraph clustering algorithm during its searches for the largest subgraph. 

For example, in the case of the default value of 20, the clustering algorithm will extract 

only the first 20 subgraphs and will return the largest of them. While the total number of 

subgraphs is unpredictable, the clustering algorithm usually manages to finds the largest 

component in its 10 or 20 first iterations. In order for the algorithm to extract all graph 

components before returning the largest, the parameter needs to be set to the value of -1. 

The 'filtering method' sub-panel determines the filtering strategy that will  be used, as 

described in a previous section. 
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The  'quickrun'  button  takes  the  current  input  settings  and  launches  Algorithm  1, 

Algorithm 2, and filtering, a procedure that can also be done sequentially through the 

'manual run' panel. In the output options, the 'select plot to display' and 'select variable to 

display' menu lists determine what will be displayed in the 'plotting screen' and 'variable 

screen'  output  panels,  respectively.  In  the  exporting  options,  all  output  data  from the 

'display screen'  and 'variable  screen'  can be exported  into .jpg  and .xls  format  either 

selectively or collectively through the 'export all data' button. The 'status screen' panel at 

the bottom displays the status of all actions taken at any given point.

3.4 Method applications

3.4.1 Case study: Terrestrial NOM (Suwanee river)

Terrestrial NOM cover a remarkable area of the compositional space and often carry very 

informative  additional  biological  signatures  which  are  useful  to  assess  the  relative 

contributions of biological and biogeochemical reactions in its formation. Biosignatures 

in  terrestrial  and  freshwater  NOM  often  appear  as  intense  mass  peaks  that  can  be 

analysed  by MassTRIX metabolic  pathway annotation,  which  relates  groups of  mass 

peaks  to  the  KEGG metabolome database  [64].  The decoding  of  the  time-dependent 

individual NOM molecular signatures is an initial step toward a conceptual convergence 

of biogeochemistry and biodiversity with its organism specific metabolites and metabolic 

networks. Future comprehensive studies of NOM structure and environmental function 

will  utilize  the  entire  toolbox  of  organic  structural  spectroscopy,  metabolomics,  and 

systems  biology.  The  advanced  network  analyses  presented  in  the  following  section 

demonstrates new opportunities for a qualitative and quantitative evaluation of organic 

molecular complexity.
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3.4.2 Case study: Structural comparison of space, plasma, and oceanic NOM

Primitive meteorites assembled in the early solar  system have sampled across a huge 

variety of compositional, temperature and irradiation regimes which initiated enormous 

spatial  (physical  and  chemical)  heterogeneity  on  all  size  scales  and  a  stupendous 

molecular diversity which  rivals and possibly exceeds terrestrial biological complexity. 

Hence, extraterrestrial NOM fundamentally deviates from almost all terrestrial materials, 

which  display  more  uniform  histories  of  formation,  given  the  temperate  nature  of 

terrestrial ecosystems.

Abiotic, biogeochemical and biological organic molecules occupy vastly different subsets 

of the chemical space. While the abiotic evolution of NOM often follows entropy-driven 

trajectories that maximize chemical diversity, carbon based life is confined to a rather 

restricted  biologically  relevant  chemical  space.  However,  an  enormous  structural 

diversity  of  molecules  is  assembled  from  a  surprisingly  small  subset  of  universal 

precursors  and the  three-dimensional  qualities  of  these  molecules  are  critical  for  the 

sustenance of basic and higher life. 

Figure 3.6: Compositional networks of three NOM samples; blood plasma (biomolecular mixture; left),  

riverine  organic  matter  (biogeochemical  mixture;  centre),  and  Murchison  meteorite  (abiotic  mixture;  

right).

–  64  –



While  the  emergence of  biomolecules  from abiotic  chemistry remains  unsolved,  well 

defined relationships between these classes of complex mixtures can be established by 

network analysis of ultrahigh resolution mass spectra.  These will  faithfully depict  the 

compositional space of molecules, which itself represents the isomer-filtered complement 

of the structural space. It is quantised according to the laws of chemical binding and mass 

differences when evaluated on basis of atoms, molecular fragments, and within nominal 

mass clusters.

The  functional network approach can be used to model such a system in the form of a 

complex network, i.e. a diagram consisting of a set of points, together with a set of lines. 

In the application of this section, the visual representation of the network reflects the 

structural information expressed by ICR-FT-MS complex mass spectra for three samples: 

biological, biogeochemical, and extraterrestrial (figure 3.7). In functional networks, the 

set of vertices represents the obtained exact masses, and the set of edges represents a 

group of selected mass differences from the Kendrick list. Through the described model 

we seek to  unravel  the  dynamic and structural  space  of  NOM depending on various 

conditions,  such  as  seasonal  change,  diagenetic  evolution,  or  biogeochemical 

transformation. 

Some properties of the individual networks can be seen in figures 3.6A, 3.6B, and 3.6C. 

The degree distribution plot reveals what topology a network abides to. As expected, all 

plots  follow  a  power-law  distribution,  which  points  to  the  scale-free topology.  The 

power-law degree distribution tells that there exist very few densely connected nodes and 

many sparsely connected ones. A power-law relationship is of the form:

         y=kx n    (1)

We can, via the properties of logarithms, convert a power-law relationship into a linear 

one. If we logarithmise equation (1) we get:

log y = log kxn

log y = log k+log xn

log y = log k+n log x    (2)
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By defining log x ≡ z and log y ≡ w , equation (2) becomes:

        w=nz+log k    (3)

Relationship (3) is the equation of a straight line. Therefore, a log-log plot of a power-law 

distribution should display a linear trend. As depicted, non-linear and linear regression 

yield in both cases with very high R2 values.

Figure 3.7A: Degree distribution of plasma tulip (biological) network (805 nodes, 1081 edges) showing the  

expected  scale-free  architecture  with  a power  law function  (left)  and a  linear  function on  its  log-log  

counterpart (right).

Figure 3.7B: Degree distribution of Suwannee river (aquatic NOM) network (8870 nodes, 19953 edges)  

showing the expected scale-free architecture with a power law function (left) and a linear function on its  

log-log counterpart (right).

–  66  –



Figure 3.7C: Degree distribution of Murchison meteorite (extraterrestrial NOM) network (15933 nodes,  

39616 edges) showing the expected scale-free architecture with a power law function (left) and a linear  

function on its log-log counterpart (right).

3.4.3 Case study: Aquatic and spatial NOM

A number of structural mass difference networks were reconstructed from aquatic and 

spatial  ICR-FT-MS data,  from  Suwannee  river  [65],  oceanic  Aerosol,  and  meteorite 

samples.  The  reconstruction  algorithm  creates  a  network  on  the  fly  by  comparing 

exhaustively all mass differences in a m/z spectrum to the entries of a transformation list 

composed  by  selected  compounds.  The  resulting  network  matrix  can  be  directly 

visualised,  without the need of further analysis, in order to provide us with structural 

information on a given biochemical system (figures 3.8A, 3.8B, 3.8C, 3.9, 3.10). The 

goal  of  the  specific  study was  the  structural  characterisation  of  the  data  in  terms  of 

elementary  composition  and  functional  groups; an  approach that  permits  the  relative 

comparison of samples at a structural level.
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Figure 3.8A: C,H,O-based three dimensional structural network mass analysis of Suwannee River NOM.  

The  main  bulk  of  the  network  along  with  its  disconnected  subgraphs  display  a  strong  scale-free  

architecture. Nodes represent masses and edges represent chemical reactions between masses; colours in  

this network do not follow a biological meaning.

–  68  –



Figure 3.8B: Structural network of Suwannee river NOM (0.5 ppm). At a lower p.p.m. threshold the main  

bulk of the network is broken into smaller subgraphs of high modularity. Nodes represent masses and edges  

represent chemical reactions between masses; colours in this network do not follow a biological meaning.
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Figure  3.8C:  Structural  network  of  Suwannee  river  NOM  (0.5  ppm).  A  view  of  the  largest  network  

subgraph revealing the strong modularity and scale-free architecture in its form. Nodes represent masses  

and edges represent chemical reactions between masses; colours in this network do not follow a biological  

meaning.
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Figure 3.9:  Structural network of Maribo meteorite NOM (0.1 ppm). At a minimal p.p.m. threshold the  

extraterrestrial NOM remains remarkably very solidly connected in a dense subgraph of relatively low  

modularity. Nodes represent masses and edges represent chemical reactions between masses; colours in  

this network do not follow a biological meaning.
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Figure 3.10: Structural network of Murchison meteorite NOM (0.1 ppm). At a minimal p.p.m. threshold the  

extraterrestrial NOM remains remarkably very solidly connected in a dense modular subgraph. Nodes  

represent masses and edges represent chemical reactions between masses; colours in this network do not  

follow a biological meaning.
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A functional network (figure 3.11) is similarly constructed out of a m/z list, however in 

this case, the transformation list (that we refer to as Kendrick list) is composed by a fixed 

number  of  compounds  which  (figure  3.12),  in  turn,  comprise  a  set  of  chosen 

transformation groups. The matrix corresponding to this graph is  constructed especially 

in  order  to  store  information  on  the  transformation  group  of  every  detected 

transformation.  This  information  is  reflected  in  the  colours  of  edges  during  network 

visualisation,  where  every  edge  is  assigned  to  the  colour  of  its  corresponding 

transformation group. An application of the method was demonstrated on the Suwanee 

river NOM sample (figures 3.13, 3.14).

Once reconstruction is achieved, the Netcalc method performs formula calculation. First, 

a clustering algorithm is applied in order to extract all disconnected graph components 

from the network. The idea is that, for any given extracted subgraph (which is treated as 

an  individual  connected  network),  knowing one  single  elementary  formula  out  of  all 

nodes/masses involved in that component should enable us to calculate all elementary 

formulas in the component by using the known formulas of our reaction compounds that 

are assigned to the graph's edges (figure 3.15).  This inference procedure is achieved by 

applying an efficient (  O( |  E | + |  V | ) Breadth-First Search algorithm on every graph 

component. Our “starting point” formula is chosen heuristically from a list of calibrated 

masses,  which can be later used in its  entirety to validate  our results  (figures 3.16A, 

3.16B).
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Figure  3.11:  Functional  network  -  oceanic  aerosol  NOM (0.5  ppm):  11092 nodes,  19953 edges,  931  

subgraphs, Largest subgraph order (number of nodes): 7404,  Largest subgraph size (number of edges):  

16873. Nodes representing masses have been rendered invisible while edges represent chemical reactions  

between masses. The colours of the edges in this network represent the groups that chemical reactions  

belong to.
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Figure 3.12: The “Kendrick  list” used in functional network reconstruction. The colours of   chemical  

reactions in the list correspond to the colours of edges in compositional networks.
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Figure 3.13:  Stepwise procedure of functional network creation. Functional networks are visualized in a  

number of steps, each step corresponding to a type of transformation which gradually adds new nodes to  

the  system.  Nodes  representing  masses  have  been  rendered  invisible  while  edges  represent  chemical  

reactions between masses. The colours of the edges in this network represent the groups that chemical  

reactions belong to.
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Figure 3.14 : Functional network - Suwannee river NOM (0.1 ppm). Nodes representing masses have been  

rendered invisible while edges represent chemical reactions between masses. The colours of the edges in  

this network represent the groups that chemical reactions belong to.
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Figure 3.15:  Inference of the Netcalc algorithm: A close-up view on the graphical simulation of a mass  

difference network, showing how nodes represent masses and edges represent chemical reactions. In this  

hypothetical hierarchical tree structure, the Netcalc algorithm calculates elemental compositions from top  

to bottom, starting with the CHO molecule whose formula is known.
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Figure 3.16A

Van Krevelen diagrams of annotated oceanic aerosol samples: Netcalc annotations (left), calibrated mass  

list annotations (right). A noticeable consistency between the classical method (right) and Netcalc (left)  

can be seen in the diagrams. Though not directly noticeable, the Netcalc's output Van Krevelen diagram is  

denser with significantly more masses being annotated.

Figure 3.16B

Van Krevelen diagrams of annotated oceanic aerosol samples: Netcalc annotations - before (left) and after  

(right) filtering. The removal of wrongly annotated masses (filtering) can be observed in the density change  

from the first to the second diagram.

–  79  –



During the evaluation of Netcalc annotation results on Suwannee river NOM, 1935 out of 

the 1987 calibrated masses could be found in the largest network component. At 0.1 ppm, 

only 99 out of those 1935 masses in the largest component had miscalculated formulas. It 

was observed that those 99 formulas corresponded to very large masses, which logically 

implies a higher absolute error. Besides those 1935 common masses that could be easily 

validated, Netcalc assigned formulas to all 7404 masses of the main subgraph. The same 

procedure could be applied to all subgraphs  (~12000 masses), which have at least one 

mass of known composition that could be used as a starting point.
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CHAPTER IV

Unsupervised learning and cluster analysis on mass spectrometric data

In this chapter I present my study on a number of selected machine learning techniques 

and  their  application  on  mass  spectrometric  data  for  the  purpose  of  unsupervised 

classification  (clustering).  All  methods  presented  in  this  chapter  are  well  studied 

algorithms for cluster analysis in machine learning and computational statistics, albeit 

with basic application on mass spectrometric data analysis (or none at all). I applied those 

algorithms on a selected mass-spectrometric dataset and studied their performance under 

varying parametrisation. My comparison of those methods points out the weak points of 

classical approaches and justifies the selection of tools that I used throughout this work. 

4.1 Abstract

For a clustering task, we have the option between several different algorithms, each of 

which is associated to a similarity metric that maps data objects on a feature space. Every 

algorithm  comes  with  different  complexity  and  performance,  while  every  similarity 

metric can have a different impact on an algorithm depending on the dataset in use. The 

performance of an algorithm on a particular dataset can be generalised for other datasets 

that  are  assumed  to  be  similar,  however,  there  are  no  means  to  draw a  generalised 

conclusion  on the  performance  of  a  similarity  metric.  The  only  way to  evaluate  the 

effectiveness of a certain algorithm-metric combination is to test the dataset in question 

using different algorithms and metrics. I tried a number of algorithm-metric tests on the 
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same  dataset  in  an  attempt  to  find  the  optimal  combination.  I  first  used  different 

algorithms with a fixed metric to determine, or rather prove, that  community structure  

partition  clustering is  superior  to  most  mainstream algorithms.  I  then  used  the  best-

performing algorithm with several different similarity metrics. Part of my methods and 

results are presented in this section. 

