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Metabolomics has been proven to be a powerful tool to study complex phenotypes. It 

can present a snapshot of the current status of metabolism and provide a functional 

readout of the gene products. Complementing with other  techniques in 

systems biology studies, the integration of metabolomics with other , e.g. 

trancriptomics and epigenomics, will help to illustrate complex biological processes 

which are related to disease and environmental exposure. 

This thesis presents three studies focusing on a lifestyle related environmental 

exposure smoking and a disease which is related to the exposure myocardial 

infarction (MI). The general aim of these studies is to establish links between smoking, 

intermediated biomarkers of disturbed metabolic pathways and MI. Establishment of 

how they are linked might enlarge our knowledge about the metabolic basis of these 

links. 

The first study presented in this thesis aims to understand the effects of smoking and 

smoking cessation on human serum metabolite profile. Whilst smoking increases the 

risks of many diseases, including MI, the benefits of cessation is remarkable as it has 

shown to reduce the risk of MI in a very short time frame. The results presented in 

this thesis showed significant differences in metabolite profiles between current 

smokers, former smokers and never smokers. Amongst the 21 metabolites, which 

were found to be different between current smokers and never smokers, 19 were 

found reversible in former smokers. The results were furthermore confirmed in the 

prospective study of KORA S4 F4. Network analysis was applied to integrate 

smoking related genes and metabolites, which consistently showed the reversibility of 

the smoking effects on gene expression and metabolite profile. The reversibility of 

smoking related changes in serum metabolites also coincide with the reduced risk of 
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MI, which gives rise to the possibility of using these metabolites as potential 

biomarkers to characterize smoking related diseases. 

Inspired by the first study, two other studies were initiated with different aims. The 

second study in this thesis aims to use multi-level  data to illustrate how 

smoking influences the metabolite profiles by alteration in DNA methylation and 

gene expression. Candidate biomarkers of smoking were first discovered separately in 

epigenomic, transcriptomic and metabolomic levels. Mediation analyzes were applied 

to assess the potential interactions between smoking, DNA methylation, gene 

expression and metabolites. In general, seven CpG sites showed significant mediation 

effects for the expression of the LRRN3 gene. Amongst these seven, two were also 

significantly associated with the concentrations of LPC (18:2) and PC ae C34:3.  

In the third study, three metabolites (arginine, LPC (17:0) and LPC (18:2)), which 

may serve as novel biomarkers for incident MI, were identified based on a targeted 

metabolomics approach in two prospective cohort studies. These metabolites 

significantly associated with MI in Cox regression models after adjustment for other 

MI risk factors, such as smoking and C-reactive protein (CRP). Inclusion of these 

metabolites in the established MI prediction models provided significant added 

predictive value. Additionally, the observation that these metabolites were associated 

with CRP indicates potential inflammatory process they are commonly involved in. 

Among the three metabolites listed above, arginine and LPC (18:2) are also associated 

with smoking as shown in the first study of this thesis, which implies the underlying 

metabolic relationships between smoking and MI. 

In summary, this doctoral thesis reveals metabolites associated with smoking and MI. 

Using a systems biology approach, the effects of smoking on DNA methylation and 
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gene expression, which mediates the corresponding variations on metabolite 

concentrations, were analyzed by integrating multi-level  data. The 

metabolites associated with both smoking and MI may contribute to a deeper insight 

into the molecular basis between the link of MI and its risk factor smoking. 
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Metabolomics ist ein bewährtes und leistungsfähiges Hilfsmittel zur Erforschung von 

komplexen Phänotypen. Diese Technik bildet zum einen eine Momentaufnahme des 

gerade herrschenden Status des Metabolismus ab und dient zum anderen zum 

Auslesen von Genprodukten. Mit Hilfe des Zusammenspiels und der Einbindung 

- plexe biologische 

Prozesse, die in Beziehung zu Krankheiten und Umwelteinflüssen stehen, dargestellt 

werden. 

Diese Doktorarbeit beinhaltet drei Studien deren Fokus auf dem Thema Abhängigkeit 

der Lebensgewohnheiten von Umwelteinflüsse liegt - dem Rauchen und einer 

Krankheit, die mit dem Rauchen zusammenhängt - dem Herzinfarkt. Das Ziel dieser 

Studien ist der Nachweis einer Verbindung zwischen dem Rauchen, Biomarkern, die 

Zwischenstadien gestörter Stoffwechselwege abbilden, und dem Herzinfarkt. Der 

wissenschaftliche Beweis einer solchen Verbindung und dessen Art könnte unser 

Wissen über die Basis dieser Stoffwechselwege erweitern. 

Die erste Studie, die in dieser Doktorarbeit behandelt wird, verfolgt das Ziel eines 

verbesserten Verständnisses des Einflusses von Rauchen und der Raucherentwöhnung 

auf das Metaboliten-Profil im Blutserum des Menschen. Während das Rauchen das 

Risiko vieler Krankheiten, wie auch des Herzinfarkts, steigert, senkt die 

Raucherentwöhnung das Herzinfarktrisiko in kürzester Zeit erheblich. Die in dieser 

Doktorarbeit dargestellten Ergebnisse zeigen signifikante Unterschiede der Metabolit-

Profile zwischen Rauchern, ehemaligen Rauchern und Nichtrauchern. 19 der 21 

Metaboliten, die durch den Vergleich von Rauchern und Nichtrauchern identifiziert 

wurden, waren reversibel. Diese Ergebnisse wurden darüber hinaus von einer 

prospektiven Studie, der KORA S4->F4, bestätigt. Die Umkehrbarkeit der 
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rauchabhängigen Auswirkungen auf die Genexpression und Metaboliten-Profile 

konnte durch die Anwendung der Netzwerkanalyse und der Einbindung  

rauchabhängiger Gene und Metaboliten übereinstimmend gezeigt werden. Die 

Reversibilität der durch das Rauchen hervorgerufenen Veränderungen der 

Metaboliten des Serums fällt auch  mit einem verringerten Herzinfarktsrisiko 

zusammen. Dies eröffnet die Möglichkeit diese Metaboliten möglicherweise als 

Biomarker zu verwenden, um Raucherkrankheiten zu charakterisieren. 

Inspiriert von der ersten Studie wurden zwei weitere Studien mit verschiedenen 

Zielen initiiert. Die zweite Studie -

-Profile, 

die mit DNA Methylierung und Genexpression zusammenhängen, darzustellen. 

Geeignete Biomarker von Rauchern wurden im Vorfeld unabhängig voneinander in 

Epigenomik, Transkriptomik und Metabolomik bestimmt. Anhand der Durchführung 

von Mediations-Analysen konnte die Möglichkeit einer Verbindung zwischen dem 

Rauchen und der DNA Methylierung, der Genexpression und den Metaboliten 

abgeschätzt werden. Im Allgemeinen zeigten 7 CpG Bereiche signifikante 

Mediationseinflüsse für die Expression des Genes LRRN3. Von diesen 7 zeigten 2 

auch eine signifikante Assoziation mit den Metabolitkonzentrationen von LPC (18:2) 

und PC ae C34:3. 

In der dritten Studie wurden drei Metaboliten (Arginin, LPC (17:0) und LPC (18:2)), 

die als neue Biomarker für das Auftreten eines Herzinfarkts dienen könnten, basierend 

auf  einem gezielten Metabolomics-Ansatz in zwei prospektiven Studienkohorten 

identifiziert. Diese Metaboliten konnten signifikant in einem Cox Regressionsmodel 

nach der Anpassung der anderen Herzinfarktrisikofaktoren wie dem Rauchen und 

dem C-reaktiven Protein (CRP) mit dem Herzinfarkt in Verbindung gebracht werden. 
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Die Einbeziehung dieser Metaboliten in die etablierten Herzinfarktmodelle lieferte 

zusätzlich signifikant verbesserte Vorhersagen. Zusätzlich konnte die Beobachtung, 

dass diese Metaboliten mit CRP zusammenhingen, potenzielle Endzündungsprozesse, 

in denen diese involviert sind, anzeigen. Unter den drei oben genannten Metaboliten 

waren auch Arginin und LPC (18:2), die bereits in der ersten Studie der Doktorarbeit 

mit dem Rauchen in Verbindung gebracht werden konnten. Dies impliziert einen 

metabolischen Zusammenhang zwischen Rauchen und Herzinfarkt.  

Zusammengefasst zeigt diese Doktorarbeit Metaboliten auf, die mit dem Rauchen und 

mit Herzinfarkt zusammenhängen. Unter Verwendung eines systembiologischen 

Ansatzes wurden die Auswirkungen von Rauchen auf die DNA Methylierung und 

Genexpression, welche dazugehörige Schwankungen der Metabolitkonzentrationen 

-

Metaboliten, welche mit dem Rauchen und mit Herzinfarkt assoziiert sind, könnten zu 

einem tieferen Einblick in die molekulare Basis der Verbindung zwischen Herzinfarkt 

und dessen Risikofaktor, dem Rauchen, beitragen. 
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After the first introduction of the field a decade ago, systems biology has greatly 

progressed and expanded in different aspects of the life sciences (Chuang et al, 2010). 

However, there is still not yet a concise and concrete definition of systems biology. 

While Ideker et al. emphasized a genome-wide systematic approach with 

mathematical modelling (Ideker et al, 2001), others suggested small scale quantitative 

studies (Tyson et al, 2001). Additionally, Hiroaki Kitano proposed the integration of 

experimental and computational approaches (Kitano, 2002). Despite the diversity of 

the definition, all opinions share a conceptually common aspect: the computational 

modeling of the interactions between different components of a biological system. 

This concept of the systems-level analysis is enabled by the high-throughput of 

 measurements, such as gene expression profiling, DNA methylation profiling 

and metabolite profiling, which provide comprehensive information of a biological 

system. In epidemiological studies, a systems biology approach using different  

data can extend the view from observing epidemiological associations between risk 

factors and disease outcomes, for example smoking and MI, to the molecular level 

understanding of disease etiology. The studies in this thesis followed this concept to 

investigate smoking, cardiovascular diseases (CVDs), including MI, and their 

relationship with one another in the light of multi-level  data (Figure 1). 
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Figure 1. O  data reveals molecular basis for the links between smoking and CVDs  

 

 
Smoking is a significant risk factor for CVDs as found in many epidemiology studies 

(Bøttcher & Falk, 1999; Howard et al, 1994; Libby, 2002; Szmitko et al, 2003). The 

benefits of smoking cessation are remarkable. The risks of CVDs are reduced in 

former smokers compared to current smokers (Danesh et al, 2000, 1999; Rigotti & 

Pasternak, 1996); the mortality and future cardiac events both decline in former 

smokers (Cook et al, 1986; Aberg et al, 1983). Nevertheless, for cancers, especially 

for adenocarcinoma, the risk remains high in former smokers compared to never 

smokers (Halpern et al, 1993; Ebbert et al, 2003). Studies have been made to find the 

molecular basis for the influence of smoking and smoking cessation on cardiovascular 

risks. It is known that smoking is associated with the increase of several CVDs related 

inflammatory biomarkers, e.g. CRP and fibrinogen (Bakhru & Erlinger, 2005; de 

Maat et al, 1996; Pradhan et al, 2002), while smoking cessation can largely reduce the 

level of these biomarkers (Yanbaeva et al, 2007). However, with this said, there is 

also evidence that other molecular changes associated with smoking are permanent 

which are related to a constant disease risk even after smoking cessation, for example, 
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loss of heterozygosity and hypermethylation in the promoter regions of cancer related 

genes (Powell et al, 1999; Wistuba et al, 1997, 2002; Guo et al, 2004; Beane et al, 

2007). 

 
As one of the emerging  of the post-genomic era, metabolomics focuses on the 

metabolites and low-molecular-weight intermediates, which are varying 

according to the physiology, developmental or pathological state of the cell, tissue, 

organ or organism  (Functional genomics: lessons from yeast, 2002). Metabolomics 

is successfully applied in the study of complex phenotypes, such as obesity and aging 

(Barber et al, 2012; Wahl et al, 2013; Yu et al, 2012; Jourdan et al, 2012). It is also 

used to find the metabolites that can potentially be used therapeutically or 

diagnostically (Long et al, 2011; Wang-Sattler et al, 2012; Shah et al, 2012; Rhee & 

Gerszten, 2012; Patti et al, 2012; Floegel et al, 2012).  

As with other  studies, metabolomics provides detailed information regarding 

the content of cells, tissues, organs or bio-fluids on a large-scale and high-throughput 

manner (Patti et al, 2012; Baker, 2011). Several different techniques exist for the 

high-throughput measurement of metabolites where each technique covers a certain 

panel of metabolites (Patti et al, 2012; Baker, 2011). Nuclear magnetic resonance 

(NMR) spectrometry and mass spectrometry (MS) are generally the two main 

analytical techniques which are used for the measurement of metabolite 

concentrations where different analytical approaches could be applied; the so-called 

targeted or non-targeted profiling approaches (Patti et al, 2012).  

MS-based methods were used in the metabolomic measurements presented in this 

thesis; as such an analytical platform is available in Helmholtz Zentrum München. 

These MS-based methods include two major techniques: flow injection analysis MS 
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(FIA/MS) and high performance liquid chromatography MS (HPLC-MS) in 

combination with tandem mass spectrometry (MS/MS). By these techniques, around 

160 to 180 metabolites can be measured. However, the scale and coverage of 

metabolomics is in no comparison to the other . The estimated number of 

metabolites in humans remains under debate, ranging from thousands to tens of 

thousands (Baker, 2011). It is still impossible to whole metabolome  

(Patti et al, 2012). 

Metabolomics is an extension of other , such as transcriptomics and 

proteomics, which are used to elucidate the functions of genes. One of the main goals 

for the researchers in this field is to find the associations between metabolites and 

genetic variations (Gieger et al, 2008; Illig et al, 2009; Suhre et al, 2011), ultimately 

aiming to understand the differences in the genetics associated with inter-individual 

differences in metabolism. Other researchers focused on the associations of 

metabolomic traits with epigenomic traits (Petersen et al, 2014) and gene expressions 

(Knolhoff et al, 2013; Wilmes et al, 2013), which provide further insights into the 

regulation of human metabolism. Metabolite profiles are successfully integrated with 

other  data to model regulation pathways (Zhu et al, 2012; Cavill et al, 2011). 

Together with other , metabolomics provides a powerful tool to analyze 

physiological and disease-induced biological states at the molecular level, taking into 

roperties, i.e. genetic factors and 

environmental influences. 

 
The metabolomic approach provides a functional read-out of activities located 

downstream of the proteome that are more closely related to the physiological status, 

and thus may be particularly useful for the study of both environmental influences 
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(Ellis et al, 2012) and diseases outcome (Wang et al, 2011a). It is of the believe that 

studying smoking, which is a strong risk factor for CVDs as well as for MI, will be a 

powerful approach for understanding the linkage between environmental exposure, 

metabolite profiles and disease outcome. 

In human lung epithelial cells, differences of metabolite concentrations were found in 

various pathways when current smokers with never smokers were compared to one 

another, e.g. the urea cycle and lipid metabolism exposed to smoke (Vulimiri et al, 

2009). In a pilot study with 283 male participants from the Cooperative Research in 

the Region of Augsburg (KORA) F3 study in Germany, it has been shown that levels 

of diacyl-phosphatidylcholines (diacyl-PCs), except for acyl-alkyl-PCs, were higher 

in 28 current smokers compared to that of a 101 never smokers (Wang-Sattler et al, 

2008). The lower ratios of acyl-alkyl- to diacyl-PCs in current smokers might be 

regulated by the enzyme alkyl-dihydroxyacetone phosphate (DHAP) in both ether 

lipid and glycerophospholipid pathways (Wang-Sattler et al, 2008). However, little 

has been reported about the reversibility of the metabolite profile upon smoking 

cessation, which is important for the comprehensive understanding of the effects of 

smoking (Xu et al, 2013). It is also known that the metabolite profiles are different 

between men and women (Mittelstrass et al, 2011), thus the metabolic response to 

smoking may also be gender specific. 

Metabolomics has been used as a novel tool to study CVDs (Shah et al, 2010; 

Magnusson et al, 2013). Variations in metabolite profiles are associated with risk 

factors of CVDs, such as diabetes (Wang-Sattler et al, 2012; Wang et al, 2011a) and 

smoking (Wang-Sattler et al, 2008; Xu et al, 2013). Recently, it was found that the 

gut flora metabolism of lipids will promote CVDs, shedding light on a novel 
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pathomechanism which leads to atherosclerosis (Wang et al, 2011b). Another study 

has reported branched-chain amino acids and urea cycle metabolites as independent 

cardiovascular risk factors (Shah et al, 2010). Urinary excretion of kynurenine and 

tryptophan were found to be associated with incident major coronary events and acute 

MI (Pedersen et al, 2013). All of these findings emphasized the capacity of 

metabolomics as a tool to explore disease mechanism.  

 
A large number of studies have been conducted to find the influence of smoking at 

genome, transcriptome and epigenome. Genome wide meta-analysis of over 70K 

participants found loci which are related with smoking behavior, including loci which 

are also associated with initiation of smoking and cigarette smoked per day 

(Consortium, 2010). Genome-wide DNA methylation studies identified CpG sites 

which are related to smoking effects on functions of the immune, cardiovascular, 

tumorigenic or reproduction system (Zeilinger et al, 2013). At the transcriptomic level, 

one study found 175 smoking-related genes, by analyzing gene expression profiles in 

large airway epithelial cells. These genes were further classified into rapidly 

reversible, slowly reversible and irreversible genes (Beane et al, 2007). These 

discoveries provide the basis to model smoking behavior and to unveil the mechanism 

of the influence that smoking has on metabolite profiles using systems biology 

approaches. One study used an ontology-based computational representation to 

integrate prior knowledge in large-scale genetic association studies of smoking 

addiction (Thomas et al, 2009). Smoking associated SNPs were used in Mendelian 

randomizations studies to find causal roles of smoking in depression and body mass 

index (BMI) (Munafò & Araya, 2010; Freathy et al, 2011). However, the effects of 
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smoking regarding the initiation and propagation across different  networks 

are still not fully understood.  

For CVDs, the genome-wide association studies (GWASs) have identified around a 

hundred loci for coronary artery diseases (Deloukas et al, 2012), which is the most 

common type of CVDs and leads to MI as well as heart failure. Large epigenomic and 

transcriptomic studies provided new gene expression and methylation signatures for 

CVDs (Schnabel et al, 2012) . Systems biology approaches have also been applied in 

the study of CVDs, for example a network based approach was used to identify 

functional modules of genes in CVDs (Lusis & Weiss, 2010). Neither CRP nor high 

density lipoprotein (HDL) cholesterol, by means of Mendelian randomization studies, 

showed significant causal associations with CVDs (Smith & Ebrahim, 2003). 

However, there is a causal association between low density lipoprotein (LDL) 

cholesterol with CVDs (Voight et al, 2012). Even though a lot of researches have 

been done, much still needs to be unveiled for the holistic picture of the underlining 

mechanism at play (Nabel & Braunwald, 2012). 

  

 

 

Different study designs provide information in a different manner with regards to 

quality and quantity, which essentially influences the analysis and interpretation of the 

results (Pearce, 2012). To address the questions arising in epidemiology such as 

disease prediction or the influence of smoking, a proper design of study is crucial. In 

general there are two types of study designs which basically depend on whether 

interventions were used or not: observational and experimental. In this thesis only the 

observational study design is used. 
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The most common epidemiological study designs are the cross-sectional study, case-

control study and cohort study. A cross-sectional study collects samples of a 

population at a defined time. It is less expensive and relatively easy to conduct 

(Pearce, 2012). But, the information it provides is only observational, thus unable to 

address questions such as causation or prediction. In a case-control study, people with 

disease or phenotype of interest are recruited as cases, and people who do not have a 

disease of interest or the specific phenotype, but with similar characteristics in other 

phenotypes will be recruited as controls (Pearce, 2012). The aim of such a design is to 

find the cause of diseases, especially rare diseases. However, it is usually done 

retrospectively, thus suffers from the problem of recall errors. A cohort study is a type 

of longitudinal study, which extends a survey over time. It can be conducted 

prospectively or retrospectively based on historical records. In a prospective cohort, 

researchers study a group of people without diseases or phenotypes of interest at the 

beginning of the study and collects information of the disease risk factors. After a 

certain period of time, disease information of the studied participants will be collected. 

This allows researchers to establish the time sequence of events, which can strongly 

aid with the study of causal associations. In comparison to the retrospective cohort, 

prospective cohort can reduce the recall error. The results provided by a prospective 

cohort are considered to be the most reliable in observational studies (Pearce, 2012).  

However, the prospective cohort studies are expensive to conduct. To overcome this 

disadvantage some variations of the cohort study were developed, for example the 

case-cohort study (Prentice, 1986). In a case-cohort study design, a sub-cohort is 

randomly selected from the parent cohort. At the end of the study, all cases in the 

parent cohort are also added into the sub-cohort which forms the sample for analysis 

(Prentice, 1986). Owing to the fact that less samples are required in this design it is 
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considered to be less expensive, more efficient and flexible to conduct than a cohort 

study whilst having similar powerful outputs (Barlow et al, 1999) 

In this thesis the cross-sectional study, case-control study, prospective cohort study 

and case-cohort study design were used. 

 

Besides describing the statistics of the study population, most questions in 

epidemiological studies, such as identifying the risk factors of health related problems, 

evaluating therapy, etc., can be modeled as finding the associations between risk 

factors and diseases outcome. Regression models and correlations are the most 

commonly used methods in practice to unveil such associations (Rothman, 2012). 

However, a simple correlation between two factors or a linear regression of the 

outcome on the risk factors is in most cases not sufficient to conclude a direct 

association between two factors. In observational studies, a most common problem is 

confounding. A significant association between two factors in a statistical model can 

be spurious when both factors are not associated directly to one another but 

commonly caused by a third variable, naming a confounding factor. In epidemiology, 

the inability to control interpersonal variations of participants, makes confounding a 

particular challenge. It is common practice to add the confounding factors in the 

regression models to control for the effect of a particular risk factor, such as smoking.  

The relationship between diseases and risk factors in epidemiological research are not 

a simple one-to-one correlation. It should rather be illustrated in a form of a complex 

network with interaction between different genes, proteins, metabolites and other 

molecules (Barabási et al, 2011; Vidal et al, 2011; Chan & Loscalzo, 2012). To 

understand the biological processes for the pathomechanism of a disease, the 
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relationship gets even more complicated as a single level network is usually not 

enough to depict the whole picture of disease pathways. Integration of the multi-level 

 data, which is also an issue of methodology development in systems biology, 

is needed to provide a systemic view of diseases (Barabási et al, 2011; Moreau & 

Tranchevent, 2012). One method to infer such a network of linear dependencies 

among a set of variables, is to compute all pairwise Pearson correlations or Spearman 

correlations (Langfelder & Horvath, 2008; Carter et al, 2004). More sophisticated 

methods can illustrate complicated relationships, when the confounding factors are 

also considered as mentioned previously. Davey-Smith, et.al., conducted a series of 

studies using Mendelian randomization analysis to find the causal associations 

between risk factors and diseases (Smith & Ebrahim, 2003; C Reactive Protein 

Coronary Heart Disease Genetics Collaboration (CCGC), 2011; Davey Smith, 2011). 

The method of Mendelian randomization analysis enables causal inference in 

observational studies, which for a long time could only be addressed by randomized 

controlled trails (Smith & Ebrahim, 2003). These findings pinpointed the causal roles 

of risk factors in disease development, assisting in the process to find a proper 

biomarker for intervention studies. Some other studies used mediation analysis to 

quantify the influence of one intermediate phenotype on the association between one 

exposure or genetic variation and the disease; such an example is the effect of ABO 

blood type and CVDs (Chen et al, 2014). It can also make causal inference of disease 

regulatory networks, integrating genomic, transcriptomic and epigenomic data 

(Bellavia et al, 2013; Wardle et al, 2008). Other methods, such as Bayesian networks, 

were also applied to find interactions between different  levels in systems 

biology studies (Zhu et al, 2012; Sebastiani et al, 2007). 
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To perform the modeling and data analysis, a set of tools are available.  

R is a comprehensive platform for statistical computation and graphics (R Core Team, 

2013). It was derived from the statistical computing platform S (Becker & Chambers, 

1984) and Scheme (Clinger & Rees, 1991). It has now a large user and developer 

community, providing a variety of packages for different statistical modeling 

randomization studies.  

For metabolomics analysis, several web-based analytic tools were developed. The 

metP-server is a tool developed by a group from the Helmholtz Zentrum München, 

providing automated and standardized data analysis for quantitative metabolomics 

data, covering quality controls, hypothesis testing, correlation analysis, PCA etc. 

(Kastenmüller et al, 2011). It provides special support to analyze the original 

measurement data from Biocrates AbsoluteIDQ kits. A more comprehensive platform 

is the MetaboAnalyst (Xia et al, 2009). It provides a tool suite to facilitate 

metabolomics data processing and statistical analysis. In addition to the functions 

provided by metaP-server, it supports peak detections from original spectra from MS 

and NMR measurements; provides additional tools for statistical analysis, including 

machine learning methods such as SVM and random forest; and gives better support 

with regards to functional analysis by providing enrichment analysis and metabolic 

pathway analysis (Xia et al, 2009). 

Several databases are available for functional analysis of metabolomics studies. The 

Human Metabolome Database (HMDB) is currently the most comprehensive curated 

collection of human metabolite and human metabolism data (Wishart et al, 2009). It 
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contains 2180 endogenous metabolites, with structural information, disease 

associations, enzyme data, and pathway information etc., derived from literature and 

experimental metabolite concentration data (Wishart et al, 2009). Kyoto Encyclopedia 

of Genes and Genomes (KEGG) is a database resource for the understanding of high-

level functions of biological systems (Kanehisa et al, 2014; Kanehisa & Goto, 2000). 

It provides an a systemic view of biological processes and pathways with multi-level 

, consisting of genes, proteins, metabolites and other chemical substances that 

are integrated by wiring diagrams of interaction, reaction and relation networks. The 

database includes only data with solid evidence, which are manually curated, thus 

covering only a limited portion of pathways and a glimpse of the whole human 

metabolism (Kanehisa et al, 2014; Kanehisa & Goto, 2000). Search Tool for the 

Retrieval of Interacting Genes/Proteins (STRING) (Szklarczyk et al, 2011) includes a 

database of protein-protein interactions (PPIs) from various  sources and is essentially 

a tool to search for PPIs for a given set of proteins. As an extension of STRING, 

Search Tool for Interactions of Chemicals (STITCH) (Kuhn et al, 2012) connected 

over 300000 chemicals to the PPI network from 1133 organisms. Both tools provide a 

systematic view of the interactions between genes, proteins, and metabolites, linking 

metabolomics information with other . These tools have been successfully 

applied in the study of drug-target interactions (Meslamani & Rognan, 2011; Kalinina 

et al, 2011) and also metabolomics studies (Wang-Sattler et al, 2012).  
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The KORA surveys are population-based studies conducted in the region of 

Augsburg, Germany (Holle et al, 2005; Wichmann et al, 2005). Four surveys were 

conducted with 18079 participants recruited from 1984 to 2001. Four KORA studies 

(S4, F4, F3 and S2) were used in the thesis. 

The KORA survey 4 (S4) is a population based cohort of 4261 individuals (aged 25-

74 years) examined from 1999 to 2001. From 2006 to 2008, 3080 participants (with 

an age range of 32-81) took part in a follow-up (F4) survey. The KORA survey 2 (S2) 

consist of 4940 participants enrolled between 1989 and 1990. CVD events for the 

participants were identified up to 2002. A case-cohort was established which included 

a randomly selected sub-cohort (n = 813) and all incident cases of MI during the 

follow-up study (n = 146). The KORA F3 was conducted between 2004 and 2005 as 

the follow up study of the KORA survey 3 (S3), which was conducted between 1994 

and 1995. Samples from 821 participants were used in this thesis. The ethics 

committee of the Bavarian Medical Association in Munich, Germany approved the 

KORA studies. Each participant in these studies was given a written consent form and 

completed a lifestyle questionnaire requesting  information on a number of parameters 

such as smoking status (current, former, never), medical history, alcohol consumption, 

physical activity, etc. Additionally a standardized medical examination, including 

blood pressure measurements and anthropometric measurements, was performed on 

all the participants (Holle et al, 2005). During the examination, serum samples were 

collected in parallel during the examination (described in detail in the next section). 
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To measure the metabolite concentrations in human blood, serum samples were 

collected from the KORA participants. The blood was drawn into SMonovettes tubes 

(SARSTEDTAG & Co., Nümbrecht, Germany) in the morning between 08:00 and 

10:30 after a period of overnight fasting for at least eight hours. Serum tubes were 

gently inverted twice, followed by 30 min resting period at room temperature to 

ensure complete coagulation. The tubes were then centrifuged at 2750 g at 15°C for 

10 min. Plasma and serum were filled into synthetic straws, which were stored in 

liquid nitrogen until the metabolic analyses were conducted. Serum samples from the 

KORA S2, F3, S4 and F4 were used in the analysis (Wang-Sattler et al, 2012; 

Mittelstrass et al, 2011; Jourdan et al, 2012). 

In the first study presented in this thesis, serum samples from the KORA S4 were 

used to illustrate the effect of smoking on the metabolite profiles in a cross-sectional 

manner whilst the follow-up study of KORA S4 (KORA F4) was used to verify the 

results in a longitudinal setting. In the second study, in addition to the metabolomic 

data, gene expression and DNA methylation profiling data from KORA F4 were used 

to analyze the effects of smoking on multi- , while KORA F3 was used as 

the replication cohort. In the third study in this thesis, KORA S4, with MI registry 

information until 2009, was used as the discovery dataset whilst the KORA S2 case-

cohort served as the replication study. 

 

 

The metabolite profiling was performed using the Biocrates AbsoluteIDQ
TM kit p150 

and p180. The AbsoluteIDQ
TM kit p150 used FIA-MS/MS techniques. This technique 

has been described in detail elsewhere (Weinberger & Graber, 2005; Weinberger, 

2008). Briefly, the assay preparation was done by an automated robotics system 
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(Hamilton Robotics GmbH) on special double-filter plates with 96 wells. These plates 

also contain the isotope labeled non-radioactive internal standards, blank samples 

(PBS) and quality controls. Assays used 10 

phenylisothiocyanate (PITC)-derivatisation of amino acids, which was further 

extracted by means of an organic solvent and several other liquid handling steps. FIA 

MS/MS on an API 4000 QTrap instrument (Applied Biosystems) was used for the 

quantification of amino acids, acylcarnitines, sphingomyelins, phosphatidylcholines, 

and hexose. Concentrations were calculated and evaluated in the MetIQ software 

provided by the manufacturer. It compared measured analytes in a defined extracted 

ion count section to those of specific labeled internal standards or non-labeled, non-

physiological standards (semi-quantitative) provided by the kit plate. This method has 

 Bioanalytical 

(Food and Drug Administration), which 

allows for a given error range with regards to the reproducibility of the analysis 

(Altmaier et al, 2011; Römisch-Margl et al, 2012).Serum samples from the KORA F3 

and from the KORA F4 were measured using this particular kit for metabolite 

concentration profiles. 

The AbsoluteIDQ
TM kit p180 is an upgrade of the AbsoluteIDQ

TM kit p150. It uses 

the combination of FIA-MS and HPLC-MS to detect metabolite concentrations. 

Metabolite concentrations were measured using the AbsoluteIDQ
TM kit p180 

-MS/MS system 

pipetted onto the spots of the kit plate. The plate was centrifuged at 100 g for 2 min, 

-MS plate). HPLC-
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grade w -

solvent (Biocrates solvent diluted in methanol) was added to the FIA plate. The LC-

MS plate was measured first by scheduled multiple reaction monitoring. The FIA 

plate was stored at 4°C. Concentrations were calculated and evaluated in the 

Analyst/MetIQ software by comparing measured analytes in a defined extracted ion 

count section to those of specific labeled internal standards or non-labeled as well as 

non-physiological standards (semi-quantitative) provided by the kit plate (Schmerler 

et al, 2012). The serum samples from the KORA S2, S4 were measured using this kit 

for metabolite concentration profiles. 

 

In total, up to 190 different metabolites were quantified by these two kits. 

AbsoluteIDQ
TM kit p150 measured 163 metabolites, including 14 amino acids (13 

proteinogenic and ornithine), total hexose (around 90  95% glucose), free carnitine 

(C0) and 40 other acylcarnitines (Cx:y), 15 sphingomyelins (SMx:y), 77 

phosphatidylcholines (PCs, diacyl (aa) and acyl-alkyl (ae)) as well as 15 

lysophosphatidylcholines (LPCs). The lipid side chain composition is abbreviated as 

Cx:y, where x denotes the number of carbons in the side chain and y denotes the 

number of double-bonds. The AbsoluteIDQ
TM kit p180 measured 186 metabolites, 

including 21 amino acids (19 proteinogenic, citrulline and ornithine), hexose, free 

carnitine, 39 acylcarnitines, 15 sphingomyelins, 90 phosphatidylcholines (14 LPCs 

and 76 PCs) as well as 19 biogenic amines. There were 159 overlapping metabolites 

from the two kits.  