4.2 Metabolic microdiversity dataset

In  order  to  test  the  performance  of  clustering  algorithms,  I  chose  a  dataset  whose 

biological grouping could be easily revealed through unsupervised means. The Metabolic 

microdiversity scenario from [66] provides the perfect medium for such a task, with 187 

bacterial samples being involved in three classification scenarios.

Salinibacter  ruber is  an extremely halophilic  Bacteroidetes  that  thrives in  crystalliser 

ponds all around the world. In the article in question [66], two sets of  22 and 35 co-

occurring  S.  ruber strains,  newly  isolated  respectively,  from  100  microliters  water 

samples were analysed from crystalizer  ponds in Santa Pola and Mallorca,  located in 

coastal and inland Mediterranean Spain and 350 Km apart from each other. A set of old 

strains isolated from the same setting were included in the analysis.  Overall the results 

show  a  phylogenetically  very  homogeneous  species  expressing  a  very  diverse 

metabolomic  pool.  The  high  analytical  mass  resolution  of  ICR-FT/MS  enabled  the 

description of thousands of putative metabolites  from which to  date  only few can be 

annotated  in  databases.  Some  metabolomic  differences,  mainly  related  to  lipid 

metabolism and antibiotic-related compounds, provided enough specificity to delineate 

different  clusters within the co-occurring strains. In addition,  metabolomic differences 

were found between old and new strains isolated from the same ponds that  could be 

related to extended exposure to laboratory conditions.
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4.3 Classification modelling scenarios

An arbitrary classification scenario will model biological groups into q classes:

C = {C1, ... , Ck, ... , Cq}

The  experimental  setup  of  the  “microdiversity”  dataset  involves  three  classification 

scenarios that, in this work, I refer to as cellular, regional, and temporal. In the cellular 

scenario, samples are grouped according to the part of the cell they were extracted from. 

This is the most “obvious” scenario (in terms of cluster analysis) and the one that most 

clustering  algorithms  would  easily  treat.  The  regional  scenario,  whose  biological 

grouping indicates the geographical origin of samples, is the most important one in the 

article in question [66] as well as the most difficult to detect via computational means. In 

fact, no algorithm other than community structure partition clustering managed to detect 

any patterns of this scenario. This was my main reason for choosing community structure 

as the clustering method of preference in this thesis. Finally, the temporal scenario has to 

do  with  the  samples'  chronological  time  of  extraction  and  is  considered  the  least 

important of all.

The cellular biological  grouping instantiates the  generic  model  with three classes for 

extracellular, intracellular, and pellet:

C = {C1, C2, C3}

where each class holds the following index integer values of the sampled observations to 

be clustered:

C1= {69...121} (extracellular)

C2= {1, 121...187} (intracellular)

C3= {2...68} (pellet)
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The regional biological grouping involves the two classes Mallorca and Santa Pola:

C = {C1, C2}

with the index integer values of the sampled observations:

C1= {2-28, 69-81, 122-148}

C2= {1, 29-68, 82-121, 149-187}

The temporal biological grouping divides samples into old and new:

C = {C1, C2}

with the index integer values:

C1= {1, 24-28, 64-68, 117-121, 144-148}

C2= {2-23, 29-63, 69-116, 122-143, 149-187}

4.3 Comparison of clustering algorithms

The first step was to test the efficiency of the chosen clustering algorithms by comparing 

their performance using a fixed similarity metric. I chose the  Pearson distance as the 

metric of preference and used it  to create a similarity matrix, on which all clustering 

methods were to be applied. In this section, I describe the performance of the following 

algorithms: hierarchical clustering, k-means, community structure partition, and principal 

component analysis.
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4.3.1 Hierarchical clustering

In hierarchical clustering, a similarity matrix, containing proximity information between 

the objects to be clustered, is initially treated by a process called linkage. During linkage, 

this proximity information is used to link pairs of objects into binary clusters. Binary 

clusters are subsequently re-linked together and with individual objects in order to form 

bigger clusters, until all objects in the dataset are linked together forming a hierarchical 

tree structure, which can be visualised in the form of a dendrogram [42]. In figure 4.1B 

we can see the dendrogram of the microdiversity dataset for the cellular classification 

scenario. The numbers along the horizontal axis are the indices of sampled objects to be 

clustered and the vertical upside-down U-shaped lines represent the links between objects 

(samples  and clusters of samples).  The height  of  the U-shape represents the distance 

between objects. The full dendrogram of figure 4.1A with 186 samples and 14193 data 

points is not very informative. For that reason, the number of objects on the horizontal 

axis has been scaled down to 30 by representing individual samples and smaller clusters 

as single objects. Just by visualising this linkage we can make some prediction on cluster  

creation by noticing how two main patterns are formed, bordered by the objects 30 and 2 

somewhere in the middle of the horizontal axis. We can assume that the pattern on the left  

of object number 30 is most likely a separate cluster (probably the Pellet), however, it is 

not so obvious what clusters in the right-hand side pattern. Effectively, after applying the 

clustering  process  on  this  linkage,  we  find  that  the  canonical  hierarchical  clustering 

algorithm  combined  with  Pearson  distance  outputs  only  two  clusters  in  the  cellular 

scenario and, therefore, fails to deliver a satisfactory performance. Since the algorithm 

fails to treat the easiest scenario (cellular) efficiently, there is no reason to apply it on the 

rest. I performed further testing with hierarchical clustering using similarity metrics other 

than Pearson distance and I discovered that the algorithm does in fact cluster the cellular 

scenario  with  Spearman  distance  (one  minus  the  sample  Spearman's  rank correlation 

between observations). This finding would strengthen the assumption that the efficiency 

of a metric varies arbitrarily over different datasets. The full and scaled dendrogram of 

hierarchical clustering using Spearman distance are illustrated in figures 4.1C and 4.1D, 
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respectively. A clustergram (cluster heatmap) of the algorithm's output stands witness to 

these conclusions by illustrating clearly three main patterns forming along the samples on 

the  horizontal  axis  (in  red  colour,  figure  4.2).  Only  4  out  of  186  samples  were 

misclassified by this method on the cellular scenario. Nonetheless, besides those primary 

cellular  clusters,  the  dendrogram  and  clustergram  of  hierarchical  clustering  offer  no 

further traces of visual patterns that could be linked to the other biological scenarios, and 

therefore  its  efficient  result  are  restricted  to  reflect  only  the  least  useful  biological 

grouping (the cellular scenario).
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Figure 4.1A: Complete hierarchical clustering dendrogram using Pearson correlation. Numbers along the  

horizontal axis are the indices of sampled objects while the vertical upside-down U-shaped lines reflect the  

linkage between objects. The height of the U-shapes represents the distance between linked objects.
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Figure 4.1B: Trimmed hierarchical clustering dendrogram using Pearson correlation. Numbers along the  

horizontal axis are the indices of sampled objects while the vertical upside-down U-shaped lines reflect the  

linkage between objects. The height of the U-shapes represents the distance between linked objects. The  

trimmed dendrogram decreases the number of objects for better readability.
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Figure 4.1C: Complete hierarchical clustering dendrogram using Spearman's rank correlation.  Numbers 

along the horizontal axis are the indices of sampled objects while the vertical upside-down U-shaped lines  

reflect  the linkage between objects. The height of  the U-shapes represents the distance between linked  

objects.
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Figure 4.1D: Trimmed hierarchical clustering dendrogram using Spearman's rank correlation.  Numbers  

along the horizontal axis are the indices of sampled objects while the vertical upside-down U-shaped lines  

reflect  the linkage between objects. The height of  the U-shapes represents the distance between linked  

objects. The trimmed dendrogram decreases the number of objects for better readability.
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Figure 4.2: Hierarchical clustering clustergram Spearman's rank correlation. Red coloured dots represent  

closely linked objects that form dense clusters. Three main clusters of predominantly red colour can be  

observed in the top left, middle centre, and bottom right of the heatmap. Hierarchical clustering can only  

identify the three cellular groups.
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4.3.2 k-means clustering

The canonical version of the k-means algorithm requires that the number of clusters k are 

provided as an input parameter. Using the Pearson distance for proximity, the method was 

applied on the microdiversity dataset with k=3 and managed to cluster all but 8 samples 

correctly, out of the total 186. Out of these 8 misclassified samples, it should be noted 

that numbers 42 and 68 had been also misclassified by hierarchical clustering. There is 

not standard visualisation method for depicting the output of the k-means algorithm for 

multi-dimensional  data.  I  did,  however,  try  using  2-dimensional  plots  between  the 

proximity  information  of  two  data  points  corresponding  to  molecular  masses  of 

significantly different magnitudes. The information reflected in these plots is, of course, 

only approximative and meant only for the sake of demonstration, albeit not suggested as 

an efficient method for visualising the output of k-means. Figure 4.3A illustrates this 2-

dimensional plot, in which the three clusters of samples detected by k-mean are marked 

with  symbols  'o',  'x',  and  '+'.  I  added some colouring  for  the  classes  of  the  cellular 

scenario in order to see how they coincide with the clusters of k-means. The result of this 

process  can  be  seen  in  figure  4.3B,  where  the  same symbols  represent  the  k-means 

clusters  and  the  colours  red,  purple,  and  blue  represent  the  biological  groups  pellet, 

intracellular, and extracellular, respectively. In figure 4.3C I have isolated the 8 samples 

that  have been misclassified. In figures 4.3D and 4.3E I used two different colouring 

schemes for the two remaining scenarios, regional and temporal. The purpose of applying 

colours that correspond to the other two classification scenarios is to observe whether 

some sub-patterns are formed along the clustered visual output. We already know that the 

detected clusters correspond to the classes of the cellular scenario, yet we are trying to 

make sure that there are no other less obvious patterns of biological significance. The 

result is negative and, as it can be seen in these plots, the colours are distributed randomly 

in respect to the k-means clusters.
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Figure 4.3A: k-means pseudo-plot - two selected molecular masses were chosen to reflect the algorithm's  

output. The three clusters of samples detected by k-mean are marked with symbols 'o', 'x', and '+'. The  

monochrome colour of the graph does not have a significance. 

Figure 4.3B: k-means pseudo-plot – two selected molecular masses were chosen to reflect the algorithm's  

output. The three clusters of samples detected by k-mean are marked with symbols 'o', 'x', and '+'. Colours  

were added for cellular classes (blue - extracellular, purple - intracellular, red - pellet) in order to see how  

they coincide with the clusters of k-means.
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Figure 4.3C: Falsely clustered data points in k-means pseudo-plot. The three clusters of samples detected  

by k-mean are marked with symbols  'o',  'x',  and '+',  with only  misclassified objects  appearing in  the  

diagram. Colours were added for cellular classes (blue - extracellular, purple - intracellular, red - pellet) )  

in order to see how they coincide with the clusters of k-means.

Figure 4.3D: k-means pseudo-plot – two selected molecular masses were chosen to reflect the algorithm's  

output. The three clusters of samples detected by k-mean are marked with symbols 'o', 'x', and '+'. Colours  

were added for regional classes (cyan - Mallorca, magenta - Santa Pola) in order to see how they coincide  

with the clusters of k-means.
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Figure 4.3E: k-means pseudo-plot – two selected molecular masses were chosen to reflect the algorithm's  

output. The three clusters of samples detected by k-mean are marked with symbols 'o', 'x', and '+'. Colours  

were added for temporal classes (yellow - old, green - new) in order to see how they coincide with the  

clusters of k-means.
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4.3.3 Principal Component Analysis

The output of principal component analysis is a two-dimensional visualisation of the two 

principal components that contain most of the data's information. Figure 4.4A depicts the 

output  plot  of  PCA applied  on  the  microdiversity  dataset.  Unlike  the  rest  of  the 

algorithms we tried out so far, PCA offers no fixed sets of clusters in its output, and 

pattern observation on the two-dimensional plot relies largely on expert judgement. The x 

and  y axes crossing the origin of the plot are used as the separators of clusters, which 

would imply that there is only a maximum of four clusters that can be determined in 

silico, one for every quadrant. This rule of the thumb, however, does not provide any 

useful results on any microdiversity classification scenario. If we add the colours of the 

cellular scenario to the samples of a PCA plot we see that the lines  x=0 and  y=0 cut 

biological  groups  down  in  the  middle,  therefore,  instead  of  clusters  we  obtain  only 

patterns (figure 4.4B). In the regional and temporal scenarios of figures 4.4C and 4.4D, 

respectively, the colours appear very mixed with hardly any patterns forming.
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Figure 4.4A: PCA – scatter plot of the first and second principal components of the Microdiversity dataset.  
Without adding any colours to known patterns we can vaguely observe three to five centres of densely  
concentrated dots, concluding that no cluster can be detected with certainty.

Figure 4.4B: PCA – scatter plot of first and second principal components of the Microdiversity dataset  
with cellular colouring (blue - extracellular, purple - intracellular, red – pellet). After adding colours for  
the cellular biological groups, we see that the patterns of the most densely concentrated objects correspond  
vaguely to those groups. The diagnostic capacity of PCA on the cellular group is weak.  
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Figure 4.4C:  PCA – scatter plot of first and second principal components of the Microdiversity dataset  
with regional colouring (cyan - Mallorca, magenta - Santa Pola). After adding colours for the regional  
biological groups, we see that almost no pattern can be observed. The diagnostic capacity of PCA on the  
regional group is almost non-existent.  

Figure 4.4D:  PCA – scatter plot of first and second principal components of the Microdiversity dataset  
with temporal colouring (yellow - old,  green – new). After adding colours for the temporal biological  
groups,  we see  that  no  pattern  can  be  observed  whatsoever.  The  diagnostic  capacity  of  PCA on  the  
temporal group is non-existent.  
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4.3.4 Self-Organizing Maps

As part  of  my work on Artificial  Neural  Networks,  I  tested  the  performance of  self 

organizing maps (SOM); a clustering technique that differs significantly to the rest of the 

algorithms used in this section. A SOM is a type of artificial neural network whose nodes 

(neurons) are associated to a weight vector (equal in dimension to the input data vectors) 

and a position in the map space. The SOM's principal difference to the other clustering 

methods is  that it  does not build up a similarity matrix to use as a starting point for 

learning. Instead, a SOM applies a similarity metric on the fly during the training stage, 

via which it calculates heuristically the distances between its neurons. It produces a two-

dimensional  representation of  the input  space of the  training samples that  is  called a 

'map', where topological closeness derives from input similarity. Figure 4.5A illustrates 

such a map obtained by the algorithm's application on the Microdiversity dataset. In a 

way similar to a heatmap, neurons are represented on the horizontal and vertical axes 

while pairwise distances are reflected through colours in a third dimension. In this case, 

the size of the u-matrix is 30×30 neurons and the similarity metric used in training is the 

Euclidean distance. The three cellular classes are distinctively formed as patterns in the 

U-matrix. One of the downsides of the SOM method is that clusters are not provided as 

discrete sets of objects but have to be manually detected within the map's patterns (as in 

the case of PCA); a task which is not always as obvious as in this dataset (figure 4.5A).  