 

Different quality control processes were introduced for metabolite profiles measured 

by different Biocrates AbsoluteIDQ
TM kits. The metabolite data quality control 
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procedure for the KORA S4 samples was described in our recently published work 

(Wang-Sattler et al, 2012). 140 metabolites passed the two quality controls: one 

hexose (H1), 21 amino acids, eight biogenic amines, 21 acylcarnitines, 13 

sphingomyelins (SMs), eight lyso-PCs and 33 diacyl-PCs (PC aa Cx:y), and 35 acyl-

alkyl-PCs (PC ae Cx:y). As mentioned before, the lipid side chain composition is 

abbreviated as Cx:y. Concentrations of all analyzed metabolites are reported in 

mol/L ( M). The data cleaning procedure for the KORA F4 samples was described 

in detail in literature (Mittelstrass et al, 2011; Yu et al, 2012). 123 metabolites passed 

the quality control criteria in both S4 and F4, and were used for the prospective study.  

For the metabolite measurement in KORA S2, the same quality control criterion as for 

KORA S4 was applied.  This resulted in 134 metabolites passing the criteria: one 

hexose (H1), 19 acylcarnitines, 20 amino acids, four biogenic amines, 13 SMs, 34 

diacyl- phosphatidylcholines (PC aa Cx:y), 35 acyl-alkyl-phosphatidylcholines (PC ae 

Cx:y) and eight lysophosphatidylcholines (LPC (x:y)). 

The metabolites used in KORA S4, F4 and S2 study are listed in the Table S1 in the 

Appendix.  

 
Peripheral blood, for gene expression profiling, was drawn under fasting conditions 

from 599 KORA S4 individuals during the same time the serum samples, used for 

metabolic profiling, were prepared. Blood samples were collected directly in 

PAXgene (TM) Blood RNA tubes (PreAnalytiX). The RNA extraction was performed 

using the PAXgene Blood miRNA kit (PreAnalytiX). Purity and integrity of RNA 

was assessed on the Bio-analyzer (Agilent) with the 6000 Nano LabChip reagent set 

(Agilent). In all, 500 ng of RNA was reverse transcribed into cRNA and biotin-UTP 

labeled, using the Illumina TotalPrep-96 RNA Amplification Kit (Ambion). From this 
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3000 ng of cRNA was hybridized to the Illumina HumanHT-12 v3 Expression 

instructions. Raw data were exported from the Illumina 

R. The data were converted into logarithmic scores and normalized using the quantile 

method (Bolstad et al, 2003; Wang-Sattler et al, 2012). 

 
DNA Methylation profiling was performed as described in a previous publication 

(Zeilinger et al, 2013). In total, methylation profiles for 1802 samples from the 

KORA F4 and 500 samples from the KORA F3 were measured. Three samples which 

had less than 80% high quality probes (detection p-value <0.01) were excluded. CpG 

sites which were in close proximity (50 base pairs (bp)) to common SNPs were also 

removed. Color bias adjustment based on a smooth quantile normalization method as 

well as background level correction based on negative-control probes were performed 

for each chip using the R lumi  package (Du et al, 2008). Data were then normalized 

following the BMIQ pipeline (Teschendorff et al, 2013). The M-value of each 

methylation probe was used for data analysis, which is calculated as the log2 ratio of 

the intensities of methylated probe vs. unmethylated probe. 

 
All statistical analyses were performed using R statistical environment (R Core Team, 
2013). 

 

A correlation exists between two variables when one of them is related to the other. 

r) measures the strength of the 

linear relationship between the paired x- and y-quantitative values in a sample if both 

x and y follows a normal distribution (Triola et al., 2006). For scenarios where the 

distribution is not normal, Spearman  correlation ( ) can be calculated instead. 
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In this thesis, the generalized linear model was used to assess the associations 

between outcome and risk factors. This model is used to assess the relationships 

between metabolite concentrations and smoking exposure, and also the associations 

between CRP level and metabolite concentrations. The outcome of an observational 

study, either diseases or intermediate phenotype, can be considered as a result of a 

linear combination of the effects of the independent variables, environmental 

exposure or disease risk factors. This outcome can be described in the form of a linear 

model,  

 

, where X is the independent variable; indicates the error term whilst  is the link 

function, which describes the relation between the linear predictor  and the 

outcome Y. Depending on the different types of outcomes and the relationship 

between X and Y, g can be designed differently (Woodward, 1999). 

Two types of link functions were applied for the studies in this thesis. For outcome 

follows a normal distribution, the linear regression model is used, which is the 

simplest form of the generalized linear model with a link function as following. 

 

This model can be used to analyze the association between Y and X which follows a 

linear-response relation. For binomial outcome data, where Y indicates yes/no for 

disease or exposure, the logit function was used. 
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This is also known as the logistic regression model (Woodward, 1999). 

Several different approaches are available to estimate the parameters  for the models. 

While the outcomes of the samples are uncorrelated, for example, in a cross-sectional 

study where the samples are independently drawn from a population, ordinary least 

squares (OLS) can be used for parameter estimation. This method minimizes the sum 

of squared distance between the observed outcome in the dataset and the predicted 

outcome by the linear estimation. Under the same assumption, for logistic regression, 

the maximum likelihood estimation (MLE) is used for parameter estimation 

(Woodward, 1999). 

However, in longitudinal studies, outcome variable for one participant are measured 

repeatedly at multiple time points. The observations between two consecutive time 

points are usually correlated, thus estimation methods need to take these correlations 

into account. Liang, et.al proposed the Generalized Estimation Equation (GEE), 

which is an extension for GLM in such a situation. They proved in their paper that 

parameter estimation using OLS or MLE for data with a correlated outcome is less 

efficient compared to GEE (Liang & Zeger, 1986). In the case of linear regression, 

instead of estimating the coefficient estimators as 

 

, GEE incorporates the correlation matrix of observations from the same participants 

W in the estimation equation as, 
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The linear mixed effect model is another method to assess the association between 

outcome and risk factors in longitudinal studies. In this thesis, to assess the role of 

smoking cessation for the smoking quitters, who were current smokers at S4 but 

former smokers at F4, the linear mixed effect model was used to account for the effect 

of repeated measurements. The model contained the fixed effect of smoking status 

(current smokers, former smokers and never smokers), age, BMI, and alcohol 

consumption with a random effect assigned to each participant. 

 

Cox regression models were used to assess the association between metabolite 

concentration and incident MI.  Initial analyses used a crude model adjusting for age 

and sex, followed by a multivariate model adjusting for body mass index (BMI), 

smoking status, alcohol consumption, diabetes, systolic blood pressure, high density 

lipoprotein cholesterol (HDL-C), and total cholesterol. In the final full model CRP 

was included to control for inflammatory status.  Significance level was set at P<0.05. 

In the KORA S2 case-cohort a sex stratified weighting was used in the Cox regression 

models to account for the over-sampling of the case-cohort design (Barlow et al, 

1999). The significance level was set at a p-value <0.05. Sensitivity analysis was 

conducted to analyze the effects of statin medication on diabetes. 

 

R2 and AIC was used to evaluate the goodness of fit for each model (Akaike, 1974). 

To compare two nested models for the goodness of fit, the likelihood ratio test was 

used (Huelsenbeck & Crandall, 1997).  

Receiver operating characteristic (ROC) curve was used to compare the prediction 

performance with respect to MI of the different adjustment models in the study. 
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Added predictive values of potential biomarkers for incident MI were indicated by the 

increase in the C statistics, net reclassification index (NRI) and integrated 

discrimination improvement (IDI) statistics et al, 2008), which were 

assessed in all models and compared with the Framingham score. 

 

Potential biomarkers for MI were identified via a two-step process from significant 

(P<0.05) associations in the full model. Significant metabolites were included in a 

lasso (L1)-regularized estimation. Finally from the non-zero terms in the first step 

potential biomarkers were identified using backward stepwise regression with 

.  

 

Protein-protein interactions from the database of STRING (Szklarczyk et al, 2011) 

and enzyme-metabolite relations from the database of HMDB (Wishart et al, 2009) 

were retrieved to construct protein-metabolite networks. The protein-metabolite 

network contains links between metabolites, enzymes and coronary artery disease-

related genes. Genes and metabolites were connected to one another by allowing at 

(Dijkstra, 1959), and further 

optimized by eliminating edges with STITCH scores less than 0.7. Each edge in the 

networks was manually checked. This methodology have been successfully 

implemented in our previous studies (Wang-Sattler et al, 2012; Xu et al, 2013). The 

analysis was performed using the R package igraph (Csardi & Nepusz, 2006) and the 

network was visualized using Cytoscape 2.8 (Smoot et al, 2011). 

A similar approach was implemented in the network analysis of smoking related 

metabolites and smoking gene expression., Pathway enrichment analysis were 

additionally performed using MetaboAnalyst (Xia et al, 2012). 
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The associations between smoking, methylation, gene expression and metabolite were 

assessed using mediation analysis to find DNA methylations sites and gene 

expressions that mediated the effects of smoking on metabolite concentrations. 

Mediation analysis has already been used in causal inference in several studies (Liu et 

al, 2013; Schadt et al, 2005) to disentangle the complex relationship between different 

 data.  

Mediation analysis can briefly be illustrated as follows: 

 

Figure 2. Mediation analysis  

A) the association between outcome Y and independent variable X; B) the association 
between outcome Y and X when the association is mediated by M. 
 

If we find significant association between the outcome Y and the independent X, as 

shown in Figure 1 A): 

       

, we can further conduct regression analysis to find if a third factor (M) mediates the 

association between Y and X by, 

1) Regression of the mediator (M) on X 
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2) Regression of Y on both X and M 

      

If the association between M and X, and the association between Y and M are both 

significant, while the effect size  is smaller than , we can suggest M mediated the 

association between X and Y. The effect size of the mediation is calculated as, 

      

The meditation effect can be transformed into a t-statistics and test for significance,  

       

     

, which is known as the Sobel test (Sobel, 1982). 

The mediation can account for all associations between the outcome and independent 

variables (after adding M in the model), if the association between X and Y are not 

significant anymore and the associations between X and Y are close to zero, after 

adding M in the model. 
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This chapter shows the results of the three studies in this thesis and is divided into 

three parts. The first part presents the results from the study of effects of smoking and 

smoking cessation on human metabolite profile. The second study was extended to 

multi-level , integrating transcriptomic, epigenomic, and metabolomic data to 

find interactions between DNA methylation, gene expression and metabolite, which 

mediate the effects of smoking on metabolite concentrations. The last section presents 

a study using metabolomics approach to find potential metabolite biomarkers for 

incident MI as well as to understand the underlying disease mechanism. 

In this study, the associations between smoking and the concentrations of metabolites 

in 1241 serum samples from the KORA baseline S4 and follow-up F4 study were 

investigated, aiming 1) to extend the knowledge of smoking associated metabolites 

beyond our pilot study (Wang-Sattler et al, 2008) by including female current 

smokers at two time points over seven years, 2) to investigate whether smoking-

related changes in metabolite profile are reversible after smoking cessation, and 3) to 

provide insights into the pathophysiological consequences of smoking in protein-

metabolite networks.  

In the KORA S4 study, serum samples from 1614 persons aged between 55 to 74 

years were available. Furthermore metabolite concentrations of serum samples from 

1036 participants were measured in both KORA S4 and F4. Participants with non-

fasting status (N = 216) or missing values (N = 22) were excluded from the analysis; 

145 persons in the KORA S4 and 116 persons in the  were further 

excluded, whose spouses were current smokers, to rule out passive smoking effects.  
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Participants were divided into three groups, current smokers, former smokers and 

never smokers according to their self-reported smoking status. Population 

characteristics were shown in Table 1. On average, current smokers were two to three 

years younger and had a lower BMI than former smokers and never smokers. Male 

current smokers showed higher alcohol consumption (27.5 g/day) than male never 

smokers (20.5 g/day), but there were no significant difference observed in women. 

Furthermore, the statistics showed differences in lifestyle factors between men and 

women. Alcohol consumption was higher in men than women (p-value = 1.5E-11 

(current smokers); p-value = 2.2E-18 (former smokers); p-value = 9.5E-17 (never 

smokers)), and the smoking intensity (in pack years) was higher in male than in 

female current smokers (p-value = 6.0e-6). 

Table 1. Characteristics of the cross-sectional KORA S4. 
The study characteristics of KORA S4 are shown separately for current smokers, former 
smokers and never smokers. Values are shown as Mean ± standard deviation (SD) when 
appropriate. - -test.  
Explanation of variables: BMI, body mass index, in kg/m2; alcohol, gram of alcohol 
consumption per day, in g/day; pack year, calculated by: the number of cigarettes consumed 
per day × years of smoking / 20; quit time, the time till the survey is conducted since the 
person has stopped smoking, in years; CS: Current Smoker; FS: Former Smoker; NS: never 
smoker 

  
CS  FS NS 

P-  

 
CS vs FS CS vs NS 

Male (N=646) 

N (%) 125 (19.3%) 321 (49.7%) 200 (31.0%)   
Age (years) 62.2 ±5.3 65.3 ± 5.3 64.1 ± 5.6 7.9E-08 3.0E-03 
BMI (kg/m²) 27.0  ± 3.6 28.9 ± 3.6 27.8 ± 3.4 1.5E-06 6.5E-02 
Alcohol (g/day) 27.5 ± 29.0 24.1 ± 24.3 20.5 ± 21.3 0.25 0.02 
Pack years  39.3 ± 22.4 

  
  

Quit time (years)  23.6 ± 12.6     
Female (N=595) 

N (%) 70 (11.8%) 130 (21.8%) 395 (66.4%)   
Age (years) 61.3 ± 5.2 64.0 ± 5.2 64.6 ± 5.3 7.5E-04 5.9E-06 
BMI (kg/m²) 27.2 ± 4.5 28.7 ± 5.0 28.5 ±4.6 0.029 0.02 
Alcohol (g/day) 6.5 ± 10.9 10.0 ±12.8 7.5 ± 11.1 0.042 0.48 
Pack years 25.8 ± 15.3 

  
  

Quit time (years) 
 

20.9 ± 13.1 
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The effects of smoking were assessed in the cross-sectional KORA S4 study and 

verified in the longitudinal KORA S4 F4 (Figure 3). 

 
Figure 3. Flow diagram illustrating the analysis strategy for effects of smoking on metabolite 
profile  

Abbreviations: CS: current smokers; FS: former smokers; NS: never smokers. 

 

The analysis showed 18 metabolites in men and six in women that were significantly 

different (FDR <0.05) between current smokers and never smokers. Three metabolites 

(PC ae C34:3, PC aa C36:1 and glutamate) were identified in both men and women 

showing the same pattern of variation (higher or lower) (Table 2). Compared with 

former smokers and never smokers, in male current smokers, the concentrations of 

four unsaturated diacyl-PCs (PC aa C34:1, PC aa C36:1, PC aa C38:3 and PC aa 

C40:4) and five amino acids (arginine, aspartate, glutamate, ornithine and serine) 
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were higher, whereas three saturated diacyl-PCs, one lyso-PC and four acyl-alkyl-PCs, 

as well as kynurenine showed lower concentrations. In female current smokers, higher 

levels of carnitine and PC aa C32:1, and lower level of hydroxysphingomyeline (SM 

(OH)) C22:2 were identified. 

Table 2. Smoking-related metabolites in the KORA S4 

Results of pair wise comparison by logistic regression of metabolites on smoking status 
adjusted for age, BMI, and alcohol consumption. Men and women were analysed separately. 
All results were presented with a false discovery rate (FDR) below 0.05 (in the comparison 
between current smokers and never smokers, the FDR was calculated by p-value adjusted for 
all 140 metabolites; for current smokers vs. former smokers and former smokers vs. never 
smokers, the FDR was calculated by p-value adjusted for the number of metabolites 
significantly different between current smokers and never smokers). Smoking-related 
metabolites found in both men and women are in bold. CS: current smokers; FS: former 
smokers; NS: never smokers; C0: carnitine; PC: phosphatidylcholine; aa: diacyl-; ae: acyl-
alkyl-; lyso-PC: acyl-phosphatidylcholine; SM (OH): hydroxysphingomyeline. 

Metabolites 

CS vs. NS  CS vs. FS  FS vs. NS 

Odds Ratio  

(95% CI) 
P-value 

 Odds Ratio  

(95% CI) 
P-value 

 Odds Ratio  

(95% CI) 
P-value  

Men  (125 vs. 200)  (125 vs. 321)  (321 vs. 200) 

Amino acids 

Arginine 1.7 (1.3, 2.2) 2.6E-05*  1.3 (1.0, 1.6) 0.03*  1.2 (1.0, 1.5) 0.03 

Aspartate 1.6 (1.2, 2.0) 2.5E-04*  1.4 (1.1, 1.7) 4.7E-03*  1.1 (0.9, 1.3) 0.36 

Glutamate 1.6 (1.2, 2.0) 6.2E-04*  1.4 (1.1, 1.9) 0.02*  1.0 (0.8, 1.3) 0.88 

Ornithine 1.4 (1.2, 1.9) 2.2E-03*  1.3 (1.1, 1.7) 8.3E-03*  1.0 (0.9, 1.2) 0.78 

Serine 1.4 (1.1, 1.8) 3.5E-03*  1.2 (1.0, 1.5) 0.12  1.1 (0.9, 1.4) 0.25 

Kynurenine 0.6 (0.5, 0.9) 3.2E-03*  0.7 (0.5, 0.9) 2.3E-03*  1.0 (0.8, 1.2) 0.88 

Phosphatidylcholines 

PC aa C32:3 0.7 (0.5, 0.9) 6.4E-03*  0.8 (0.6, 1.0) 0.07  0.9 (0.7, 1.0) 0.12 

PC aa C34:1 1.7 (1.3, 2.2) 2.0E-04*  1.7 (1.3, 2.2) 2.5E-05*  0.9 (0.8, 1.1) 0.49 

PC aa C36:0 0.6 (0.5, 0.8) 3.5E-04*  0.6 (0.5, 0.8) 2.7E-04*  1.0 (0.8, 1.2) 0.72 

PC aa C36:1 1.6 (1.2, 2.0) 9.4E-04*  1.6 (1.3, 2.0) 8.2E-05*  0.9 (0.8, 1.1) 0.33 

PC aa C38:0 0.7 (0.5, 0.9) 2.1E-03*  0.6 (0.5, 0.8) 1.2E-04*  1.0 (0.9, 1.3) 0.64 

PC aa C38:3 1.5 (1.1, 1.9) 3.4E-03*  1.3 (1.1, 1.7) 0.01*  1.0 (0.8, 1.2) 0.85 

PC aa C40:4 1.5 (1.2, 2.0) 3.4E-03*  1.4 (1.1, 1.8) 3.6E-03*  1.0 (0.8, 1.2) 0.86 

PC ae C34:3 0.5 (0.4, 0.7) 3.3E-06*  0.6 (0.5, 0.8) 6.0E-05*  0.9 (0.7, 1.1) 0.23 

PC ae C38:0 0.7 (0.5, 0.9) 2.1E-03*  0.6 (0.5, 0.8) 6.7E-04*  1.0 (0.8, 1.2) 0.94 

PC ae C38:6 0.7 (0.5, 0.9) 4.8E-03*  0.7 (0.5, 0.8) 6.6E-04*  1.0 (0.8, 1.2) 0.97 

PC ae C40:6 0.6 (0.5, 0.8) 8.8E-04*  0.7 (0.5, 0.8) 8.9E-04*  0.9 (0.8, 1.1) 0.33 
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Lyso-Phosphatidylcholines 

LPC (18:2) 0.7 (0.5, 0.9) 3.3E-03*  0.8 (0.6, 0.9) 0.046*  0.9 (0.7, 1.1) 0.23 

Women  (70 vs. 395)  (70 vs. 130)  (130 vs. 395) 

Acylcarnitines 

C0 1.8 (1.4, 2.4) 4.3E-05*  1.5 (1.1, 2.1) 0.01*  1.1 (0.9, 1.4) 0.32 

Amino Acid 

Glutamate 1.7 (1.3, 2.2) 1.2E-04*  1.8 (1.3, 2.5) 1.1E-03*  0.9 (0.7, 1.1) 0.17 

Phosphatidylcholines 

PC aa C32:1 1.5 (1.1, 1.9) 2.1E-03*  1.4 (1.0, 2.0) 0.03*  1.1 (0.9, 1.4) 0.24 

PC aa C36:1 1.6 (1.2, 2.0) 1.1E-03*  1.5 (1.1, 2.0) 0.02*  1.0 (0.8, 1.2) 0.87 

PC ae C34:3 0.6 (0.4, 0.8) 7.7E-04*  0.6 (0.4, 0.8) 2.5E-03*  1.0 (0.8, 1.2) 0.94 

Sphingomyelines 

SM OH C22:2 0.6 (0.5, 0.8) 2.1E-03*  0.6 (0.4, 0.9) 4.9E-03*  0.9 (0.7, 1.1) 0.35 

 

Among the 21 smoking-related metabolites (18 in men and six in women), 19 were 

found to be reversible (that is, significant difference between former smokers and 

current smokers but without significant difference between former smokers and never 

smokers; FDR <0.05). No irreversible metabolite was observed (that is, significant 

difference between former smokers and never smokers). Serine and PC aa C32:3 in 

men were not classified because their concentrations were not significantly different 

between current smokers and former smokers or between former smokers and never 

smokers (Table 2). A heat map representing the concentration profiles of the 21 

identified metabolites in current smokers, former smokers and never smokers is 

shown in Figure 4, demonstrating the reversibility of metabolites after smoking 

cessation. 
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Figure 4. Heat maps of smoking-related metabolites in (A) men and (B) women.  

The heat map shows mean residues of smoking-related metabolites in current smokers, former 
smokers and never smokers and the reversibility after smoking cessation. The color of each 
cell in the heat map represents the relative mean concentration of each metabolite in never 
smokers, former smokers or current smokers. The number of samples in each group is 
provided. The bar besides the metabolite names indicates the reversibility of these metabolites 
after smoking cessation. aa: diacyl-; ae: acyl-alkyl-; C0: carnitine; current smokers: current 
smokers; FS: former smokers; lyso-PC: acyl-phosphatidylcholine; NS: never smokers; PC: 
phosphatidylcholine; SM (OH): hydroxysphingomyeline. 
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In women, SM (OH) C22:2 was significantly associated with cessation time (FDR 

<0.05); however, there was no such significant metabolite in men (Table 3), 

indicating a non-linear relationship between cessation time and the reversion of 

metabolite profile. In addition, the former smokers were grouped by stratified 

cessation years (0 to 10, 11 to 20, 21 to 30, 31 to 40, over 40 years). For some 

metabolites (for example, PC ae C38:0, PC aa C36:0 and ornithine), the greatest 

change of concentration occurred within the first 10 years of cessation compared with 

current smokers (Figure 5). 

Table 3. Cessation time-related metabolites in former smokers  

FDR was calculated by P-value adjusted for the number of smoking-related metabolites with 
Benjamini-Hochberg method. aa: diacyl-; ae: acyl-alkyl-; C0: carnitine; FS: former smokers; 
lyso-PC: acyl-phosphatidylcholine; PC: phosphatidylcholine; SM (OH): 
hydroxysphingomyeline. 

Metabolites 10
-3

 Pr(>|t|) FDR 

Men       
Arginine -1.7 (-4.2,0.8) 0.19 0.43 
Asparate -3.4 (-7.5,0.7) 0.1 0.32 
Glutamate -3.9 (-8.4,0.5) 0.09 0.48 
Ornithine -1.3 (-4.1,1.4) 0.34 0.49 
Kynurenine -0.2 (-3.0,2.6) 0.87 0.93 
PC aa C34:1 -0.4 (-2.8,2.0) 0.72 0.89 
PC aa C36:0 1.9 (-1.2,5.0) 0.24 0.43 
PC aa C36:1 -0.4 (-3.3,2.5) 0.77 0.88 
PC aa C38:0 2.0 (-1.1,5.1) 0.21 0.42 
PC aa C38:3 -1.3 (-4.1,1.4) 0.35 0.47 
PC aa C40:4 -2.8 (-6.0,0.5) 0.10 0.32 
PC ae C34:3 0.1 (-3.2,3.4) 0.97 0.97 
PC ae C38:0 3.0 (-0.4,6.4) 0.08 0.64 
PC ae C38:6 1.6 (-1.2,4.4) 0.27 0.43 
PC ae C40:6 3.0 (0.3,5.7) 0.03 0.48 
LPC(18:2) 2.6 (-0.8,6.1) 0.14 0.37 
Women 

   C0 1.0 (-3.7,5.8) 0.66 0.66 
PC aa C32:1 -6.1 (-13.7,1.6) 0.12 0.31 
PC aa C36:1 -2.1 (-7.5,3.3) 0.44 0.52 
PC ae C34:3 2.2 (-2.9,7.2) 0.41 0.68 
SM OH C22:2* 5.4 (1.8,9.0) 3.70E-03 0.02 
Glutamate 3.1 (-4.6,10.8) 0.43 0.64 
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Figure 5. Metabolite concentration variations in relation to smoking cessation time. 

Taking never smokers as baseline, figures show the mean residuals of metabolites in different 
groups of current smokers and former smokers, giving the trend of metabolite variation with 
cessation time. Former smokers were groupe
to 30, 31 to 40, 41+). Residuals were calculated by linear regression model (regression of 
metabolite concentration on age, body mass index and alcohol consumption). aa: diacyl-; ae: 
acyl-alkyl-; CS: current smokers; FS: former smokers; NS: never smokers; PC: 
phosphatidylcholine. 

 

Within current smokers, kynurenine and PC ae C34:3, PC ae C38:0 and PC ae C38:6 

in men, and PC aa C36:1 in women showed significant association with pack years. In 

the linear regression model, pack years showed a negative relation (parameter 
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 4) (for example, one pack year 

increase will lead to a decrease of the kynurenine level in current smokers by 0.33%). 

Table 4.  Association between smoking intensity (pack years) and metabolites. 

Results of linear regression of smoking intensity (pack years) on metabolite concentrations in 
men and women, adjusted for age, BMI, and alcohol consumption. All smoking-related 
metabolites presented in Table 3 are listed (*p- . C0: carnitine; PC: 
phosphatidylcholine; aa: diacyl-; ae: acyl-alkyl-; lyso-PC: acyl-phosphatidylcholine; SM 
(OH): hydroxysphingomyeline; CI, confidence interval 

Metabolites  of pack year (95% CI)*10
-3

  P-value 

Men 
 

 
 Arginine -1.1 (-3.6, 1.4) -0.11% 0.38 

Aspartate 2.9 (-1.4, 7.1) 0.29% 0.20 
Glutamate 2.9 (-1.2, 6.9) 0.29% 0.17 
Ornithine -2.4 (-5.2, 0.3) -0.24% 0.09 
Serine 1.1 (-1.3, 3.6) 0.11% 0.37 
Kynurenine* -3.3 (-6.1, -0.5) -0.33% 0.02 
PC aa C32:3 -1.4 (-4.3, 1.4) -0.14% 0.33 
PC aa C34:1 -0.9 (-3.5, 1.6) -0.09% 0.48 
PC aa C36:0 -2.3 (-4.9, 0.4) -0.23% 0.09 
PC aa C36:1 -1.4 (-4.6, 1.8) -0.14% 0.39 
PC aa C38:0 -2.1 (-4.9, 0.7) -0.21% 0.15 
PC aa C38:3 1.2 (-1.7, 4.1) 0.12% 0.43 
PC aa C40:4 1.3 (-2.5, 5.1) 0.13% 0.51 
PC ae C34:3* -3.7 (-6.4, -0.9) -0.37% 0.01 
PC ae C38:0* -3.6 (-6.6, -0.5) -0.36% 0.02 
PC ae C38:6* -2.6 (-5.1, -0.1) -0.26% 0.04 
PC ae C40:6 -1.7 (-4.4, 1.0) -0.17% 0.22 
LPC (18:2) -3.1 (-6.5, 0.3) -0.31% 0.07 
Women  

 
 C0 1.1 (-4.3, 6.5) 0.11% 0.70 

PC aa C32:1 0.2 (-10.5, 10.9) 0.02% 0.97 
PC aa C36:1* 6.9 (0.6, 13.2) 0.69% 0.04 
PC ae C34:3 -2.7 (-7.7, 2.2) -0.27% 0.54 
SM (OH) C22:2 -2.8 (-7.7, 2.2) -0.28% 0.28 
Glutamate 2.2 (-7.8, 12.2) 0.22% 0.67 

 

 

Among the 89 smokers who had metabolite profiles available in both S4 study and F4, 

49 quitted smoking during the 7 years follow up period (quitters). In addition, 432 

never smokers in both S4 and F4 had metabolite profile available in both data set 

(Table 5). 

Table 5. Characteristics of the prospective dataset (KORA S4  F4) 
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Population characteristics were calculated based on 207 men and 314 women who 
participated in both KORA S4 and F4 study. Values are provided as mean ± standard 
deviation (SD). CS: current smokers; FS: former smokers; NS: never smokers; BMI: body 
mass index. Explanation of variables: Alcohol, alcohol consumption, in g/day; BMI, body 
mass index, in kg/m2. 

 

Among the 16 reversible metabolites in men, 13 (except kynurenine, glutamate and 

aspartate) were also measured in KORA F4 using a different kit (see Methods). The 

linear mixed effect model was applied to investigate the effects of smoking cessation 

on metabolite concentrations. Among these 13 metabolites, 10 metabolites showed a 

significant variation in quitters, with a period of smoking cessation from one to seven 

years, which indicated a reverting process. The arginine level decreased by 11.3% and 

ornithine by 14.8% in quitters compared with current smokers, whereas PC aa C36:0 

increased by 18.5%. Figure 6 shows the prospective changes of the significant 

metabolites. For women, the same analysis was conducted. Because the number of 

female quitters was small (N = 10), five metabolites that were measured in both 

KORA S4 and F4 showed borderline significance (P <0.05). However, none of these 

metabolites was found to be significant considering FDR <0.05 (see Table 6). 

  CS Quitter NS 

Men(N=207) 
   N (%) 31 (15.0%) 30 (14.5%) 146 (70.5%) 

Age at S4 (years) 60.2 ± 5.3 63.0 ± 5.0 63.0 ± 5.5 
Alcohol(S4/F4)(g/day) 27.7±28.2/20.4±28.7 29.6±31.6/19.3±21.1 22.2±22.8/20.2±19.5 
BMI (S4/F4) (kg/m2) 26.8±2.9 / 26.9±3.3 28.5±3.8 / 28.9±3.9 27.6±3.3 / 27.8±3.4 
Women (N=314) 

   N (%) 18 (5.7%) 10 (3.2%) 286 (91.1%) 
Age at S4 61.0 ± 5.1 59.5 ± 3.1 63.6 ± 5.1 
Alcohol(S4/F4)(g/day) 7.6± 11.6/ 7.4 ± 11.8 4.7 ± 6.7/10.7 ± 14.1 7.6± 11.2/7.3 ± 11.4 
BMI (S4/F4) (kg/m2) 27.9± 5.1/ 27.7 ± 5.3 26.9 ± 3.9/27.4 ± 5.1 28.6 ± 4.5/28.9 ± 4.7 
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Figure 6. Changes of smoking-related metabolites in current, former and never smokers in the 
KORA S4  F4.  

Taking the never smokers as baseline, the concentration change of each metabolite is shown 
as the adjusted mean residue in KORA S4 and F4 in all three groups (CS, FS and NS). Only 
metabolites with significant prospective change in KORA S4  F4 are shown in the figure.
Residuals were calculated from a linear regression model (regression of metabolite 
concentration on age, body mass index and alcohol consumption). aa: diacyl-; ae: acyl-alkyl-; 
CS: current smokers; FS: former smokers; lyso-PC: acyl-phosphatidylcholine; NS: never 
smokers; PC: phosphatidylcholine. 

 

Table 6. Association of reversible metabolites with smoking status change in the prospective 
dataset (KORA S4  F4) 

longitudinal data, adjusted for age, BMI, and alcohol consumption. PC: phosphatidylcholine; 
aa: diacyl-; ae: acyl-alkyl-; lyso-PC: acyl-phosphatidylcholine; SM (OH): 
hydroxysphingomyeline. 

 of smoking status 

(95% CI ) P  

Men   

Arginine -0.12 (-0.18, -0.06) 1.4E-04a 

Ornithine -0.16 (-0.24, -0.08) 2.1E-04a 

PC aa C34:1 -0.09 (-0.15, -0.03) 3.3E-03a 

PC aa C36:0 0.17 (0.09, 0.25) 6.4E-05a 

PC aa C36:1 -0.12 (-0.18, -0.05) 8.5E-04a 

PC aa C38:0 0.14 (0.06, 0.22) 3.0E-04a 

PC aa C38:3 -0.04 (-0.11, 0.02) 1.7E-01 

PC aa C40:4 -0.11 (-0.18, -0.03) 6.0E-03 

PC ae C34:3 0.14 (0.06, 0.21) 3.5E-04a 

PC ae C38:0 0.13 (0.05, 0.21) 1.8E-03a 

PC ae C38:6 0.11 (0.04, 0.18) 1.5E-03a 
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PC ae C40:6 0.08 (0.01, 0.15) 2.1E-02 

LPC(18:2) 0.03 (-0.06, 0.11) 5.2E-01 

Women   
Carnitine -0.12 (-0.20, -0.05) 1.4E-03 
PC aa C32:1 -0.18 (-0.32, -0.03) 2.1E-03 
PC aa C36:1 -0.11 (-0.20, -0.02) 2.0E-02 
PC ae C34:3 0.09 (-0.02, 0.19) 0.95 
SM (OH) C22.2 0.12 (0.02, 0.22) 1.9E-02 
a FDR<0.05

 

Enrichment analysis of the 21 identified smoking-related metabolites on KEGG 

pathways showed enrichment in a set of amino acid and lipid metabolism pathways 

(ether lipid, glycerophospholipid, arginine and proline metabolism). In addition, the 

impact of the smoking-related metabolites was analyzed in each pathway by 

measuring their structural importance (see Methods). These metabolites had high 

betweenness centrality and a strong impact on the enriched pathways (Figure 7 and 

Table 7). 

 

 

Figure 7. Pathway analyses of smoking-related metabolites 

Figure shows enrichment and impact of smoking-related metabolites in Kyoto Encyclopedia 
of Genes and Genomes pathways. The enrichment scores are shown on y-axis, which was 
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calculated as the negative logarithm of the P-value from an enrichment test. The x-axis 
indicates the structural impact with a score from 0 to 1 of the smoking-related metabolites in 
the enriched pathways. 

 

Table 7. Enrichment and impact of smoking-related metabolites in the pathways  

Table shows the enrichment and impact scores of smoking-related metabolites in KEGG 
pathways. The pathway analysis consists of enrichment and a structural impact analysis both 
based on KEGG database. The -log (p) was considered as the enrichment score. Impact, 
scored between 0 and 1, indicated the pathway topological importance of the metabolites. In 
particular, the parameter Total is the total number of compounds in the pathway; the 
parameter Hits is the actually number of metabolites with significant variations in the 
pathway; the Raw p is the original p-value calculated from the enrichment analysis; the FDR 
are calculated by the p values adjusted using Benjamini-Hochberg method. 

  Total Hits Raw p -log(p) FDR Impact 

Ether lipid metabolism 23 3 9.1E-04 7.01 0.04 0.14 
Glycerophospholipid metabolism 39 3 4.3E-03 5.45 0.09 0.11 
Cyanoamino acid metabolism 16 2 0.01 4.82 0.13 0 
Alanine, aspartate and glutamate metabolism 24 2 0.02 4.03 0.22 0.20 
Sphingolipid metabolism 25 2 0.02 3.95 0.22 0.01 
Aminoacyl-tRNA biosynthesis 75 3 0.03 3.66 0.25 0.11 
Arginine and proline metabolism 77 3 0.03 3.59 0.25 0.29 
Glutathione metabolism 38 2 0.04 3.17 0.34 0.01 
Glycine, serine and threonine metabolism 48 2 0.06 2.74 0.47 0.16 
Linoleic acid metabolism 15 1 0.12 2.09 0.82 0 
Sulfur metabolism 18 1 0.15 1.92 0.90 0 
alpha-Linolenic acid metabolism 29 1 0.23 1.49 1 0 
Vitamin B6 metabolism 32 1 0.25 1.40 1 0.01 
Methane metabolism 34 1 0.26 1.35 1 0.02 
Nitrogen metabolism 39 1 0.29 1.23 1 0 
Butanoate metabolism 40 1 0.30 1.21 1 0 
Histidine metabolism 44 1 0.32 1.13 1 0.00 
Lysine degradation 47 1 0.34 1.08 1 0 
Cysteine and methionine metabolism 56 1 0.39 0.94 1 0.01 
Arachidonic acid metabolism 62 1 0.42 0.86 1 0 
Tryptophan metabolism 79 1 0.51 0.68 1 0.03 
Porphyrin and chlorophyll metabolism 104 1 0.61 0.50 1 0 

 

To systematically investigate how the effects of smoking propagate over the 

metabolic networks, the association between 175 smoking-related genes were 

evaluated, previously reported (Beane et al, 2007), and the 21 smoking-related 

metabolites found in this study by analyzing protein-metabolite networks (see 

Methods). In men, 15 metabolites (LPC(18:2), PC aa C32:3,PC aa C34:1, PC aa 

C36:0, PC aa C36:1, PC aa C38:0, PC aa C38:3, PC aa C40:4, PC ae C34:3, PC ae 
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C38:0, PC ae C38:6, PC ae C40:6, arginine, glutamate and serine) were found to be 

linked with 11 genes (ADH7, AKR1B1, DHRS3, FTL, GALE, GPC1, KRAS, 

S100A10, SLC7A11, SULF1, PLA2G10) by related enzymes. In women, four 

metabolites (PC aa C36:1, PC ae C34:3, PC aa C32:1 and glutamate) were closely 

linked with nine genes (ADH7, AKR1B1, DHRS3, FTL, GALE, GPC1, S100A10, 

SULF1, PLA2G10) (Figure 8 and Table 8). Similar to enrichment analysis, the 

network in men and in women could be generally divided into glycerophospholipids 

and tightly associated proteins as well as amino acids and the associated genes and 

enzymes. The description of the protein-metabolite and protein-protein interactions 

was listed in Table 8. 

The smoking effects on the networks were reversible. On the aspect of gene 

expressions, with exception of SULF1 and PLA2G10, all the others in the networks 

were reversible after smoking cessation (Beane et al, 2007). All the metabolites in the 

network were also reversible, except serine. 
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Figure 8. Protein-metabolite networks and pathways of the smoking-related 
metabolites and genes  

Network linking metabolites and proteins encoded by smoking-related genes with maximum 
one intermediate. Node color indicates the reversibility after smoking cessation. aa: diacyl-; 
ae: acyl-alkyl-; APOA5: apolipoprotein A-V; BDH: 3-hydroxybutyrate dehydrogenase, type 
1; cPLA2: cytosolic phospholipase A2; CS: current smokers; FS: former smokers; GIIC 
sPLA2: phospholipase A2, membrane associated; LRAT: lecithin retinol acyltransferase; 
LYPLA1: lysophospholipase I; lyso-PC: acyl-phosphatidylcholine; NOS1: nitric oxide 
synthase 1; NS: never smokers; PC: phosphatidylcholine; PLA2G10: group 10 secretory 
phospholipase A2; SCGB1A1: uteroglobin; SDH: serine dehydratase; SLC3A2: solute carrier 
family 3 member 2. 
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Table 8. Links between smoking-related metabolites, enzymes and genes 

The table describes the links showed in figure 6 of the main text. The smoking related metabolites, enzymes and genes are listed in the first and second 
columns. The score of interaction is given according to the definition by STRING [1]. A reference for each link and a short description is provided. The 
Column of reaction shows the possible biochemical reaction of the corresponding link or the type of protein interaction. The enzymes includes, 
phospholipase A2, membrane associated (GIIC sPLA2), cytosolic phospholipase A2 (cPLA2), group 10 secretory phospholipase A2 (PLA2G10), 
lysophospholipase I (LYPLA1), apolipoprotein A-V (APOA5), uteroglobin (SCGB1A1), lecithin retinol acyltransferase (LRAT), nitric oxide synthase 1 
(NOS1), solute carrier family 3 member 2 (SLC3A2), serine dehydratase (SDH), 3-hydroxybutyrate dehydrogenase, type 1 (BDH). The smoking related 
gene/protein includes, S100 calcium binding protein A10 (S100A10), glypican 1 (GPC1), sulfatase 1 (SULF1), alcohol dehydrogenase 7 (ADH7), 
dehydrogenase member 3 (DHRS3), aldose reductase (AKR1B1), acetoacetyl-CoA synthetase (AACS), V-Ki-ras2 Kirsten rat sarcoma viral oncogene 
homolog (KRAS), solute carrier family 7 (SLC7A11) and three enzyme listed above, PLA2G10, LYPLA1, SCGB1A1. The links in the network for male 
and female CS are combined and listed together. Smoking-related genes are show in italic. C0: carnitine; PC: phosphatidylcholine; aa: diacyl-; ae: acyl-
alkyl-; lyso-PC: acyl-phosphatidylcholine; SM (OH): hydroxysphingomyeline  

Proteins/Enzymes with alternative abbreviations: 
PLA2G2A (GIIC sPLA2), Phospholipase A2, membrane associated"; PLA2G4A (cPLA2), Cytosolic phospholipase A2; BDH1 (BDH), D-beta-
hydroxybutyrate dehydrogenase, mitochondrial; SDS (SDH), L-serine dehydratase 

Metabolit

es / 

Enzymes 

Proteins/

Smoking 

related 

gene 

Score Type Description Reaction 

Glutamate SLC3A2  1 catalytic 
SLC7A11-mediated exchange of extracellular cysteine and 
cytosolic glutamate [1] 

transport 

Arginine SLC3A2  1 catalytic 
SLC7A7 (y+LAT1)-mediated exchange of extracellular 
leucine for cytosolic arginine [2] 

transport 

Arginine NOS1 1 oxidoreduc
tase  

Arginine and proline metabolism [2] L-arginine + n NADPH + n H+ + m O2 = 
citrulline + nitric oxide + n NADP+ 
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PC aa/ae 
CX:Y, 
LPC(18:2) 

PLA2G10  1 phospholip
ase 

Glycerophospholipid metabolism [3] phosphatidylcholine + H2O = 1-
acylglycerophosphocholine + a carboxylate 

PC aa/ae 
CX:Y, 
LPC(18:2) 

cPLA2 1 
phospholip
ase 

Glycerophospholipid metabolism [3] 
phosphatidylcholine + H2O = 1-
acylglycerophosphocholine + a carboxylate 

PC aa/ae 
CX:Y, 
LPC(18:2) 

PLA2G2A 1 
phospholip
ase 

Glycerophospholipid metabolism [3] 
phosphatidylcholine + H2O = 1-
acylglycerophosphocholine + a carboxylate 

PC aa/ae 
CX:Y, 
LPC(18:2) 

LYPLA1 1 hydrolase  

Hydrolyzes fatty acids from S-acylated cysteine residues in 
proteins such as trimeric G alpha proteins or HRAS. Has 
depalmitoylating activity and also low lysophospholipase 
activity [4] 

2-lysophosphatidylcholine + 
H2O=glycerophosphocholine + a carboxylate 

PC aa/ae 
CX:Y 

APOA5 1 
lipid 
binding 

Interact with phosphatidylcholine via lipoprotein lipase 
(LPL)[5, 6] 

 

PC aa/ae 
CX:Y 

LRAT 1 

phosphatid
ylcholine-
retinol O-
acyltransfe
ra 

Transfers the acyl group from the sn-1 position of 
phosphatidylcholine to all-trans retinol, producing all-trans 
retinyl esters. Retinyl esters are storage forms of vitamin 
A. [7] 

phosphatidylcholine + retinol---[cellular-retinol-
binding-protein] = 2-acylglycerophosphocholine 
+ retinyl-ester---[cellular-retinol-binding-
protein] 

PC aa/ae 
CX:Y SCGB1A1 1 binding 

Binds phosphatidylcholine, potent inhibitor of 
phospholipase A2 [8-10]  

PC aa/ae 
CX:Y 

BDH 1 activation BDH activated by phosphotadylcholine   

Serine SDS 1 catalytic Binding and dehydrate [11] L-threonine = 2-oxobutanoate + NH3 

SM OH 
C22:2 

SGMS1 1 catalytic 

Bidirectional lipid cholinephosphotransferase capable of 
converting phosphatidylcholine (PC) and ceramide to 
sphingomyelin (SM) and diacylglycerol (DAG) and vice 
versa. [12] 

a ceramide + a phosphatidylcholine = a 
sphingomyelin + a 1,2-diacyl-sn-glycerol 
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SLC7A11 SLC3A2  0.99 Binding 

1. SLC7A11:SLC3A2 heterodimer; SLC7A11-mediated 
exchange of extracellular cysteine and cytosolic glutamate. 
[13] 
2. In vivo Experimental data  

KRAS NOS1 0.83 
same 
pathway 

Long-term depression [14] 
 

GIIC 
sPLA2 

GPC1  0.92 binding Inferred from physical interaction [15]  

cPLA2 S100A10  0.83 Inhibition 
The antiinflammatory protein annexin-1 (ANXA1) and the 
adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 
(cPLA2alpha) by direct interaction. [16] 

S100A10 --| cPLA2 

APOA5  SULF1 0.72 Binding 
low-density lipoprotein receptor family and 
glycosylphosphatidylinositol high-density lipoprotein 
binding protein1. [17] 

 

BDH AACS  0.96 
same 
pathway 

Butanoate metabolism [4] up and down stream 

LRAT ADH7  0.9 
same 
pathway 

Retinol metabolism [4] up and down stream 

LRAT   DHRS3 0.96 
same 
pathway 

Retinol metabolism [4, 18] up and down stream 

SDH AKR1B1 0.8 
inter 
pathway 

Inter-pathway connection between 'Glycine, serine and 
threonine metabolism' and 'Pyruvate metabolism' [4] 

up and down stream 

 
[1]. Wu, G. and C.J. Meininger, Arginine nutrition and cardiovascular function. J Nutr, 2000. 130(11): p. 2626-9. 
[2]. Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische Mathematik, 1959. 1: p. 2. 
[3]. Chen, H., et al., Detrimental metabolic effects of combining long-term cigarette smoke exposure and high-fat diet in mice. Am J Physiol Endocrinol 
Metab, 2007. 293(6): p. E1564-71. 
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As shown in the first study, the effects of smoking on gene expression and 

metabolites were concordant that were both reversible after smoking cessation. In this 

study, the effects of smoking on multi-level omics profiles were investigated; 

comparisons were drawn between current smokers and never smokers to explore the 

variations in epigenomic and transcriptomic profiles, and their relation to the 

metabolite concentrations. The smoking-associated CpG sites, genes and metabolites 

were used in the following mediation analysis. 

From the KORA F4, blood samples from 753 never smokers and 262 current smokers 

were selected for DNA methylation profiling (Table 9). The data which arose from 

this formed the discovery data set. Additionally, 250 never smokers and current 

smokers from the KORA F3 were selected to form the replication dataset. In both 

datasets it was revealed that the current smokers showed a significant higher 

percentage of alcohol drinkers as well as lower BMI levels. In the KORA F4 data set, 

the current smokers are younger in age and are more likely to be males. 

Table 9. Population characteristics of samples used in the analysis of smoking effect on 
methylation  

 KORA F4  KORA F3 

 
Never 

smoker 

Current 

smoker 
P   

Never 

smoker 

Current 

smoker 
P 

N 753 262 
  

250 250 
 

Age (years) 62.12(8.98) 56.96(7.01) 9.17E-17 
 

53.15(9.67) 52.62(9.62) 0.49 

Sex (female) 493 120 3.21E-08 
 

120 120 1 

BMI (kg/m2) 28.04(4.56) 27.11(4.84) 8.0E-4 
 

27.53(4.49) 26.78(4.57) 0.01 

Alcohol (g/day) 11.73(16.79) 18.2(24.33) 0.007 
 

13.82(17.41) 18.41(21.34) 0.08 

Alcohol drinker a (%) 110 (14.6%) 61(23.3%) 0.002 
 

40 (16%) 72 (28.8%) 8.4E-4 

Diabetes (%) 61(8.1%) 19 (7.3%) 0.79   12 (4.8%) 19(7.6%) 0.26 
a men: > 40g/day; women: > 20g/day;  
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In total, 641 CpG sites were found to be (Bonferroni threshold, 10-7) associated with 

smoking in the discovery dataset (Table S2 in the Appendix) upon using the linear 

regression model which was adjusted for covariates including age, sex, BMI, alcohol 

consumption (men: > 40g/day; women: > 20g/day) and white blood cell portions. 

Amongst these CpG sites, 361 sites were also found (Bonferroni threshold, p-value < 

10-5) in the replication dataset upon adjustment of the same model (Table S2 in the 

Appendix). 

Gene expression profiles from blood samples were available for 490 never smokers 

and 66 current smokers in KORA F4. In the replication data set F3, expression 

profiles for 183 never smokers and 45 current smokers were measured (Table 10).  

Table 10. Population characteristics of the samples used in the analysis of smoking effect on 
gene expression 

 KORA F4  KORA F3 

 
Never 

smoker 

Current 

smoker 
P   

Never 

smoker 

Current 

smoker 
P  

N 490 66 
  

183 45 
 

Age (years) 70.71(5.37) 67.74(5.29) 
4.07E-
05  

66.78(7.05) 62.93(6.83) 
0.00
2 

Sex (female) 343 26 
2.60E-
06  

111 22 0.18 

BMI (kg/m2) 28.88(4.56) 27.51(4.87) 0.006 
 

28.43(3.8) 27.89(3.82) 1 

Alcohol (g/day) 10.82(15.43) 14.01(19.72) 0.29 
 

12.02(14.1) 14.96(21.62) 0.58 
Alcohol 
drinkera(%) 

71(14.5%) 11(16.7%) 0.58 
 

26 (14.2%) 11 (24.4%) 0.11 

Diabetes (%) 53 (10.8%) 11 (16.7%) 0.21   24 (13.1%) 9 (20%) 0.24 
a men: > 40g/day; women: > 20g/day 

 

In the KORA F4 study, using the linear regression model which was adjusted for age, 

sex, BMI and alcohol consumption category, 23 gene expressions were found to differ 

significantly between current smokers and never smokers (corrected for multiple 

testing, p-value <10-6) (Table 11). Amongst the 23 genes, the expressions of two 

genes (LRRN3, CLDND1) were also significantly different between the two groups in 
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the replication dataset, after correction for multiple testing using the Bonferroni 

criteria (p-value <10-3, Table 11). The inflation coefficients (lambda) were 1.38 and 

1.26 respectively in the KORA F4 and the KORA F3 respectively, which indicate no 

strong potential confounding effects (Figure 9). 

Table 11. Differential gene expression between current smokers and never smokers in the 
KORA F4 and replication in the KORA F3 

The expression profile in F4 and F3 were measured using different platforms, including 
different set of probes for each gene. Blank entries in the table indicate probes not available in 
the corresponding dataset.  confidence interval) were estimated as the 
regression coefficients in the linear model of metabolite ~ smoking + age + sex + BMI + 
alcohol consumption, indicating the differences between current smokers and never smokers 
in SD of log-transformed metabolite concentration. The probes and genes in bold font are 
significantly associated with smoking in both F4 and F3 studies. CI: confidence interval. 

  
KORA F4 

  
KORA F3 

 

 Gene  P   P 

ILMN_1718565 CDKN1C -0.33(-0.44,-0.22) 1.32E-08 
 

-0.12(-0.25,0.00) 0.05 

ILMN_1710326 CLDND1 0.27(0.19,0.36 ) 3.78E-10 
 

0.27(0.16,0.38) 2.41E-06 

ILMN_2352563 CLDND1 0.29(0.19,0.39 ) 4.03E-09 
   

ILMN_1695991 COLQ 
   

-0.17(-0.30,-0.04) 0.01 

ILMN_1670872 COLQ 
   

0.005(-0.02,0.03 ) 0.72 

ILMN_1734325 COLQ 
   

-0.001(-0.03,0.03 ) 0.93 

ILMN_2329114 COLQ -0.26(-0.36,-0.16) 5.19E-07 
   

ILMN_1656501 DUSP5 -0.29(-0.38,-0.20) 1.61E-10 
 

-0.01(-0.07,0.05 ) 0.71 

ILMN_1661248 EDG8 
   

-0.01(-0.06,0.04 ) 0.76 

ILMN_2073184 EDG8 -0.41(-0.54,-0.27) 4.51E-09 
   

ILMN_1717902 ERBB2 
   

-0.03(-0.06,0.00 ) 0.02 

ILMN_1728761 ERBB2 
   

0.01(-0.02,0.04 ) 0.38 

ILMN_1694303 ERBB2 
   

-0.02(-0.06,0.02 ) 0.35 

ILMN_2352131 ERBB2 -0.26(-0.36,-0.16) 5.57E-07 
   

ILMN_1761945 FGFBP2 -0.42(-0.59,-0.26) 9.30E-07 
 

-0.08(-0.29,0.12 ) 0.43 

ILMN_1692464 FLJ20699 -0.36(-0.48,-0.25) 1.89E-09 
 

-0.12(-0.25,0.02 ) 0.08 

ILMN_2059886 FLJ20699 -0.30(-0.40,-0.20) 8.36E-09 
   

ILMN_1738746 GPR15 
   

0.02(0.00,0.05  ) 0.07 

ILMN_2192779 GPR15 0.22(0.19,0.26 ) 2.87E-28 
   

ILMN_1684349 IL2RB -0.28(-0.39,-0.17) 4.59E-07 
 

-0.17(-0.34,0.00 ) 0.05 

ILMN_1773650 LRRN3 1.19(1.03,1.35 ) 5.75E-42 
 

0.51(0.39,0.63  ) 1.28E-15 

ILMN_2048591 LRRN3 0.56(0.47,0.65 ) 7.31E-31 
   

ILMN_1682993 NKG7 -0.38(-0.52,-0.25) 4.62E-08 
 

-0.20(-0.39,0.00 ) 0.05 

ILMN_1802151 OSBPL5 -0.33(-0.43,-0.23) 5.03E-10 
 

-0.09(-0.21,0.03 ) 0.15 

ILMN_1671891 PID1 0.25(0.16,0.34 ) 2.29E-07 
   

ILMN_1813208 PID1 
   

0.09(0.02,0.15  ) 0.01 

ILMN_1770800 PODN -0.15(-0.21,-0.10) 2.10E-08 
 

-0.05(-0.08,-0.01) 0.01 
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ILMN_1740633 PRF1 -0.44(-0.58,-0.30) 1.87E-09 
 

-0.19(-0.38,0.00 ) 0.05 

ILMN_1693129 RNF165 
   

-0.02(-0.06,0.02 ) 0.43 

ILMN_1792389 RNF165 -0.37(-0.50,-0.24) 3.26E-08 
   

ILMN_1712673 SASH1 0.22(0.15,0.29 ) 2.01E-09 
 

0.02(-0.01,0.05 ) 0.18 

ILMN_2185984 SASH1 0.23(0.17,0.29 ) 9.56E-14 
   

ILMN_1701237 SH2D1B -0.34(-0.47,-0.21) 3.74E-07 
 

-0.002(-0.11,0.11 ) 0.97 

 

 
Figure 9. QQ plot for the p-values of the associations between smoking and gene expression 

Red dot indicates the genes found significantly associated with smoking in F3 and F4. 
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The 18 metabolites associated with smoking, as reported in section 3.1, were used as 

the candidate metabolites for the following analysis. These metabolites were: arginine, 

C0, LPC (18:2), Ornithine, PC aa C32:1, PC aa C32:3, PC aa C34:1, PC aa C36:0, PC 

aa C36:1, PC aa C38:0, PC aa C38:3, PC aa C40:4, PC ae C34:3, PC ae C38:0, PC ae 

C38:6, PC ae C40:6, Serine, SM (OH) C22:2 (Xu et al, 2013). 

Mediation analyses were performed using the 18 metabolites, 2 genes, and 361 CpG 

sites to ultimately unveil their interactions amongst one another in response to 

smoking. In the KORA F4, 729 samples had all three levels of the  data, while 

in the KORA F3 only 57 samples were available for the study (Figure 10). The 

mediation analysis was used to find the CpG sites and genes which mediate the effects 

of smoking on metabolite concentrations (smoking  methylation  expression  

metabolites). The mediation effects were analyzed in two steps: 1) mediation of 

methylation for the association between smoking and gene expression; 2) mediation 

of expression for the association between methylation and concentrations of 

metabolites.  
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Figure 10. Venn diagram showing the availability of different  data in the KORA F3 
and F3 studies 

The available  data in the KORA F4 and F3 studies are shown in the form of venn 
diagrams. The number in the overlapping region of the circles indicates the number of 
samples, which have all types of  data in the corresponding study. 

 

The mediation effect of methylation for the association between smoking and gene 

expression were tested. Seven CpG sites showed significant mediation effects for the 

association between smoking and LRRN3 gene expression in the KORA F4 

(significant after Bonferroni correction, p-value <7E-5) (Table 12). However, in the 

replication dataset (KORA F3), none of the mediation effects were significant (p-

value <0.05) (Table 12). 

Amongst these CpG sites, cg09837977 has cis-regulation in relation with LRRN3, 

which sits within the 1Mbp region of the transcription starting site of LRRN3 gene 

(Figure 11). LRRN3 was significantly up-regulated in current smokers, and 

cg09837977 showed hypo-methylation in current smokers. Meanwhile, the Pearson 

correlation also showed a major negative association between LRRN3 gene 

expression and cg09837977 methylation amongst the whole population (Pearson 
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correlation coefficients (95%CI) = -0.45 (-0.52,-0.37), p-value = 4.08E-22, Figure 12). 

The correlation (95% CI) in subgroups are -0.46 (-0.51,-0.39) in never smokers, and -

0.42 (-0.62,-0.18) in current smokers. 
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Table 12. Mediation effect of seven CpG sites for the association between LRRN3 gene expression and smoking in the KORA F4 and KORA 
F3 

dicated as smoking- -expression association in the table. 

        Smoking-expression Methylation-expression 

Cpg site Gene Mediation Effect P ssociation (95% CI) P  Association (95% CI) P 

F4        
cg23771366 PRSS23 0.11(0.06,0.17) 4.04E-05 1.09(0.9,1.27) 1.80E-28 -0.42(-0.59,-0.25) 1.96E-06 
cg00073090  -0.13(-0.19,-0.07) 6.20E-06 1.33(1.15,1.51) 1.27E-41 1.12(0.78,1.46) 1.86E-10 
cg02532700 NCF4 -0.12(-0.18,-0.06) 1.67E-05 1.32(1.14,1.5) 4.91E-42 0.38(0.27,0.48) 3.20E-12 
cg00501876 CSRNP1 0.15(0.08,0.21) 7.33E-06 1.06(0.88,1.23) 1.49E-29 -0.56(-0.68,-0.44) 3.29E-18 
cg14753356  -0.13(-0.19,-0.07) 7.78E-06 1.33(1.15,1.51) 1.25E-40 0.29(0.19,0.39) 3.06E-08 
cg26729380 TNF -0.13(-0.19,-0.07) 4.04E-05 1.33(1.16,1.5) 2.72E-44 0.49(0.39,0.6) 1.56E-18 
cg09837977 LRRN3 0.18(0.1,0.26) 6.20E-06 1.02(0.85,1.19) 3.38E-30 -0.45(-0.52,-0.38) 1.37E-32 
        

F3        

cg23771366 PRSS23 -0.06(-0.17,0.05) 0.13 0.73(0.49,0.97) 3.05E-07 0.29(-0.19,0.78) 0.24 
cg00073090  -0.04(-0.14,0.07) 0.25 0.7(0.46,0.94) 7.31E-07 0.31(-0.56,1.18) 0.48 
cg02532700 NCF4 -0.05(-0.14,0.05) 0.16 0.71(0.48,0.95) 2.71E-07 0.19(-0.16,0.53) 0.29 
cg00501876 CSRNP1 -0.01(-0.06,0.05) 0.41 0.67(0.44,0.89) 4.49E-07 0.03(-0.23,0.29) 0.82 
cg14753356  -0.05(-0.18,0.08) 0.23 0.71(0.46,0.97) 1.38E-06 0.12(-0.19,0.42) 0.46 
cg26729380 TNF -0.04(-0.11,0.03) 0.15 0.7(0.48,0.93) 1.59E-07 0.25(-0.16,0.65) 0.24 
cg09837977 LRRN3 0.02(-0.03,0.06) 0.26 0.65(0.42,0.87) 6.65E-07 -0.07(-0.28,0.13) 0.48 
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Figure 11. Association between the LRRN3 gene and the CpG site cg09837977 in the KORA 
F4 

LRRN3 gene expression was indicated by the expression level measured by the probe 
ILMN_1773650 from the Illumina HT12 v3 expression array. The x axis indicates the 
position in the chromosome 7. The y axis indicates the log10 transformed P-value for the 
association between the CpG sites and LRRN3 gene expression. CpG sites above 0 are 
positively associated with LRRN3 gene expression, while negatively associated with smoking 
if blow 0. The LRRN3 gene is shown as a segment with arrow indicating the direction of 
transcription. Red color indicates up-regulation of LRRN3 expression in current smokers. 
CpG sites measured with in 1Mb region of TSS of LRRN3 are shown in the figure as points. 
Red dots indicate CpG sites significantly associated with LRRN3 expression in a genome 
wide level. 
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Figure 12. Correlation between LRRN3 expression and cg09837977 methylation in the KORA 
F4 

Current smokers and never smokers were indicated by points with different colors as shown 
in the figure legend. Pearson correlation with 95% confidence interval was calculated, and 
tested for significance using t-test. 

 

The associations between cessation years and gene expression and methylation were 

assessed in former smokers. The expression and methylation level showed a 

decreasing trend with increased cessation years (Figure 13). The influence of smoking 

pack-years in current smokers was analyzed to establish the influence of smoking 

intensity on the LRRN3 expression and cg09837997 methylation. However, no 

significant association was found. 
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Figure 13. The expression of LRRN3 and methylations of seven CpG sites at different pack 
years and cessation years in the KORA F4  

 

The mediation effects of expressions for the association between methylations and 

metabolite concentrations were tested. In the KORA F4, 55 smokers and 357 never-

smokers were available for the analysis (Table 13).  

After adjusting for covariates, 18 genes showed borderline significance (p-value 

<0.05, without adjustment of multiple testing) for the mediation of the association 

between CpG sites and metabolites (Table 14). Two CpG sites, cg26729380 and 

cg14753356, which significantly mediated the association between smoking and 

LRRN3 gene expression, were significantly associated with LPC (18:2) and PC ae 

C34:3 levels. On the other hand, the LRRN3 expression showed significant mediation 

effects for the association between the two CpG sites and two metabolites (Table 14). 

Cg14753356 is positively associated with the LPC (18:2) levels (  (95% CI) = 0.14(-

0.01, 0.30), p-value = 0.07), while LRRN3 expression mediates for about 21% 

(0.03/0.14*100%  21%) of the effects for the association. On the contrary, LRRN3 
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attenuated 20% of the association between cg26729380 and PC ae C34:3, which 

showed a negative mediation effect (Table 14). Cg09837977 was not significantly 

associated with any smoking related metabolites tested in this study. In the replication 

dataset, only 28 current smokers and 29 non-smokers had three levels of  data 

available for the mediation analysis (Table 13). The mediation effects were not 

replicated in the KORA F3 study (Table 14). 

Table 13. Population characteristics of the datasets for the mediation analysis 

 KORA F4  KORA F3 

 
Never 

smokers 

Current 

smokers 
P  

Never 

smokers 

Current 

smokers 
P 

N 357 55 
  

29 28 
 

Age (years) 69.17(4.37) 66.36(3.89) 1.74E-05 
 

61.45(4.48) 61.57(5.59) 0.92 

sex (female) 248 22 5.12E-05 
 

12 15 0.43 

BMI (kg/m2) 28.75(4.41) 27.52(5) 0.02 
 

27.77(3.71) 27.47(3.89) 0.81 

alcohol (g/day) 11.56(16.33) 15.04(20.4) 0.37 
 

14.65(17.82) 11.24(16.98) 0.29 
alcohol drinker 
(%) 

56 (15.7%) 9 (16.4%) 0.84 
 

5 (17.2%) 6 (21.4%) 0.75 

Diabetes (%) 37 (10.4%) 9 (16.4%) 0.25   1 (3.6%) 8 (28.6%) 0.01 
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Table 14. Mediation effects of gene expression for the association between methylation and metabolite in the KORA F4 and KORA F3 

Mediation analysis is conducted using linear regression model adjusted for age, sex, BMI, alcohol cons
- -metabolite association in the table. The two 

CpG sites mediated the association between smoking and LRRN3 expression were shown in bold. 