There are various ways to discretise SOM's clustering output but none of them is part of 

the canonical algorithm. In figure 4.5B, three clusters are clearly distinguishable as blue 

patterns  in  the raw U-matrix,  allowing us more  or less  to assume where the cellular 

classes are. A flooding algorithm is applied on the default map in order to make these  

clusters  more  visible.  Figure  4.5B depicts  the  output  of  the  flooding algorithm with 

neurons (horizontally) versus intensity values (vertically). This line can be thought of as 

the “depth” of the map, i.e. its coloured third dimension, and every cluster is represented 

by a large depth change in the line of the plot. The resulting improved U-matrix is shown 

in figure 4.5C. Since data points in a U-matrix do not directly correspond to clustered 

objects, it is not as easy to visualise more than one classification scenarios in the same 

dataset.  Therefore,  in  this  case  we focus  only  on  the  cellular  clusters  and  study  the 
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patterns  that  are  formed between  them.  It  would  be  possible  to  make  the  numerical 

indices  of  samples  appear  on  the  map  (in  order  to  point  out  more  clearly  object 

association to corresponding clusters) but I chose to leave this representation out since 

my study of SOM does not focus on clustering effectiveness.

SOMs generally come with powerful classification potential, the ability to cluster very 

large datasets with fairly good computational performance. In my opinion, however, the 

main advantage of SOM is its capability to visualise the relations of individual  input 

variables to the detected clusters. In the map of (figure 4.5D) we see how the input vector 

of mass number #1000 (chosen arbitrarily) is expressed in the clusters discovered during 

the training process (blue and red being very low and high distance values, respectively). 

This is  a property which makes SOM a powerful  tool  for the detection of over- and 

under- representation of discriminative features.
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 Figure 4.5A: U-matrix produced by applying a SOM (self-organizing map) on the Microdiversity dataset.  

The axes are made up of 30×30 neurons and the colours are derived by pairwise distances between them.  

Three data clusters are formed as blue coloured patterns on the map, most likely corresponding to the  

cellular classes.

Figure  4.5B:  Plot  of  the  'flooding'  algorithm  showing  the  depth  of  the  map,  i.e.  the  coloured  third  

dimension  of  the  U-matrix.  A number  of  30×30  (900)  neurons  are  plotted  horizontally  against  their  

distance variations vertically. The three clusters appear where depth changes take place, notably between  

neurons 100-200 and 300-400.
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Figure  4.5C:  U-matrix  produced  by  applying  SOM  (self-organizing  map)  and  'flooding'  on  the  

Microdiversity dataset. The axes are made up of 30×30 neurons and the colours are derived by pairwise  

distances between them. Three data clusters are formed as blue coloured patterns on the map, most likely  

corresponding to the cellular classes. The flooding algorithm has added some white regions to the map,  

filtering out less important information and making the cluster patterns appear more intense.

Figure 4.5D: U-matrix produced by applying a SOM (self-organizing map) on the Microdiversity dataset  

and visualised for input vector of index #1000. The axes are made up of 30×30 neurons and the colours are  

derived by pairwise distances between them. In this map we observe how mass #1000 relates to the three  

data clusters formed as blue coloured patterns on the full map of figure 4.5C. The regions of red and blue  

reveal the distance of this mass to the neurons of those clusters.
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4.3.5 Community structure partition

We constructed a co-intensity network in which nodes represent the 187 samples while 

edges  depend  on  the  similarity  information  between  them  (figures  4.6A,  4.6B). 

Community structure partition through modularity optimisation yields 3 main clusters, 

distributed over 2 disconnected subgraphs.  If we add the cellular scenario's colouring 

scheme  on  the  edges  of  this  network  (figure  4.6C),  the  modules  obtained  through 

community structure correspond with precision to that scenario's biological groups. The 

network structure reflects experimental setup information: the upper subgraph (coloured 

red) represents the pellet,  while the lower subgraph represents extra and intra-cellular 

classes through its two clusters (coloured blue and purple respectively).
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Figure 4.6A: Co-intensity network of the microdiversity dataset. In a purely unsupervised visualisation  

(where no colours are added for known groups) we observe the presence of three distinct subgraphs and  

two disconnected network components.
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Figure 4.6B: Co-intensity network of the microdiversity dataset with sample indices on nodes. In a purely  

unsupervised visualisation (where no colours are added for known groups) we observe the presence of  

three distinct subgraphs and two disconnected network components.
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Figure 4.6C: Co-intensity network of the microdiversity dataset (at threshold 0.90) with cellular colouring  

(regions  of  blue,  purple,  red  correspond  to  cellular  classes  extracellular,  intracellular  and  pellet,  

respectively). The nearly perfect matching of colours and graph modules shows an efficient  diagnostic  

performance of co-intensity network clustering on cellular groups.
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Figure 4.6D:  Co-intensity network of the microdiversity dataset at threshold 0.90 with regional colouring  

(regions of cyan and magenta correspond to the regional classes Mallorca and Santa Pola). The strong  

matching  of  colours  and modular  subgraphs  shows a  diagnostic  performance of  co-intensity  network  

clustering on regional groups.
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Figure 4.6E: Co-intensity network of the microdiversity dataset at threshold 0.90 with temporal colouring  

(regions of yellow and light green correspond to the temporal classes old and new). The overlapping of  

colours with parts of the graph shows the ability of co-intensity network clustering to reveal patterns on  

temporal groups.
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Figure 4.6F: Co-intensity network of the microdiversity dataset created at threshold 0.90 with information  

for all biological scenarios. Edges of blue and purple colour correspond to the regional classes Mallorca  

and Santa Pola, respectively. Edges of green highlight connections between the older reference strains.  

Extracellular extracts of the Santa Pola strains are separated into two topological regions of the network.  

The assertion of the publication on the existence of two distinct metabolic populations is verified by the  

presence of two clustered regions on the data's co-intensity network (marked in black squares). 
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The network of figure 4.6C can be replotted, using different colouring schemes, to reflect 

the regional (cyan - magenta) and temporal (light green - orange) classes of figures 4.6D 

and  4.6E,  respectively.  The  cellular,  regional,  and  temporal  information  of  all  three 

networks can next be combined into a single network; figure 4.6F. The new colouring 

scheme corresponds to  regional  (purple-blue)  and temporal  (green)  classes,  while  the 

experimental  setup  (cellular)  information  is  retained  within  the  network's  structure. 

Therefore, such a representation allows us to merge and compare all knowledge on the 

given samples. The Santa Pola and Mallorca strains tend to form modules among their 

own geographical  classes,  regardless  of  the  sample  preparation  setup.  Both  blue  and 

purple regions form modules which differentiate between extracellular and intracellular 

components. The green-coloured reference strains tend to separate from the new Santa 

Pola  and  Mallorca  strains  without  exhibiting  any  geographical  preferences  among 

themselves. The old strains appear in peripheral network regions, inside the pellet, and 

extracellular extracts. Inside the intracellular extracts no such preference can be observed. 

This finding may be in consensus with the low separation power of genetic approaches 

[66]. Statistically predefined metabolic populations among the Santa Pola strains were 

found  inside  two  distinctly  different  regions  of  the  network,  confirming  thus  the 

assumption  of  the  existence  of  two  different  metabolic  populations  within  this 

microhabitate. 

4.4 Comparison of distance metrics

The starting point of most clustering algorithms is a similarity matrix, i.e. a matrix of 

pairwise similarities between the objects to be classified [38]. A given similarity metric 

can directly affect the performance of a clustering algorithm and is, therefore, a parameter  

that  must  be chosen wisely [38].  After  deeming community structure partition as the 

optimal clustering algorithm, we study how its performance varies in combination with 

each  of  the  selected  similarity  metrics  described herein.  Every  subsection  presents  a 

different distance metric and uses it in the construction of a co-intensity network, in order 

to test its clustering performance on the cellular scenario. 
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4.4.1 Pearson correlation

The measure of linear dependence between two variables X and Y, evaluated within the 

range [-1, 1]. 

r= 1
(n−1)

=∑
i=1

n

(
X i− X̄

s X

)(
Y i−Ȳ

sY

)

where X̄ and s X are the mean and standard deviations of X, respectively.

The Pearson distance is defined as 1−∣r∣ .  Figure 4.6 illustrates a co-intensity network 

whose nodes are linked via Pearson distance.

Figure 4.6: Co-intensity network of the microdiversity dataset using Pearson distance and cellular group  

colouring. The three biological groups appear distinctively as in three densely connected subgraphs.
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4.4.2 Euclidean distance

The ordinary distance between two points, deriving from the Pythagorean formula.

For two points  A = (A1, A2, …, An) and  B = (B1, B2, …, Bn), the euclidean distance is 

measure by the formula:

d (A , B )=√(∑
i=1

n

(Ai−B i)
2)

The normalised euclidean distance is calculated on an input matrix that has been scaled 

by dividing each element by its corresponding feature vector's maximum element, giving 

it a value in the rage [0,1]. Figure 4.7 illustrates a co-intensity network whose nodes are  

linked via normalised Euclidean distance.

Figure 4.7: Co-intensity network of the microdiversity dataset using normalised Euclidean distance and 

cellular group colouring. The three biological groups appear distinctively as in three densely connected  

subgraphs.
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4.4.3 Standardised Euclidean distance

Euclidean distance calculated on an input matrix that has been scaled by dividing each 

element by its corresponding feature vector's standard deviation. Figure 4.8 illustrates a 

co-intensity network whose nodes are linked via standardised Euclidean distance.

 

Figure 4.8:  Co-intensity  network of  the  microdiversity  dataset  using  standardised Euclidean distance  

(normalised) and cellular group colouring. The three biological groups appear distinctively as in three  

densely connected subgraphs.
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4.4.4 Cosine similarity

The  metric  of  similarity  between  two  vectors  that  measures  the  cosine  of  the  angle 

between them. Using the Euclidean dot product formula, the cosine similarity between 

two vectors of attributes A and B is calculated by:

cos(θ)=
∑
i=1

n

Ai×B i

√∑
i=1

n

(Ai)
2×√∑

i=1

n

(Bi)
2

Figure 4.9 illustrates a co-intensity network whose nodes are linked via cosine similarity.

Figure 4.9: Co-intensity network of the microdiversity dataset using cosine similarity and cellular group  

colouring. The three biological groups appear distinctively as in three densely connected subgraphs.
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4.4.5 Manhattan distance

The metric  in which the distance between two points is measured by the sum of the 

absolute differences of their coordinates. For two points A and B in an n-dimensional real 

vector space with fixed Cartesian coordinate system is calculated by:

d m(A , B)=∑
i=1

n

∣Ai−B i∣

Figure  4.10  illustrates  a  co-intensity  network  whose  nodes  are  linked  via  Manhattan 

distance.

Figure 4.10: Co-intensity network of the microdiversity dataset using Manhattan distance (normalised) and  

cellular group colouring.  The three biological groups appear distinctively as in three densely connected  

subgraphs.
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4.5 Conclusion

In this chapter I first tested the performance of various widely used clustering algorithms 

in respect to the microdiversity dataset and its three classification scenarios. Hierarchical 

clustering performs well only when Spearman correlation is used as a similarity metric 

but  fails  to  reflect  any  biological  grouping beyond the  basic  scenario  (cellular).  The 

canonical  version  of  the  k-means algorithm performs almost  equally  well  but  is  also 

restricted to the basic scenario due to its limited visualisation capabilities. In addition, the 

number  of  classes  to  be detected must  be  provided as  an input  parameter.  The PCA 

algorithm displayed the poorest performance both in terms of classification on the basic 

scenario as well as feature extraction on the remaining scenarios (regional, temporal). 

Community  structure  partition  displayed  an  outstanding  clustering  performance  on 

cellular biological grouping and was the only algorithm to reflect patterns of the other 

two  scenarios  (all  in  a  single  visual  display).  The  cellular  information  is  reflected 

between disconnected subgraphs and modules provided by community structure partition, 

while the regional and temporal classes are forming patterns within those subgraphs. This 

biological information could not be observed in the output of the other algorithms; a fact 

which made community structure partition my method of preference in this work. After 

choosing graph-based clustering as the algorithm of preference, I tested its performance 

over a number of distance metrics in order to determine the optimal one. Normal and 

standardised Euclidean distance would classify the groups of the cellular scenario but 

would corrupt the structural information on the regional and temporal cases. Manhattan 

distance would improve the quality of clustering on the cellular scenario but, at the same 

time, would almost entirely lose the information on the other two scenarios. However, 

cosine similarity and Pearson distance were able to reflect all clustering scenarios in one 

single graph. Spearman distance was left out of the evaluation due to the closeness of its 

results to Pearson and cosine similarity.
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CHAPTER V

A combinatorial learning framework for sample classification and 
discriminant signal identification in complex datasets

In  this  chapter,  I  present  one  of  the  main  research  topics  of  this  work;  namely  the 

quantitative method, inspired by  Operational Research, that I refer to as  combinatorial  

learning.  The  framework  is  formally  defined  and  developed  into  algorithms  using 

discrete mathematical modelling. The last part the chapter deals with the applications of 

these  models  on  real-world  mass-spectrometric  data,  which  yielded  statistically 

significant results. 

5.1 Abstract

Motivation: Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ICR-FT-

MS)  in  non-targeted  metabolomics  is  a  tool  of  unmatched  analytical  power,  which 

produces  amounts  of  data  comparable  in  size  and  complexity  to  those  of  DNA 

microarrays. The bottleneck in the quantitative analysis of such vast datasets lies on the 

computational  identification  of  masses  discriminant  to  different  metabolic  states 

combined  with  the  efficient  classification  of  samples  into  regions  of  varying  risk. 

Conventional data mining approaches used to achieve these tasks are characterised by the 

introduction of bias through statistical assumptions and transformations, which puts their 

flexibility and efficiency into question [3]. To date, very few computational methods have 
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been developed for, or adapted to, ICR-FT-MS metabolomics in order to explore the vast 

potential of this analytical technique.

Results: The limitations of the current “standard” methods and the sparsity of in-depth 

quantitative research on the field of Fourier transform mass spectrometry metabolomics 

have inspired us to propose a combinatorial machine learning approach to the problem of 

discriminant  signal  identification  and  sample  classification.  The  key  aspect  of  this 

approach is the intuitive and flexible modelling which aims to minimise the statistical 

bias and biological inconsistency of conventional “black box” approaches. I investigated 

the  applicability  of  an  Operational  Research  model,  which  applies  combinatorial 

optimisation  with  metaheuristic  search  algorithms in  order  to  maximise  an  objective 

function proportional to the biological clusterability of a graph-theoretical object that I 

call  co-intensity  network.  We  tested  the  method  on  Crohn's  disease  dataset  [4]  and 

received  biologically  pertinent  results  in  the  areas  of  semi-supervised  classification, 

diagnosis, and prediction. Due to the robustness and flexibility of the approach, I believe 

that  it  has  the  potential  of  becoming  an  alternative  method  to  multivariate  analysis, 

adapted for ICR-FT-MS metabolomics and possibly other fields of bioinformatics.

5.2 Introduction

Non-targeted metabolomics necessitates broadband detection width combined with high 

resolution and mass accuracy, which can only be provided by Orbitrap or ICR-FT-MS 

instrumentation.  ICR-FT-MS's  ultra-high  resolution  and  mass  accuracy  allows  for 

immediate  annotation  of  thousands  of  chemical  formulae  and  is  able  to  produce 

extremely large  datasets.  Given such data  size,  the  need of  alternative computational 

techniques becomes evident. In this section I describe methods that have been primarily 

developed  for  and  tested  on  ICR-FT-MS  data  but  are,  in  theory,  compatible  with 

multivariate datasets of other -omics fields. 

The distribution of Metabolomics data is not symmetrical nor normal and, in order to 

apply parametric methods such as t-test or MANOVA, the data has to undergo statistical 

pre-treatment which may lead to the introduction of bias and possibly affect downstream 

–  118  –



statistical  biomarker  discovery  [67].  Despite  that  risk,  scaling  and  normalisation  are 

applied  in  most  cases  of  metabolomics  analyses  independently  of  what  method  will 

follow. Multivariate analysis typically starts with the application of a clustering algorithm 

on the normalised data in order to observe how the formed clusters compare to the actual 

biological groups, which comes down to estimating the amount of noise that exists in the 

data. Though not a true clustering algorithm, Principal Component Analysis (PCA) is one 

of the standard techniques used for such feature extraction due to its simplicity and ease 

of use [25][26]. The approach provides a general data overview but does not actually 

associate  objects  to  clusters.  More  specifically,  a  PCA  transformation  performs 

dimensionality reduction through the creation of a new orthogonal basis whose axes are 

oriented in the directions of the maximum variance of the input matrix. The data can be 

consequently plotted over a two-dimensional space, from which the human expert may 

then  empirically  decide  what  objects  cluster  together.  This  efficient  dimensionality 

reduction has proved PCA to be an appropriate method for data compression, however, 

not necessarily optimal for feature extraction, especially when features are meant to be 

used in a supervised classifier [25][26].

Regardless of what clustering algorithm is used, in the vast majority of cases the data is  

too noisy to be treated solely by unsupervised means, therefore a supervised approach is 

considered. Partial Least Squares regression (PLS) and its variants are currently among 

the most popular algorithms for supervised feature extraction on mass spectrometry data 

and chemometrics in general. The method was developed for the purpose of constructing 

predictive  models  for  the  case  where  predictor  variables  are  numerous  and  highly 

collinear  [68].  Nonetheless,  PLS  regression  comes  with  a  number  of  important 

limitations; in practical scenarios where both the number of cases in the sample and the 

number  of  indicators  per  latent  variable  will  be  finite,  the  algorithm  tends  to 

underestimate correlations between latent variables and overestimate the loadings [3], and 

there is globally “a higher risk of overlooking 'real'  correlations and sensitivity to the 

relative  scaling  of  the  descriptor  variables”  [69].  Consequently,  there  are  practical 

situations, such as when the number of samples is lower than a certain value, where the  

results of PLS cannot be taken for granted [3].
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As an alternative to the existing methods, I developed a nonparametric machine learning 

model that is based on the combinatorial optimisation of a function that evaluates the 

'quality' of an arbitrary solution in respect to the latter's capability of clustering the data 

according to the known biological groups. A given solution comes in the form of a feature  

vector produced by an approximation algorithm and, in its optimal form, it can be used 

for classification/prediction, and feature extraction. 

For the purposes of testing the methods presented in this section, I selected a dataset in 

which unsupervised classification reveals patterns but no clear clusters. In the Crohn's 

dataset [4], we can see some of the related data points appearing in close proximity in the 

feature space, albeit the clustering algorithm is unable to output discrete sets points that 

correspond to known biological groups (figure 5.1).

In the rest of this section, I first define the theoretical framework for my models within 

the  context  of  Operational  Research  problem-solving.  Next,  I  derive  the  algorithms 

required  for  solving  these  combinatorial  problems  and  I  present  the  results  of  my 

method's  application  on  Crohn's  disease  dataset.  Finally,  I  investigate  potential 

improvements which may lead to a more efficient performance.

5.3 Metabolomics study on Crohn's disease

Crohn's disease is an inflammatory bowel disease characterised by chronic inflammation 

of the gastrointestinal tract. The causes of Crohn's disease are largely unknown, albeit 

dependent  on  both  genetic  and  environmental  factors  [4].  Efficient,  non-invasive, 

diagnostic  and  monitoring  tools  remain  currently  inadequate  even  though  various 

biomarkers  have  been  proposed  in  literature.  Recent  advances  in  nuclear  magnetic 

resonance  (NMR)  and  mass  spectrometry  (MS)  have  led  to  the  assessment  of  the 

metabolites that make up the ‘‘metabolome’’,  consequently,  determining end-points of 

metabolic  processes  in  living  systems  [4][70].  ICR-FT-MS  with  an  ultra-high  mass 

resolution is able to differentiate subtle variations between thousands of mass signals, 

including higher molecular weight metabolites [4][71]. As shown in a previous study on 

markers  of  diabetes  and  early  stage  insulin  resistance,  the  combination  of  coupled 

metabolite separation techniques with spectrometry and spectroscopy contributes to the 
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structural identification of new metabolites [4][72].

The aim of the study in question [4] was to discover metabolic biomarkers of Crohn's 

disease as evidence of microbial functions in the gut. The high dynamic range and mass 

accuracy  of  ICR-FT-MS  was  used  to  obtain  non-targeted  profiles  of  elementary 

compositions  in  samples  of  individuals  diagnosed with Crohn's  disease  [4].  Classical 

techniques,  such  as  principal  component  analysis  (PCA)  and  partial  least  square 

regression (PLS), were used for all data analysis tasks [4]. 

5.4 Methods, models, and algorithms

5.4.1 Method framework overview

The typical format of a ICR-FT-MS dataset comes in the form of a mass-sample intensity  

matrix, i.e. an n×m matrix A = [aij], where aij holds the value of an ICR-FT-MS intensity. 

The row-vectors of  A correspond to the  n measured masses while the column vectors 

correspond to the m sampled observations, therefore, the value of a given element aij of A 

signifies the intensity of the exact mass corresponding to row i measured for subject  j. 

Furthermore every ICR-FT-MS dataset, represented by matrix A, is associated to number 

of q biological groups which classify the m number of samples (column-vectors of A). I 

refer to the known biological groups as our supervised information and we may represent 

this classification as a collection of q disjoint sets C = {C1,...,Ck,...,Cq}. Every sample in 

our dataset is associated to one of these classes/groups, therefore, if M={x∈Z: 1 ≥ x ≥ m} 

is the set representing the m sampled observations in A, we have: 

∀k (C k⊂M ) , ∪C=M , ∩C=∅ and ∀ x∃ y (x∈M )( y∈C ) , x∈ y.

By applying a clustering algorithm on A, we get to observe the natural grouping formed 

by  the  sampled  observations  M over  the  raw  dataset.  I  introduce  the  measure  of 

biological clusterability in order to evaluate the tendency of these  in silico clusters to 

coincide with known biological groups. If the clustering output is in accordance with the 

known grouping, then the value of clusterability is directly proportional to the graph's 
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modularity (a formal definition of clusterability is provided in a later section). In the case 

of a noisy raw dataset, clustering matrix A by means of any algorithm will yield classes 

which do not coincide well (or at all) to the supervised information in C. In this case, we 

say that these clusters are of no biological pertinence and, therefore, we consider that the 

quality of clusterability of the current sample-intensity matrix is low due to the existence 

of  noise.  In  other  words,  the  amount  of  noise  within  an  ICR-FT-MS dataset  can be 

evaluated  via  the  quality  of  the  data's  clusterability in  respect  to  the  experimentally 

known  biological  groups,  i.e.  to  what  extent  do  the  in  silico  discovered  classes 

correspond to the actual biological ones.

Given  this  framework,  the  key  objectives  of  data  mining  in  metabolomics  are  the 

following:

(a) Discover a group of masses which contributes to the known biological grouping as a 

whole,  i.e.  keep  only  the  row-vectors  of  A which  reflect  biological  pertinence  in 

respect to C.

(b) Discover which groups of masses are contributing to the formation of each individual 

biological group, i.e. isolate  q groups of row-vectors in  A which reflect  biological 

pertinence in respect to each of the q classes in C. 

The intuitive assumption, on which my method is based, is that we are able to obtain an 

almost-perfect,  biologically-pertinent  clusterability  by  removing  the  row-vectors 

(corresponding to exact masses) from the n rows of the raw mass-sample intensity matrix 

which make up the noise. The question regarding which row-vectors to remove out of a 

total  of  (e.g.)  n=20,000  metabolites,  is  modelled  as  an  Operational  Research 

combinatorial problem that can be solved by means of mathematical optimisation. As it is 

later explained in more detail, a possible solution to such an optimisation problem refers 

to  a  given mass-sample intensity  matrix  A', sub-matrix of  A,  from which  some row-

vectors  are  missing.  Such  a  solution can  be  represented  mathematically  using  two 

separate models of varying characteristics and combinatorial complexity. For each model, 

the  quality  of  clusterability of  a  given solution to  the  problem (i.e.  the  quality  of  a  

solution) is expressed in the form of a real number, which is yielded by a pre-defined 
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objective  function.  From  any  candidate  solution,  a  co-intensity  network  can  be 

constructed  and  the  m samples  of  the  initial  dataset  can  be  clustered  with  varying 

efficiency  in  respect  to  the  supervised  information  in  C.  An  obvious  goal  would, 

therefore, be to find an optimal solution which will cluster the data more efficiently than 

most  other  candidate  solutions.  An  objective  function  receives  a  candidate  optimal 

solution to the problem and estimates to what extent the clusterability of the co-intensity 

network of that solution is of biological significance. The larger the real number yielded 

by the objective function, the better the quality of the solution, therefore the optimisation 

consists of maximising the given objective function;  a task which can be achieved in 

numerous way.

Searching for  the optimal  solution  through a dataset  of  20,000 variables  is  a  task of 

immense computational complexity. Assuming that a solution of size n is modelled by a 

binary vector of n bits, S = [si]n , where each si signifies the absence or the presence of the 

current variable within a candidate solution, then our search space makes up a total of 2n 

combinations. An exhaustive search would therefore need to go through 220,000 candidate 

solutions  in  order  to  find  the  globally  optimal  one.  The  time  required  for  an  exact 

algorithm  (performing  brute-force  search)  to  go  through  all  possible  combinations 

increases exponentially with the size of the problem  n, therefore for a problem size as 

small as  n=1023 the algorithm would have to go through 21023 = 8.9885×10307 possible 

combinations. Assuming that, using an ultra-powerful computer, the algorithm examines 

fifty  million combinations  per  second,  it  then  would require  at  least  21023 ÷ 5×106 = 

5.7526×10297 years to perform an exhaustive search over all possible solutions over the 

entire search space. Hence, for obvious reasons, it is deemed practically impossible that 

such an algorithm can yield an optimal solution to combinatorial problems of larger sizes, 

independently  of  the  machine  power  available.  This  computational  explosion  in 

unconstrained  combinatorial  optimisation  is  dealt  with  a  class  of  nondeterministic 

approximation optimisation algorithms known as metaheuristics. Stochastic optimisation 

involves the application of “intelligent” search via probabilistic means in order to find 

optimal or near-optimal solutions to hard problems in polynomial time [73].
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For the evaluation of a candidate solution and the purpose of unsupervised classification, 

I  chose the  graph-theoretical  method of  community  structure partition over  the  other 

clustering algorithms due to its superior performance in terms of classification precision 

and  information  richness  (as  shown  in  chapter  IV).  This  kind  of  graph-based 

representation  is  integrated  with  varying  efficiency  in  many  software  tools  and  is 

frequently used in other branches of bioinformatics when feature extraction is combined 

with  visualisation  (though  rarely  with  clustering  capabilities);  however,  when  cluster 

analysis is the main focus, simpler algorithms such as hierarchical clustering, k-means or 

even  PCA are  preferred.  Graph  clustering  is  typically  an  NP-complete  problem [74] 

which  involves  mathematical  optimisation  in  order  to  discover  the  optimal  modular 

partition of a network in polynomial time and, due to this high computational complexity, 

there is an added difficulty in re-implementing the technique from scratch. Nonetheless, 

in graph-based clustering (as in most clustering algorithms) a similarity/distance matrix is 

constructed  out  of  the  raw  dataset.  This  matrix  must  be  transformed  into  a  binary 

adjacency matrix in order to produce the actual graph which represents the data. An n×m 

ICR-FT-MS mass-sample intensity matrix is therefore used to create a  m×m similarity 

matrix holding the distances between all  m samples. An m×m adjacency matrix is then 

constructed by setting a threshold to the distance values in the similarity matrix. This 

adjacency matrix represents an unweighted, undirected graph, which I refer to in this 

work as a  co-intensity network. We can visualise a co-intensity network and extract its 

community structure via specialised algorithms [61] in order to examine the biological 

clusterability of the data at hand. The co-intensity network of the Crohn's disease raw 

dataset  can  be  seen  in  figure  5.1.  The  colours  of  the  edges  correspond  to  the  links 

between biological  groups which  are  meant  to  cluster  together  and,  even though the 

modules of the graph have a seemingly distinct pattern, the separation is not clear enough 

for the community structure partition algorithm to detect them automatically. The output 

of  the  clustering  algorithm yields  modules  which  do not  correspond  to  the  expected 

biological groups in  C, and if the colours were to be removed then the graph would be 

hardly at all informative. 
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5.4.2 Community structure clustering of co-intensity networks

Similarity and adjacency matrix construction:

Let A=[aij ]n×m  be a mass-sample intensity matrix. 