              Methylation-metabolite Gene expression-metabolite 

CpG sites  Gene expression  Metabolite Mediation Effect P  P  P 

F4           

cg00295485 UXS1 ILMN_1773650 LRRN3 LPC (18:2) -0.03(-0.06,0.00 ) 0.03 -0.11(-0.23,0.01 ) 0.08 0.11(0.00,0.22) 0.05 

cg00893603 ATP8A2 ILMN_1773650 LRRN3 LPC (18:2) -0.02(-0.03,0.00 ) 0.03 -0.09(-0.17,-0.01) 0.02 0.11(0.00,0.22) 0.05 

cg01208318  ILMN_1773650 LRRN3 LPC (18:2) -0.02(-0.04,-0.01) 0.01 0.12(0.05,0.20  ) 1.80E-03 0.17(0.06,0.27) 0.001 

cg01731783 C14orf43 ILMN_1710326 CLDND1 PC ae C38:0 0.04(0.00,0.07  ) 0.02 -0.35(-0.56,-0.15) 8.40E-04 -0.25(-0.47,-0.03) 0.02 

cg04039799 NAV2 ILMN_1773650 LRRN3 PC ae C38:0 -0.04(-0.08,0.00 ) 0.03 -0.13(-0.30,0.04 ) 0.14 0.12(0.00,0.24) 0.05 

cg04425624 TNF ILMN_1773650 LRRN3 PC ae C38:0 0.06(0.00,0.11  ) 0.03 0.21(-0.03,0.44 ) 0.08 0.12(0.00,0.23) 0.05 

cg05824218 RARA ILMN_1710326 CLDND1 PC ae C38:0 -0.04(-0.07,0.00 ) 0.02 0.37(0.16,0.57  ) 4.00E-04 -0.26(-0.48,-0.04) 0.02 

cg06235438 ITGAL ILMN_1710326 CLDND1 PC.aa.C36.0 0.02(0.00,0.03  ) 0.03 -0.13(-0.22,-0.03) 0.01 -0.24(-0.46,-0.02) 0.03 

cg06235438 ITGAL ILMN_1710326 CLDND1 PC ae C38:0 0.02(0.00,0.03  ) 0.03 -0.11(-0.21,-0.02) 0.02 -0.25(-0.48,-0.03) 0.03 

cg10825315 TSHR ILMN_1773650 LRRN3 LPC (18:2) -0.02(-0.04,0.00 ) 0.03 -0.09(-0.19,0.01 ) 0.07 0.12(0.01,0.23) 0.03 

cg14753356  ILMN_1773650 LRRN3 LPC (18:2) 0.03(0.00,0.07  ) 0.03 0.14(-0.01,0.30 ) 0.07 0.11(0.01,0.22) 0.04 

cg22851561 C14orf43 ILMN_1773650 LRRN3 LPC (18:2) -0.03(-0.06,0.00 ) 0.03 -0.13(-0.27,0.01 ) 0.08 0.12(0.00,0.23) 0.05 

cg22851561 C14orf43 ILMN_1773650 LRRN3 PC ae C38:0 -0.03(-0.06,0.00 ) 0.03 -0.15(-0.28,-0.01) 0.03 0.11(0.00,0.22) 0.05 

cg24540678  ILMN_1773650 LRRN3 LPC (18:2) -0.07(-0.13,0.00 ) 0.02 -0.26(-0.58,0.06 ) 0.11 0.12(0.01,0.23) 0.03 

cg26729380 TNF ILMN_1773650 LRRN3 PC ae C34:3 -0.06(-0.12,0.00 ) 0.03 0.33(0.15,0.51  ) 2.70E-04 -0.12(-0.23,0.00) 0.05 

cg27449150  ILMN_1773650 LRRN3 LPC (18:2) 0.04(0.00,0.08  ) 0.02 -0.34(-0.55,-0.13) 1.70E-03 -0.25(-0.47,-0.03) 0.03 

cg27449150  ILMN_1710326 CLDND1 PC ae C38:0 -0.03(-0.07,0.00 ) 0.04 -0.27(-0.48,-0.06) 0.01 0.12(0.00,0.23) 0.05 

cg27449150   ILMN_1773650 LRRN3 PC ae C38:0 -0.04(-0.07,0.00 ) 0.03 -0.19(-0.39,0.01 ) 0.07 0.12(0.01,0.23) 0.03 
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F3           

cg00295485 UXS1 ILMN_1773650 LRRN3 LPC (18:2) -0.02( -0.16 , 0.12 ) 0.38 0.20( -0.26 , 0.65 ) 0.4 -0.66( -1.25 , -0.06 ) 0.03 

cg00893603 ATP8A2 ILMN_1773650 LRRN3 LPC (18:2) -0.02( -0.12 , 0.07 ) 0.31 -0.03( -0.33 , 0.28 ) 0.86 -0.64( -1.24 , -0.04 ) 0.04 

cg01208318  ILMN_1773650 LRRN3 LPC (18:2) -0.01( -0.11 , 0.08 ) 0.4 0.01( -0.31 , 0.33 ) 0.94 -0.65( -1.24 , -0.05 ) 0.04 

cg01731783 C14orf43 ILMN_1710326 CLDND1 PC ae C38:0 -0.05( -0.19 , 0.1 ) 0.27 0.45( -0.37 , 1.28 ) 0.29 -0.26( -0.88 , 0.35 ) 0.4 

cg04039799 NAV2 ILMN_1773650 LRRN3 PC ae C38:0 0.02( -0.12 , 0.16 ) 0.4 0.17( -0.51 , 0.84 ) 0.63 0.44( -0.14 , 1.02 ) 0.15 

cg04425624 TNF ILMN_1773650 LRRN3 PC ae C38:0 0.15( -0.17 , 0.47 ) 0.17 0.13( -1.08 , 1.34 ) 0.83 0.43( -0.16 , 1.03 ) 0.16 

cg05824218 RARA ILMN_1710326 CLDND1 PC ae C38:0 0.03( -0.09 , 0.16 ) 0.31 -0.08( -0.99 , 0.82 ) 0.86 -0.23( -0.85 , 0.39 ) 0.48 

cg06235438 ITGAL ILMN_1710326 CLDND1 PC.aa.C36.0 -0.01( -0.05 , 0.04 ) 0.36 0.12( -0.26 , 0.5 ) 0.53 -0.14( -0.79 , 0.51 ) 0.68 

cg06235438 ITGAL ILMN_1710326 CLDND1 PC ae C38:0 -0.02( -0.07 , 0.04 ) 0.29 0.24( -0.12 , 0.59 ) 0.19 -0.26( -0.87 , 0.35 ) 0.4 

cg10825315 TSHR ILMN_1773650 LRRN3 LPC (18:2) -0.04( -0.16 , 0.09 ) 0.29 -0.21( -0.63 , 0.2 ) 0.33 -0.62( -1.22 , -0.03 ) 0.04 

cg14753356  ILMN_1773650 LRRN3 LPC (18:2) -0.07( -0.27 , 0.13 ) 0.24 -0.39( -1.04 , 0.25 ) 0.24 -0.61( -1.2 , -0.02 ) 0.05 

cg22851561 C14orf43 ILMN_1773650 LRRN3 LPC (18:2) -0.05( -0.2 , 0.1 ) 0.26 -0.13( -0.61 , 0.35 ) 0.6 -0.63( -1.23 , -0.03 ) 0.04 

cg22851561 C14orf43 ILMN_1773650 LRRN3 PC ae C38:0 0.03( -0.07 , 0.13 ) 0.27 0.28( -0.18 , 0.74 ) 0.24 0.41( -0.17 , 0.99 ) 0.17 

cg24540678  ILMN_1773650 LRRN3 LPC (18:2) 0.00( -0.47 , 0.46 ) 0.49 -0.33( -1.89 , 1.23 ) 0.68 -0.65( -1.24 , -0.05 ) 0.04 

cg26729380 TNF ILMN_1773650 LRRN3 PC.ae.C34.3 0.02( -0.13 , 0.17 ) 0.41 -0.26( -1.15 , 0.63 ) 0.57 0.07( -0.53 , 0.67 ) 0.81 

cg27449150  ILMN_1773650 LRRN3 LPC (18:2) -0.12( -0.38 , 0.14 ) 0.19 -0.32( -1.16 , 0.52 ) 0.46 -0.62( -1.21 , -0.02 ) 0.05 

cg27449150  ILMN_1710326 CLDND1 PC ae C38:0 -0.07( -0.24 , 0.11 ) 0.22 0.79( -0.02 , 1.6 ) 0.06 -0.32( -0.92 , 0.29 ) 0.31 

cg27449150   ILMN_1773650 LRRN3 PC ae C38:0 0.07( -0.11 , 0.26 ) 0.22 0.65( -0.15 , 1.45 ) 0.12 0.38( -0.19 , 0.96 ) 0.2 
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Additionally, the methylation and gene expression were exchanged as outcome and 

mediator in the model to test the potential reverse mediation effects of gene 

expression for the associations between smoking and DNA methylation. In the KORA 

F4, 49 gene expressions showed noteworthy mediation effects on the association 

between methylation and smoking (corrected for multiple testing using Bonferroni 

criteria, p-value <7E-5, Table S3 in the Appendix). Of the 49 genes, mediation effects 

of LRRN3 on the methylation level of cg12593793 and cg21280392 also had a 

significant mediation effect in the KORA F3 dataset (p-value <0.05, without 

adjustment of multiple testing). The reversed mediation effects were found for the 

seven CpG sites that mediated the association between LRRN3 expression and 

smoking, suggesting a potential feedback effect of methylation on the genes 

expression.  

In this study, a targeted-metabolomics approach was used in prospective cohorts, to 

identify metabolites related to incident MI. In addition, the association between the 

metabolites and CRP was investigated to understand the relationship between any 

identified metabolites and established MI risk factors. 

Of the 1342 study participants with metabolite profile of fasting serum sample 

available in the KORA S4, 67 cases of incident MI occurred during a mean follow-up 

period (±SD) of 5.5 (±2.6) years. Overall, cases of MI occurred more frequently 

occurred in males than in females, had significantly higher prevalence of Type 2 

diabetes and higher levels of CRP: On the other hand these participants exhibit lower 

levels of HDL-cholesterol and were less physically active than participants without 

incident MI (Table 15). Within the S2 case-cohort 112 incident cases of MI occurred 
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based on a mean follow-up period (±SD) of 10 (±3.9) years (Table 15). The study 

base in the case-cohort of MONICA/KORA S2 was younger with mean (±SD) age 

(59±7 years in incident MI patients and 53±10 years in non-MI participants) and had a 

higher percentage of smokers (33.9% in incident MI patients and 23.5% in non-MI 

participants) in comparison with the KORA S4 study. 

Table 15. Population characteristics of discovery and replication dataset 

Mean ±standard deviation (SD) is provided when appropriate; p-values are calculated by 
Mann-Whitney test for continuous data and fisher test for categorical data. a 

b values are presented as geometric mean ±SD. Abbreviation: MI, 
myocardial infarction. 

 Discovery: KORA S4  Replication: KORA S2 

 Incident MI non-MI P  Incident MI non-MI P 

N 67 1275   112 549  
Age 65.5 ±5.2 63.8 ±5.4 0.01  59.71 ±7.53 53.61 ±10.95 5.30E-14 
Gender (male,%) 52(77.9%) 623(48.9%) 0.02  85(75.89%) 271(49.36%) 2.40E-07 
BMI(kg/m2) 29.6 ±4.8 28.3 ±4.2 0.03  28.28 ±3.87 27.05 ±4.03 3.10E-04 
Waist-to-hip ratio 0.95 ±0.07 0.9 ±0.08 1.40E-

06 
 0.93 ±0.07 0.87 ±0.08 6.30E-11 

Type 2 diabetes 
(%) 

14(20.9%) 104(8.16%) 1.60E-
03 

 20(17.85%) 18(3.27%) 1.90E-07 

Smoking        
Non-smoker (%) 26 (38.2%) 663 (49.7%) 0.08  32 (28.6%) 269 (49.0%) 7.00E-05 
Former smoker (%) 30 (44.1%) 463 (36.3%) 0.2  42 (37.5%) 151 (27.5%) 0.04 
Smoker (%) 12 (17.7%) 117 (13.9%) 0.37  38 (33.9%) 129 (23.5%) 0.02 
Alcohol intake(%)a 12 (17.7%) 262 (20.6%) 0.65  28 (25%) 153 (27.86%) 0.56 
Physical activity 
(% >1 h per week) 

16 (23.5%) 560 (43.9%) 9.50E-
04 

 30 (26.78%) 208 (37.7%) 0.03 

Diastolic blood 
pressure (mm Hg) 

81.2 ±11.9 80.1 ±10.2 0.37  80.81 ±11.63 80.13 ±10.97 0.9 

Systolic blood 
pressure (mm Hg) 

142.9 ±24.3 135.2 ±19.8 0.01  143.77 
±22.07 

133.35 
±18.35 

5.80E-07 

total Cholesterol 
(mg/dl) 

240.4 ±38.7 244.1 ±41.2 0.32  260.7 ±50.44 240.34 
±43.19 

1.90E-05 

HDL-Cholesterol 
(mg/dl) 

53.1 ±16.8 58.9 ±16.5 2.00E-
03 

 50.81 ±15.51 58.26 ±16.67 9.20E-07 

LDL-Cholesterol 
(mg/dl) 

157.0 ±35.4 154.2 ±39.3 0.55  171.9 ±48.74 149.75 
±40.74 

7.90E-08 

Total/HDL 
cholesterol 

4.91 ±1.6 4.43 ±1.33 0.01  5.6 ±2.21 4.5 ±1.9 6.90E-12 

CRP (mg/L)b 1.69 ±6.63 2.87 ±5.15 4.50E-
04 

 1.57 ±7.69 2.99 ±6.42 2.70E-08 

Statin user (%) 4 (5.97%)  109(8.54%)  0.65  0 (0%) 3 (0.54%) 1 
 

The candidate biomarkers were discovered in the KORA S4 study and replicated in 

the MONICA/KORA S2 cohort. The analysis procedure is illustrated in Figure 14. 
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Figure 14. Flow diagram illustrating the analysis strategy for the study of metabolite markers 
of incident MI 

Abbreviations: Arg, arginine; Trp, tryptophan; LPC, lysophosphatidylcholine;  CRP, C-
reactive protein 

 

Cox regression analysis, using the discovery KORA S4 dataset, identified 21 

metabolites which are significantly associated with incident MI in both the crude 

model and multivariate model. After further adjustment for CRP, 16 of these 

metabolites remained significant (p-value <0.05). The 16 metabolites belong to three 

groups: amino acids, lysophosphatidylcholines, phosphatidylcholines. These 

metabolites displayed high within-group correlations and high correlations with 

cardiovascular disease risk factors, e.g. BMI, LDL and HDL (Figure 15).  
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Figure 15. Correlations of the metabolites and risk factors of MI 

Abbreviations: Arg, arginine; Trp, tryptophan; LPC, lysophosphatidylcholine; PC, 
phosphatidylcholine; aa, diacyl; ae, acyl-akyl; CRP, C-reactive protein; BMI, body mass 
index; SysBP, systolic blood pressure; LDL, low density lipoprotein; HDL, high density 
lipoprotein 

 

To find an independent predictor, regularization followed by a step-wise selection 

analysis was applied to the 16 metabolites. Five metabolites (i.e. arginine, tryptophan, 

LPC (17:0), LPC (18:2) and PC aa C32:2) were selected as candidate biomarkers 

(Table 16). The risk of incident MI increases by 30% to 40% for every SD increase of 

the log transformed arginine level, whilst the risk is reduced by 20% to 40% for 

tryptophan, LPC (17:0) , LPC (18:2) and PC aa C32:2 (Table 16). In the replication 

study, arginine, LPC (17:0) and LPC (18:2) were found to be greatly associated with 
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MI in both crude and multivariate models with similar effective sizes as in the 

discovery study; while the associations of tryptophan and PC aa C32:2 could not be 

replicated. A meta-analysis of the associations showed consistent and significant 

associations between arginine, LPC (17:0) and LPC (18:2) and incident MI (Table 16). 

  

  



C
hapter 3 R

esults 
 

63 
 

 

Table 16. Associations of selected metabolites with incident MI in the discovery (KORA S4) and replication (KORA S2) datasets 

Crude model adjusted for age and sex; multivariate model adjusted for BMI, diabetes, systolic blood pressure, smoking status, (current smoker, former 

addition to crude 

model; CRP was further adjusted in the final model. Values in the table are provided as estimated hazard ratio (95% confidence interval) for each SD 

increase of the log-transformed metabolite concentration. Abbreviation: MI, myocardial infarction; HR, hazardous ratio; CI: confidence interval. 

    S4   S2   Meta-analysis   Heterogeneity  

   HR (95% CI) P   HR (95% CI) P   HR(95%CI) P   Q P 

 Crude model               

Arg   1.40(1.10,1.78) 0.006   1.26(1.05,1.52) 0.01   1.31(1.14,1.49) 1.7E-04   0.51 0.47 
Trp   0.79(0.62,1.00) 0.05   1.20(0.99,1.45) 0.06   1.03(0.89,1.19) 0.71   7.4 0.01 
LPC (17:0)   0.65(0.52,0.82) 2.5E-04   0.77(0.64,0.93) 0.01   0.74(0.64,0.84) 1.8E-05   1.69 0.19 
LPC (18:2)  0.71(0.56,0.91) 5.3e-5  0.67(0.56,0.82) 4.8E-05  0.64(0.56,0.75) 3.80E-09  0.6 0.44 
PC aa C32:2   0.60(0.46,0.77) 2.1E-04   1.09(0.91,1.33) 0.32   0.85(0.73,0.98) 0.03   8.78 3.0E-03 
Multivariate Model              
Arg   1.35(1.06,1.72) 0.016   1.23(1.02,1.47) 0.027   1.27(1.10,1.46) 8.9E-04   0.39 0.53 
Trp   0.72(0.57,0.92) 0.01   1.45(1.18,1.79) 4.0E-04   1.03(0.52,2.03) 0.93   19.14 1.2E-05 
LPC (17:0)   0.69(0.53,0.89) 0.005   0.72(0.57,0.90) 0.004   0.72(0.61,0.85) 1.0E-04   0.21 0.65 
LPC (18:2)  0.65(0.49,0.87) 0.004  0.79(0.64,0.96) 0.019  0.74(0.62,0.88) 8.70E-04  1.18 0.28 
PC aa C32:2   0.64(0.50,0.81) 2.2E-04   0.95(0.77,1.17) 0.627   0.80(0.51,1.24) 0.32   7.99 4.7E-03 
 Multivariate Model + CRP             

Arg  1.32(1.04,1.69) 0.024   1.17(0.97,1.42) 0.096   1.23(1.07,1.42) 4.7E-03   0.56 0.46 
Trp  0.77(0.60,0.99) 0.044   1.42(1.16,1.75) 7.4E-04   1.05(0.58,1.93) 0.86   14.44 0 
LPC (17:0)  0.71(0.55,0.93) 0.01   0.75(0.60,0.95) 0.014   0.75(0.64,0.89) 7.2E-04   0.28 0.6 
LPC (18:2)  0.7(0.52,0.94) 0.017  0.84(0.68,1.03) 0.08  0.79(0.67,0.93) 0.01  1.03 0.31 
PC aa C32:2  0.67(0.52,0.86) 0.002   1.04(0.84,1.30) 0.71   0.52 0.48   3.6E-03 0.52 
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Besides the five selected candidates, four additional lyso-PCs (LPC (16:0), LPC 

(16:1), LPC (18:0) and LPC (18:2)) showed consistent negative association with MI 

in both datasets (Figure 16). 

 

 

Figure 16. Associations of incident MI with other LPCs in the discovery (KORA S4) and 
replication (KORA S2) datasets 

Associations between incident MI with four lyso-PCs (LPC (18:1), LPC (18:0), LPC (16:1), 
LPC (16:0)) were calculated in cox regression models. Crude model adjusted for age and sex; 
multivariate model adjusted for BMI, diabetes, systolic blood pressure, smoking status 
(current smoker, former smoker and never smoker), alcohol consumption (

), total cholesterol, HDL cholesterol in addition to crude model; 
CRP was further adjusted in the last model. Random effect model was used for meta-analysis. 
Associations were shown as log hazards ratios. 
 

In the discovery dataset, the addition of the five metabolites to the crude and 

multivariate models significantly increased C statistics, net reclassification 

improvement and integrated discrimination improvement (Table 17). After adding the 

five candidate metabolites to the Framingham score, the C statistics increased by 0.8 

(P=0.001), yielding a categorical net reclassification improvement of 0.21 (P <0.0001, 

categories: 0-10%, 11-20% and > 20%) and the integrated discrimination index (IDI) 

of 0.15 (P <0.0001). Improvement of prediction of the five metabolites in the 

replication dataset was not significant (Table 17).  
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Table 17. Added value of selected metabolites in prediction of incident MI in discovery the KORA S4 and S2 

Values in the table are provided as Mean (95% CI). Crude model is adjusted for age, sex; multivariate model is adjusted for age, sex, BMI, 
diabetes, systolic blood pressure, smoking, alcohol consumption, total cholesterol, HDL cholesterol, CRP. Abbreviations: AUC, area under 
the curve; NRI, net reclassification index; IDI, integrated discrimination improvement. 

  AUC P NRI IDI P 

 categorical 
a
 P 

S4       
Crude model 0.67(0.60,0.74)      
+selected metabolites 0.77(0.73,0.83) 8.90E-05 0.19(0.06,0.32) 0.004 0.11(0.06,0.15) <2E-16 
Multivariate model  0.68(0.62,0.74)      
+ selected metabolites 0.76(0.72,0.82) 6.60E-05 0.17(0.04,0.30) 0.01 0.10(0.06, 0.14) <2E-16 
Multivariate model + CPR 0.69(0.63,0.76)      
+ selected metabolites 0.76(0.71, 0.82) 0.002 0.12(0.00, 0.25) 0.04 0.08(0.04,0.11) 1.00E-05 
Framingham score 0.70(0.64,0.76)      
+ selected metabolites 0.78(0.73,0.84) 0.001 0.22(0.09,0.36) 9.80E-04 0.15(0.10,0.20) <2E-16 
       
S2             
Crude model 0.70(0.65,0.75)          
+ selected metabolites 0.72(0.67,0.77) 0.12 0.04(-0.05,0.13) 0.42 0.02(0.007,0.04) 0.005 
Multivariate model  0.76(0.72,0.81)      
+ selected metabolites 0.77(0.73,0.82) 0.33 0.07(-0.04,0.18) 0.2 0.02(0.003, 0.04) 0.02 
Multivariate model + CRP 0.77(0.72,0.81)      
+ selected metabolites 0.77(0.73, 0.82) 0.48 0.06(-0.03, 0.16) 0.2 0.02(0.005,0.04) 0.01 
Framingham score 0.74(0.70,0.79)      
+ selected metabolites 0.77(0.72,0.80) 0.14 0.096(-0.005,0.20) 0.06 0.008(-0.005,0.02) 0.21 
a categories were set at 0~10%, 11~20% and over 21% 
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It is noteworthy that in the established prediction model with the five candidate 

biomarkers, the estimates of CRP were reduced and no longer statistical significant 

(Figure 17, p-value = 0.74 in the discovery, p-value = 0.23 in the replication, p-value 

= 0.22 in meta-analysis). With this said, no changes in other covariates were observed 

(Table 18). To elaborate, age had a hazard ratio (95% CI) of 1.27 (0.98, 1.65) before 

and a ratio of 1.24 (0.94, 1.63) after adding the five candidate biomarkers in the 

discovery data set; 2.64 (1.99, 3.5) and 2.67 (2.00, 3.57) in the replication dataset 

(Table 18).  

 

Figure 17. Associations of incident MI with CRP in the discovery (KORA S4) and replication 
(KORA S2) datasets 

The association between CRP and MI was attenuated after adding the selected metabolites in 
the cox regression model. Associations are shown as log hazards ratios. Random effect meta-
analysis was performed 
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Table 18. Change of CRP association with incident MI after adding selected metabolites 

Estimates of the variables in the cox regression model were shown in the tables. 
 S4 S2 Meta-analysis 
 HR  

(95% CI) 

P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P HR P 

Arginine   1.69 
(1.26,2.27) 

4.4E-04   1.08 
(0.87,1.32) 

0.49   1.33 
(0.85,2.08) 

0.21 

Tryptophan   0.75 
(0.55,1.01) 

0.06   1.47 
(1.18,1.84) 

7.4E-04   0.99 
(0.45,2.17) 

0.97 

LPC(17:0)   0.66 
(0.50,0.87) 

3.2E-03   0.71 
(0.54,0.94) 

0.02   0.73 
(0.59,0.89) 

2.5E-03 

LPC (18:2)   0.92 
(0.65,1.29) 

0.62   0.88 
(0.68,1.13) 

0.30   0.89 
(0.73,1.09) 

0.26 

PC aa C32:2   0.78 
(0.60,1.02) 

0.07   0.98 
(0.78,1.24) 

0.88   0.89 
(0.71,1.11) 

0.29 

Age 1.27 
(0.98,1.65) 

0.08 1.24 
(0.94,1.63) 

0.13 2.64 
(1.99,3.5) 

1.23E-
11 

2.67 
(2.00,3.57) 

3.0E-11 1.83 
(0.89,3.75) 

0.1 1.82 
(0.85,3.86) 

0.12 

Sexa 0.28 
(0.14,0.55) 

2.61E-04 0.26 
(0.12,0.54) 

3.7E-04 0.33 
(0.19,0.56) 

3.82E-
05 

0.36 
(0.21,0.64) 

4.7E-04 0.31 
(0.2,0.47) 

4.01E-
08 

0.32 
(0.20,0.50) 

7.8E-07 

BMI 1.23 
(0.95,1.59) 

0.12 1.19 
(0.90,1.58) 

0.22 0.88 
(0.7,1.12) 

0.31 0.79 
(0.62,1.02) 

0.07 1.04 
(0.75,1.43) 

0.82 0.97 
(0.65,1.44) 

0.87 

Diabetes 1.8 
(0.92,3.54) 

0.09 1.85 
(0.93,3.66) 

0.08 3.52 
(2.02,6.13) 

9.21E-
06 

4.91 
(2.74,8.79) 

8.4E-08 2.59 
(1.35,4.97) 

4.20E-
03 

3.07 
(1.18,7.98) 

0.02 

systolic blood 
pressure 

1.25 
(0.97,1.6) 

0.08 1.19 
(0.92,1.54) 

0.18 1.37 
(1.12,1.66) 

1.69E-
03 

1.39 
(1.14,1.70) 

9.4E-04 1.32 
(1.13,1.54) 

3.83E-
04 

1.32 
(1.13,1.54) 

5.7E-04 

Current smoker b 0.87 
(0.48,1.59) 

0.66 0.80 
(0.44,1.46) 

0.47 1.59 
(0.95,2.66) 

0.08 1.70 
(0.99,2.91) 

0.05 1.2 
(0.67,2.15) 

0.54 1.18 
(0.56,2.48) 

0.66 

Former smoker b 1.54 
(0.73,3.24) 

0.25 1.22 
(0.57,2.62) 

0.61 2.27 
(1.33,3.9) 

2.81E-
03 

2.18 
(1.23,3.84) 

0.01 1.99 
(1.29,3.08) 

2.00E-
03 

1.73 
(0.99,3.02) 

0.05 

Alcohol intakec 0.61 
(0.3,1.22) 

0.16 0.60 
(0.29,1.24) 

0.17 0.79 
(0.5,1.27) 

0.33 0.55 
(0.33,0.92) 

0.02 0.73 
(0.5,1.08) 

0.11 0.57 
(0.37,0.87) 

0.01 

Total cholesterol 1.01 
(0.77,1.31) 

0.97 1.12 
(0.85,1.47) 

0.42 1.52 
(1.27,1.82) 

4.71E-
06 

1.54 
(1.27,1.86) 

5.4E-06 1.25 
(0.83,1.88) 

0.28 1.34 
(0.98,1.83) 

0.07 

HDL cholesterol 1.01 
(0.74,1.38) 

0.95 0.97 
(0.71,1.34) 

0.87 0.73 
(0.57,0.93) 

0.01 0.79 
(0.61,1.02) 

0.07 0.84 
(0.61,1.17) 

0.31 0.86 
(0.70,1.05) 

0.14 

CRP 1.19 
(1.04,1.35) 

0.01 1.05 
(0.80,1.38) 

0.74 1.16 
(1.02,1.32) 

0.02 1.10 
(0.94,1.27) 

0.23 1.17 
(1.07,1.28) 

5.58E-
04 

1.08 
(0.69,1.67) 

0.73 

a women compared with men; b compared with never smokers; c  
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The levels of CRP had significant association with the arginine, LPC (17:0), LPC 

(18:0), and PC aa C32:2 (Table 19) in both the discover and replication datasets. 

Tryptophan was significantly associated with CRP in the discovery dataset but not in 

the replication dataset. The combination of the potential biomarkers additionally 

explains for the approximate 10 % variation of CRP levels, from 14% to 24% in the 

discovery dataset and from 22% to 32% in the replication dataset (Table 19). 

Likelihood ratio test between the regression model of CRP with and without the 

metabolites also show significant improvement in goodness of fit (P < 0.001 in both 

KORA S4 and KORA S2) after adding the metabolites to the model (Table 19).  

Table 19. Associations between CRP and selected metabolites in the discovery (KORA S4) 
and replication (KORA S2) dataset 

The  estimates for the metabolites indicate the corresponding change in the log-transformed 
concentration of CRP as one SD change in the log-transformed metabolite concentrations 
(ratio). a Change of R2 in regression model after adding the selected metabolites in the model 
with age, sex, bmi, diabetes, systolic blood pressure, smoking status(current smoker, former 
smoker and never smoker), alcohol consumption( ), 
total cholesterol, HDL cholesterol. b likelihood ratio test was used to compare the model with 
and without the selected metabolites. Abbreviations: CI, confidence interval 

 S4  S2 

Metabolites  (95% CI) P   (95% CI) P 

Arginine 0.07(0.01,0.12) 0.02  0.24(0.16,0.32) 2.8E-09 
Tryptophan -0.11(-0.16,-0.05) 2.1E-04  0.04(-0.04,0.13) 0.3 
LPC (17:0) -0.27(-0.33,-0.21) 8.8E-19  -0.19(-0.28,-0.11) 2.2E-05 
LPC (18:2) -0.31(-0.37,-0.25) 1.5E-24  -0.28(-0.37,0-0.20) 2.1E-11 
PC aa C32:2 -0.15(-0.21,-0.09) 7.8E-07  -0.17(-0.26,-0.08) 1.3E-04 
    
a Increase of R2 0.104  0.101 
bLikelihood ratio test P < 2.2E-16  P < 2.2E-16 

 

Sensitivity analyses were used to test whether the associations between the five 

metabolites and incident MI were confounded by statins and diabetes. The 

associations of metabolites with incident MI remained significant after excluding 

statin users (N = 68 in the discovery dataset; N = 3 in the replication dataset) (Table 
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20). The effective size of the associations remained unaffected after exclusion of 

diabetic patients (N = 118 in the discovery dataset; N = 38 in the replication dataset), 

which is the strongest risk factor in the model (Table 20). 

Furthermore, the influence of fasting status was investigated in the discovery data set 

(KORA S4) by including non-fasting samples in the association analysis. In total, data 

from 203 non-fasting serum samples were added to the analysis, including 22 MI 

cases and 181 non-cases. Arginine, LPC (17:0), LPC (18:2), and PC aa C32:2 were 

still significantly associated with incident MI in the multivariate model, but, the 

relationship between tryptophan and MI were not significant in any of the three 

models (Table 20). 

 

Table 20. Sensitivity analysis of associations between selected metabolites and incident MI 

Values in the table are provided as estimated hazard ratio (95% confidence interval) for each 
standard deviation increase of the log-transformed metabolite concentrations (ratio). 
Abbreviation: MI, myocardial infarction; HR, hazardous ratio; CI: confidence interval 

  Arginine Tryptophan LPC (17:0) LPC (18:2) PC aa C32:2 

Exclude participants with diabetes 

  
S4 (54/1171) HR  

(95% CI) 
1.31 
(1.02,1.67) 

0.77 
(0.60,0.99) 

0.69 
(0.53,0.90) 

0.67 
(0.49,0.90) 

0.68 
(0.53,0.87) 

 P 0.03 0.04 0.006 0.008 2.40E-03 

S2 (92/532) HR  
(95% CI) 

1.13 
(0.93,1.38) 

1.28 
(1.02,1.62) 

0.71 
(0.56,0.90) 

0.72 
(0.57, 0.90) 

0.81 
(0.63,1.04) 

 P 0.22 0.04 0.005 0.005 0.1 

       

Exclude statin users 

S4 (64/1161) HR  
(95% CI) 

1.30 
(1.01,1.70) 

0.76 
(0.58,0.98) 

0.69 
(0.52,0.91) 

0.70 
(0.50,0.97) 

0.64 
(0.49, 0.83) 

 P 0.04 0.04 9.50E-03 0.03 7.80E-04 

S2 (112/546) HR  
(95% CI) 

1.17 
(0.98,1.42) 

1.42 
(1.15,1.74) 

0.75 
(0.60,0.95) 

0.83 
(0.68, 1.03) 

1.04 
(0.84,1.30) 

 P 0.08 7.40E-04 0.015 0.09 0.71 

       

Include non-fasting samples 

S4 (86/1417) HR  
(95% CI) 

1.31 
(1.06,1.62) 

0.87 
(0.70,1.08) 

0.79 
(0.63,0.99) 

0.75 
(0.60,0.94) 

0.71 
(0.57,0.89) 

 P 0.014 0.198 0.04 0.011 0.002 
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Owing to the fact that there was a small number of cases in this study, in subgroups 

with different ages s), sex (male and female), or smoking 

habits (never smoker, former smoker and current smoker), the associations between 

the three selected metabolites and incident MI were not significant in neither the 

discovery nor replication datasets. However, heterogeneity analysis showed no 

significant differences for the associations in subgroups with different age, gender or 

smoking habits (Table 21). 