The similarity matrix SA of size m×m is obtained by:

AS =[ a ij
S ]m×m , 

where

a ij
S =∀

p=1

n

p∀
m

i∀
m

j , F sim(a pi , a pj) ,

and Fsim is a similarity or normalised distance function applied on the column vectors of 

A (in my case the similarity metric used was a variation of the Pearson distance P ≡ 1 - r, 

where r is the Pearson correlation coefficient).

At this point any clustering algorithm may be applied on  SA. However, since we have 

chosen a graph-based approach (community structure partition clustering), we first need 

to create a graph in the form of an adjacency matrix by applying a threshold value on SA.

The binary or adjacency matrix BA of size m×m is obtained by:

AB = [ a ij
B ]m×m , 

where

         1  iff  a ij
S ⩾T

 aij
B =   

          0  iff  a ij
S <T

Therefore, BA is used as the adjacency matrix of a sample co-intensity network. 
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Co-intensity network:

A co-intensity network is a graph-theoretical tool which allows us to model a ICR-FT-MS 

mass-sample  intensity  matrix  in  the  form of  a  similarity  network  by  using  intensity 

information solely. The graph is obtained by creating an m×m adjacency matrix out of the 

m column vectors of an n×m mass-sample intensity matrix.

We can formally define a sample co-intensity network as an undirected graph 

G = (V, E), where:

1.The set  of  vertices  V represents  a  set  of  sampled  subjects  M corresponding to  the 

intensity column-vectors of a mass-sample intensity matrix n×m;

2.The set of edges E represents the set of biological similarities which exist between pairs 

of samples in M; where the cardinality of E is equal to the number of nonzero elements 

in a solution vector S.

3. An adjacency function f : M → RS which, given the correlation coefficient r(x,y) of two 

intensity column-vectors, determines the existence of a biological similarity between 

two samples in M, i.e. the adjacency relation RS between two nodes in G. The domain 

of the binary relation RS is the set of samples x∈M, such that there exists a y∈M with 

(x , y )∈ RS. The similarity relation x RS y is true when the output of the adjacency 

function is equal to one, i.e. when the correlation coefficient between x  and y is superior 

(or inferior) to a fixed threshold value T.
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Figure 5.1: Co-intensity network created out of the raw Crohn's dataset. Green, blue, and red edges link  

samples belonging to the same biological group, HH, CCD, ICD, respectively. The graph shows patterns  

but is not modular enough to yield sets of nodes forming distinct clusters.

5.4.4 Combinatorial problem modelling

Axiom 1:

Let ∆ be a set of n distinct elements, ∆'k denote an arbitrary subset of ∆, and P(∆) denote  

the powerset of ∆ such that |P(∆)|=2n and

∀
k=1

2n

k ,(∆k

'∈P (∆))∧(∆k

'⊆∆) .

There exists a function Φo : ∆'k → R+ such that:

∀
k≠α

k ∃∆α
'⊆∆ ,Φo(∆α

' )>Φo(∆k
' )
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The above axiom expresses the fundamental  hypothesis used to  model our biological 

scenario as a combinatorial problem and corresponds the 1st objective from chapter I, 

section 1.1. The set ∆ represents an abstraction of our raw dataset. The elements xi ∈ ∆ 

represent the row vectors (masses) of a mass-sample intensity matrix  A, which can be 

either  included  or  omitted  as  elements  in  an  arbitrary  subset  ∆'k with  a  total  of  2n 

combinations.  Function  Φo is the evaluation or objective function which estimates the 

proximity  of  the  output  of  a  given  clustering  algorithm  applied  on  a  mass-sample 

intensity sub-matrix to the known biologically-pertinent classes. Therefore, the real value 

returned by the function represents the “quality” of clusterability of the given submatrix 

in  respect  to  that  supervised  information,  i.e.  to  what  extent  the  chosen masses/row-

vectors are capable of clustering the data correctly over the samples. The objective is, 

intuitively, to determine the  ∆'α which yields the near optimal value in  Φo,  something 

which  is  equivalent  to  the  removal  of  noise  from  the  raw  data.  The  unconstrained 

combinatorial  problem  deriving  from  axiom  1 can  be  solved  efficiently  using 

metaheuristic search algorithms. In theory, such a task involves finding a near-optimal 

solution  (global  optimum),  however,  from  the  perspective  of  biology  every  “good” 

solution (local optimum) may have its own unique importance.

General framework of combinatorial optimisation in Operational Research:

In order to understand how axiom 1 can be modelled into a combinatorial problem we 

need to consider the general framework of discrete optimisation. 

In mathematics and Operational Research, the term 'optimisation' comprises all methods 

that yield the optimum of a function. A combinatorial optimisation problem is defined by 

the set of its instances along with their corresponding solutions. For a given instance of 

the problem, the goal is to find one of the “best” admissible solutions  λ∈Λ (where Λ is 

the discrete set of admissible solutions corresponding to that instance). The quality of a 

solution  is  determined  by  the  objective  function  that  we  are  wishing  to  optimise.  

Therefore an optimisation problem consists of determining:

max {Φ0(λ) :λ∈Λ}

–  128  –



Let Λ be the set of solutions of an optimisation problem and Φo be the objective function. 

The  neighbourhood  structure  is  a  function  N which  associates  a  subset  of  Λ to  all 

solutions λ∈Λ. A solution λ'∈N(λ) is called a neighbour of λ. A solution λ'∈Λ is a local 

optimum to the  neighbourhood structure  N if  Φo(λ)  ≤ Φo(λ'),∀λ '∈N (λ) . A solution 

λ'∈Λ is a global optimum if Φo(λ) ≤ Φo(λ'),∀λ '∈Λ .

Model 1 (binary encoding):

The set of solutions  Λ in the general framework corresponds to the powerset  P(Δ) of 

axiom 1. An admissible solution λ in the general framework, i.e. an arbitrary subset ∆'k in 

axiom 1, was modelled as a binary vector S = [si]n where si ∈ {0,1},∀ i . In a machine 

learning context this decision vector is called a feature vector or a predictor variable and, 

combined with the objective function, makes up the model to be learned. The objective 

function Φo can be considered the same as in (formula1) and (formula2).

The neighbourhood structure function N: S' ← S is obtained by the following algorithm:

Neighbourhood function : N

input: current solution S where │S│= n,  index p where 1 ≤ p ≤ n

output: neighbour solution S'

S '← S

S p
' ←¬S p

Axiom 2:

Given a set  N={x∈Z: 1 ≥ x ≥ n} and a collection of q disjoint sets  C={C1,...,Ck,...,Cq}, 

there exists an irreflexive, symmetric, binary relation R on N and C such that:

∃ x∃ y ,( x∈N )∧( y∈C )∧significant (x , y )← x R y
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The  second  axiom  expresses  the  second  main  objective  of  quantitative  analysis  in 

metabolomics  as  described  in  chapter  I,  section  1.1,  meaning  to  find  which  masses, 

represented by the elements of  N,  are significant for each of the biological groups of 

samples represented by the elements of C. The added information is the constraint that 

every mass found to be present in a solution must be additionally associated to one and 

only  one  biological  group.  Consequently,  a  second  model  is  necessary  in  order  to 

represent a solution vector which holds that additional information.

Model 2 (base-  q   encoding):  

The binary vector S of Model 1 holds the information of whether or not a variable (row-

vector of a mass) is present in a solution and has an impact on the solution's quality. 

Unless enforced by the objective function, this model does not directly associate every 

individual  row-vector  to  a  column-vector,  which  may  be  of  interest  in  the  case  of 

biomarker identification as expressed by the binary relation R of axiom 2. An extension of 

model 1 is the base-q encoded vector qS = [qsi]n where qsi ∈ {0...q},∀ i ,  and q =│C│ is 

the number of known biological groups. In the case of Crohn's disease, the instance of the 

problem has  q = 3 for  each of  the three  biological groups ICD, CCD, HH, i.e.  four 

possible states for every row-vector qsi ∈ {0, 1, 2, 3}, where qsi = 1, qsi = 2, qsi = 3 means 

that mass mi is associated to class 1 (ICD), class 2 (CCD), or class 3 (HH), respectively, 

and qsi = 0 being the state of the absence of the row-vector corresponding to mi from the 

given solution. This encoding allows us to integrate a unique mass-to-sample association 

into a single solution vector and introduces a constraint to the optimisation problem. 

The neighbourhood and objective functions optimising this model have to be modified 

accordingly. 
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Neighbourhood function : q N

Input: current solution qS where │qS│ = n,  index p where 1 ≤ p ≤ n, classification size q

Output: neighbour solution qS'

q S '← q S

q S p
' ←argmax

q
S p

[ qΦo(
q S p)] ,∀(

q S p )∈{0,. .. , q}
  

5.4.5 Metaheuristic algorithms and problem resolution

Objective function 1: Φo 

The objective function Φo, which is adapted to model 1, evaluates a given mass-sample 

intensity matrix, which can be either the raw dataset or any sub-matrix of the raw dataset 

returned by the neighbourhood function  N.  The  function receives  an intensity  matrix 

A=[aij ]n×m , a solution vector X=[ x i]n  in the form of model 1, and class set C '∈P (C ) . 

A similarity matrix  SA is constructed from A and the information in  X by removing the 

row-vectors of A which have zero values in X:

AS =[ a ij
S ]m×m  where a ij

S = ∀
x q=1

q∀
m

i∀
m

j , F sim(aqi , aqj)

A clusterability score value Es is calculated by counting how many column-vector in SA 

cluster correctly with respect to C'. This is achieved by checking whether the similarities 

between the samples expected to cluster together are above (or below) a threshold value 

T which iteratively varies over a certain range. This score, which represents the quality of 

solution X, is returned by the objective function and used as the value to be maximised in 

the optimisation process.
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Hence, the clusterability score can be defined algebraically as:

E s = ∑
k=1

∣C '∣

[∑
i=1

∣Ck∣

∑
j=1

∣Ck∣

g 1( a
C k

i
C k

j

S )+ ∑
k '=k+1

∣C '∣

∑
i=1

∣Ck∣

∑
j=1

∣Ck∣

g 0( a
Ck

i
Ck '

j

S ) ] , C k∈C '

where g1 and g0 are activation functions of the form:

1 iff  x ≥ T
g1(x)=   

0 iff  x < T

     and

1 iff  x < T
g0(x )=   

0 iff  x ≥ T

The above mathematical expression describes that the clusterability score is equal to the 

sum of  all  intra-modular  positive  node  similarities  plus  the  sum of  all  inter-modular 

negative node similarities. The higher the clusterability score, the better the quality of the 

solution, and the search algorithm tries to maximise the objective function by favouring 

higher quality values. The objective function returns additionally the similarity matrix SA 

as well as the optimal similarity threshold Topt required to construct a co-intensity network 

for mass-sample intensity sub-matrix A (information necessary for the optimal solution's 

application on the raw dataset).  Therefore,  the tuple  < Es,  SA,  Topt >,  returned by the 

objective function for a given solution vector X, denotes the quality Es of solution X for a 

graph constructed by setting threshold Topt on similarity matrix SA .

The internal structure of the objective function, such as which subset of biological groups 

C '⊆C  to  take  into  account  or  how  the  quality  of  clusterability  score  Es is  to  be 

calculated or even whether a completely different evaluation algorithm is to be used, is 

subject to parametrisation according to the needs of the search and the biological problem 

at hand. This potential for parametrisation (dependent on expert judgement) is something 

that offers near-limitless flexibility to the method.
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Algorithm 3: Objective function Φo

SA derives from objective function Φo over the row indices of A whose values in X are 
equal to one:

AS =[ a ij
S ]m×m  where a ij

S = ∀
x q=1

q∀
m

i∀
m

j , F sim(aqi , aqj)

Input: intensity matrix A = [aij]n×m , solution vector X=[xi]n , class set C '∈P (C )
Output: quality of clusterability Es, similarity matrix AS =[ a ij

S ]m×m , optimal similarity 
threshold Topt

Es ← 0
Topt ← -1

∀T∈(0.01,0.02, ... ,1)
  Es ← 0
∀k∈(1,2, ... ,∣C '∣)

∀ i∈(1,2, ... ,∣ck
' ∣) , ck

' ⊂C '

∀ j∈(i+1, i+2, ... ,∣ck
' ∣) , ck

' ⊂C '
  if ( ack

i ck
j

S ≥T )
Es ← Es + 1
Topt ← T

  end-if
 end-for
∀k '∈(1, 2, ... ,∣C '∣) , k '≠k

∀ i∈(1,2, ... ,∣ck '
' ∣) ,ck '

' ⊂C '

∀ j∈(i , i , ... ,∣ck
' ∣) , ck

' ⊂C '
   if ( ack '

i c k
j

S <T )
Es ← Es + 1
Topt ← T

  end-if
  end-for

  end-for
 end-for

  end-for
    end-for

    end-for
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Objective function 2 (base-  q   model):    qΦo  

Objective function qΦo  is adapted for model 2 and produces a clusterability quality score 

from an intensity matrix A produced by neighbourhood function qN. Its input is the same 

as  in  Objective  Function  1,  i.e.  an  intensity  matrix  A=[aij ]n×m ,  a  solution  vector 

X=[ x i]n  in the form of  model 2, and class set  C '⊆P (C ) . A similarity matrix  sA is 

constructed in the same way as in  Objective Function 1 and additionally a  q number 

similarity matrices Aκ
S =[ a ij

S ]m×m  are constructed over the row indices of A whose values 

in X are equal to κ, ∀κ∈{1, ... ,q } , C κ∈C ' , Cκ corresponding to a class in C' such that:

∀κ∈{1, ... ,q } , Aκ
S =[ a ijκ

S ]m×m  where a ijκ
S = ∀

x q=κ−1

q∀
m

i∀
m

j , F sim(aqi , aqj)   and  q=∣C '∣ .