Table 21. Subgroup analysis of the MI-associated metabolites 

Association between the candidate metabolite and MI were assess in different age, gender and 
smoking subgroup using cox-regression models with adjustment of age, sex, BMI, alcohol 
consumption, systolic blood pressure, diabetes status, total cholesterol, HDL cholesterol and 
CRP. 

 
Arginine Tryptophan LPC(17:0) LPC(18:2) PC aa C32:2 

S4      
Age      
<=60 years 

     
HR (95% CI) 1.37(1.03,1.80) 0.84(0.64,1.09) 0.78(0.57,1.07) 0.92(0.67,1.27) 0.63(0.48,0.82) 
P 0.03 0.19 0.13 0.61 0.001 
>60 years 

     
HR (95% CI) 1.31(0.69,2.49) 0.78(0.37,1.62) 0.39(0.18,0.83) 0.98(0.47,2.04) 0.58(0.29,1.16) 
P 0.41 0.50 0.02 0.95 0.121 
Heterogeneity 0.05 0.02 2.78 0.03 0.01 
P 0.83 0.88 0.10 0.85 0.90 
      
Sex      
Male      
HR (95% CI) 1.44(1.08,1.92) 0.89(0.66,1.19) 0.79(0.57,1.08) 0.73(0.52,1.04) 0.72(0.54,0.96) 
P 0.01 0.42 0.14 0.08 0.03 
Female      
HR (95% CI) 1.11(0.63,1.95) 0.49(0.28,0.85) 0.50(0.26,0.94) 0.93(0.47,1.84) 0.49(0.28,0.88) 
P 0.73 0.01 0.03 0.84 0.02 
Heterogeneity 1.35 0.38 1.60 3.49 0.67 
P 0.24 0.54 0.21 0.06 0.41 
      
Smoking      
Never smoker 

     
HR (95% CI) 1.44(0.78,2.67) 0.85(0.45,1.57) 0.67(0.33,1.35) 0.81(0.40,1.66) 0.48(0.24,0.98) 
P 0.25 0.60 0.26 0.57 0.04 
Former smoker 

    
HR (95% CI) 1.42(0.99,2.04) 0.86(0.58,1.27) 0.77(0.50,1.17) 0.69(0.43,1.08) 0.57(0.39,0.81) 
P 0.06 0.45 0.22 0.10 0.002 
Heterogeneity 0.15 0.15 0.10 0.002 0.001 
P 0.69 0.70 0.75 0.96 0.98 
Current smoker 

    
HR (95% CI) 1.19(0.76,1.88) 0.66(0.42,1.04) 0.62(0.38,1.01) 0.81(0.48,1.35) 0.91(0.58,1.41) 
P 0.45 0.07 0.05 0.42 0.67 
Heterogeneity 2.18 7.4E-05 0.03 0.41 0.23 
P 0.14 0.99 0.86 0.52 0.63 
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S2 

Age       
<=60 years      
HR (95% CI) 1.13(0.88,1.44) 1.42(1.09,1.86) 0.67(0.51,0.89) 0.69(0.52,0.92) 0.82(0.59,1.15) 
P 0.34 0.01 0.01 0.01 0.25 
>60 years 

     
HR (95% CI) 1.48(1.03,2.13) 1.45(1.02,2.05) 0.66(0.45,0.98) 0.68(0.51,0.92) 1.32(0.95,1.82) 
P 0.03 0.04 0.04 0.01 0.10 
Heterogeneity 3.94 0.00 0.01 0.01 1.52 
P 0.05 0.96 0.94 0.93 0.22 
      
Sex       
Male      
HR (95% CI) 1.12(0.90,1.38) 1.36(1.07,1.73) 0.67(0.52,0.86) 0.75(0.60,0.94) 0.99(0.77,1.28) 
P 0.32 0.01 0.002 0.01 0.94 
Female      
HR (95% CI) 1.30(0.82,2.07) 1.47(0.93,2.32) 1.04(0.63,1.72) 0.84(0.53,1.33) 0.88(0.56,1.40) 
P 0.27 0.10 0.87 0.45 0.60 
Heterogeneity 0.18 0.16 2.38 0.09 0.34 
P 0.67 0.69 0.12 0.77 0.56 
      
Smoking      
Never smoker      
HR (95% CI) 1.16(0.83,1.63) 1.06(0.74,1.52) 0.79(0.49,1.27) 0.99(0.65,1.51) 1.69(0.99,2.89) 
P 0.39 0.76 0.33 0.97 0.06 
Former smoker 

    
HR (95% CI) 1.25(0.93,1.68) 1.61(1.13,2.29) 0.58(0.40,0.82) 0.70(0.50,0.98) 0.78(0.54,1.13) 
P 0.14 0.01 0.002 0.04 0.19 
Heterogeneity 5.37 1.59 1.08 2.65 0.09 
P 0.02 0.21 0.30 0.10 0.76 
Current smoker 

    
HR (95% CI) 1.11(0.73,1.70) 1.87(1.22,2.88) 0.72(0.46,1.14) 0.60(0.40,0.91) 1.01(0.66,1.54) 
P 0.62 0.004 0.17 0.02 0.96 
Heterogeneity 2.18 2.71 0.07 3.96 0.03 
P 0.14 0.10 0.79 0.05 0.87 

 

To find further support of the functionality of the five selected metabolites, their 

association with coronary artery disease related genes reported in GWAS (Deloukas 

et al, 2012) were analyzed by searching a protein-metabolite network. In total, 52 

genes from 46 coronary artery disease related loci with genome-wide significance and 

123 genes from 104 loci at a 5% false discovery rate (FDR) criteria were evaluated. 

Among these genes, 12 genes with genome-wide significance (PPAP2B, APOA1, 

APOA2, APOA5, APOB, APOE, FLT, LPA, PEMT, EDNRA, GUCY1A3, RASD1) 

and 4 FDR-significant genes (NGF, SCARB1, APOC2, CDKN1A) were linked with 
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the five metabolites with at most one intermediate enzyme in between (Figure 18). All 

links were manually checked for biochemical relevance (Table 22). 

 

Figure 18. Network and pathway analysis of the selected metabolites 
Associations between CAD related genes from GWAS studies and the candidate metabolites. 
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Table 22. Association between CVD genes and the candidate metabolites 

Gene1 Gene2 Interaction 

APOA5 APOA1 In the same KEGG pathway PPAR signaling pathway 
APOA5 APOA2 Similar function; In the same KEGG pathway PPAR signaling pathway 
APOA5 APOC2 chylomicron => TG-depleted chylomicron + long-chain fatty acids + diacylglycerols 
Arg PADI4 L-arginine + H2O = protein L-citrulline + NH3 [RN:R02621] 
Arg RARS ATP + L-arginine + tRNAArg = AMP + diphosphate + L-arginyl-tRNAArg [RN:R03646] 
Arg NOS3 L-arginine + NADPH + H+ + O2 = citrulline + nitric oxide + NADP+ [RN:R00557] 
Arg NOS1 L-arginine + NADPH + H+ + O2 = citrulline + nitric oxide + NADP+ [RN:R00557] 
CHPT1 PPAP2B PPAP2B: a 1,2-diacylglycerol 3-phosphate + H2O = a 1,2-diacyl-sn-glycerol + phosphate [RN:R02239] 

CHPT1: CDP-choline + 1,2-diacyl-sn-glycerol = CMP + a phosphatidylcholine [RN:R01321] 
DDC NGF Inhibition: NGF --| DDC [1] 
LCAT APOE Activation: APOE LCAT[2] 
LPCs PLA2G4

A 
(1) 2-lysophosphatidylcholine + H2O = glycerophosphocholine + a carboxylate [RN:R07291] 
(2) Phosphatidylcholine + H2O = 1-acylglycerophosphocholine + a carboxylate 

LPCs PLA2G7 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine + H2O = 1-alkyl-sn-glycero-3-phosphocholine + acetate 
[RN:R04452] 

LPCs LYPLA1 2-lysophosphatidylcholine + H2O=glycerophosphocholine + a carboxylate;  
NOS1 NGF Activation: NGF NOS1 [3] 
NOS1 RASD1 Binding: RASD1 is activated by NO donors [4, 5] 
NOS1 GUCY1

A3 
NOS=>NO GUCY1A3: NO activates GUCY1A3 [6] 

NOS3 FLT1 FLT1=>VEGF NOS3 [7]; KEGG: (1) VEGF signaling pathway; (2) PI3K-AKT signaling pathway 
NOS3 APOA1 Binding, mediate(APOA1 NOS3) [8, 9] 
NOS3 EDNRA NOS3 induced by vasoconstrictor peptide endothelin-1 (ET-1) via EDNRA [10] 
NOS3 SCARB1 Binding: HDL stimulates by SCARB1 binding to NOS3 [8, 11] 
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PC aa C32:2 PLA2G4A (1) 2-lysophosphatidylcholine + H2O = glycerophosphocholine + a carboxylate [RN:R07291] 
(2) Phosphatidylcholine + H(2)O = 1-acylglycerophosphocholine + a carboxylate 

PC aa C32:2 PEMT S-adenosyl-L-methionine + phosphatidylethanolamine = S-adenosyl-L-homocysteine + phosphatidyl-N-
methylethanolamine  

PC aa C32:2 APOA5  
PC aa C32:2 LCAT phosphatidylcholine + a sterol = 1-acylglycerophosphocholine + a sterol ester [RN:R02114] 
PC aa C32:2 PLD2 a phosphatidylcholine + H2O = choline + a phosphatidate [RN:R01310] 
PC aa C32:2 CHPT1 CDP-choline + 1,2-diacyl-sn-glycerol = CMP + a phosphatidylcholine [RN:R01321] 
PC aa C32:2 PLTP transfer protein 
PC aa C32:2 PLD1 a phosphatidylcholine + H2O = choline + a phosphatidate [RN:R01310] 
PC aa C32:2 ABCB4 Transporter: ATP + H2O + xenobioticin = ADP + phosphate + xenobioticout [13] 
PC aa C32:2 APOB Phosphatidylcholine increased apoB synthesis and secretion without affecting the synthesis or secretion of 

apoA-I [14, 15] 
PLD1 NGF Activation: NGFàPLD1[16] 
PLD2 CDKN1A Inhibition: Cdkn1a ---| PLD2 [17] 
PLTP APOB transfer ApoB [18] 
PLTP SCARB1 all related to HDL metabolism [19] 
PLTP LPA transfer LPA [20] 
Trp DDC (1) 3,4-dihydroxy-L-phenylalanine = dopamine + CO2 [RN:R02080] 

(2) 5-hydroxy-L-tryptophan = 5-hydroxytryptamine + CO2 [RN:R02701] 
LPA PLA2G7 Positive association [21] 
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In the first study, the associations of metabolite concentrations with smoking were 

investigated using a metabolomics approach, which delineated the reversion of 

metabolite variations after smoking cessation. The results were demonstrated using 

protein-metabolite networks. Strong associations of various metabolites with smoking 

were identified, and thus it was possible to confirm part of the findings of the pilot 

study were confirmed (Wang-Sattler et al, 2008). Amongst the 23 smoking-related 

metabolites identified in the pilot study, 11 metabolites were measured in this study. 

Five of these 11 metabolites were validated in men as the current smokers sample set 

was about five-fold larger for males than for females. Consistent patterns of smoking 

effects on metabolite profiles were observed in the current study. Among all the 

smoking-related metabolites, higher unsaturated diacyl-PCs, but lower acyl-alkyl-PCs 

and saturated diacyl-PCs were established in current smokers, which in general 

indicate an increased level of unsaturated fatty acids in current smokers. The 

unsaturated fatty acids are more vulnerable to lipid peroxidation and influence the risk 

of different diseases, such as CVDs (Kris-Etherton, 1999; Mozaffarian et al, 2004). 

 

 
Figure 19. Pathways illustrating effects of smoking on arginine and glutamate as well as on 
lipid metabolism 
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Metabolites are in regular font, protein coding genes are in italic, gender-specific gene (CPS1) 
is in bold italic font. PC: phosphatidylcholine; ae: acyl-alkyl-; LYPLA1: lysophospholipase I; 
lysoPC: acyl-phosphatidylcholine; GPC: glycerylphosphorylcholine; ADMA: Asymmetric 
dimethylarginine. 

From previous findings, it has been indicated that the glutamate transporter in human 

lung epithelial cells, encoded by the SLC7A11 gene, is activated in current smokers 

(Beane et al, 2007; Bridges et al, 2001), which increases the transportation of 

glutamate and rises the levels of downstream metabolites arginine and ornithine 

subsequently (Figure 19A). The activation of cysteine-glutamate transporter (encoded 

by SLC7A11) and the increased glutamate level as a response to oxidative stress, are 

also of great importance to endothelial dysfunction involved at all stages of 

atherosclerotic plaque evolution as it leads to cardiovascular diseases (Harrison et al, 

2003; Glass & Witztum, 2001). Ether lipid and glycerophospholipid metabolisms are 

associated with smoking (Wang-Sattler et al, 2008). As shown in Figure 19B, up 

regulation of S100A10 and GPC1 inhibits the cytosolic phospholipase A2 (cPLA2), 

which plays a role in the synthesis of lyso-PCs. Furthermore, the lysophospholipase I 

isoform, which hydrolyses lyso-PCs into glycerophosphocholine, is up regulated in 

current smokers (Beane et al, 2007), aggravating the deficiency of lyso-PCs. 

The protein-metabolite interaction network shows that the reversibility of metabolite 

concentrations also coincided with gene expression (Figure 8). Arginine and 

glutamate were quickly reversed after smoking cessation, which were in line with the 

quick reversibility of SLC7A11 expression. Expression of the enzyme coding genes 

for hydrolysis of diacyl-PCs and acyl-alkyl-PCs for instance lysophospholipase, 

cPLA2, and S100 calcium binding protein A2 (S100A2) were quickly reversible, 

which is consistent with our findings that the levels of diacyl-PCs and acyl-alkyl PCs 

quickly restored after smoking cessation (Figure 8).  
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In this study, the effects of smoking on metabolite profiles were found different 

between men and women. This result supports the hypothesis that differences in 

smoking effects on males and females are not solely based on smoking intensity, but 

are also gender-specific. Glutamate is increased in both male and female current 

smokers, however, the levels of arginine and ornithine only increased in male current 

smokers. According to the previous study of the metabolomic and genetic biomarkers 

on sexual dimorphisms (Mittelstrass et al, 2011), the CPS1 gene, which regulates the 

formation of arginine, has a gender-specific manner in certain SNPs with stronger 

effects in women than in men. The gender-specific genetic effect might cause a lower 

efficiency in females with regards to the transformation of extra glutamate to citruline 

(Figure 19A).  

In summary, a systematic targeted metabolomics approach with 140 metabolites was 

applied in a large population-based cohort study which examined the life-style related 

environmental exposure  smoking in this study. This study shows the power of 

metabolomics approach in investigating the molecular signature of lifestyle-related 

environmental exposures. It is demonstrated in this study that smoking is associated 

with concentration variations in amino acids, ether lipid and glycerophospholipid 

metabolism. The smoking-related changes in the human serum metabolite profile are 

reversible after stopping smoking. This indicates the remarkable benefits of smoking 

cessation and provides a link to CVD benefits. Furthermore, linking metabolomic 

knowledge to other 'omics' approaches, for example, transcriptomics, may have the 

potential to identify novel biomarkers as well as new risk assessment tools. 
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In the second study, the complex relationships between smoking, DNA methylation, 

gene expression and metabolites were analyzed using mediation analyses. This 

approach enables integration of multi-level omics  data to understand the response of 

complex system with regard to an environmental exposure smoking.  

Significant effects of smoking on the DNA methylation and gene expression profiles 

in KORA F4 were discovered, which were also replicated in KORA F3. Among the 

361 CpG sites found in this study, 162 of which overlapped with findings (187 CpG 

sites) in a previous study in KORA (Zeilinger et al, 2013) where a different 

normalization procedure was used, and thus, is considered as a proof of principle for 

the efficacy of the analysis. The expression levels of two genes LRRN3 and 

CLDND1 were significantly associated with smoking in KORA F4 and replicated in 

KORA F3. LRRN3, which encodes leucine-rich repeat neuronal protein 3, is involved 

in neurodevelopment. It is mapped to loci that have influence on smoking cessation 

behavior (Rose et al, 2010). Increased expression of LRRN3 in peripheral blood in 

current smokers was recently reported (Wan et al, 2012). It has been reported 

(Zeilinger et al, 2013) and also been confirmed in this study that the LRRN3 is 

relatively hypo-methylated in current smokers, while the effect is reversible after 

smoking cessation. This fits gene expression when 

comparing current smokers with former smokers. The function of LRRN3 was linked 

to aging and may influence the general health status of cells that are mainly involved 

in activation of MAPK activity and endocytosis (Ashburner et al, 2000). CLDND1, a 

claudin-domain containing gene, is highly expressed in lymphocytes in response to 

smoking (Charlesworth et al, 2010). I has been used as a predictive biomarker in 

blood for scoring of the smoking status (Beineke et al, 2012). It is also independently 
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related to CAD after adjusting for smoking status (Liu et al, 2007). The expression 

level of CLDND1 is also reversible after smoking cessation as found in this study. 

However, the methlylation level of CLDND1 was not significantly different between 

current smokers and never smokers, thus leaves the possibility of trans-regulation 

effects on the expression of CLDND1. 

In the Mediation analyses for the associations between smoking, DNA methylation, 

gene expression, and metabolites, several mediation effects were found significant. 

Seven CpG sites were found to mediate the association between smoking and LRRN3 

gene expression. Besides cg09837977, which is within the 1M bp region of the 

transcriptional starting site of LRRN3, all other CpG sites mediated LRRN3 expression 

in the trans-regulation manner. Amid all seven CpG sites, two cpg sites (cg26729380 

and cg14753356) were noteworthy, as they were also significantly associated with 

LPC (18:2) and PC ae C34:3 levels. However, no literature support was found for the 

direct association between LRRN3 and the two metabolites. Further studies to proof 

the direct association between LRRN3 and the two metabolites are required as there 

was no literature to support these findings. In this study significant mediation effect of 

gene expression for the association between smoking and DNA methylation was also 

discovered, which raises the possibility of a feedback loop between expression and 

methylation.  

Several issues warrants further investigation of these discovered mediation effects. 

Firstly, due to the small samples size in the replication dataset, and the drawbacks of 

cross-sectional studies, it is not sufficient to make a conclusive deduction from 

findings of this study. Secondly, while both the expression and DNA methylation 

profile have strong tissue specificity (Yu et al, 2010), whether the metabolite profile 

s in specific 
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tissues is questionable. As we have found in this study the associations between gene 

had in general stronger associations than their associations with metabolite 

concentrations. For this reason, tissue-specific data are necessary to rule out the 

influence of other organs for the integrative study of multi-  

In summary, this study is a first attempt to integrate multi-level omics  data from 

large cohort studies. Using mediation analysis, the relations and interactions between 

methylation, gene expression and metabolite were investigated, and significant 

mediation effects between different omics  levels were discovered. These findings 

shows the potential of this approach to disentangle the complex relations between 

different omics  profile.  

 
MI is a leading cause of death worldwide (Yeh et al, 2010). The long latent period of 

the acute events provides a chance for primary prevention of the disease. A major 

challenge of prevention is to identify people at risk (Ajani & Ford, 2006). Despite a 

large number of studies screening for candidate biomarkers, the discovered risk 

factors of MI, such as CRP, have demonstrated significant but only modest added 

value to conventional risk scores, such as Framingham score for the prediction of MI 

(Ioannidis & Tzoulaki, 2012; C-Reactive Protein, Fibrinogen, and Cardiovascular 

Disease Prediction, 2012) . A Mendelian randomization study also provides negative 

results for the causal association between CRP and MI (C Reactive Protein Coronary 

Heart Disease Genetics Collaboration (CCGC), 2011).  

In this thesis, two population-based cohort studies were used for the investigation for 

the associations between metabolite concentrations and incident MI with over 2200 

participants who have been followed-up for an average of nine years and have been 
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profiled at baseline in a metabolite panel covering lipids, amino acids and sugars 

metabolism. The prospective analysis allowed us to show that metabolite 

concentration variations occurred before the onset of MI.  

Based on prospective cohort studies, five novel biomarkers for incident MI were 

identified by performing targeted metabolomics profiling, of which three were 

replicated in a prospective case-cohort study with non-fasting participants. Fasting 

concentration of the five biomarkers provided significant added predictive value for 

incident MI, but with this said, the non-fasting concentrations showed attenuated 

prediction. Furthermore, significant association between the metabolites and CRP 

were found in all cohort studies, whilst these metabolites explained for about 10% of 

the variations in the CRP levels.  

CRP is one of the most promising biomarkers of MI. However, the Mendelian 

randomization study failed to prove the causality of the association between CRP and 

MI (C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC), 

2011). In this study the attenuated association between CRP and MI was established 

when adding the metabolites into the association models. The results showed strong 

association of CRP with the identified metabolites. It raises the possibility that an 

inflammatory process, which is casual for the association between CRP and MI, has 

not yet been revealed. The metabolites may confound the association between MI and 

CRP, thus, can potentially server as better biomarkers for early inflammatory process 

in thrombosis, revealing the intrinsic biochemical process at the early stage of MI.  
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Figure 20. Potential pathways that LPC, tryptophan and arginine involved in the 
inflammatory response of CVDs. 

Abbreviations: NAS, N-Acetylserotonin; NO, nitric oxide; iNOS, iducible nitric oxide 
synthase; CRP, C-reactive protein; PAI-1, Plasminogen activator inhibitor-1; ICAM-1, 
Intercellular Adhesion Molecule 1; ROS, Reactive oxygen species; PKC, protein kinase C. 

 

Lipoprotein-associated phospholipase A2 and choline are providing new insight to the 

inflammation and disorder of lipid metabolism in MI (Wang et al, 2011b; Gonçalves 

et al, 2012; Shah et al, 2010). Our findings of the associations between incident MI 

and a group of lyso-PCs (LPC 16:0, LPC, 17:0, LPC 18:0, LPC 18:1, LPC (18:2)) are 

noteworthy in this context (Kolodgie et al, 2006; Gonçalves et al, 2012). lyso-PCs 

levels are higher in the plaque regions of individuals with atherosclerosis (Gonçalves 

et al, 2012). However, the lyso-PCs levels in plaque are not associated with the levels 

in blood (Gonçalves et al, 2012), implicating a tissue-specific or regional-specific 

manner for the variations of lyso-PCs. In our study, higher lyso-PCs levels in serum 

exhibited a reduced risk of MI. Lyso-PCs are associated with improved insulin 

sensitivity and glucose clearance (Yea et al, 2009). Specifically, lyso-PCs stimulate 

the glucose transporter type 4 (GLUT4) in adipocytes enhancing glucose uptake with 

the dependency on protein kinase C (Yea et al, 2009). With this knowledge, it can be 
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therefore deducted that lower levels of lyso-PCs may influence the glucose uptake in 

adipocytes and increase the risk of MI by increasing intercellular adhesion molecule 1 

(ICAM-1), plasminogen-activator inhibitor type 1 (PAI-1) and reactive oxygen 

species (ROS) (Figure 20) (Van Gaal et al, 2006). Several other recently published 

studies also found lower level of plasma lyso-PCs in obesity and cardiovascular 

diseases which further support our findings (Barber et al, 2012; Fernandez et al, 

2013).  

The LPC (17:0) is potentially from ruminant origin (Nestel et al, 2014) or are 

produced by gut flora activities (Hopkins, 2001). The variations of LPC (17:0) in 

individuals who developed MI may result from the variation in dairy consumption or 

abnormality of gut flora activities in these participants, which have to have an 

influence on cardiovascular diseases (Huth & Park, 2012; Wang et al, 2011b). 

The higher level of arginine and lower level of tryptophan in the people who are at 

high risk of developing MI, also potentially indicate early atherogenic inflammation. 

As shown in Figure 20, the low level of tryptophan may result in insufficiency of 

serotonin and NAS (Wu, 2009), which raises the levels of cytokine and superoxide in 

blood. Cytokine triggers the activity of inducible nitric oxide synthase (iNOS) that 

releases large amount of nitric oxide (NO), which in turn reacts with superoxide to 

generate peroxynitrite  an important component in the atherosclerosis related 

inflammatory response (Mungrue et al, 2002).   

The association between tryptophan and phosphatidylcholine (PC aa C32:2) were not 

replicated. The meta-analysis showed significant heterogeneity between the 

associations in discovery and replication study (Table 16), which might reflect the 

differences between fasting and non-fasting samples. In the KORA S4 study, the 
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associations of the potential biomarkers with MI were also weaker in the sensitivity 

analysis combining both fasting and non-fasting samples. Dietary intake influences a 

large panel of metabolites in both blood and urine, including lipids and essential 

amino acids such as tryptophan (Krug et al, 2012; Hodson et al, 2008; Ishikawa et al, 

2014). Food intake in general increase the inter-individual variations in metabolite 

concentrations (Krug et al, 2012), which probably adds noise for certain disease 

related metabolite profile.  

 
The results from the three studies proved the potential of metabolomics in revealing 

the role of an environmental factor, e.g. smoking life-style, in pathogenesis and 

prognosis. 

In the third study of this thesis, two metabolites (arginine and LPC (18:2)) were 

discovered, which were related with both smoking and incident MI. Concentrations of 

arginine and LPC (18:2), that are associated with both smoking and coronary artery 

diseases, quickly returned to normal levels (within 7 years) after smoking cessation. 

These outcomes are in line with epidemiological findings that the smoking effect on 

cardiovascular disease are quickly and largely reduced after smoking cessation 

(Danesh et al, 2000, 1999, 1998). Our findings provided new insight into the 

metabolic basis for the reduced risk of CVD after smoking cessation and provided 

support for the remarkable benefits people would gain by ceasing smoking. 

 

Higher level of arginine was found in both smokers and people with MI events, which 

may imply a pathophysiological link between MI and smoking via this metabolite. 

Under physiological conditions nitric oxide synthase (NOS) oxidizes L-arginine, 

thereby generating L-citrulline and nitric oxide (NO). The main cellular target of NO 
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is the soluble guanylate cyclase (GUCY1A3) which catalyzes the conversion of GTP 

to cGMP. The formed cGMP induces vasodilation and inhibits adhesion of platelets 

and neutrophiles to the endothelium. Three isoforms of NOS are involved in this 

biological pathway, the two Ca2+-dependent isoforms NOS1 (nNOS) and NOS3 

(eNOS) and one cytokine-inducible isoform NOS2 (iNOS) (Knowles & Moncada, 

1994).  

Two scenarios provide explanations how an increased arginine level is associated 

with a higher risk for MI. Firstly, high arginine levels might result in an excessive 

generation of the arginine degradation product NO. NO interacts with superoxide 

anions (O.-) in the cells resulting in the formation of the cytotoxic peroxynitrite which 

induces tissue injury via lipid peroxidation (Wever et al, 1998) and inflammatory 

responses (Reiter et al, 2000). Pro-inflammatory cytokines are known to induce the 

expression of iNOS resulting in an even higher accumulation of NO and consequently 

peroxynitrite (Schulz et al, 1995). High arginine levels may also be a result from 

decreased NOS activity or impaired arginine uptake from the plasma into cells as it 

has been already been reported for ulcerative colitis (Hong et al, 2010). eNOS 

deficiency is a pivotal event in atherogenesis (Hong et al, 2010). Reduced NO-

induced cGMP formation contributes to vascular contractile dysfunction, increased 

adhesion of immune cells to the endothelial membrane (Erdmann et al, 2013) and 

accelerated inflammatory response (Kalz et al, 2014). 

 

Decreased level of LPC (18:2) were found in current smokers (Wang-Sattler et al, 

2008; Xu et al, 2013) and also in patients with diabetes (Wang-Sattler et al, 2012), 

which are both risk factors of MI. In smokers, the decreased level of LPC (18:2) 

reflects inhibition of upstream synthesis and activation of downstream hydrolysis. 
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Interestingly, one recent study showed that a disorder of phosphatidylcholine 

metabolism would promote cardiovascular disease (Wang et al, 2011b), thus a link 

might be established between smoking-related phosphatidylcholine variation and 

cardiovascular events. For example, the phosphatidylcholine hydroperoxide will 

promote angiogenesis in endothelial cells that are associated with atherosclerotic 

development (Nakagawa et al, 2011). Lyso-PCs show pro- and antiatherogenic effects 

(Schmitz & Ruebsaamen, 2010). Lyso-PCs enhance the transcriptional activation of 

endothelial nitric-oxide synthase (eNOS, NOS3) gene (Cieslik et al, 1998). Lyso-PC 

significantly increased the expression of extracellular-superoxide dismutase SOD3 

mRNA and protein in human monocytic U937 cells. Since SOD3 is a scavenger of 

superoxide, the up-regulation of SOD3 could lead to protection of the biological 

activity of NO and blocking peroxynitrite toxicity (Yamamoto et al, 2002). 

 
In this thesis, three projects were presented exploring smoking, MI and their relation 

using  data from large population-based cohort studies. The results link the 

life-style related environmental exposure, thus smoking, and the link between 

smoking and disease outcome: MI on a molecular level. In the first project, significant 

variations of metabolite concentration in smokers were found, which were reversible 

after smoking cessation. In the second project, using a systems biology approach that 

integrated transcriptomic, epigenomic and metabolite profiling data, two CpG sites 

and LRRN3 were discovered as mediators for the change in the concentration of LPC 

(18:2) and PC ae C34:3 under smoking exposure. In the third project, three novel 

metabolites associated with incident MI were identified in prospective cohort studies. 

Two metabolites, arginine and LPC (18:2) were associated with both smoking and MI, 

underlined metabolic basis for the association between the two phenotypes. These 
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metabolites were significantly related to early inflammatory processes as shown in 

network analysis and their significant relations with inflammatory markers, such as 

CRP.  

Several issues warrant further investigation. In all three projects, the analyses were 

based on a limited range and number of metabolites, which cannot fully represent the 

whole metabolome. Although lipid metabolism and amino acids pathways were 

mainly considered in the study of cardiovascular diseases, a more comprehensive 

metabolite profile will help to discover novel biomarkers in new pathways. Thus, an 

improved metabolomics technic measuring more metabolites is urgently needed to get 

a comprehensive understanding of the effects of smoking and MI on the human 

metabolism. It would be interesting for future studies to also include data on other 

environmental factors such as diet and life style which are known to have effects on 

the human metabolism (Gibney et al, 2005; Pohjanen et al, 2007).  