The quality score  Es  is evaluated, just as in  Objective function 1, by summing up the 

column-vector which cluster correctly with respect to C', however in this case this is only 

done over the similarity matrices Aκ
S  for their respective class index κ, C κ∈C ' . In this 

case as well, the objective function is flexible enough to be adapted to the needs of the  

search, which in turn depend on the biological context at hand.
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Algorithm 4: Objective function qΦo  

AS =[ a ij
S ]m×m  where a ij

S = ∀
x q≠0

q∀
m

i∀
m

j , F sim(aqi , aqj)

∀κ∈{1,... ,q } , Aκ
S =[ a ijκ

S ]m×m  where a ijκ
S = ∀

x q=κ−1

q∀
m

i∀
m

j , F sim(aqi , aqj)  and q=∣C '∣

Input: intensity matrix A = [aij]n×m , solution vector X = [xi]n , class set C '⊆P (C )
Output: quality of clusterability Es, similarity matrix Ai

S =[ a ij
S ]m×m , optimal similarity 

threshold Topt

Es ← 0
Topt ← -1

∀T∈(0.01,0.02, ... ,1)
  Es ← 0
∀k∈(1,2, ... ,∣C '∣)

∀ i∈(1,2, ... ,∣ck
' ∣) , ck

' ⊂C '

∀ j∈(i+1, i+2, ... ,∣ck
' ∣) , ck

' ⊂C '

∀
κ=k

κ
  if ( ack

i ck
jκ

S ≥T )
Es ← Es + 1
Topt ← T

end-if
end-for

   end-for
  end-for

    end-for
    end-for
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5.5 Empirical results

A series of optimisation runs with varying parametrisation were conducted in order to test 

the performance of the models regarding the quality factors of statistical significance, 

diagnostic  and  predictive  ability.  I  used  a  deterministic  local  search  variant  of  the 

gradient descent algorithm for most of the experiments in order to obtain a deterministic 

path to every solution produced by the optimisation process. This algorithm yields in 

most  cases  locally  optimal  solutions,  which  aim  at  showing  the  biological  sample 

variation in respect to varying metabolic combinations. Global optimisation via a Genetic 

Algorithm and Simulated Annealing was applied in  experiment 4. The main evaluation 

criterion was the clusterability of the optimised solution vectors with respect to the three 

known biological groups. All clustering evaluation was performed using the graph-based 

community structure partition of the respective co-intensity networks.  The purpose of 

these experiments is to provide a general overview of the potential of the framework 

without deepening on every individual run. There are countless of ways of varying the 

experiments, each of which can be the subject of its own study. For the purposes of this 

work,  I  have  favoured  intuitive and simple ways over  specialised and possibly  more 

efficient ones, such as using deterministic local search for most of the experiments over 

stochastic global search, as well as using a scoring objective function over a continuous 

function associated to modularity optimisation.

I tested the compatibility of the results of the Crohn's study with my method's assumption 

by isolating the  6960 masses  that  were deemed discriminant  by Partial  Least  Square 

regression  [4]  and  using  them  to  construct  the  co-intensity  network  of  figure  5.2. 

According to my hypothesis, discriminant masses should be able to “characterise” the 

sample  and,  when  processed  separately,  successfully  cluster  the  data  into  its  actual 

biological  grouping.  Nonetheless,  we  observe  that  there  are  hardly  any  modules  or 

patterns of biological significance forming in the graph's structure, which is perhaps even 

less descriptive than that of the raw data. This observation alone would be enough to 

justify the motives of my approach, without necessarily implying that the original study's 
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results were erroneous. It is likely that the set of truly discriminant masses (from my 

method's  perspective)  is  either  a  subset  or  at  the  intersection  of  the  set  of  6960 

metabolites  (found  in  [4]).  The  Crohn's  study  has,  in  fact,  short-listed  a  total  of  25 

metabolites  [4],  which  are  regarded  as  the  actual  biomakers  and  have  been  used  to 

validate my results.

Figure 5.2: Co-intensity network created from the masses deemed to be significant by the PLS algorithm in  

[4]. Green, blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD,  

respectively. No modules can be observed on the graph while the coloured patterns are less distinct than in  

the raw dataset. 
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5.5.1 Optimisation of two classes over raw dataset (model 1)

I used the deterministic local search algorithm to optimise the objective function over the 

raw dataset  by maximising the  quality  of  clusterability  between two out of  the three 

biological groups. The co-intensity network of the resulting solution vector can be seen in 

figure  5.3.  Green  edges  in  the  graph  imply  a  correctly  assigned  similarity  relation 

between samples in class HH, blue edges accordingly in class ICD, and red edges in class 

CCD. The objective function optimised the solution vector only for classes HH and ICD, 

however the third biological group (CCD) forms its own distinct community in the graph, 

even though it was ignored during the optimisation process. The fourth biological group 

HD, which is theoretically linked with both ICD and HH, is represented by cyan edges 

and appears naturally between green and blue. This group is of secondary importance and 

its  classification is  not  evaluated,  however,  as we shall  see it  almost  always forms a 

distinct  pattern  in  co-intensity  networks  even  though  it  is  never  accounted  in  the 

optimisation. By looking at the community structure results we observe that 34 out of 35 

samples  were  classified  correctly  using  only  partial  supervised  information;  the  only 

outlier  being sample 21,  which as we shall  see is  a constant  pattern.  The 6 out  of 6 

samples of the CCD (red) class, which were ignored during the optimisation process, are 

classified correctly.
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Figure 5.3: Co-intensity network produced by optimising for two out of three biological classes (2-class  

optimisation for HH - green and CCD - blue). The graph displays a very high clusterability with modules  

corresponding to the three biological groups, even though the ICD (red) class had not been considered by  

the objective function.
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5.5.2 Optimisation over raw dataset and solution merging (model 1)

Three distinct solution vectors SICD,  SCCD,  SHH, were produced by applying three runs of 

local optimisation of  model 1 over the search space of the raw dataset using  objective  

function 1 adapted on each of the three classes (ICD, CCD, HH), for each run. The three 

solution vectors were unified into a single vector by merging all non-zero elements using 

the logical OR operator:  SU ≡ SICD v SCCD v SHH. The unified vector SU was then used to 

cluster the raw dataset. The purpose of the experiment was to test the clustering potential 

of the unified vector independently of the clustering quality of the individual solution 

vectors. Since every individual solution was the product of the optimisation over only one 

biological group with no prior consideration of the other two, there is no guarantee that 

they would cluster the dataset correctly into its three classes. The assumption to be tested, 

however, was that the vector produced by the union of the three separately optimised 

solutions would integrate their information and cluster the raw data correctly, implying 

that  an  important  chunk  of  noise  was  removed  while  the  vital  information  on  the 

biological  groups was preserved.  The target  of  the  experiment  was  successful  as  the 

unified solution vector clustered the raw dataset into three classes with a classification 

precision of approximately 90% as seen in figure 5.4D, indicating the non-random nature 

of optimisation results. Interestingly enough, the individual vector solutions were also 

able to cluster the data with a significant precision as seen in figures 5.4A, 5.4B, 5.4C, 

something  which  reveals  the  diagnostic  potential  of  a  semi-supervised  classification 

technique.
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Figure 5.4A: Co-intensity network produced by solution vector optimised for one single biological group  

(HH - green), while we observe the other two groups (CCD - blue, ICD - red) cluster as separate graph  

modules.

Figure 5.4B: Co-intensity network produced by solution vector optimised for one single biological group  

(CCD - blue). Green and red edges link samples belonging to the same biological group, HH and ICD,  

respectively. Graph modules largely correspond to known biological groups.
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Figure 5.4C: Co-intensity network produced by solution vector optimised for one single biological group  

(ICD – red). Green and red edges link samples belonging to the same biological group, HH and ICD,  

respectively. Graph modules largely correspond to known biological groups.

Figure 5.4D: Co-intensity network produced by merging the three binary solution vectors. The coloured  

biological  regions  correspond  closely  to  the graph modules  yielded by  community  structure  partition.  

Green,  blue,  and  red  edges  link  samples  belonging  to  the  same  biological  group,  HH,  CCD,  ICD,  

respectively. Graph modules largely correspond to known biological groups.
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5.5.3 Optimisation over filtered dataset and solution merging (model 1)

In the second experiment  the model was tested in a similar  way as in 5.5.2 with the 

difference that the raw dataset had undergone a noise pre-treatment and reduced to 4072 

out of the total 18783 masses prior to the 3-way optimisation and solution merging. The 

pre-treatment involves an optimisation of  model 1  over the raw dataset using all three 

biological  groups,  i.e.  using  the  optimised  solution  vector  to  isolate  the  masses  that 

maximise the clusterability of the raw data into its known biological groups. These 4072 

masses  were  then  used  as  the  starting  point  for  5.5.2.  As expected,  the  results  were 

identical to those of 5.5.2 but much more accentuated. As it can be seen in figures 5.5A, 

5.5B, and 5.5C, the biological clusterability of the individual solutions is now much more 

uniform and accurate at 100%, while in the case of the unified vector solution we observe 

an impressive partition of the co-intensity network into three disconnected subgraphs, one 

for each of the known biological groups (figure 5.5D). However, prediction in this case is 

not  in  the  scope  of  the  experiment  since  all  three  biological  groups  were  used  as 

supervised information during the initial optimisation stage for data reduction.
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Figure 5.5A: Co-intensity network produced by solution vector optimised for one single biological group  

(HH – green). The graph was created by applying the binary vector on the filtered dataset. Biological  

groups that  were  not considered by  the optimisation (blue and red) are clustered  with high precision.  

Graph modules largely correspond to known biological groups.
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Figure 5.5B: Co-intensity network produced by solution vector optimised for one single biological group  

(CCD - blue).  The graph was created by applying the binary vector on the filtered dataset. Biological  

groups that were not considered by the optimisation (green and red) are clustered with high precision.  

Graph modules strongly correspond to known biological groups.
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Figure 5.5C: Co-intensity network produced by solution vector optimised for one single biological group  

(ICD - red). The graph was created by applying the binary vector on the filtered dataset. Biological groups  

that were not considered by the optimisation (blue and green) are clustered with high precision. Graph  

modules strongly correspond to known biological groups.
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Figure 5.5D: Co-intensity network produced by merging the three binary solution vectors optimised on the  

filtered dataset. The three biological groups form three distinct disconnected subgraphs. Graph modules  

largely correspond to known biological groups.
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5.5.4 Constrained optimisation: Base-q model and metabolite identification (model 2)

Model 1 achieves noise removal and data reduction by isolating the data points which are 

necessary in order to maximise the quality of clusterability of the co-intensity network 

over the raw dataset.  Model 2 goes one step further by assigning a class to every data 

point,  i.e.  associating  all  discriminant  masses  to  a  biological  group.  Naturally,  the 

ultimate goal of this model is biomarker identification. Both deterministic and stochastic 

meta-heuristics were used to discover good solutions over several runs, two of which are 

depicted in  figures 5.6A and 5.6 (B).  Depending on the objective function,  solutions 

yielded by different algorithms using different starting points were found to be highly 

similar and small in number (i.e. very few metabolites were identified as discriminant). 

The way to test the validity of those results would be to compare the metabolites of these 

solutions  to  the  short-listed  biomarkers  of  [4].  Interestingly,  2  out  of  25  short-listed 

biomarkers were included in the 28 mass sized solution yielded by the gradient descent 

algorithm. We can perform a hypothesis test  to find the statistical significance of this 

result and the probability to occur at random. 

Let N = 18480 be the total number of elements, m = 25 be the labeled elements (the ones 

discovered  in  the  Crohn's  study),  p  = 28  be  the  number  of  elements  picked  out  be 

combinatorial learning, and k ∈ K be the elements of  p at the intersection with m with 

kobs = 2 being the instance of k observed in given experiment. 

The null hypothesis H0 is that combinatorial learning picked out p = 28 out of a total N = 

18480 elements, at random. The alternative hypothesis  H1 would be that combinatorial 

learning specifically chose the m = 25 labeled elements. Consequently, we deduct that a 

larger observed kobs would provide stronger evidence to support H1. 

Under the null hypothesis, K follows a hypergeometric distribution with probability mass 

function (pmf):
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Pr {K=k }=
(mk )(N−m

p−k )
(Np )

, k = 0,1, ... ,min {m , p}

Pr {K=2}=
(25

2 )(18455
26 )

(18480
28 )

≈ 0.00064

The p-value of the test (Fisher's exact test) is the probability of observing the test statistic 

to be at least as extreme as the observed kobs under the null hypothesis. 

Hence, the p-value is given by the tail probability:

Pr {K⩾k obs }= ∑
k=k obs

min{m , p } (mk )(N−m
p−k )

(N
p )

Pr {K⩾2}=∑
k=2

25 (25
k )(18455

28−k )
(18480

28 )
≈ 0.00065

Therefore, the probability of this event occurring at random is about 0.0006 and the null 

hypothesis is largely rejected at the 1% significance level. 

It is noteworthy that the gradient descent algorithm converges always to a near identical  

solution using varying starting point vectors. More precisely, the above-described result 

was obtained by using as a starting point a binary vector whose fields were all initialised 

to '1' (full vector). Then, A solution of 40 discriminant masses was obtained by using as a 

starting point a binary vector whose fields were all initialised to '0' (empty vector). It was 

observed that these 40 masses contained, also, the same 2 metabolites that were detected 

by the earlier “full vector” run (masses 150.0560175 and 299.2591449). For kobs = 2 and 

p = 40, the statistical significance of this result comes with a p-value of approximately 
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0.0013. The fact that we obtain such similar results when we use so distant starting points 

leads us to believe that the gradient descent algorithm converges to a local optimum of 

valuable biomarker information. I tried out several additional runs using my stochastic 

search algorithms in order to discover other similar optima which possibly hinted the 

discovery  of  different  biomarker.  The  co-intensity  network  of  this  gradient  descent 

solution can be seen in figure 5.6A. A stochastic optimisation run using the simulated 

annealing algorithm yielded a solution of 5 masses, 1 out of which was among the 25 

short-listed metabolites of [4], albeit a different one than in the gradient descent solution 

(mass 407.2802529). Using the same significance test, the probability of this result to 

occur by chance is approximately 0.0067.

Overall, several different combinations of the gradient descent, simulated annealing and 

genetic algorithms yielded solutions in which 6 out of 25 short-listed metabolites were 

detected. Solution size varied from 16 to 40 metabolites and almost each solution vector 

contained one of those 6 metabolites present in the biomarker list of [4]: 407.2802529, 

299.2591449,  329.2333294,  243.1714022,  447.3115566,  150.0560175,  297.1132029, 

403.1510233.  These results reveal that my model has a strong biomarker identification 

potential. 
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Figure 5.6A: Co-intensity network produced through constrained optimisation (model 2) with local search  

for two classes only (HH - green and ICD - blue). The three biological classes form coloured patterns to  

which discriminant metabolites are associated. Graph modules strongly correspond to known biological  

groups.

Figure 5.6B: Co-intensity network produced through constrained optimisation (model 2) with local search  

for all three classes. The three biological classes are clustered with precision via the graph's community  

structure partition. Discriminant metabolites are associated to the three graph modules.
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5.5.5 Supervised and semi-supervised learning experiment

We  performed  the  typical  supervised  classification  procedure  for  cross-validation  of 

dividing the raw dataset into 30% for training and 70% for testing over the 35 columns of 

the mass-sample matrix.  Model 1 was optimised over the the training set  in order to 

produce a trained solution vector of 1090/18783 and 555/18783 for the 3-class and 2-

class scenarios, respectively. This trained vector, which can be regarded as a predictor 

variable, was applied on all training, test, and full data sets, in order to filter the least 

important masses before the construction of a co-intensity network. Figure 5.7A shows 

the  application  of  the  trained  vector  on  the  training  set  of  the  3-class  scenario.  As 

expected, 3 disconnected subgraphs are forming flawlessly, indicating that the training on 

the  30%  of  the  data  was  successful.  Figure  5.7B  displays  the  co-intensity  network 

resulting from the application of the same trained vector on the test set, i.e. 70% of the 

raw data.  We observe  the  formation  of  three  distinct  modules  and a  derived  sample 

classification of 100% biological accuracy. Naturally, the same classification accuracy is 

observed  in  the  network  of  figure  5.7C,  which  was  created  by  the  trained  vector's 

application on 100% of the data. Since trained data is included for classification, network 

clusterability is higher while biological groups are forming very distinct modules and 

disconnected subgraphs (though classifying this dataset is of minor predictive interest). 

The  same procedure  was  followed for  the  2-class  scenario,  where  the  predictor  was 

trained over two classes (HH, ICD) and then applied on the training, test, and full data  

sets alike. The resulting co-intensity networks are displayed in figures 5.8A, 5.8B, and 

5.8C,  respectively.  It  is  noteworthy  that  an  overall  high  classification  accuracy  and 

clusterability is observed. An almost flawless classification is performed over the 70% 

and 100% data sets (figures 5.8B, 5.8C) while we observe the modular formation of the 

class of samples that was ignored in training (blue module). Even more remarkably, in the  

case of the predictor created by semi-supervised learning over one single class (ICD-red, 

figure 5.9A), we observe a flawless classification in the 70% test set, with all untrained 

classes  (HH-green,  CCD-blue)  appearing  clearly  as  distinct  modules  (figure  5.9B). 

Surprisingly, the modules of the untrained classes (blue and green) appear to be much 

more densely connected than the trained one (red). The less important classification on 
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the full dataset (figure 5.9C), is the one with the highest number of misclassified objects, 

though still with a very good performance considering the amount of information that 

was used in training.

Different objective functions were tried out, each optimising for a different number of 

biological groups. Despite the dataset's small size (only 35 samples), the classification of 

the test set was correct even in the case of the semi-supervised training over class ICD. 

Other objective functions yielded also satisfactory results. In order to associate the known 

biological groups of the training set with the community structure (graph-based clusters) 

of the test  set,  one can examine the graph-theoretical  properties of the corresponding 

subgraphs between the two phases of the machine learning process. Specifically, I noticed 

that the subgraph of the module with the highest average degree in the training set's graph 

corresponds to the subgraph of the highest average degree in the test set's graph (in this 

case the HH module). Similarly, the subgraphs of the modules with the second higher 

average degrees in the training set's graph correspond to the subgraphs of the second 

higher average degree in the test set's graph (ICD and CCD). CCD in particular does not 

at all appear in the training set's graph, it is however classified successfully in the test set. 

That implies that the information of this class was stored in the predictor even though it 

was not included as an optimisation criterion within the objective function during the 

training process. 
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Figure 5.7A: Co-intensity network produced by applying predictor (binary solution vector) on the training  

set (30% of the raw dataset). The predictor was produced through mass difference optimisation on the  

training set for all three classes. Green, blue, and red edges link samples belonging to the same biological  

group, HH, CCD, ICD, respectively.
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Figure 5.7B: Co-intensity  network produced by applying 3-class predictor on test set (70% of the raw 

dataset). Green, blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD,  

respectively.
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Figure 5.7C: Co-intensity network produced by applying 3-class predictor on full dataset . Green, blue, and  

red  edges  link  samples  belonging  to  the  same  biological  group,  HH,  CCD,  ICD,  respectively.  Graph  

modules strongly correspond to known biological groups, showing high predictive capability.
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Figure 5.8A: Co-intensity network produced by applying predictor (binary solution vector) on the training  

set (30% of the raw dataset). The predictor was produced through mass difference optimisation on the  

training set for two out of three classes (green and blue). 
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Figure 5.8B: Co-intensity network produced by applying 2-class predictor on test set (70% of the raw  

dataset). Green, blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD,  

respectively. Graph modules largely correspond to known biological groups, showing moderate predictive  

capability.
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Figure 5.8C: Co-intensity network produced by applying 2-class predictor on full dataset . Green, blue, and  

red  edges  link  samples  belonging  to  the  same  biological  group,  HH,  CCD,  ICD,  respectively.  Graph  

modules strongly correspond to known biological groups, showing high predictive capability.
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Figure 5.9A: Co-intensity network produced by applying predictor (binary solution vector) on the training  

set (30% of the raw dataset). The predictor was produced through mass difference optimisation on the  

training set for one out of three classes (red - ICD). 
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Figure 5.9B: Co-intensity network produced by applying 1-class predictor on test set (70% of the raw  

dataset). Green, blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD,  

respectively.  Graph  modules  largely  correspond  to  known  biological  groups,  showing  high  moderate  

capability.
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Figure 5.9C: Co-intensity network produced by applying 1-class predictor on the whole dataset.  Green,  

blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD, respectively.  

Graph modules largely correspond to known biological groups, showing moderate predictive capability.
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5.6 Case study: Insulin resistance data

In this section, I put to a further test the methods presented in this chapter by applying 

model-2 optimisation on the insulin resistance data; a ICR-FT-MS metabolomics dataset 

of very high complexity [75]. Any unsupervised classification algorithm applied on this 

dataset  would fail  to  detect  any sort  of clusters  or  patterns.  I  applied  my own semi-

supervised models in order to see how they perform in a more complex scenario.

5.6.1 Experimental background

The  study  behind  this  dataset  concerns  the  relation  between  insulin  sensitivity  and 

diabetes in the context of ICR-FR-MS non-targeted metabolomics [75]. Decline in insulin 

sensitivity measured by the Matsuda formula [76] implies a high risk of developing type 

2  diabetes.  The  article  in  question  uses  multivariate  statistics  in  order  to  establish  a 

threshold on the Matsuda index values between the regions of high and low risk [75]. A 

total of 46 plasma samples from non-diabetic subjects exhibiting high to low sensitivities 

were analysed by means of ICR-FT-MS, producing 12413 metabolites [75].

5.6.2 Empirical results

Each sample in the Insulin dataset is associated to an ESI Matsuda value, ranging from 

2.48 to 41.47. In [75], samples have been divided into three classes depending on the 

three selected sub-ranges for low, intermediate, and high Matsuda values. The class of 

high values is regarded as the “risk” region (≥15) while the class of low values as the 

“non-risk” (<8.5). Red, blue, and green edges, represent the connections between samples 

of the same classes, i.e. red, green, and blue, for high (risk), intermediate, and low (non-

risk) regions, respectively. 

Figure 5.10 shows how an efficient unsupervised algorithm such as co-intensity network 

clustering fails to classify the dataset since no distinct graph modules and hardly any 

visual patterns can be detected in the network. I applied a model-2 type of optimisation 
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over the raw Insulin dataset by considering only two out of the three biological groups 

(high and low ESI Matsuda values). As it is seen in 5.11, the high and low (red and blue) 

classes are formed very distinctively as separate graph modules, while the intermediate 

class  (green)  appears  remarkably  right  in  the  middle  of  the  two,  testifying  for  the 

biological significance of the results. 

A similar treatment was applied using model-2 constrained optimisation over the raw 

dataset. In the co-intensity network of 5.12, we observe a less well formed clusterability 

which, nonetheless, follows the same pattern of the two biological groups appearing as 

separate  modules  with  the  intermediate  group  being  in  the  middle  of  the  two.  The 

solution vector leading to this result contains 74 out of the total 12413 metabolites. Due 

to a lack of information on the short-listed metabolites of the concerned study [75], I was 

not able to calculate the statistical significance of those results as I did in the Crohn's 

disease dataset of the previous section.
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Figure  5.10:  Co-intensity  network  created  out  of  the  raw  Insulin  resistance  dataset  (non-optimised  

solution:  12413/12413  masses).  Red  and  blue  coloured  edges  link  samples  belonging  to  the  same  

biological group, high (risk) and low (non-risk) ESI Matsuda values, respectively. Green edges represent  

the intermediate zone of ESI values. The graph shows only scarce patterns but yields no biological clusters.
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Figure  5.11:  Co-intensity  network  (981/12413  masses)  produced  by  optimising  for  two  out  of  three  

biological  classes  (2-class  optimisation  for  high  and  low  ESI  values).  The  graph  depicts  very  high  

clusterability  with  modules  that  correspond  to  the  two  main  biological  groups  (blue  and  red).  The  

intermediate group (green),  which was not considered in the optimisation, can be observed appearing  

naturally at the intersection of the two modules, reflecting an important biological pertinence.
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Figure 5.12: Co-intensity network produced through constrained optimisation (model 2) with local search  

for the two main classes only (red and blue). The three biological classes form coloured patterns and  

modules  to  which  74  discriminant  metabolites  are  associated.  Graph modules  strongly  correspond to  

known biological groups.
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5.7 Conclusion

In this chapter I presented the theory and application of a novel computational framework 

that can be used as an alternative to standard multivariate statistical approaches for the 

purposes of data classification and biomarker identification in ICR-FT-MS metabolomics. 

The framework models a biological scenario in the form of a combinatorial optimisation 

problem and solves it  by means of  metaheuristic  search.  I  developed principally two 

mathematical models for classification and discriminant signal selection, both of which 

use  biological  clusterability  as  the  fitness  criterion  of  the  optimisation  process.  My 

measure of clusterability is calculated via co-intensity network clustering. 

Model 1 represents the problem in the form of a binary vector which, once trained, can be 

used as:

i. a semi-supervised classifier of unlabelled data points (samples) in the same dataset 

(i.e. the train set used in optimisation),

ii. a semi-supervised classifier for the non-targetted discovery of unknown biological 

groups in the same dataset,

iii.a predictor for supervised learning and classification in unknown datasets.

The  application  and  cross-validation  of  the  method  yielded  positive  and  biologically 

pertinent results on two distinct datasets.

Model 2 represents the problem in the form of a base-n vector (for n classes) which, after 

training, leads to discriminant signal (biomarker) identification as well as association to 

one of the know biological groups. Its results are directly comparable to the ones of PLS-

regression and were deemed statistically significant after hypothesis testing. 
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CHAPTER VI

An adapted combinatorial learning model for the study of discriminant 
chemical reactions in mass difference networks

This chapter deals with the last main topic of this work, which happens to be the link 

between  the  two  previous  main  topics,  namely  the  quantitative  methods  of  mass 

difference networks and  combinatorial learning.  I  describe an enhanced combinatorial 

learning model which takes into account mass difference information and yields a new 

indicator of biological interest in mass spectrometry bioinformatics and metabolomics. 

6.1 Abstract

The use of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ICR-FT-MS) 

in non-targeted metabolomics offers ultra-high mass accuracy whose full potential can be 

explored computationally through the mass difference network model and the Netcalc 

method [1][2]. As described in a different section of this work, one of the main objectives 

in non-targeted metabolomics is the identification of discriminant signals and potential 

biomarkers. A novel quantitative and computational framework that combines machine 

learning and operational research was suggested in chapter V as an alternative approach 

to this  task.  To date,  all  computational and statistical  analysis  on ICR-FT-MS data is 

focused on the instrument's direct  output  (namely exact  masses and intensity values), 

however,  the  application  of  the  Netcalc  method  has  shown  the  importance  of 
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experimental  mass  difference  information  in  structural  networks.  The  quantitative 

advances described in this thesis give rise to the question of whether - in addition to the 

detection  of  discriminant  metabolite  masses  -  there  is  a  need  for  the  detection  of 

discriminant exact mass differences. I developed yet another approach in order to deal 

with this new question that I refer to as the  discriminant mass difference problem. The 

approach is a merge of the methods developed during this thesis and described in earlier 

chapters of this manuscript, notably mass-different networks and combinatorial learning 

(chapters III,V). I refer to this approach as the mass difference optimisation model. 

6.2 Introduction

Mass differences can reflect structural, stoichiometric, and biochemical information in a 

system.  Metabolic  pathways  constitute  a  specific  sequence  of  reactions  which  (a) 

transforms one  or  many substrates  into  one  or  many products,  (b)  delivers  ATP and 

reduction-equivalents for energy production, (c) stores energy in structures in the form of 

fatty acids. Metabolic pathways enable an organism, organ, or cell to respond to external 

stimuli (e.g. a disease, toxins, a change in nutrition) in an organized fashion. When two 

different phenotypic groups (e.g. healthy and unhealthy specimens) react in a specific but 

different manner to the same stimulus, the magnitude and direction of mass flux through 

metabolic pathways might be altered. A consequent change in metabolite patterns might 

result to a change in stoichiometric (i.e. mass differential) patterns, indicating that a mass 

spectral data filter, which omits data that has not been associated to a phenotype specific 

subset of mass differences, should result in a set of m/z values that are more likely to be 

discriminative in that given context. Motivated by this hypothesis, I devised a method 

which  leads  to  the  extraction  of  such  relevant  mass  differences  from a  biochemical 

system in the form of a structural mass difference network. 