A larger prospective study is warranted for replication of our results. For the second 

project, the study does not have sufficient power for mediation analysis in a genome 

wide level. The samples size in the cohort for replication was too small to draw any 

concrete conclusions from our discovery. A similar issue also exists in the third 

project, in which both the discovery and replication cohort studies have relative small 

number of incident MI cases. Also, subgroup analysis will not be sufficiently powered 

under this context. Metabolomic study has shown significant differences of metabolite 

profile between men and women, which implies that there are gender-specific genes 

at play which leads to crucial variations in metabolite profiles (Mittelstrass et al, 

2011). A large prospective study will help to empower the analyses of subgroups or 

interactions between different factors, which may help to selectively use predictive 

biomarkers in subpopulation.  
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Table S2 Metabolite panels of KORA S4 and MONICA S2 case-cohort 

  Biocrates Absolute IDQ P180 Biocrates Absolute IDQ P150 

  KORA S4  MONICA/KORA S2 KORA F4 

Abbreviation Biochemical name CV 

(%) 

Above LOD 

(%) 

Concentration Applicati

on 

  CV 

(%) 

Above LOD 

(%) 

Concentratio

n 

Applicati

on 

r Above LOD 

(%) 

Mean 

(µM) 

CV Applicatio

n 

C0 Carnitine 5.8 99.63 41.25 ± 8.99 Used   9.41 100 43.74±9.66 Used 0.88 100 35.699 6.70% Used 
C2 Acetylcarnitine 6.3 99.63 8.64 ± 2.91 Used   5.83 100 7.36±2.81 Used 0.94 100 8.223 9.40% Used 
C3 Propionylcarnitine 10 99.63 0.48 ± 0.15 Used   7.49 100 0.51±0.2 Used 0.86 100 0.397 8.00% Used 
C3:1 Propenoylcarnitine 32.8 3.72 0.01 ± 0 Excluded   24.63 6.2 0.02±0 Excluded -

0.11 
0.1 0.01 37.50

% 
Excluded 

C3-OH Hydroxypropionylcarnitine 44.7 2.85 0.12 ± 0.1 Excluded   63.57 0 0.08±0.05 Excluded 0.05 0.36 0.03 76.60
% 

Excluded 

C4 Butyrylcarnitine 9.7 99.63 0.23 ± 0.13 Used   8.11 100 0.21±0.09 Used 0.89 100 0.227 8.80% Used 
C4:1 Butenylcarnitine 22.2 46.25 0.02 ± 0.01 Excluded   17.88 9.43 0.03±0.01 Excluded 0.04 5.65 0.018 34.70

% 
Excluded 

C4-OH (C3-DC) Hydroxybutyrylcarnitine 21.1 18.95 0.06 ± 0.03 Excluded   18.82 50.65 0.05±0.03 Used 0.47 8.4 0.098 35.50
% 

Excluded 

C5 Valerylcarnitine 10.8 98.7 0.17 ± 0.11 Used   8.51 99.87 0.17±0.06 Used 0.81 95.56 0.119 14.20
% 

Used 

C5:1 Tiglylcarnitine 22.9 1.8 0.05 ± 0.01 Excluded   15.64 0.13 0.05±0.01 Excluded 0.37 0.75 0.028 26.10
% 

Excluded 

C5:1 DC Glutaconylcarnitine 40 24.83 0.01 ± 0.01 Excluded   23.07 13.57 0.02±0 Excluded 0.13 12.48 0.016 42.40
% 

Excluded 

C5 DC (C6 OH) Glutarylcarnitine 
(Hydroxyhexanoylcarnitine) 

29.4 61.36 0.02 ± 0.01 Excluded   21.23 47.29 0.02±0.01 Excluded 0.15 27.06 0.041 21.00
% 

Excluded 

C5 M DC Methylglutarylcarnitine 28 2.48 0.03 ± 0.01 Excluded   14.42 4.52 0.05±0.05 Excluded 0.18 0.95 0.033 42.90
% 

Excluded 

C5 OH (C3 DC
M) 

Hydroxyvalerylcarnitine 
(Methylmalonylcarnitine) 

26.9 19.69 0.03 ± 0.01 Excluded   25.08 18.48 0.04±0.01 Excluded 0.25 55.1 0.027 28.70
% 

Excluded 

C6(C4:1 DC) Hexanoylcarnitine (Fumarylcarnitine) 21.8 65.33 0.09 ± 0.08 Used   21.65 43.28 0.07±0.04 Excluded 0.85 76.67 0.073 13.60
% 

Used 

C6:1 Hexenoylcarnitine 30.7 5.2 0.02 ± 0.01 Excluded   23.52 5.81 0.02±0.01 Excluded 0.07 0.33 0.018 32.40
% 

Excluded 

C7 DC Pimelylcarnitine 18.4 70.53 0.05 ± 0.02 Used   13.73 63.7 0.03±0.01 Used 0.79 61.34 0.045 34.40
% 

Excluded 

C8 Octanoylcarnitine 13.2 60.62 0.27 ± 0.24 Used   9.06 46.9 0.14±0.09 Excluded 0.89 51.54 0.223 16.30
% 

Used 

C8:1 Octenoylcarnitine                   0.92 96.01 0.09 8.40% Used 
C9 Nonaylcarnitine 23.6 97.28 0.05 ± 0.02 Used   21.26 94.7 0.05±0.02 Excluded 0.84 83.73 0.05 20.80

% 
Used 

C10 Decanoylcarnitine 11.7 99.07 0.39 ± 0.3 Used   8.52 89.15 0.23±0.13 Used 0.93 94.08 0.36 11.40
% 

Used 

C10:1 Decenoylcarnitine 11.2 74.8 0.18 ± 0.08 Used   7.91 46.12 0.13±0.05 Excluded 0.83 48.66 0.169 10.40
% 

Used 

C10:2 Decadienylcarnitine 16 94.86 0.04 ± 0.01 Used   10.32 88.37 0.04±0.02 Used 0.51 50.49 0.042 14.50
% 

Used 

C12 Dodecanoylcarnitine 12.2 96.41 0.16 ± 0.07 Used   9.85 58.14 0.1±0.04 Used 0.86 87.35 0.131 10.40
% 

Used 

C12:1 Dodecenoylcarnitine 15.2 26.75 0.17 ± 0.06 Excluded   10.08 38.24 0.09±0.04 Excluded 0.73 13.69 0.147 13.00
% 

Used 

C12-DC Dodecanedioylcarnitine 12.3 0 0.07 ± 0.01 Excluded   10.25 0 0.07±0.01 Excluded 0.05 0 0.058 12.20
% 

Excluded 

C14 Tetradecanoylcarnitine 15.8 96.66 0.06 ± 0.02 Used   12.59 85.4 0.05±0.01 Used 0.54 51.67 0.046 12.60
% 

Used 
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C14:2 Tetradecadienylcarnitine   18.3 98.33 0.04 ± 0.02 Used   12.29 95.87 0.02±0.01 Used   0.87 98.82 0.032 11.60
% 

Used 

C14:2-OH Hydroxytetradecadienylcarnitine   35.1 47 0.01 ± 0 Excluded   16.17 35.01 0.01±0.01 Excluded   0.27 38.04 0.009 17.40
% 

Excluded 

C16 Hexadecanylcarnitine   11.3 99.63 0.14 ± 0.03 Used   10.48 100 0.13±0.03 Used   0.84 100 0.118 8.90% Used 
C16-OH Hydroxyhexadecanoylcarnitine   33 16.28 0.01 ± 0 Excluded   22.03 51.03 0.01±0 Excluded   0.2 3.33 0.007 24.10

% 
Excluded 

C16:1 Hexadecenoylcarnitine   18.1 77.83 0.04 ± 0.01 Used   13.83 61.37 0.03±0.01 Used   0.71 2.78 0.038 10.20
% 

Used 

C16:1-OH Hydroxyhexadecenoylcarnitine   26.5 26.01 0.01 ± 0 Excluded   24.69 45.09 0.01±0 Excluded   0.38 2.25 0.011 17.50
% 

Excluded 

C16:2 Hexadecadienylcarnitine   34 87.49 0.01 ± 0 Excluded   16.35 72.35 0.01±0 Used   0.57 70.69 0.008 19.40
% 

Used 

C16:2-OH Hydroxyhexadecadienylcarnitine   30.1 5.76 0.01 ± 0 Excluded   21.38 0.13 0.01±0 Excluded   0.32 4.67 0.012 16.60
% 

Excluded 

C18 Octadecanoylcarnitine   15.7 99.63 0.06 ± 0.01 Used   15.04 100 0.06±0.02 Used   0.69 99.8 0.05 13.70
% 

Used 

C18:1 Octadecenoylcarnitine   9.7 99.57 0.15 ± 0.04 Used   8.76 100 0.17±0.05 Used   0.87 98.33 0.13 10.20
% 

Used 

C18:1-OH Hydroxyoctadecenoylcarnitine   44.6 7.37 0.01 ± 0 Excluded   24.11 2.07 0.01±0 Excluded   0.06 0.95 0.011 33.40
% 

Excluded 

C18:2 Octadecadienylcarnitine   10.5 99.57 0.05 ± 0.02 Used   8.32 100 0.07±0.02 Used   0.81 100 0.047 9.40% Used 
Ala Alanine   13.7 99.5 419.93 ± 100.25 Used   5.97 100 474.5±97.72 Used             
Arg Arginine   13.2 99.26 127.38 ± 27.01 Used   12.26 100 135.03±30.41 Used   0.59 100 116.025 8.20% Used 
Asn Asparagine   11.1 99.57 46.08 ± 8.47 Used   22.48 100 56.13±12.52 Excluded             
Asp Aspartate   12.2 99.44 30.05 ± 9.93 Used   18.39 100 51.14±12.92 Used             
Cit Citrulline   12.7 99.44 35.11 ± 9.94 Used   11.2 100 36.92±11.83 Used             
Gln Glutamine   12.8 99.57 579.79 ± 118.55 Used   15.13 100 612.01±115.4

1 
Used   0.62 100 621.149 9.90% Used 

Glu Glutamate   15.8 99.57 81.53 ± 35.4 Used   10.53 100 170.97±75.34 Used             
Gly Glycine   13.2 99.5 263.02 ± 74.35 Used   16.76 100 347.87±81.28 Used   0.89 100 307.653 7.90% Used 
His Histidine   12.9 99.38 82.39 ± 15.13 Used   12.47 100 98.59±17.24 Used   0.69 100 98.126 8.30% Used 
Ile Isoleucine   13.9 99.63 72.65 ± 19.67 Used   12.03 100 98.52±32.16 Used             
Leu Leucine   12.9 98.58 160.26 ± 43.19 Used   10.41 100 204.78±54.9 Used             
Lys Lysine   15.5 99.69 166.36 ± 37.05 Used   14.05 100 176.72±34 Used             
Met Methionine   13.5 99.69 23.94 ± 6.85 Used   13.62 100 26.33±7.76 Used   0.53 100 32.208 9.70% Used 
Orn Ornithine   14.9 99.63 59.34 ± 15.12 Used   15.48 100 94.12±21.6 Used   0.75 100 81.891 9.40% Used 
Phe Phenylalanine   12.2 99.57 77.51 ± 17.62 Used   12.11 100 109.69±18.79 Used   0.62 100 62.269 8.40% Used 
Pro Proline   11.8 99.63 195.17 ± 60.16 Used   9.23 99.87 250.07±63.9 Used   0.89 100 176.445 7.40% Used 
Ser Serine   13.6 99.44 126.75 ± 28.92 Used   13.6 100 161.02±29.55 Used   0.62 100 128.342 9.60% Used 
Thr Threonine   18.3 99.13 120.31 ± 31.71 Used   5.55 100 123.6±28.35 Used   0.71 100 105.941 12.10

% 
Used 

Trp Tryptophan   12.9 99.63 60.23 ± 12.64 Used   11.5 100 68.65±14.31 Used   0.51 100 82.656 7.50% Used 
Tyr Tryosine   14.7 99.57 72.51 ± 20.2 Used   11.62 100 82.62±21.04 Used   0.66 100 85.554 8.60% Used 
Val Valine   13.5 99.63 228.02 ± 51.89 Used   12 100 243.31±50.16 Used   0.69 100 278.405 19.60

% 
Used 

Ac-Orn Acetylornithine   20.8 79.07 0.75 ± 0.46 Used   37.51 96.38 1.35±1.08 Excluded   0.74 100 214.254 8.20% Used 
ADMA Asymmetric dimethylarginine   17.4 66.5 0.57 ± 0.38 Used   26.42 100 0.49±0.13 Excluded        
SDMA Symmetric dimethylarginine   32.4 97.34 0.77 ± 0.26 Excluded   41.52 99.22 0.56±0.28 Excluded        
total-DMA Total dimethylarginine   20.3 99.2 1.22 ± 0.25 Used   25.49 89.92 0.71±0.34 Excluded        
alpha-AAA alpha-Aminoadipic acid   32 97.34 0.67 ± 0.29 Excluded   26.89 95.87 1.03±0.67 Excluded        
Carnosine Carnosine   89.8 4.02 0.13 ± 0.06 Excluded   NA 0.78 0.07±0.1 Excluded        
Creatinine Creatinine   14.7 99.38 76.07 ± 24.21 Used   5.79 100 80.44±44.11 Used        
Histamine Histamine   43.5 89.97 0.39 ± 0.17 Excluded   77.23 53.62 0.15±0.16 Excluded        
Kynurenine Kynurenine   11.3 97.28 2.93 ± 0.76 Used   21.59 99.87 2.67±0.91 Excluded        
Met-SO Methioninesulfoxide 20.9 96.66 0.76 ± 0.27 Used 20.55 99.22 1.22±0.6 Excluded 
Nitro-Tyr Nitrotyrosine   58.4 7.55 0.66 ± 0.32 Excluded   NA 0.39 0.35±0.37 Excluded        
OH-Pro Hydroxyproline   NA 2.11 5.34 ± 5.15 Excluded   165.29 2.07 1.67±6.16 Excluded        
PEA Phenylethylamine   NA 0.56 0.09 ± 0.01 Excluded   20.14 0.52 0.02±0.04 Excluded        
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Putrescine Putrescine   53.2 93.75 0.15 ± 0.05 Excluded   56.69 69.38 0.06±0.26 Excluded        
Sarcosine Sarcosine   28.7 4.4 93.9 ± 223.85 Excluded   83.02 99.61 11.52±14.13 Excluded        
Serotonin Serotonin   38 99.32 0.69 ± 0.36 Excluded   131.4 99.22 0.57±0.29 Excluded        
Spermidine Spermidine   24.1 98.51 0.27 ± 0.07 Used   19.46 74.03 0.23±0.27 Used        
Spermine Spermine   8.5 9.29 0.28 ± 0.13 Excluded   19.74 63.82 0.28±0.3 Used        
Taurine Taurine   13.7 96.9 93.65 ± 24.37 Used   11.42 100 141.64±22.76 Used        
DOPA DOPA   19.5 44.58 0.49 ± 0.58 Excluded   47.12 20.67 0.2±0.11 Excluded        
Dopamine Dopamine   NA 0.06 0.61 ± NA Excluded   77.04 1.42 0.11±2.12 Excluded        
lysoPC a C6:0 lysoPhosphatidylcholine acyl C6:0                       -

0.14 
33.33 0.023 62.50

% 
Excluded 

lysoPC a C14:0 lysoPhosphatidylcholine acyl C14:0   6.8 0 6.28 ± 0.8 Excluded   5.45 42.38 5.82±1.53 Excluded   0.45 21.24 3.209 23.80
% 

Excluded 

lysoPC a C16:0 lysoPhosphatidylcholine acyl C16:0   6.9 99.81 122.71 ± 26.13 Used   6.75 100 233.73±55.43 Used   0.75 100 94.408 8.80% Used 
lysoPC a C16:1 lysoPhosphatidylcholine acyl C16:1   7 99.69 3.71 ± 1.25 Used   7.59 100 6.73±2.16 Used   0.84 100 2.909 8.60% Used 
lysoPC a C17:0 lysoPhosphatidylcholine acyl C17:0   7.3 99.63 2.08 ± 0.67 Used   7.54 100 4.58±1.67 Used   0.84 100 1.727 12.70

% 
Used 

lysoPC a C18:0 lysoPhosphatidylcholine acyl C18:0   7.2 99.81 32.73 ± 8.11 Used   8.01 100 64.98±18.47 Used   0.8 100 26.066 9.70% Used 
lysoPC a C18:1 lysoPhosphatidylcholine acyl C18:1   6.8 99.75 21.5 ± 6.28 Used   7.65 100 35.79±9.82 Used   0.84 100 19.277 9.20% Used 
lysoPC a C18:2 lysoPhosphatidylcholine acyl C18:2   6.9 99.75 28.09 ± 8.99 Used   7.18 100 46.06±15.11 Used   0.93 100 27.241 8.80% Used 
lysoPC a C20:3 lysoPhosphatidylcholine acyl C20:3   8.8 99.63 2.29 ± 0.68 Used   7.41 100 3.63±1.11 Used   0.77 100 2.393 9.00% Used 
lysoPC a C20:4 lysoPhosphatidylcholine acyl C20:4   7.3 99.69 6.2 ± 1.88 Used   7.32 100 10.38±3.03 Used   0.87 100 6.798 9.00% Used 
lysoPC a C24:0 lysoPhosphatidylcholine acyl C24:0   32 23.22 0.21 ± 0.07 Excluded   23.98 64.47 0.32±0.11 Excluded   0.09 12.45 0.364 21.10

% 
Excluded 

lysoPC a C26:0 lysoPhosphatidylcholine acyl C26:0   44.4 43.72 0.3 ± 0.16 Excluded   45.37 98.06 0.55±0.31 Excluded   0.09 59.58 0.548 31.00
% 

Excluded 

lysoPC a C26:1 lysoPhosphatidylcholine acyl C26:1   9.5 0 1.68 ± 0.17 Excluded   39.74 99.87 0.25±0.12 Excluded   -
0.04 

0 2.027 7.90% Excluded 

lysoPC a C28:0 lysoPhosphatidylcholine acyl C28:0   37 23.47 0.33 ± 0.12 Excluded   34.67 95.35 0.55±0.23 Excluded   0.17 49.61 0.492 29.10
% 

Excluded 

lysoPC a C28:1 lysoPhosphatidylcholine acyl C28:1   35.5 98.64 0.47 ± 0.16 Excluded   29.45 100 0.69±0.23 Excluded   0.29 99.84 0.618 22.60
% 

Excluded 

PC aa C24:0 Phosphatidylcholine diacyl C24:0   45.9 69.35 0.09 ± 0.05 Excluded   39.09 96.51 0.16±0.08 Excluded   0.11 72.55 0.15 26.50
% 

Excluded 

PC aa C26:0 Phosphatidylcholine diacyl C26:0   27.2 5.63 0.74 ± 0.26 Excluded   27.32 29.46 1.16±0.41 Excluded   0.09 11.54 1.05 32.90
% 

Excluded 

PC aa C28:1 Phosphatidylcholine diacyl C28:1   9.5 99.63 3.58 ± 0.84 Used   7.65 100 3.22±0.82 Used   0.87 100 3.362 9.80% Used 
PC aa C30:0 Phosphatidylcholine diacyl C30:0   9.4 99.63 5.85 ± 1.71 Used   7.28 100 4.59±1.43 Used   0.89 100 4.716 7.80% Used 
PC aa C30:2 Phosphatidylcholine diacyl C30:2   89.9 31.33 0.03 ± 0.07 Excluded   51.75 89.28 0.12±0.09 Excluded   0.12 4.22 0.003 81.60

% 
Excluded 

PC aa C32:0 Phosphatidylcholine diacyl C32:0   8.4 99.81 14.86 ± 2.85 Used   5.91 100 14.16±3.08 Used   0.83 100 15.145 7.10% Used 
PC aa C32:1 Phosphatidylcholine diacyl C32:1   9.2 99.81 20.81 ± 10.63 Used   7.95 100 15.37±10.01 Used   0.96 100 21.842 7.40% Used 
PC aa C32:2 Phosphatidylcholine diacyl C32:2   12.3 99.81 4.31 ± 1.66 Used   8.64 100 4.42±1.65 Used   0.91 99.93 3.887 11.10

% 
Used 

PC aa C32:3 Phosphatidylcholine diacyl C32:3   9.2 99.75 0.54 ± 0.14 Used   9.25 100 0.6±0.18 Used   0.79 100 0.481 8.90% Used 
PC aa C34:1 Phosphatidylcholine diacyl C34:1   7.1 99.88 222.04 ± 46.61 Used   5.78 100 205.3±53.16 Used   0.83 100 240.267 7.20% Used 
PC aa C34:2 Phosphatidylcholine diacyl C34:2   7 99.88 364.87 ± 50.66 Used   5.86 100 351.39±63.18 Used   0.75 100 391.393 7.70% Used 
PC aa C34:3 Phosphatidylcholine diacyl C34:3   6.3 99.88 18.18 ± 5.25 Used   6.51 100 16.73±4.97 Used   0.91 100 17.892 8.60% Used 
PC aa C34:4 Phosphatidylcholine diacyl C34:4   6.8 99.81 2.18 ± 0.77 Used   7.43 100 2.24±0.76 Used   0.92 100 2.261 8.00% Used 
PC aa C36:0 Phosphatidylcholine diacyl C36:0   11.6 99.63 2.98 ± 0.75 Used   9.15 100 2.63±0.72 Used   0.74 100 2.69 17.40

% 
Used 

PC aa C36:1 Phosphatidylcholine diacyl C36:1   6.9 99.88 53.54 ± 14.16 Used   5.58 100 55.79±14.67 Used   0.84 100 53.831 8.50% Used 
PC aa C36:2 Phosphatidylcholine diacyl C36:2   6.6 99.88 255.06 ± 43.56 Used   5.25 100 241.28±44.22 Used   0.8 100 231.934 6.70% Used 
PC aa C36:3 Phosphatidylcholine diacyl C36:3   6.5 99.88 151.97 ± 29.94 Used   5.97 100 155.15±31.97 Used   0.86 100 149.595 7.50% Used 
PC aa C36:4 Phosphatidylcholine diacyl C36:4   6.3 99.94 208.67 ± 44.62 Used   5.86 100 201.24±44.34 Used   0.87 100 219.578 7.80% Used 
PC aa C36:5 Phosphatidylcholine diacyl C36:5   6.7 99.81 30.78 ± 15.23 Used   6.11 100 29.18±13.97 Used   0.82 100 29.302 8.60% Used 
PC aa C36:6 Phosphatidylcholine diacyl C36:6   9.5 99.75 1.11 ± 0.43 Used   7.54 100 1.33±0.51 Used   0.89 100 1.118 11.10

% 
Used 

PC aa C38:0 Phosphatidylcholine diacyl C38:0   8.8 99.63 3.35 ± 0.86 Used   6.57 100 3.84±0.92 Used   0.86 100 3.256 13.80
% 

Used 

PC aa C38:1 Phosphatidylcholine diacyl C38:1   27 99.75 1.38 ± 0.43 Excluded   17.47 100 1.58±0.42 Used   0.34 99.84 0.859 18.10
% 

Excluded 
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PC aa C38:3 Phosphatidylcholine diacyl C38:3   6.9 99.88 58.03 ± 14.11 Used   5.02 100 54.98±13.85 Used   0.86 100 53.993 7.60% Used 
PC aa C38:4 Phosphatidylcholine diacyl C38:4   5.7 99.88 119.01 ± 29.37 Used   5.26 100 111.23±26.31 Used   0.88 100 119.655 7.30% Used 
PC aa C38:5 Phosphatidylcholine diacyl C38:5   5.6 99.88 62.89 ± 15.21 Used   5.54 100 56.45±13.65 Used   0.83 100 62.173 7.90% Used 
PC aa C38:6 Phosphatidylcholine diacyl C38:6   6.9 100 89.9 ± 26.07 Used   5.85 100 92.7±24.75 Used   0.93 100 90.24 8.10% Used 
PC aa C40:1 Phosphatidylcholine diacyl C40:1   11.7 14.24 0.42 ± 0.09 Excluded   9.39 11.24 0.5±0.11 Excluded   0.51 8.66 0.465 13.50

% 
Used 

PC aa C40:2 Phosphatidylcholine diacyl C40:2   14.9 99.63 0.37 ± 0.11 Used   10.52 100 0.48±0.14 Used   0.51 100 0.357 11.70
% 

Used 

PC aa C40:3 Phosphatidylcholine diacyl C40:3   13.9 99.75 0.69 ± 0.16 Used   7.6 100 0.82±0.21 Used   0.6 100 0.653 11.20
% 

Used 

PC aa C40:4 Phosphatidylcholine diacyl C40:4   6.8 99.81 4.15 ± 1.22 Used   5.58 100 4.2±1.2 Used   0.86 100 4.157 7.60% Used 
PC aa C40:5 Phosphatidylcholine diacyl C40:5   6.5 99.75 12.75 ± 3.6 Used   5.23 100 13.43±4.04 Used   0.89 100 11.504 7.00% Used 
PC aa C40:6 Phosphatidylcholine diacyl C40:6   6.1 99.63 32.47 ± 10.04 Used   5.48 100 34.36±10.66 Used   0.93 100 28.751 7.10% Used 
PC aa C42:0 Phosphatidylcholine diacyl C42:0   9.2 99.88 0.55 ± 0.15 Used   8.3 100 0.52±0.15 Used   0.85 99.97 0.592 12.30

% 
Used 

PC aa C42:1 Phosphatidylcholine diacyl C42:1   12 99.69 0.27 ± 0.07 Used   9.76 100 0.26±0.07 Used   0.72 100 0.297 14.80
% 

Used 

PC aa C42:2 Phosphatidylcholine diacyl C42:2   13.5 99.69 0.2 ± 0.05 Used   9.13 100 0.24±0.06 Used   0.56 100 0.209 14.60
% 

Used 

PC aa C42:4 Phosphatidylcholine diacyl C42:4   11 99.81 0.21 ± 0.04 Used   10.46 100 0.17±0.04 Used   0.51 100 0.219 11.70
% 

Used 

PC aa C42:5 Phosphatidylcholine diacyl C42:5   11.3 99.69 0.44 ± 0.13 Used   8.32 100 0.51±0.15 Used   0.75 100 0.426 10.60
% 

Used 

PC aa C42:6 Phosphatidylcholine diacyl C42:6   10.7 95.42 0.6 ± 0.14 Used   8.39 69.51 0.72±0.17 Used   0.62 60.16 0.626 12.50
% 

Used 

PC ae C30:0 Phosphatidylcholine acyl-alkyl C30:0   19.7 99.57 0.45 ± 0.13 Used   14.01 97.93 0.41±0.12 Used   0.76 98.86 0.464 18.10
% 

Used 

PC ae C30:1 Phosphatidylcholine acyl-alkyl C30:1   77.9 82.35 0.13 ± 0.11 Excluded   53.44 99.74 0.23±0.11 Excluded   0.18 94.12 0.224 41.70
% 

Excluded 

PC ae C30:2 Phosphatidylcholine acyl-alkyl C30:2   25.2 99.57 0.13 ± 0.04 Excluded   16.46 95.87 0.17±0.04 Used   0.65 86.34 0.156 17.50
% 

Used 

PC ae C32:1 Phosphatidylcholine acyl-alkyl C32:1   9.3 99.81 2.79 ± 0.56 Used   6.82 100 2.7±0.57 Used   0.83 100 2.852 8.00% Used 
PC ae C32:2 Phosphatidylcholine acyl-alkyl C32:2   12.2 99.63 0.71 ± 0.16 Used   9.66 100 0.78±0.18 Used   0.77 100 0.748 11.60

% 
Used 

PC ae C34:0 Phosphatidylcholine acyl-alkyl C34:0   9.6 99.81 1.67 ± 0.43 Used   6.84 100 1.85±0.49 Used   0.82 100 1.724 7.90% Used 
PC ae C34:1 Phosphatidylcholine acyl-alkyl C34:1   7.4 99.81 10.4 ± 2.19 Used   6.29 100 9±2.07 Used   0.87 100 10.516 7.60% Used 
PC ae C34:2 Phosphatidylcholine acyl-alkyl C34:2   7.2 99.88 11.96 ± 2.96 Used   6.33 100 11.07±2.69 Used   0.9 100 12.608 7.60% Used 
PC ae C34:3 Phosphatidylcholine acyl-alkyl C34:3   6.9 99.88 7.51 ± 2.12 Used   6.22 100 8.01±2.32 Used   0.91 100 8.34 7.90% Used 
PC ae C36:0 Phosphatidylcholine acyl-alkyl C36:0   22.7 99.63 0.93 ± 0.28 Used   12.83 100 1.08±0.27 Used   0.35 100 1.062 35.60

% 
Excluded 

PC ae C36:1 Phosphatidylcholine acyl-alkyl C36:1   7.9 99.75 8.79 ± 2.05 Used   6.25 100 8.2±1.99 Used   0.85 100 8.303 9.80% Used 
PC ae C36:2 Phosphatidylcholine acyl-alkyl C36:2   7 99.88 15.06 ± 3.84 Used   5.84 100 15.84±4.33 Used   0.92 100 15.064 8.30% Used 
PC ae C36:3 Phosphatidylcholine acyl-alkyl C36:3   7.1 99.88 7.91 ± 1.85 Used   6.37 100 8.54±1.84 Used   0.86 100 8.545 8.10% Used 
PC ae C36:4 Phosphatidylcholine acyl-alkyl C36:4   6.3 99.88 19.99 ± 4.78 Used   6.33 100 17.87±4.09 Used   0.87 100 20.774 7.90% Used 
PC ae C36:5 Phosphatidylcholine acyl-alkyl C36:5   6.1 99.81 12.96 ± 3.22 Used   6.28 100 13.01±3.29 Used   0.89 100 13.807 8.00% Used 
PC ae C38:0 Phosphatidylcholine acyl-alkyl C38:0   8.1 99.63 2.22 ± 0.66 Used   6.18 100 2.76±0.78 Used   0.81 100 2.465 10.80

% 
Used 

PC ae C38:1 Phosphatidylcholine acyl-alkyl C38:1   14.7 99.5 0.62 ± 0.26 Used   11.96 34.75 0.09±0.17 Excluded   0.48 100 0.814 12.40
% 

Used 

PC ae C38:2 Phosphatidylcholine acyl-alkyl C38:2   11.7 99.75 2.1 ± 0.48 Used   7.05 100 2.48±0.57 Used   0.73 100 2.123 10.30
% 

Used 

PC ae C38:3 Phosphatidylcholine acyl-alkyl C38:3   7 99.94 4.25 ± 0.98 Used   6.04 100 5.1±1.2 Used   0.85 100 4.295 9.20% Used 
PC ae C38:4 Phosphatidylcholine acyl-alkyl C38:4   6.1 100 15.36 ± 3.11 Used   5.73 100 14.36±2.77 Used   0.82 100 15.628 8.60% Used 
PC ae C38:5 Phosphatidylcholine acyl-alkyl C38:5   5.9 100 19.25 ± 3.86 Used   5.76 100 19.64±3.74 Used   0.82 100 19.863 8.30% Used 
PC ae C38:6 Phosphatidylcholine acyl-alkyl C38:6   6.5 99.88 8.7 ± 2.05 Used   5.93 100 8.57±1.91 Used   0.85 100 8.677 8.10% Used 
PC ae C40:0 Phosphatidylcholine acyl-alkyl C40:0                       0.87 1.05 10.205 4.80% Used 
PC ae C40:1 Phosphatidylcholine acyl-alkyl C40:1   11.1 99.63 1.58 ± 0.37 Used   9.42 100 1.83±0.41 Used   0.68 100 1.661 10.50

% 
Used 

PC ae C40:2 Phosphatidylcholine acyl-alkyl C40:2   8.3 99.88 2.12 ± 0.49 Used   6.2 100 2.17±0.53 Used   0.85 100 2.083 9.50% Used 
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PC ae C40:3 Phosphatidylcholine acyl-alkyl C40:3   9 99.94 1.18 ± 0.24 Used   6.29 100 1.18±0.32 Used   0.73 100 1.133 9.50% Used 
PC ae C40:4 Phosphatidylcholine acyl-alkyl C40:4   8.7 99.63 2.68 ± 0.51 Used   6.57 100 2.83±0.56 Used   0.82 100 2.568 9.60% Used 
PC ae C40:5 Phosphatidylcholine acyl-alkyl C40:5   6.5 99.88 3.66 ± 0.69 Used   5.72 100 4.4±0.88 Used   0.78 100 3.547 8.30% Used 
PC ae C40:6 Phosphatidylcholine acyl-alkyl C40:6   6.9 99.94 5.42 ± 1.3 Used   5.62 100 5.7±1.35 Used   0.88 100 5.04 8.60% Used 
PC ae C42:0 Phosphatidylcholine acyl-alkyl C42:0   13.8 36.35 0.52 ± 0.1 Excluded   8.46 15.89 0.69±0.12 Excluded   0.6 14.87 0.513 15.70

% 
Used 

PC ae C42:1 Phosphatidylcholine acyl-alkyl C42:1   16 99.57 0.38 ± 0.09 Used   13.43 100 0.48±0.11 Used   0.51 100 0.371 11.50
% 

Used 

PC ae C42:2 Phosphatidylcholine acyl-alkyl C42:2   11.5 99.69 0.63 ± 0.14 Used   8.13 100 0.72±0.16 Used   0.69 100 0.664 12.80
% 

Used 

PC ae C42:3 Phosphatidylcholine acyl-alkyl C42:3   9.8 99.88 0.84 ± 0.19 Used   8.46 100 0.86±0.18 Used   0.8 100 0.861 10.80
% 

Used 

PC ae C42:4 Phosphatidylcholine acyl-alkyl C42:4   7.8 99.63 0.95 ± 0.22 Used   6.21 100 0.96±0.22 Used   0.78 100 1.007 9.20% Used 
PC ae C42:5 Phosphatidylcholine acyl-alkyl C42:5   7.4 99.57 2.19 ± 0.46 Used   5.55 100 2.26±0.49 Used   0.86 99.97 2.346 7.40% Used 
PC ae C44:3 Phosphatidylcholine acyl-alkyl C44:3   24.3 99.69 0.13 ± 0.04 Used   14.93 100 0.14±0.03 Used   0.5 100 0.11 12.50

% 
Used 

PC ae C44:4 Phosphatidylcholine acyl-alkyl C44:4   12.1 99.69 0.38 ± 0.1 Used   9.21 100 0.36±0.08 Used   0.71 100 0.427 11.40
% 

Used 

PC ae C44:5 Phosphatidylcholine acyl-alkyl C44:5   7.4 99.69 1.73 ± 0.46 Used   6.18 100 1.46±0.38 Used   0.86 100 2.112 8.00% Used 
PC ae C44:6 Phosphatidylcholine acyl-alkyl C44:6   7.8 99.63 1.25 ± 0.33 Used   6.16 100 1.02±0.28 Used   0.89 100 1.373 7.70% Used 
SM (OH) C14:1 Hydroxysphingomyeline C14:1   11 99.63 9.43 ± 2.53 Used   7.18 100 9.88±2.94 Used   0.91 100 6.222 7.70% Used 
SM (OH) C16:1 Hydroxysphingomyeline C16:1   11 100 5.15 ± 1.35 Used   8.16 100 4.85±1.39 Used   0.86 100 3.353 8.80% Used 
SM (OH) C22:1 Hydroxysphingomyeline C22:1   11.2 99.88 20.18 ± 4.56 Used   8.63 100 18.97±4.74 Used   0.82 100 13.496 11.20

% 
Used 

SM (OH) C22:2 Hydroxysphingomyeline C22:2   11.2 99.88 16.33 ± 4.09 Used   8.94 100 14.95±4.16 Used   0.87 100 11.409 10.30
% 

Used 

SM (OH) C24:1 Hydroxysphingomyeline C24:1   15.1 99.75 1.99 ± 0.49 Used   10.86 100 1.76±0.48 Used   0.75 100 1.344 15.10
% 

Used 

SM C16:0 Sphingomyeline C16:0   10.6 99.88 150.28 ± 24.31 Used   7.28 100 146.17±24.55 Used   0.73 100 106.649 8.00% Used 
SM C16:1 Sphingomyeline C16:1   9.9 99.88 23.81 ± 4.67 Used   7.33 100 23.75±5.19 Used   0.84 100 16.059 7.50% Used 
SM C18:0 Sphingomyeline C18:0   9.8 99.81 33.18 ± 7.02 Used   7.76 100 31.52±7.17 Used   0.79 100 23.224 9.00% Used 
SM C18:1 Sphingomyeline C18:1   9.4 99.88 16.7 ± 4.09 Used   7.3 100 15.29±4.12 Used   0.84 100 11.304 8.20% Used 
SM C20:2 Sphingomyeline C20:2   16.2 99.81 0.66 ± 0.23 Used   9.59 100 1.21±0.62 Used   0.61 99.93 0.381 12.60

% 
Used 

SM C22:3 Sphingomyeline C22:3   NA 0.37 0 ± 0.01 Excluded   41.07 78.94 0.39±0.41 Excluded   -
0.04 

55.85 0.114 57.60
% 

Excluded 

SM C24:0 Sphingomyeline C24:0   11.9 99.75 30.26 ± 5.82 Used   8.81 100 28.77±5.78 Used   0.78 100 21.79 10.70
% 

Used 

SM C24:1 Sphingomyeline C24:1   12.1 99.88 76.6 ± 14.93 Used   8.79 100 66.12±13.01 Used   0.75 100 52.568 10.00
% 

Used 

SM C26:0 Sphingomyeline C26:0   31.8 99.81 0.3 ± 0.09 Excluded   32.47 100 0.21±0.07 Excluded  0.46 100 0.176 67.80
% 

Excluded 

SM C26:1 Sphingomyeline C26:1   21.2 99.75 0.65 ± 0.2 Used   17.62 100 0.57±0.17 Used  0.69 100 0.417 20.80
% 

Used 

H1 Hexose   5.2 99.81 5368.96 ± 
1010.34 

Used   5.53 100 5255.8±1967.
33 

Used  0.69 100 5190.295 6.30% Used 
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Table S2 CpG sites different between S and never smokers in KORA F4 and replicated 

in KORA F3 

    F4   F3   

CpG site Gene  P  P 

cg22635096 ADARB1 0.22(0.15,0.29 ) 1.98E-10 0.19(0.12,0.25  ) 3.43E-08 

cg01207684 ADCY9 -0.25(-0.31,-0.20) 3.42E-22 -0.23(-0.30,-0.17) 7.03E-12 

cg05765011 ADCY9 -0.17(-0.22,-0.13) 7.98E-13 -0.11(-0.16,-0.06) 1.48E-05 

cg00689360 ADH1C -0.28(-0.38,-0.18) 6.16E-08 -0.22(-0.33,-0.11) 6.75E-05 

cg05329352 ADRA2A -0.15(-0.19,-0.11) 3.21E-14 -0.12(-0.17,-0.07) 1.13E-06 

cg05575921 AHRR -1.76(-1.85,-1.66) 1.26E-215 -1.84(-2.00,-1.68) 4.67E-76 

cg26703534 AHRR -0.40(-0.43,-0.37) 2.39E-123 -0.35(-0.40,-0.31) 3.54E-41 

cg21161138 AHRR -0.67(-0.73,-0.62) 1.37E-113 -0.64(-0.72,-0.56) 5.68E-47 

cg25648203 AHRR -0.75(-0.82,-0.68) 6.54E-89 -0.66(-0.76,-0.56) 2.72E-34 

cg14817490 AHRR -0.56(-0.63,-0.50) 1.69E-59 -0.43(-0.50,-0.36) 3.86E-27 

cg03991871 AHRR -1.15(-1.30,-1.00) 7.14E-50 -1.18(-1.37,-0.99) 2.12E-29 

cg11902777 AHRR -0.51(-0.58,-0.44) 1.24E-44 -0.39(-0.47,-0.32) 6.41E-23 

cg23576855 AHRR -1.46(-1.66,-1.26) 8.66E-44 -1.39(-1.62,-1.16) 9.29E-29 

cg01899089 AHRR -0.28(-0.32,-0.24) 1.02E-41 -0.19(-0.23,-0.14) 1.57E-17 

cg12806681 AHRR -0.72(-0.82,-0.62) 1.90E-41 -0.64(-0.77,-0.51) 5.63E-21 

cg11554391 AHRR -0.23(-0.27,-0.20) 3.66E-33 -0.15(-0.19,-0.12) 7.00E-16 

cg23916896 AHRR -0.31(-0.37,-0.26) 1.48E-31 -0.27(-0.32,-0.22) 1.15E-22 

cg03604011 AHRR 0.51(0.42,0.59 ) 4.24E-28 0.30(0.20,0.40  ) 7.08E-09 

cg24090911 AHRR -0.42(-0.51,-0.33) 3.61E-19 -0.35(-0.47,-0.24) 5.41E-09 

cg17924476 AHRR 0.31(0.24,0.39 ) 1.52E-17 0.21(0.14,0.28  ) 2.34E-08 

cg10841124 AHRR 0.26(0.20,0.32 ) 2.46E-17 0.19(0.11,0.26  ) 2.47E-06 

cg16219322 AHRR -0.26(-0.33,-0.19) 4.84E-13 -0.19(-0.25,-0.12) 7.52E-08 

cg26850624 AHRR 0.18(0.13,0.24 ) 4.36E-12 0.17(0.10,0.23  ) 9.20E-07 

cg09338136 AHRR -0.06(-0.08,-0.04) 1.88E-08 -0.09(-0.12,-0.06) 1.40E-08 

cg24688690 AHRR -0.11(-0.14,-0.07) 2.06E-08 -0.09(-0.13,-0.05) 2.31E-06 

cg22356527 AHRR 0.10(0.07,0.14 ) 4.16E-08 0.08(0.05,0.11  ) 2.16E-08 

cg11557553 AHRR 0.20(0.14,0.26 ) 3.45E-10 0.14(0.08,0.20  ) 1.98E-05 

cg22937882 AHRR 0.19(0.12,0.26 ) 9.56E-08 0.18(0.10,0.26  ) 2.81E-05 

cg03004371 ALDH1A3 0.18(0.12,0.23 ) 1.21E-09 0.13(0.08,0.19  ) 4.91E-06 

cg08529529 ALOX5AP -0.12(-0.15,-0.08) 1.46E-11 -0.07(-0.10,-0.04) 3.74E-05 

cg19713851 ALPP -0.34(-0.43,-0.26) 3.62E-14 -0.29(-0.40,-0.18) 1.98E-07 

cg23667432 ALPP -0.10(-0.12,-0.07) 9.20E-12 -0.07(-0.11,-0.04) 2.49E-05 

cg03188382 ALPP -0.12(-0.15,-0.08) 4.42E-11 -0.10(-0.14,-0.06) 2.35E-06 

cg22403782 ALPP -0.13(-0.18,-0.09) 2.18E-08 -0.10(-0.15,-0.05) 7.50E-05 

cg03234777 AMICA1 -0.20(-0.25,-0.15) 5.06E-16 -0.11(-0.15,-0.06) 7.90E-06 

cg08772028 AMICA1 -0.21(-0.28,-0.15) 1.10E-10 -0.15(-0.22,-0.09) 2.85E-06 

cg23161492 ANPEP -0.26(-0.30,-0.22) 4.33E-37 -0.21(-0.25,-0.16) 2.91E-16 

cg06635952 ANXA4 0.18(0.14,0.23 ) 1.42E-17 0.17(0.12,0.21  ) 6.84E-11 

cg19847577 APBA2 0.17(0.11,0.23 ) 8.14E-08 0.13(0.07,0.19  ) 2.26E-05 

cg25953130 ARID5B -0.31(-0.41,-0.21) 1.61E-09 -0.40(-0.51,-0.29) 1.92E-11 

cg02186444 ARMC7 0.16(0.12,0.21 ) 8.63E-14 0.12(0.08,0.17  ) 2.83E-08 
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cg01901332 ARRB1 -0.37(-0.44,-0.30) 3.63E-25 -0.32(-0.39,-0.25) 1.31E-18 

cg20902353 ASB2 -0.11(-0.14,-0.08) 2.64E-10 -0.07(-0.10,-0.04) 3.57E-05 

cg05478824 ASPSCR1 -0.19(-0.26,-0.12) 5.11E-08 -0.20(-0.28,-0.11) 6.04E-06 

cg18405341 ATF4 -0.12(-0.16,-0.08) 2.45E-08 -0.13(-0.18,-0.07) 1.58E-05 

cg26337070 ATOH8 -0.25(-0.32,-0.18) 1.33E-12 -0.24(-0.32,-0.16) 1.03E-08 

cg00893603 ATP8A2 -0.36(-0.49,-0.24) 4.99E-09 -0.33(-0.47,-0.19) 5.64E-06 

cg07339236 ATP9A -0.25(-0.30,-0.20) 9.74E-24 -0.20(-0.24,-0.16) 2.83E-22 

cg20295214 AVPR1B -0.28(-0.35,-0.20) 1.93E-13 -0.33(-0.40,-0.25) 1.34E-17 

cg08709672 AVPR1B -0.17(-0.20,-0.14) 8.09E-29 -0.13(-0.16,-0.10) 1.93E-13 

cg26470501 BCL3 -0.13(-0.17,-0.08) 8.90E-09 -0.12(-0.17,-0.07) 4.70E-06 

cg05957567 BCL7A;BCL7A 0.09(0.06,0.11 ) 5.33E-11 0.07(0.04,0.10) 8.75E-06 

cg15482893 BSDC1 0.13(0.09,0.18 ) 4.98E-09 0.13(0.08,0.17) 4.32E-08 

cg10750182 C10orf105 -0.20(-0.22,-0.17) 3.56E-42 -0.18(-0.22,-0.15) 6.47E-24 

cg24996979 C14orf43 -0.15(-0.18,-0.12) 5.75E-24 -0.09(-0.12,-0.06) 2.93E-09 

cg22851561 C14orf43 -0.30(-0.36,-0.24) 5.35E-21 -0.25(-0.31,-0.19) 3.39E-14 

cg01731783 C14orf43 -0.12(-0.15,-0.09) 5.16E-15 -0.11(-0.14,-0.08) 1.86E-10 

cg17861836 C17orf56 -0.22(-0.30,-0.15) 9.43E-09 -0.18(-0.27,-0.10) 1.31E-05 

cg14580211 C5orf62 -0.33(-0.39,-0.27) 2.26E-28 -0.33(-0.40,-0.27) 1.22E-23 

cg08972170 C7orf41 0.28(0.19,0.37 ) 4.20E-10 0.27(0.17,0.36) 4.22E-08 

cg15417641 CACNA1D 0.58(0.44,0.71 ) 5.09E-17 0.37(0.23,0.50) 2.69E-07 

cg00336149 CACNA1D 0.36(0.27,0.46 ) 1.11E-13 0.26(0.16,0.37) 3.43E-07 

cg21188533 CACNA1D 0.54(0.39,0.70 ) 4.79E-12 0.41(0.24,0.58) 3.72E-06 

cg10520740 CACNA2D4 -0.11(-0.15,-0.07) 9.15E-09 -0.09(-0.13,-0.05) 4.22E-05 

cg03575602 CAMK1D -0.23(-0.30,-0.16) 2.28E-11 -0.21(-0.30,-0.11) 2.10E-05 

cg23198793 CAPN3 0.14(0.10,0.19 ) 9.73E-11 0.11(0.07,0.16) 2.43E-06 

cg21446172 CAPN8 -0.29(-0.35,-0.23) 5.25E-20 -0.21(-0.30,-0.13) 1.71E-06 

cg19713429 CAPZB -0.12(-0.15,-0.09) 1.58E-13 -0.08(-0.11,-0.05) 1.30E-06 

cg01832549 CAPZB -0.23(-0.30,-0.17) 7.55E-13 -0.16(-0.23,-0.09) 1.19E-05 

cg13500388 CBFB -0.21(-0.28,-0.15) 7.60E-11 -0.12(-0.18,-0.07) 4.11E-06 

cg25197194 CCDC48 0.24(0.16,0.33 ) 2.71E-08 0.24(0.15,0.33) 2.42E-07 

cg20303561 CCDC88C -0.27(-0.36,-0.18) 7.93E-09 -0.19(-0.27,-0.11) 8.01E-06 

cg15474579 CDKN1A -0.27(-0.34,-0.21) 3.07E-17 -0.18(-0.24,-0.13) 4.42E-11 

cg21091547 CDKN1A -0.31(-0.42,-0.21) 5.20E-09 -0.22(-0.31,-0.12) 6.35E-06 

cg26364091 CHADL -0.08(-0.10,-0.05) 7.00E-09 -0.06(-0.08,-0.03) 5.15E-05 

cg03194226 CLEC3B -0.22(-0.29,-0.15) 7.89E-10 -0.20(-0.28,-0.11) 3.76E-06 

cg25949550 CNTNAP2 -0.29(-0.33,-0.25) 1.54E-40 -0.22(-0.26,-0.17) 2.71E-20 

cg21322436 CNTNAP2 -0.38(-0.43,-0.32) 3.71E-36 -0.26(-0.33,-0.20) 1.56E-14 

cg11207515 CNTNAP2 0.46(0.36,0.56 ) 2.10E-18 0.37(0.25,0.48  ) 7.14E-10 

cg17372101 CNTNAP2 0.29(0.22,0.37 ) 8.49E-14 0.26(0.18,0.34  ) 8.42E-10 

cg15159987 CPAMD8 -0.21(-0.24,-0.17) 1.29E-26 -0.19(-0.24,-0.15) 1.02E-15 

cg02657160 CPOX -0.29(-0.38,-0.19) 9.60E-10 -0.28(-0.38,-0.18) 4.06E-08 

cg23973524 CRTC1 0.20(0.16,0.24 ) 6.86E-25 0.16(0.10,0.21  ) 2.44E-08 

cg21473814 CRTC1 0.24(0.19,0.29 ) 7.96E-18 0.14(0.08,0.19  ) 6.77E-07 

cg00501876 CSRNP1 -0.27(-0.31,-0.23) 1.12E-34 -0.21(-0.27,-0.15) 1.43E-10 

cg03540589 CSRNP1 -0.29(-0.38,-0.20) 1.11E-09 -0.18(-0.26,-0.09) 6.93E-05 

cg24155190 CSRP1 -0.12(-0.16,-0.08) 4.14E-08 -0.09(-0.13,-0.05) 2.43E-06 
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cg14099685 CUGBP1 -0.12(-0.15,-0.08) 9.04E-09 -0.10(-0.14,-0.06) 7.15E-07 

cg14012925 CUX1 0.10(0.06,0.13 ) 6.48E-08 0.10(0.06,0.15  ) 4.84E-06 

cg01257799 CXCR5 -0.14(-0.17,-0.10) 1.25E-15 -0.06(-0.09,-0.03) 1.67E-05 

cg12678834 CXCR5 -0.18(-0.23,-0.12) 3.26E-10 -0.14(-0.17,-0.10) 6.36E-15 

cg24342283 CXCR5 -0.13(-0.17,-0.08) 6.60E-09 -0.10(-0.15,-0.06) 1.55E-05 

cg01839993 DDIT4 -0.08(-0.11,-0.06) 4.42E-12 -0.08(-0.11,-0.05) 9.78E-07 

cg25560398 ECEL1P2 -0.13(-0.16,-0.10) 3.06E-19 -0.09(-0.14,-0.05) 4.75E-05 

cg11152412 EDC3 -0.12(-0.16,-0.08) 5.19E-10 -0.07(-0.10,-0.04) 8.17E-06 

cg07019857 EFNA5 -0.16(-0.21,-0.11) 1.76E-10 -0.14(-0.19,-0.09) 6.30E-08 

cg06459104 EPB41L3 -0.51(-0.65,-0.37) 1.31E-12 -0.41(-0.55,-0.28) 1.10E-08 

cg08149865 EPB49 -0.09(-0.11,-0.07) 7.68E-13 -0.07(-0.10,-0.04) 1.64E-06 

cg24931658 EPB49 -0.10(-0.13,-0.07) 2.11E-12 -0.10(-0.13,-0.06) 3.37E-07 

cg23110422 ETS2 -0.50(-0.61,-0.40) 1.35E-21 -0.35(-0.46,-0.25) 1.24E-10 

cg07986378 ETV6 -0.33(-0.43,-0.23) 9.06E-11 -0.39(-0.49,-0.29) 1.11E-13 

cg01442064 EVC -0.06(-0.08,-0.04) 2.07E-09 -0.05(-0.07,-0.03) 1.30E-05 

cg03636183 F2RL3 -0.87(-0.94,-0.81) 2.84E-129 -0.96(-1.07,-0.85) 2.41E-50 

cg16116321 FAM124B -0.21(-0.28,-0.15) 2.03E-11 -0.19(-0.26,-0.12) 1.89E-07 

cg13876650 FAM54B -0.06(-0.08,-0.05) 3.05E-12 -0.06(-0.08,-0.04) 6.83E-07 

cg06901890 FNBP1 -0.08(-0.11,-0.05) 2.19E-08 -0.07(-0.10,-0.04) 4.76E-06 

cg04517079 FOXP4 -0.16(-0.20,-0.12) 3.00E-14 -0.16(-0.20,-0.12) 1.03E-13 

cg24556382 GALNT7 -0.46(-0.56,-0.36) 5.89E-18 -0.36(-0.45,-0.26) 8.14E-13 

cg09935388 GFI1 -1.05(-1.22,-0.89) 1.92E-35 -0.89(-1.03,-0.75) 9.03E-32 

cg12876356 GFI1 -0.60(-0.70,-0.50) 7.84E-31 -1.15(-1.37,-0.92) 1.39E-21 

cg18146737 GFI1 -0.75(-0.88,-0.61) 4.26E-27 -0.66(-0.85,-0.47) 1.41E-11 

cg18316974 GFI1 -0.60(-0.71,-0.48) 2.34E-25 -0.56(-0.71,-0.41) 1.46E-12 

cg09662411 GFI1 -0.28(-0.33,-0.22) 5.15E-22 -0.56(-0.70,-0.42) 3.09E-14 

cg06338710 GFI1 -0.50(-0.66,-0.34) 5.91E-10 -0.89(-1.16,-0.62) 2.16E-10 

cg10399789 GFI1 -0.30(-0.40,-0.20) 2.76E-09 -0.33(-0.47,-0.19) 3.09E-06 

cg14179389 GFI1 -0.23(-0.31,-0.15) 3.18E-08 -0.37(-0.49,-0.25) 3.01E-09 

cg24741609 GLIS1 -0.20(-0.26,-0.14) 7.21E-12 -0.15(-0.22,-0.08) 1.89E-05 

cg19717773 GNA12 -0.33(-0.41,-0.25) 3.99E-16 -0.25(-0.33,-0.17) 6.77E-09 

cg18446336 GNA12 -0.42(-0.53,-0.31) 1.41E-13 -0.36(-0.47,-0.25) 1.04E-09 

cg09658497 GNA12 -0.37(-0.48,-0.26) 5.63E-11 -0.40(-0.53,-0.27) 5.01E-09 

cg25189904 GNG12 -0.65(-0.74,-0.56) 1.37E-46 -0.50(-0.59,-0.40) 3.91E-21 

cg13399816 GNG12 -0.20(-0.25,-0.15) 5.64E-14 -0.14(-0.19,-0.09) 4.56E-08 

cg13184736 GNG12 -0.36(-0.46,-0.27) 2.12E-13 -0.36(-0.48,-0.24) 9.32E-09 

cg13185177 GP5 0.38(0.30,0.46 ) 4.93E-20 0.18(0.10,0.26  ) 1.58E-05 

cg19859270 GPR15 -0.39(-0.46,-0.33) 1.17E-30 -0.43(-0.51,-0.36) 8.19E-27 

cg19254163 GPR44 -0.25(-0.30,-0.20) 3.70E-25 -0.22(-0.27,-0.17) 3.41E-17 

cg19827923 GPR55 -0.20(-0.25,-0.16) 3.11E-18 -0.14(-0.20,-0.09) 2.20E-06 

cg10814005 GPR68 -0.18(-0.22,-0.13) 2.68E-14 -0.08(-0.12,-0.04) 6.01E-05 

cg05875421 GPR68 -0.09(-0.13,-0.06) 3.82E-08 -0.09(-0.13,-0.05) 6.29E-06 

cg18642234 GPX1 -0.16(-0.18,-0.13) 1.33E-28 -0.10(-0.14,-0.07) 6.56E-11 

cg16255816 HAP1 -0.11(-0.13,-0.08) 2.12E-13 -0.12(-0.17,-0.07) 5.99E-07 

cg03373393 HAP1 -0.11(-0.14,-0.08) 2.94E-12 -0.07(-0.09,-0.04) 3.19E-07 

cg12729894 HCCA2;CTSD -0.21(-0.27,-0.14) 1.29E-09 -0.19(-0.27,-0.11) 7.84E-06 
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cg24049493 HIVEP3 0.39(0.31,0.48 ) 4.68E-20 0.41(0.32,0.51  ) 3.59E-16 

cg15542713 HIVEP3 0.51(0.40,0.63 ) 2.47E-17 0.63(0.49,0.77  ) 1.27E-17 

cg16145216 HIVEP3 0.22(0.17,0.27 ) 3.42E-16 0.25(0.19,0.32  ) 3.54E-15 

cg02583484 HNRNPA1 -0.25(-0.30,-0.19) 2.45E-16 -0.25(-0.32,-0.18) 6.56E-13 

cg08472795 HS6ST1 -0.20(-0.25,-0.14) 2.83E-13 -0.16(-0.21,-0.11) 4.72E-09 

cg03222009 HS6ST1 -0.15(-0.19,-0.10) 2.15E-09 -0.11(-0.17,-0.06) 3.94E-05 

cg21121843 HTT -0.24(-0.30,-0.17) 2.15E-12 -0.18(-0.25,-0.12) 8.33E-08 

cg08763102 HTT -0.13(-0.18,-0.09) 1.49E-09 -0.13(-0.18,-0.09) 9.22E-09 

cg02968508 IL17RE -0.22(-0.30,-0.15) 4.86E-09 -0.24(-0.33,-0.14) 6.47E-07 

cg25809905 ITGA2B 0.31(0.22,0.40 ) 2.98E-11 0.23(0.14,0.33  ) 1.72E-06 

cg09099830 ITGAL -0.15(-0.18,-0.12) 8.51E-21 -0.12(-0.15,-0.08) 2.05E-09 

cg06235438 ITGAL -0.26(-0.33,-0.19) 2.60E-13 -0.19(-0.27,-0.11) 1.90E-06 

cg16519923 ITGAL -0.23(-0.29,-0.16) 1.92E-11 -0.17(-0.24,-0.10) 8.55E-06 

cg06972908 ITGAL -0.17(-0.23,-0.12) 4.33E-09 -0.13(-0.19,-0.08) 3.59E-06 

cg05284742 ITPK1 -0.33(-0.37,-0.28) 3.00E-43 -0.26(-0.31,-0.22) 5.45E-26 

cg17416793 KCNQ1 -0.14(-0.20,-0.09) 9.58E-08 -0.12(-0.18,-0.07) 2.43E-06 

cg26963277 KCNQ1OT1;KCNQ1 -0.42(-0.50,-0.35) 2.18E-28 -0.38(-0.48,-0.28) 1.58E-13 

cg16556677 KCNQ1OT1;KCNQ1 -0.37(-0.44,-0.29) 5.45E-23 -0.33(-0.42,-0.25) 1.23E-13 

cg01744331 KCNQ1OT1;KCNQ1 -0.29(-0.36,-0.22) 1.10E-16 -0.29(-0.37,-0.21) 4.02E-12 

cg07123182 KCNQ1OT1;KCNQ1 -0.27(-0.33,-0.20) 5.79E-16 -0.29(-0.36,-0.22) 6.85E-14 

cg13708645 KDM2B -0.15(-0.19,-0.10) 7.69E-11 -0.15(-0.21,-0.08) 3.70E-06 

cg26995224 KDM2B -0.24(-0.32,-0.17) 4.34E-10 -0.27(-0.37,-0.18) 6.11E-08 

cg02451831 KIAA0087 -0.33(-0.40,-0.26) 6.76E-20 -0.27(-0.34,-0.21) 6.59E-16 

cg22313519 KIAA1683 -0.15(-0.19,-0.10) 4.35E-10 -0.12(-0.17,-0.08) 1.21E-07 

cg10255761 KLHDC8B -0.17(-0.22,-0.12) 4.78E-10 -0.18(-0.25,-0.11) 2.39E-07 

cg25420507 LGALS7 -0.12(-0.16,-0.08) 1.26E-08 -0.08(-0.12,-0.05) 7.15E-06 

cg22649124 LGALS7B -0.12(-0.15,-0.08) 8.90E-10 -0.10(-0.13,-0.06) 1.93E-07 

cg00835193 LINGO3 -0.82(-1.03,-0.62) 6.13E-15 -0.91(-1.18,-0.64) 1.28E-10 

cg21869609 LINGO3 -0.31(-0.41,-0.22) 5.54E-11 -0.26(-0.39,-0.14) 2.83E-05 

cg01294327 LINGO3 -0.29(-0.37,-0.20) 6.94E-11 -0.21(-0.31,-0.11) 3.02E-05 

cg07251887 RECQL5 -0.35(-0.40,-0.29) 6.68E-31 -0.24(-0.30,-0.18) 1.39E-15 

cg03489965 LOC390594 0.24(0.18,0.30 ) 7.28E-14 0.22(0.13,0.31  ) 4.93E-06 

cg10619342 LOC390594 0.30(0.22,0.38 ) 1.59E-13 0.26(0.14,0.39  ) 4.85E-05 

cg21611682 LRP5 -0.33(-0.37,-0.29) 2.52E-52 -0.33(-0.38,-0.27) 1.09E-31 

cg14624207 LRP5 -0.33(-0.38,-0.27) 6.19E-34 -0.24(-0.30,-0.19) 5.25E-16 

cg10420527 LRP5 -0.21(-0.25,-0.17) 1.17E-25 -0.16(-0.20,-0.12) 9.94E-15 

cg09578155 LRP5 -0.15(-0.19,-0.11) 3.93E-14 -0.13(-0.18,-0.09) 4.20E-09 

cg07202214 LRRC32 -0.12(-0.15,-0.09) 9.94E-17 -0.06(-0.09,-0.04) 1.62E-05 

cg13985437 LRRC32 -0.11(-0.14,-0.08) 7.41E-15 -0.07(-0.10,-0.04) 1.49E-05 

cg10788371 LRRC32 -0.16(-0.20,-0.12) 1.45E-15 -0.15(-0.20,-0.10) 2.50E-08 

cg13633560 LRRC32 -0.09(-0.12,-0.06) 5.49E-10 -0.08(-0.11,-0.04) 3.92E-05 

cg09837977 LRRN3;IMMP2L -0.23(-0.31,-0.15) 1.27E-08 -0.23(-0.32,-0.15) 2.48E-07 

cg12423733 MAS1L 0.23(0.17,0.30 ) 1.50E-12 0.14(0.08,0.20  ) 4.06E-06 

cg01435643 MCF2L 0.18(0.11,0.25 ) 9.57E-08 0.19(0.11,0.26  ) 1.63E-06 

cg04468081 MCF2L2;B3GNT5 -0.14(-0.19,-0.09) 1.37E-08 -0.11(-0.17,-0.06) 6.29E-05 

cg19918734 ME3 -0.12(-0.15,-0.09) 3.35E-12 -0.06(-0.09,-0.03) 4.10E-05 
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cg02556393 MECOM -0.11(-0.15,-0.07) 8.77E-09 -0.09(-0.13,-0.04) 5.42E-05 

cg20438687 MINK1 -0.21(-0.28,-0.13) 1.75E-08 -0.18(-0.25,-0.12) 5.75E-08 

cg00687674 MIR548H4;TMEM84 0.18(0.12,0.25 ) 5.78E-08 0.20(0.11,0.29  ) 1.49E-05 

cg00871610 MIR802 -0.23(-0.31,-0.15) 9.27E-09 -0.23(-0.30,-0.16) 1.51E-09 

cg07381806 MOBKL2A -0.32(-0.39,-0.25) 3.00E-17 -0.23(-0.31,-0.16) 1.31E-09 

cg15187398 MOBKL2A -0.21(-0.26,-0.16) 7.01E-16 -0.17(-0.22,-0.12) 1.75E-11 

cg11621113 MORG1;MAN2B1 -0.11(-0.13,-0.08) 3.43E-17 -0.05(-0.08,-0.03) 6.52E-05 

cg23842572 MPRIP 0.15(0.11,0.19 ) 2.86E-14 0.13(0.08,0.18  ) 4.93E-07 

cg24838345 MTSS1 -0.34(-0.44,-0.24) 2.59E-11 -0.36(-0.47,-0.25) 2.41E-10 

cg22132788 MYO1G 0.87(0.74,1.00 ) 2.39E-37 0.73(0.59,0.88  ) 9.47E-22 

cg07826859 MYO1G -0.28(-0.33,-0.24) 1.57E-35 -0.22(-0.27,-0.17) 1.08E-16 

cg12803068 MYO1G 1.16(0.97,1.36 ) 2.80E-30 1.06(0.84,1.28  ) 2.84E-19 

cg04180046 MYO1G 0.13(0.10,0.17 ) 3.19E-13 0.18(0.13,0.23  ) 2.45E-11 

cg19089201 MYO1G 0.35(0.25,0.45 ) 2.29E-12 0.35(0.25,0.46  ) 8.28E-11 

cg04039799 NAV2;NAV2;NAV2 -0.17(-0.22,-0.12) 5.55E-11 -0.14(-0.19,-0.09) 8.45E-08 

cg03147185 NCAPH -0.14(-0.18,-0.09) 4.02E-08 -0.10(-0.15,-0.05) 5.96E-05 

cg02532700 NCF4;NCF4 -0.25(-0.30,-0.19) 5.06E-17 -0.17(-0.23,-0.11) 1.43E-07 

cg06595162 NCRNA00114 -0.26(-0.32,-0.20) 1.07E-15 -0.20(-0.26,-0.14) 5.32E-10 

cg26271591 NFE2L2 -0.43(-0.53,-0.33) 6.45E-17 -0.41(-0.52,-0.30) 5.17E-12 

cg14120703 NOTCH1 -0.08(-0.11,-0.06) 4.47E-11 -0.07(-0.10,-0.04) 4.62E-07 

cg05396397 NPPA 0.10(0.06,0.13 ) 2.05E-08 0.09(0.05,0.13  ) 3.34E-05 

cg03340878 OR2B6 -0.31(-0.42,-0.20) 5.72E-08 -0.35(-0.47,-0.24) 2.60E-09 

cg23126342 PCDH9 0.34(0.23,0.44 ) 1.17E-10 0.36(0.23,0.49  ) 5.49E-08 

cg25491122 PCDH9 0.31(0.20,0.42 ) 3.45E-08 0.31(0.17,0.45  ) 2.01E-05 

cg13039251 PDZD2 0.40(0.29,0.50 ) 1.48E-13 0.33(0.20,0.47  ) 6.67E-07 

cg16151960 PHF15 -0.12(-0.16,-0.08) 4.76E-10 -0.09(-0.13,-0.05) 3.69E-06 

cg21280392 PHOSPHO1 0.10(0.06,0.14 ) 8.67E-08 0.10(0.06,0.13  ) 8.12E-08 

cg05460226 PIK3R5 -0.30(-0.37,-0.23) 2.70E-16 -0.21(-0.29,-0.13) 4.27E-07 

cg16503724 PLCL2 0.24(0.18,0.30 ) 1.28E-15 0.14(0.09,0.20  ) 7.50E-07 

cg05673882 POLK -0.31(-0.37,-0.24) 8.30E-19 -0.25(-0.31,-0.18) 6.26E-12 

cg26669717 PRKAR1B -0.12(-0.15,-0.08) 5.11E-10 -0.09(-0.13,-0.05) 6.26E-06 

cg11660018 PRSS23 -0.30(-0.34,-0.27) 4.80E-51 -0.27(-0.31,-0.22) 1.01E-24 

cg23771366 PRSS23 -0.24(-0.27,-0.20) 2.97E-34 -0.21(-0.26,-0.16) 3.02E-15 

cg23351584 PRSS23 -0.17(-0.20,-0.13) 4.53E-19 -0.09(-0.12,-0.06) 3.98E-08 

cg12075928 PTK2 -0.39(-0.47,-0.31) 2.20E-20 -0.34(-0.43,-0.25) 2.46E-13 

cg05668853 RAB34 -0.11(-0.15,-0.08) 2.52E-10 -0.11(-0.15,-0.06) 3.67E-05 

cg19572487 RARA -0.54(-0.62,-0.46) 2.53E-40 -0.48(-0.57,-0.38) 2.54E-21 

cg11094248 RARA -0.08(-0.11,-0.05) 2.45E-09 -0.08(-0.11,-0.06) 2.65E-09 

cg10062919 RARA -0.11(-0.13,-0.08) 9.12E-18 -0.07(-0.10,-0.04) 7.59E-06 

cg05824218 RARA 0.09(0.07,0.12 ) 8.77E-12 0.09(0.05,0.12  ) 9.84E-07 

cg04956244 RARA 0.10(0.07,0.14 ) 2.80E-10 0.09(0.06,0.13  ) 2.83E-08 

cg16704246 RBM20 -0.19(-0.25,-0.13) 1.03E-09 -0.14(-0.21,-0.07) 3.79E-05 

cg16969872 RBM26 -0.29(-0.38,-0.21) 1.61E-11 -0.21(-0.29,-0.13) 4.95E-07 

cg23913963 RCC2 -0.28(-0.37,-0.18) 2.52E-08 -0.25(-0.36,-0.13) 5.02E-05 

cg00214171 RECQL5;LOC100130933 -0.10(-0.13,-0.07) 8.07E-09 -0.12(-0.16,-0.08) 9.21E-10 

cg11701312 RPS5 -0.12(-0.15,-0.09) 1.96E-13 -0.09(-0.13,-0.05) 1.01E-05 
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cg10951873 RUNX3 -0.12(-0.16,-0.08) 1.18E-08 -0.08(-0.11,-0.04) 9.10E-06 