Known  techniques,  such  as  ‘gene  set  enrichment  analysis’,  ‘pathway  enrichment 

analysis’ or  the  in-house  developed adaptation  ‘mass  difference enrichment  analysis’, 

indicate  that  an  optimized  set  of  mass  differences  might  improve  biological  data 

discrimination. Based on my pre-defined measure of biological clusterability, the mass 
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difference  optimisation  approach  searches  for  the  most  discriminant  reactions  in  a 

biochemical system. This is achieved by combining the structural network approach of 

chapter  III  with  the  combinatorial  optimisation  framework  of  chapter  V.  The 

transformation list used for the mass difference network reconstruction consists of 175 

mass differences selected from KEGG reaction entries, which are incident to the four 

most important metabolites/coenzymes denoted in [37] : Coenzyme A, Pyruvate, Glycine, 

Glutamate. In order to improve Netcalc coverage, the entire homologous series from C2 

to C16 fatty acids and from C2 to C10 dicarboxylic acids were added. The setup of this 

mass difference list intends to be as close as possible to the metabolome.

6.3 Methods, models, and algorithms

6.3.1 Method overview

In  order  to  detect  discriminant  mass  differences,  I  have  combined  structural  mass 

difference  networking  with  the  combinatorial  learning  framework  for  biomarker 

identification. The idea is to use the framework of chapter VI in combination with a mass 

difference network (chapter III) in order to detect the mass differences that “characterise” 

the sample in question. The biological assumption, therefore, is that there exists such a 

group  of  discriminant  mass  differences and  the  associated  computational  problem 

consists of obtaining them. The key to this approach is the introduction of a new binary 

vector which models an arbitrary problem solution in respect to the transformation list 

used in the mass difference network reconstruction. 

6.3.2 Combinatorial problem modelling

Model 3: Mass difference solution vector (binary encoding)

In an  n×m mass-sample intensity  matrix A =  [aij] (as described in section 5.4.1),  we 

associate a vector Z of size n, representing the list of n exact masses that correspond to 

the  row-vectors  of  A.  We apply  Algorithm 1 on  vectors  Z and  W to  output  a  mass 

difference network  G = <I, J, K> (section 3.2.1), where  W represents the list of  k pre-
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chosen chemical transformations and the tuple <I, J, K> is the sparse information output. 

At this state, we can define the new model vector  mdS = [mdsi]k where  si ∈ {0,1},∀ i , 

representing a feasible solution to the mass difference optimisation problem. The size of 

this mass difference solution vector mdS is equal to k, i.e. the number of mass differences 

in the transformation list, which is the size of vector  W. Every mass difference vector 

solution mdS is associated to its corresponding mass difference network G = <I, J, K> by 

using the nonzero values of mdS in order to filter the indices of nodes in <I, J>.

6.3.2 Problem resolution

In order to use the objective function 1: Φo (section 5.4.5), we need to convert the mass 

difference solution vector mdS to a model 1 type of mass-solution vector S. Function Φo, 

from the classical optimisation framework, will quantify the clustering of sampled objects  

using a co-intensity network produced from a  model 1 vector as described in section 

5.4.4,  Algorithm 3.  Therefore,  the  principal  difference  between  the  MD-optimisation 

model and the classical metabolic optimisation framework (chapter V), is that the former 

applies optimisation on the mass difference solution vector that represents the absence or 

presence  of  entries  in  a  transformation  list  at  a  given  state  (modelled  as  binary 

information). The input to the objective function  Φo is a  model 1  vector, therefore, the 

MD-solution vector mdS has first to be converted into a mass-vector before being passed 

as an argument to  Φo. The  model 1 solution is generated by assigning the value of one 

only to the bits whose masses are participating in the structural mass difference network 

deriving  from the  MD-solution vector  mdS in  combination  with  the  known  <I, J, K> 

information produced by algorithm 1. The optimisation process maximises: 

   Φo( f m←md ( Smd ) ,< I , J , K >)

where fm←md is a function which converts an MD-solution vector to a model 1 vector. The 

exhaustive search space is  2k, calculated by the binary variable domain (value 2) to the 

power of  k (number of bits in  mdS). The metaheuristic algorithm permutes the values of 

bits in mdS, with each bit-change causing nodes to appear and disappear in <I, J, K> and 

consequently  row-vectors  to  be  removed  and  added  from  the  mass-sample  intensity 
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matrix A, affecting thus the model 1 vector and the output value of the objective function. 

6.4 Empirical results

Model  3  optimisation was applied on the Crohn's dataset  of 18480 masses using 175 

chemical reactions at 0.2 ppm. The resulting mass difference network of 5830 masses can 

be seen in figure 6.1. In a single optimisation run, the co-intensity network at thresholds 

T = 0.23 and T = 0.50 can be seen in figures 6.2A and 6.2B, respectively. 35 out of 175 

reactions were deemed as discriminant at the algorithm's convergence.  Crohn’s disease 

and  inflammatory  bowel  disease  are  known  to  impair  with  the  lack  of  Vitamin  B6 

(pyridoxal phosphate) [78]. 14 of the 35 reactions are potentially dependent on vitamin 

B6. Additionally a derivative of transamination (which is catalysed by vitamin B6) and 

reactions involving typtophan and its transamination product indolepyruvate were found 

to  improve  biological  clusterability.  Tryptophan  was  found  by  our  group  to  be  a 

discriminative metabolite in the same dataset [4]. The same study revealed Tyrosine to be 

of importance; a vitamin B6 dependent reaction of tyrosine as well as condensations with 

its  transamination  product  4-Hydroxyphenylpyruvic  acid  were  found  to  improve  the 

clustering  output.  Another  pair  of  reactions  which  is  linked  via  vitamin  B6  is  2-

Oxoarginine  condensation  and  Arginine  condensation  on  hydrogenated  carbonyls.  A 

further important transformation linking to vitamin B6 is thertiary N-methylation, which 

is found in the synthesis of Biotine and Choline. The transformations esterification with 

‘phosphatidylcholine head group’ and ‘Phosphorylcholine’ were found to be important. 

Nitration, known to be a marker of inflammation, as well as thiolation were found to be 

important. Reactions which adhere to the context of mucosal injury are ‘decarboxylative 

condensation of Ornithine’ and ‘condensation of Ornithine’. Ornithine Decarboxylase is 

involved in the mucosa-protective formation of polyamines from Ornithine [79].
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Figure 6.1:  Structural mass difference network of the Crohn's dataset at 0.2 ppm (5830 masses - 175  

reactions). The illustrated network was produced in the mass difference optimisation model for the purpose  

of discriminant mass difference identification. Despite its density, the network displays high modularity and  

scale-free architecture. 
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Figure 6.2A: Co-intensity network (at similarity threshold 0.23) produced by the masses mass difference  

optimisation. Green, blue, and red edges link samples belonging to the same biological group, HH, CCD,  

ICD, respectively.  The network  was constructed via the masses  that took place in  the mass difference  

network of figure 6.1. Graph modules in this co-intensity network largely correspond to known biological  

groups, showing moderate biological clusterability. The chemical reactions associated to this co-intensity  

network (vie the network of figure 6.1) are the resulting discriminant mass differences. 
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Figure 6.2B: Co-intensity  network at  threshold 0.50 produced by mass difference optimisation.  Green,  

blue, and red edges link samples belonging to the same biological group, HH, CCD, ICD, respectively. The  

network was constructed via the masses that took place in the mass difference network of figure 6.1. Graph  

modules in this co-intensity network largely correspond to known biological groups, showing moderate  

biological clusterability. The chemical reactions associated to this co-intensity network (vie the network of  

figure 6.1) are the resulting discriminant mass differences.
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6.5 Conclusion

In  this  chapter,  we  proposed,  developed,  and  tested  a  new  in  silico  method  for 

determining discriminant mass differences (reactions) in a biochemical system based on 

the measure of biological clusterability that I presented in a previous chapter. The mass 

difference optimisation presented herein was materialised by merging the work seen in 

previous  sections  of  this  manuscript,  notably  structural  mass  difference  networks, 

Netcalc, co-intensity network clustering, and the combinatorial optimisation framework 

for ICR-FT-MS data classification. 

The results of the mass difference optimization adhere to the determinants of Crohn’s 

Disease  published  by  various  scientific  groups  over  time  [4][79].  In  addition,  they 

confirm the medical praxis of handling Crohn’s disease with a prescription of vitamin B 

treatment [78].
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CHAPTER VII

Epilogue

This final chapter serves as a conclusion to my thesis. I review the main research topics 

of this work along with their corresponding experimental results and bring forward novel 

ideas for future work in this field. 

7.1 Discussion

In  this  thesis,  I  have  used  my  quantitative  background  in  Artificial  Intelligence 

(specialised in Machine Learning and Operational Research) in order to develop novel 

computational techniques specific to mass spectrometry bioinformatics. I have conceived 

and  formalised  a  set  of  data  mining  methods  and  tools  specifically  adapted  to  high 

accuracy mass spectrometric data,  produced by technologies such as ICR-FT-MS and 

Orbitrap. The work was focused on datasets of natural organic matter and metabolomics, 

treated by a 12T ICR-FT-MS instrument. 

The first part of this manuscript focused on mass difference network reconstruction and 

the development of a network-based elementary formula calculation algorithm that we 

called  'Netcalc'.  Traditional  approaches  to  formula  calculation  are  able  to  annotate  a 

single exact mass by applying an exhaustive search on every possible combination of 

elemental composition that can correspond to that mass. However, the Netcalc algorithm 

–  178  –



performs a biochemical network reconstruction of the entire sample and uses one known 

formula as a starting point in order to gradually annotate all connected masses in the 

network.  Although in its  infancy,  Netcalc  displayed superior  results  in  respect  to  the 

number of correctly annotated masses and the computational time invested in the task. In 

addition, our enhanced structural mass difference network reconstruction model produces 

a data visualization which is far more informative than conventional methods such as Van 

Krevelen diagrams and Kendrick plots.

In the second part of this thesis, I focused on the development of novel machine learning 

techniques for the analysis of metabolomics samples. I first determined and adapted the 

most  optimal  clustering  algorithm  and  similarity  measure  for  the  unsupervised 

classification of biological groups in ICR-FT-MS metabolomics datasets. I standardised 

the concept of co-intensity network clustering and demonstrated its applicability to ICR-

FT-MS  bioinformatics.  I  introduced  the  concept  of  biological  clusterability  which 

measures the quality of classification in terms of biological pertinence in a given sample, 

i.e. to what extent the in silico classes match with the real biological groups. I introduced 

a  framework  of  combinatorial  modelling  which  allows  a  biological  scenario  to  be 

modelled as a discrete mathematical problem and solved computationally by means of 

combinatorial optimisation. I developed initially two models for this framework, one that 

is  used  for  predictive/diagnostic  clustering  and  semi-supervised  learning,  another  for 

biomarker identification. The application of this model produced biologically pertinent 

and statistically significant results. 

In  the  last  section  of  this  work  I  proposed,  developed,  and  tested  a  new  biological 

parameter in metabolomics research called 'discriminant mass differences'. The approach 

comes out as the natural merge of my work on combinatorial learning and structural mass 

difference networks.  The first  model  of my optimisation framework was adapted and 

used  with  a  new  objective  function  in  order  to  focus  on  finding  discriminant  mass 

differences in a sample. The results of the approach are in agreement with findings in 

recent literature. 
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7.2 Future work

The  purpose  of  this  work  is  to  lay  the  foundations  of  new  points  of  interest  in 

computational  and  quantitative  research  of  ICR-FT-FMS  bioinformatics  and  mass 

spectrometry in general. The Netcalc approach, in particular, has advanced to the point of 

having its own distributable software application, regardless, it is considered to be in its 

infancy. There is lots of room for experimentation and improvement over aspects that I 

either formalised or simply tested, ranging from the selection of optimal ppm values and 

filtering methods to specialised search algorithms. Formula filtering is very crucial for the  

efficient validation of annotations while the algorithms involved can be affecting both 

speed and quality of search. My heuristic approach can be considered fast enough and 

sufficient  for  most  tasks,  yet  there  is  room for  further  testing  on  exhaustive  search 

methods.  I  experimented  by  programming  algorithms  for  exhaustive  and  purely 

unsupervised search,  which  would  build  up their  own reaction  lists  on the  fly  (mass 

difference mining) and use it to link and annotate all disconnected subgraphs of a mass 

difference  network  (source  code  not  included  in  the  manuscript).  I  did  not  deepen, 

however,  my  research  into  this  direction  and  there  is  therefore  much  room  for 

improvement. An interesting project would be to gather up all such alternative methods 

and options and integrate them into the Netcalc software tool, which would then have to 

be rewritten for efficiency in a general purpose programming language such as C++.

The community structure graph-clustering approach has proved itself to be optimal for 

unsupervised  classification  but,  for  what  concerns  cluster  association  to  individual 

masses,  I  have discovered a big potential  in Self-Organizing Maps (SOM); a type of 

Artificial  Neural  Network.  In  the  case  of  supervised  classification  (prediction),  the 

Perceptron family of Artificial Neural Networks was of particular interest as it was shown 

to be compatible with combinatorial optimisation modelling and Operational Research 

problem-solving.  An  integration  of  these  methods  with  combinatorial  learning  could 

possibly yield the optimal tool for both unsupervised and supervised analysis.

The work on combinatorial learning and mass difference optimisation is by definition at 

an experimental stage. There is a vast parametrisation potential to these models and using 
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expert judgement to try different settings and obtain new results can be a separate topic of 

research on its own. I experimented a lot with different metaheuristic search algorithms 

with my focus being on Genetic Algorithms, Gradient Descent, and Simulated Annealing, 

as well as different objective functions that would calculate the modularity parameter in 

different ways. There are, however, many more things to be tested out, such as algorithms 

for the fitness of a solution (evaluation function), the speed of search, and the efficiency 

of clustering. Different filtering and cut-off techniques were also extensively tested, with 

a lot  of work remaining to be done in these fields where parametrisation options are 

numerous. 

As a last thought, I believe that a very interesting project would be the merge of all ICR-

FT-MS techniques presented in this work into a complete software platform, where all  

complex parametrisation would be possible through a rich graphical user interface and its 

own  scripting  language.  This  would  be  undoubtedly  a  very  big  step  towards  the 

establishment of mass spectrometry data mining as a separate subfield of bioinformatics. 
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