cg00310412 SEMA7A -0.18(-0.22,-0.14) 3.79E-21 -0.18(-0.22,-0.13) 1.44E-14 

cg18335991 SEMA7A -0.27(-0.34,-0.20) 1.59E-14 -0.20(-0.28,-0.13) 6.12E-08 

cg26908328 SERINC5 -0.14(-0.18,-0.10) 6.08E-10 -0.11(-0.16,-0.07) 7.79E-07 

cg10531355 SERINC5 -0.22(-0.30,-0.15) 1.38E-09 -0.16(-0.23,-0.09) 7.49E-06 

cg26856289 SFRS13A -0.15(-0.18,-0.11) 7.89E-16 -0.10(-0.13,-0.06) 2.62E-08 

cg14270346 SHB -0.22(-0.30,-0.15) 2.38E-09 -0.20(-0.29,-0.11) 1.18E-05 

cg14712058 SIN3B -0.13(-0.17,-0.09) 2.41E-09 -0.13(-0.18,-0.08) 1.05E-06 

cg01979157 SKI -0.24(-0.31,-0.17) 3.85E-12 -0.19(-0.27,-0.10) 3.94E-05 

cg08884752 SKI -0.19(-0.25,-0.13) 6.17E-10 -0.18(-0.24,-0.13) 1.44E-09 

cg09469355 SKI -0.11(-0.15,-0.07) 3.41E-08 -0.14(-0.18,-0.09) 5.70E-09 

cg07626482 SLC1A5 -0.08(-0.10,-0.05) 1.54E-09 -0.07(-0.10,-0.04) 3.03E-05 

cg16547579 SLC23A2 -0.14(-0.18,-0.09) 2.13E-09 -0.09(-0.13,-0.04) 4.96E-05 

cg25212453 SLC43A2 -0.18(-0.23,-0.13) 2.23E-11 -0.16(-0.23,-0.10) 2.77E-06 

cg09197783 SLC43A3 -0.22(-0.29,-0.16) 5.72E-11 -0.18(-0.23,-0.13) 2.57E-11 

cg05438378 SMAD3 -0.17(-0.22,-0.11) 9.75E-09 -0.13(-0.19,-0.08) 9.75E-06 

cg00604410 SMAD3 -0.15(-0.20,-0.10) 8.79E-09 -0.13(-0.18,-0.08) 3.32E-06 

cg01763916 SMAP2 -0.28(-0.33,-0.22) 1.06E-21 -0.14(-0.19,-0.09) 2.25E-07 

cg13916835 SMG6 -0.29(-0.40,-0.19) 2.58E-08 -0.33(-0.43,-0.23) 2.01E-10 

cg26718213 SNED1 0.19(0.12,0.25 ) 1.25E-08 0.26(0.18,0.33  ) 7.06E-11 

cg26707709 SNED1 0.23(0.15,0.30 ) 3.18E-08 0.27(0.17,0.37  ) 1.34E-07 

cg27312979 SORBS1 0.27(0.21,0.32 ) 7.26E-19 0.18(0.12,0.24  ) 1.00E-08 

cg25722983 STK40 -0.16(-0.21,-0.12) 5.03E-12 -0.10(-0.15,-0.05) 2.74E-05 

cg07465627 STXBP4 -0.15(-0.20,-0.10) 3.45E-09 -0.13(-0.18,-0.09) 1.05E-08 

cg26790897 SUMF2 0.23(0.15,0.31 ) 2.98E-09 0.16(0.08,0.24  ) 6.59E-05 

cg26701785 SYNJ2 0.29(0.21,0.38 ) 1.87E-11 0.23(0.12,0.33  ) 1.89E-05 

cg11071448 SYT2 -0.25(-0.32,-0.18) 5.44E-13 -0.23(-0.29,-0.16) 4.99E-11 

cg22966895 TAPBP;RGL2 -0.08(-0.11,-0.05) 2.59E-08 -0.08(-0.11,-0.05) 2.10E-06 

cg06819357 TECPR2 0.25(0.17,0.32 ) 3.14E-11 0.15(0.09,0.21  ) 5.63E-07 

cg05886626 THBS1 -0.16(-0.21,-0.11) 8.95E-11 -0.07(-0.10,-0.03) 6.85E-05 

cg22870429 TIGIT -0.15(-0.21,-0.10) 9.13E-08 -0.13(-0.18,-0.08) 5.22E-07 

cg07180646 TMEM51 -0.25(-0.31,-0.19) 3.64E-16 -0.17(-0.24,-0.09) 1.54E-05 

cg21913886 TMEM51 -0.37(-0.47,-0.27) 1.58E-13 -0.35(-0.46,-0.24) 1.68E-09 

cg26729380 TNF -0.18(-0.23,-0.13) 3.80E-12 -0.10(-0.14,-0.05) 6.65E-05 

cg08553327 TNF -0.15(-0.19,-0.10) 2.11E-10 -0.08(-0.12,-0.04) 6.85E-05 

cg21222743 TNF -0.16(-0.21,-0.11) 3.53E-10 -0.11(-0.15,-0.06) 7.19E-06 

cg04425624 TNF -0.12(-0.16,-0.08) 6.19E-08 -0.08(-0.11,-0.04) 3.14E-05 

cg07094298 TNIP2 -0.21(-0.27,-0.14) 3.06E-09 -0.17(-0.24,-0.10) 2.83E-06 

cg09022230 TNRC18 -0.39(-0.47,-0.30) 1.40E-17 -0.38(-0.46,-0.29) 6.34E-17 

cg15022400 TRIM69 -0.17(-0.22,-0.13) 5.12E-15 -0.08(-0.11,-0.04) 2.57E-05 

cg22851200 TRIP6 -0.16(-0.21,-0.11) 7.49E-10 -0.18(-0.25,-0.10) 3.95E-06 

cg13525276 TSHR 0.28(0.21,0.36 ) 1.79E-12 0.25(0.18,0.33  ) 5.30E-10 

cg10825315 TSHR 0.22(0.16,0.29 ) 3.33E-12 0.17(0.10,0.24  ) 4.99E-07 

cg18625627 TSHR 0.22(0.15,0.29 ) 6.28E-10 0.21(0.14,0.28  ) 7.93E-10 

cg20886049 TSKU -0.22(-0.29,-0.14) 5.42E-08 -0.22(-0.31,-0.13) 4.00E-06 

cg00295485 UXS1 -0.23(-0.31,-0.15) 1.25E-08 -0.21(-0.28,-0.13) 2.33E-07 
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cg17619755 VARS 0.22(0.17,0.28 ) 5.48E-15 0.16(0.10,0.23  ) 3.19E-07 

cg10807309 VARS 0.17(0.11,0.23 ) 1.30E-08 0.18(0.11,0.26  ) 2.49E-06 

cg05302489 VARS 0.24(0.15,0.33 ) 8.42E-08 0.21(0.11,0.30  ) 1.85E-05 

cg19421584 WDR60 0.10(0.06,0.13 ) 8.35E-08 0.09(0.05,0.14  ) 3.32E-05 

cg12276019 XKR6 -0.17(-0.22,-0.12) 1.39E-11 -0.14(-0.18,-0.09) 1.65E-07 

cg16794579 XYLT1 -0.21(-0.27,-0.15) 1.07E-12 -0.16(-0.21,-0.10) 1.64E-08 

cg04359840 XYLT1 -0.25(-0.32,-0.18) 7.80E-12 -0.18(-0.26,-0.11) 2.47E-06 

cg06321596 XYLT1 -0.24(-0.32,-0.16) 4.52E-09 -0.25(-0.32,-0.17) 2.12E-10 

cg26361535 ZC3H3 -0.42(-0.50,-0.33) 3.08E-22 -0.40(-0.50,-0.29) 3.76E-13 

cg27262054 ZFHX3 -0.14(-0.18,-0.10) 3.59E-11 -0.10(-0.15,-0.06) 1.18E-05 

cg01062937 ZFPM1 0.05(0.03,0.07 ) 1.35E-08 0.08(0.05,0.11  ) 7.10E-07 

cg14977938 ZFYVE21 0.22(0.17,0.27 ) 1.81E-17 0.14(0.07,0.20  ) 3.02E-05 

cg26242531 ZFYVE21 0.21(0.16,0.27 ) 6.17E-14 0.20(0.14,0.27  ) 6.43E-09 

cg02743070 ZMIZ1 -0.20(-0.24,-0.15) 4.38E-17 -0.15(-0.20,-0.11) 1.51E-09 

cg17823346 ZMIZ1 -0.19(-0.25,-0.13) 6.12E-10 -0.19(-0.26,-0.12) 3.50E-07 

cg02145310 ZMIZ1 -0.10(-0.13,-0.07) 9.26E-10 -0.08(-0.11,-0.04) 2.72E-05 

cg12303084 ZMYND8 -0.17(-0.21,-0.13) 1.77E-14 -0.10(-0.15,-0.06) 1.25E-06 

cg11824827 ZNF668 0.13(0.09,0.17 ) 9.38E-11 0.18(0.12,0.24  ) 9.03E-09 

cg21566642  -0.97(-1.03,-0.91) 4.07E-160 -0.79(-0.88,-0.70) 1.37E-51 

cg01940273  -0.53(-0.57,-0.49) 1.18E-136 -0.45(-0.50,-0.40) 5.99E-55 

cg05951221  -0.48(-0.51,-0.44) 2.77E-124 -0.43(-0.47,-0.38) 3.20E-52 

cg06126421  -1.28(-1.38,-1.17) 3.45E-107 -1.01(-1.13,-0.89) 4.79E-47 

cg03329539  -0.29(-0.32,-0.26) 5.67E-70 -0.25(-0.28,-0.21) 5.57E-34 

cg14753356  -0.51(-0.56,-0.45) 1.85E-65 -0.49(-0.55,-0.42) 3.07E-37 

cg24859433  -0.74(-0.82,-0.65) 6.12E-64 -0.63(-0.73,-0.52) 4.12E-29 

cg15342087  -0.70(-0.79,-0.62) 2.01E-57 -0.74(-0.84,-0.63) 1.63E-37 

cg27241845  -0.53(-0.60,-0.46) 4.36E-46 -0.47(-0.56,-0.39) 3.04E-24 

cg06644428  -0.71(-0.81,-0.61) 6.78E-44 -0.67(-0.80,-0.55) 5.88E-23 

cg23079012  -0.47(-0.54,-0.40) 1.04E-36 -0.44(-0.56,-0.33) 2.54E-14 

cg04885881  -0.62(-0.71,-0.52) 1.12E-36 -0.47(-0.57,-0.36) 2.37E-17 

cg00073090  -0.10(-0.12,-0.08) 9.01E-30 -0.09(-0.11,-0.06) 1.94E-12 

cg27537125  -0.22(-0.25,-0.18) 1.89E-29 -0.15(-0.18,-0.12) 2.35E-20 

cg13193840  -0.33(-0.39,-0.27) 5.79E-28 -0.25(-0.33,-0.17) 6.82E-10 

cg03274391  0.98(0.81,1.16 ) 1.28E-26 0.73(0.53,0.92  ) 8.43E-13 

cg23480021  1.03(0.83,1.23 ) 7.35E-24 0.96(0.71,1.22  ) 1.08E-12 

cg01208318  -0.59(-0.70,-0.47) 5.70E-22 -0.46(-0.59,-0.32) 1.27E-10 

cg12547807  -0.22(-0.27,-0.18) 5.76E-21 -0.15(-0.21,-0.10) 3.74E-09 

cg08035323  0.41(0.33,0.50 ) 6.42E-21 0.24(0.14,0.33  ) 1.31E-06 

cg13038618  -0.39(-0.47,-0.31) 1.26E-20 -0.33(-0.42,-0.24) 2.46E-12 

cg01765406  -0.23(-0.28,-0.19) 2.06E-20 -0.22(-0.27,-0.16) 1.96E-14 

cg24540678  -0.14(-0.17,-0.11) 4.46E-20 -0.10(-0.13,-0.07) 1.78E-11 

cg01127300  -0.35(-0.43,-0.28) 7.09E-20 -0.28(-0.39,-0.18) 7.21E-08 

cg12147622  -0.27(-0.33,-0.21) 2.37E-19 -0.17(-0.24,-0.11) 1.57E-07 

cg05194346  0.41(0.32,0.50 ) 4.16E-19 0.23(0.15,0.32  ) 3.50E-07 

cg12513616  -0.12(-0.14,-0.09) 9.11E-19 -0.10(-0.14,-0.07) 3.46E-11 

cg01513913  -0.26(-0.32,-0.21) 1.32E-18 -0.23(-0.31,-0.15) 9.83E-09 
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cg21393163  -0.27(-0.32,-0.21) 3.09E-18 -0.15(-0.21,-0.09) 1.80E-06 

cg03547355  -0.22(-0.26,-0.17) 2.42E-17 -0.17(-0.22,-0.12) 2.82E-11 

cg07069636  -0.14(-0.17,-0.10) 2.46E-15 -0.10(-0.14,-0.06) 1.57E-06 

cg15693572  0.55(0.41,0.69 ) 7.07E-15 0.48(0.32,0.64  ) 3.66E-09 

cg01692968  -0.18(-0.23,-0.14) 7.88E-15 -0.13(-0.17,-0.09) 1.09E-10 

cg16611234  -0.17(-0.21,-0.13) 1.02E-14 -0.09(-0.13,-0.06) 8.21E-07 

cg20059928  -0.26(-0.33,-0.20) 2.78E-14 -0.32(-0.41,-0.23) 1.49E-11 

cg23594345  -0.45(-0.57,-0.33) 8.88E-14 -0.47(-0.61,-0.33) 1.13E-10 

cg08266095  -0.35(-0.44,-0.25) 5.76E-13 -0.24(-0.32,-0.15) 6.00E-08 

cg25305703  -0.36(-0.46,-0.26) 1.74E-12 -0.41(-0.51,-0.30) 9.63E-14 

cg11827514  -0.49(-0.63,-0.36) 2.75E-12 -0.42(-0.57,-0.27) 5.46E-08 

cg02985540  -0.14(-0.18,-0.10) 3.56E-12 -0.12(-0.16,-0.07) 6.46E-08 

cg02964434  -0.21(-0.27,-0.15) 6.52E-12 -0.12(-0.17,-0.07) 2.14E-06 

cg03399898  -0.18(-0.23,-0.13) 8.26E-12 -0.15(-0.21,-0.08) 4.58E-06 

cg19589396  -0.26(-0.33,-0.19) 1.02E-11 -0.16(-0.23,-0.09) 1.45E-05 

cg22539182  0.10(0.07,0.13 ) 1.97E-11 0.09(0.06,0.13  ) 1.25E-07 

cg19825437  -0.22(-0.28,-0.15) 3.03E-11 -0.23(-0.32,-0.15) 6.68E-08 

cg13518625  -0.19(-0.25,-0.14) 4.52E-11 -0.22(-0.28,-0.16) 2.08E-12 

cg19719391  0.21(0.15,0.27 ) 5.03E-11 0.13(0.07,0.19  ) 2.32E-05 

cg05339037  -0.13(-0.17,-0.09) 5.46E-11 -0.12(-0.18,-0.07) 6.33E-06 

cg21733098  -0.46(-0.59,-0.32) 6.86E-11 -0.38(-0.53,-0.24) 2.88E-07 

cg23233742  -0.19(-0.25,-0.13) 8.14E-11 -0.17(-0.23,-0.10) 4.58E-07 

cg09974965  -0.20(-0.26,-0.14) 1.26E-10 -0.13(-0.19,-0.07) 2.19E-05 

cg21140898  -0.20(-0.26,-0.14) 1.82E-10 -0.17(-0.23,-0.10) 4.39E-07 

cg12873476  -0.13(-0.17,-0.09) 2.17E-10 -0.11(-0.16,-0.06) 1.65E-05 

cg12593793  -0.12(-0.15,-0.08) 2.73E-10 -0.08(-0.12,-0.05) 7.85E-06 

cg01882991  -0.10(-0.13,-0.07) 5.21E-10 -0.09(-0.12,-0.06) 3.90E-10 

cg24448421  0.20(0.13,0.26 ) 1.39E-09 0.20(0.13,0.27  ) 7.12E-09 

cg23681440  -0.22(-0.30,-0.15) 1.62E-09 -0.19(-0.26,-0.12) 1.41E-07 

cg16201146  -0.26(-0.34,-0.17) 3.09E-09 -0.21(-0.29,-0.12) 1.51E-06 

cg15410835  -0.35(-0.47,-0.23) 3.77E-09 -0.32(-0.46,-0.19) 2.98E-06 

cg13787850  -0.23(-0.31,-0.15) 4.31E-09 -0.29(-0.38,-0.21) 2.58E-11 

cg00541303  -0.22(-0.29,-0.15) 4.69E-09 -0.15(-0.21,-0.09) 1.62E-06 

cg23635560  -0.13(-0.17,-0.09) 5.53E-09 -0.11(-0.16,-0.07) 9.81E-07 

cg19427338  0.13(0.09,0.18 ) 6.30E-09 0.13(0.07,0.18  ) 2.20E-05 

cg19372602  -0.22(-0.29,-0.14) 1.22E-08 -0.17(-0.25,-0.09) 3.58E-05 

cg27449150  -0.11(-0.15,-0.07) 1.30E-08 -0.10(-0.14,-0.06) 3.22E-07 

cg13074055  -0.38(-0.50,-0.25) 1.39E-08 -0.48(-0.63,-0.33) 5.33E-10 

cg00980649  -0.19(-0.26,-0.12) 1.91E-08 -0.15(-0.21,-0.08) 3.54E-05 

cg23090529  -0.20(-0.27,-0.13) 3.27E-08 -0.18(-0.24,-0.11) 1.13E-07 

cg05500734  -0.16(-0.21,-0.10) 4.52E-08 -0.15(-0.22,-0.08) 1.63E-05 

cg17907003  -0.19(-0.26,-0.12) 4.52E-08 -0.23(-0.29,-0.17) 1.42E-12 

cg02787737  0.14(0.09,0.19 ) 5.22E-08 0.13(0.08,0.19  ) 3.11E-06 

cg00116430   -0.09(-0.13,-0.06) 9.38E-08 -0.11(-0.15,-0.08) 5.26E-09 
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Table S3 Mediation analysis of smoking associated methylation with gene expression as mediator in F4 and F3 

indicated as Smoking-methylati - methylation association in the table. 

S4       Smoking-methylation   Expression-methylation 

expression Cpg site Mediation effect P Association (95% CI) P  P 

ILMN_1710326 CLDND1 cg16519923 ITGAL -0.12(-0.19,-0.06) 3.57E-05 -0.05(-0.26,0.16) 0.62 -0.44(-0.6,-0.28) 7.10E-08 

ILMN_1773650 LRRN3 cg22635096 ADARB1 0.24(0.16,0.33) 6.86E-09 0.02(-0.15,0.19) 0.79 0.20(0.14,0.26) 4.82E-10 

ILMN_1773650 LRRN3 cg10841124 AHRR 0.17(0.1,0.24) 2.64E-06 0.07(-0.08,0.23) 0.35 0.14(0.08,0.2) 1.43E-06 

ILMN_1773650 LRRN3 cg03234777 AMICA1 -0.14(-0.19,-0.08) 5.49E-07 -0.13(-0.24,-0.01) 0.03 -0.11(-0.16,-0.07) 1.93E-07 

ILMN_1773650 LRRN3 cg00893603 ATP8A2 -0.35(-0.48,-0.21) 2.24E-07 -0.10(-0.38,0.18) 0.48 -0.29(-0.39,-0.18) 5.97E-08 

ILMN_1773650 LRRN3 cg01731783 C14orf43 -0.18(-0.24,-0.13) 2.44E-11 0.08(-0.02,0.19) 0.13 -0.15(-0.19,-0.11) 7.82E-14 

ILMN_1773650 LRRN3 cg22851561 C14orf43 -0.21(-0.29,-0.13) 4.87E-08 -0.06(-0.22,0.1) 0.47 -0.17(-0.23,-0.12) 7.57E-09 

ILMN_1773650 LRRN3 cg15159987 CPAMD8 -0.19(-0.25,-0.13) 3.18E-11 -0.02(-0.13,0.1) 0.76 -0.16(-0.2,-0.12) 1.22E-13 

ILMN_1773650 LRRN3 cg00501876 CSRNP1 -0.21(-0.27,-0.16) 9.08E-14 -0.04(-0.15,0.06) 0.42 -0.18(-0.22,-0.14) 3.29E-18 

ILMN_1773650 LRRN3 cg14099685 CUGBP1 -0.15(-0.21,-0.1) 6.62E-09 0.01(-0.1,0.12) 0.87 -0.13(-0.17,-0.09) 4.58E-10 

ILMN_1773650 LRRN3 cg14179389 GFI1 0.32(0.22,0.42) 9.94E-11 -0.48(-0.68,-0.29) 1.93E-06 0.27(0.2,0.34) 7.73E-13 

ILMN_1773650 LRRN3 cg24741609 GLIS1 -0.25(-0.33,-0.18) 2.71E-11 0.09(-0.06,0.25) 0.22 -0.21(-0.27,-0.16) 6.04E-14 

ILMN_1773650 LRRN3 cg13708645 KDM2B -0.10(-0.15,-0.05) 4.55E-05 -0.06(-0.17,0.05) 0.29 -0.08(-0.12,-0.04) 4.52E-05 

ILMN_1773650 LRRN3 cg09837977 LRRN3 -0.48(-0.58,-0.37) 0 0.07(-0.1,0.24) 0.41 -0.40(-0.46,-0.34) 1.37E-32 

ILMN_1773650 LRRN3 cg19918734 ME3 0.17(0.12,0.21) 1.67E-14 -0.26(-0.34,-0.18) 5.24E-10 0.14(0.11,0.17) 1.14E-19 

ILMN_1773650 LRRN3 cg00687674 MIR548H4 -0.17(-0.24,-0.1) 2.16E-06 0.29(0.14,0.45) 2.01E-4 -0.14(-0.2,-0.08) 1.10E-06 

ILMN_1773650 LRRN3 cg07381806 MOBKL2A -0.27(-0.36,-0.19) 1.61E-10 -0.01(-0.18,0.16) 0.92 -0.23(-0.3,-0.17) 5.47E-13 

ILMN_1773650 LRRN3 cg23842572 MPRIP -0.09(-0.14,-0.05) 1.50E-05 0.32(0.23,0.42) 8.15E-11 -0.08(-0.11,-0.04) 1.20E-05 

ILMN_1773650 LRRN3 cg04039799 NAV2 -0.19(-0.25,-0.12) 8.86E-09 0.07(-0.07,0.2) 0.33 -0.15(-0.2,-0.11) 6.96E-10 

ILMN_1773650 LRRN3 cg02532700 NCF4 0.21(0.14,0.28) 2.43E-10 -0.53(-0.66,-0.4) 1.49E-14 0.17(0.13,0.22) 3.20E-12 

ILMN_1773650 LRRN3 cg21280392 PHOSPHO1 0.14(0.1,0.18) 2.04E-11 -0.03(-0.11,0.05) 0.42 0.11(0.08,0.14) 5.79E-14 
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ILMN_1773650 LRRN3 cg05460226 PIK3R5 -0.24(-0.32,-0.16) 1.20E-08 -0.12(-0.29,0.06) 0.19 -0.20(-0.26,-0.14) 1.06E-09 

ILMN_1773650 LRRN3 cg16503724 PLCL2 -0.19(-0.28,-0.11) 1.61E-06 0.47(0.3,0.65) 1.54E-07 -0.16(-0.22,-0.1) 7.68E-07 

ILMN_1773650 LRRN3 cg23771366 PRSS23 -0.09(-0.13,-0.05) 3.40E-06 -0.18(-0.27,-0.1) 2.68E-05 -0.07(-0.11,-0.04) 1.96E-06 

ILMN_1773650 LRRN3 cg11094248 RARA 0.06(0.03,0.1) 4.05E-05 -0.15(-0.22,-0.08) 3.72E-05 0.05(0.03,0.08) 3.94E-05 

ILMN_1773650 LRRN3 cg16704246 RBM20 -0.28(-0.36,-0.2) 5.30E-12 0.02(-0.14,0.17) 0.85 -0.24(-0.29,-0.18) 5.73E-15 

ILMN_1773650 LRRN3 cg16969872 RBM26 -0.19(-0.28,-0.1) 3.40E-05 -0.15(-0.35,0.05) 0.14 -0.16(-0.23,-0.08) 3.21E-05 

ILMN_1773650 LRRN3 cg08884752 SKI -0.38(-0.47,-0.28) 3.22E-15 0.16(-0.02,0.33) 0.08 -0.31(-0.38,-0.25) 3.69E-21 

ILMN_1773650 LRRN3 cg16547579 SLC23A2 -0.17(-0.24,-0.1) 1.00E-06 -0.01(-0.16,0.14) 0.93 -0.14(-0.2,-0.09) 4.15E-07 

ILMN_1773650 LRRN3 cg05438378 SMAD3 0.24(0.17,0.3) 1.34E-12 -0.39(-0.52,-0.27) 3.22E-09 0.20(0.15,0.25) 5.18E-16 

ILMN_1773650 LRRN3 cg01763916 SMAP2 0.35(0.26,0.45) 2.33E-14 -0.64(-0.81,-0.47) 9.74E-13 0.30(0.23,0.36) 1.91E-19 

ILMN_1773650 LRRN3 cg04425624 TNF 0.14(0.09,0.19) 2.89E-09 -0.30(-0.4,-0.21) 1.69E-09 0.12(0.08,0.15) 1.43E-10 

ILMN_1773650 LRRN3 cg08553327 TNF 0.16(0.1,0.21) 1.97E-09 -0.34(-0.44,-0.23) 1.16E-09 0.13(0.09,0.17) 7.75E-11 

ILMN_1773650 LRRN3 cg21222743 TNF 0.24(0.18,0.3) 2.49E-14 -0.37(-0.49,-0.25) 8.74E-10 0.20(0.16,0.24) 2.49E-19 

ILMN_1773650 LRRN3 cg26729380 TNF 0.25(0.18,0.31) 6.14E-14 -0.51(-0.64,-0.39) 2.40E-15 0.21(0.16,0.25) 1.56E-18 

ILMN_1773650 LRRN3 cg10825315 TSHR -0.22(-0.32,-0.12) 7.68E-06 0.57(0.35,0.79) 3.35E-07 -0.18(-0.26,-0.11) 5.36E-06 

ILMN_1773650 LRRN3 cg00295485 UXS1 -0.27(-0.36,-0.18) 1.55E-09 -0.03(-0.21,0.16) 0.78 -0.22(-0.29,-0.16) 4.98E-11 

ILMN_1773650 LRRN3 cg00980649 
 

-0.21(-0.29,-0.14) 2.43E-08 0.04(-0.12,0.2) 0.65 -0.18(-0.24,-0.12) 2.91E-09 

ILMN_1773650 LRRN3 cg01208318 
 

-0.30(-0.43,-0.17) 2.20E-06 -0.26(-0.53,0.02) 0.07 -0.25(-0.35,-0.15) 1.13E-06 

ILMN_1773650 LRRN3 cg01513913 
 

-0.16(-0.23,-0.09) 6.72E-06 -0.09(-0.24,0.06) 0.25 -0.13(-0.19,-0.08) 4.55E-06 

ILMN_1773650 LRRN3 cg00073090 
 

0.06(0.04,0.08) 3.56E-09 -0.17(-0.22,-0.13) 4.91E-16 0.05(0.03,0.06) 1.86E-10 

ILMN_1773650 LRRN3 cg05339037 
 

0.12(0.07,0.16) 1.80E-07 -0.22(-0.32,-0.13) 6.00E-06 0.10(0.06,0.13) 4.46E-08 

ILMN_1773650 LRRN3 cg03547355 
 

-0.19(-0.25,-0.13) 6.49E-11 -0.04(-0.16,0.07) 0.45 -0.16(-0.2,-0.11) 3.90E-13 

ILMN_1773650 LRRN3 cg12547807 
 

-0.19(-0.25,-0.12) 1.02E-08 -0.08(-0.21,0.06) 0.25 -0.15(-0.2,-0.11) 8.53E-10 

ILMN_1773650 LRRN3 cg12593793 
 

0.12(0.08,0.17) 7.51E-09 -0.24(-0.33,-0.15) 1.43E-07 0.10(0.07,0.14) 5.46E-10 

ILMN_1773650 LRRN3 cg27449150 
 

-0.10(-0.15,-0.05) 1.81E-05 0.01(-0.1,0.11) 0.91 -0.09(-0.13,-0.05) 1.52E-05 

ILMN_1773650 LRRN3 cg27537125 
 

-0.11(-0.16,-0.07) 7.54E-07 -0.09(-0.19,0) 0.06 -0.09(-0.13,-0.06) 2.91E-07 

ILMN_1773650 LRRN3 cg14753356 
 

0.18(0.11,0.24) 1.36E-07 -0.63(-0.77,-0.48) 2.60E-17 0.15(0.1,0.2) 3.06E-08 
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ILMN_1773650 LRRN3 cg24540678   -0.08(-0.11,-0.05) 9.87E-07 -0.07(-0.14,0) 0.04 -0.06(-0.09,-0.04) 4.11E-07 

          S2         

ILMN_1710326 CLDND1 cg16519923 ITGAL -0.16(-0.52,0.19)' 0.37 0.08(-0.37,0.53) 0.38 0.01(-0.03,0.04) 0.73 

ILMN_1773650 LRRN3 cg22635096 ADARB1 -0.07(-0.25,0.11) 0.22 0.3(0.02,0.57) 0.04 -0.11(-0.37,0.16) 0.43 

ILMN_1773650 LRRN3 cg10841124 AHRR 0.01(-0.18,0.19) 0.48 0.12(-0.17,0.41) 0.42 0.01(-0.27,0.29) 0.95 

ILMN_1773650 LRRN3 cg03234777 AMICA1 -0.01(-0.12,0.11) 0.46 -0.05(-0.22,0.13) 0.62 -0.01(-0.18,0.16) 0.92 

ILMN_1773650 LRRN3 cg00893603 ATP8A2 0.09(-0.27,0.46) 0.31 -0.42(-0.98,0.15) 0.15 0.14(-0.4,0.69) 0.61 

ILMN_1773650 LRRN3 cg01731783 C14orf43 0.03(-0.1,0.16) 0.31 -0.03(-0.23,0.18) 0.79 0.05(-0.15,0.25) 0.63 

ILMN_1773650 LRRN3 cg22851561 C14orf43 0.08(-0.15,0.31) 0.25 -0.31(-0.66,0.05) 0.10 0.12(-0.23,0.46) 0.50 

ILMN_1773650 LRRN3 cg15159987 CPAMD8 -0.02(-0.15,0.11) 0.38 -0.03(-0.24,0.17) 0.75 -0.03(-0.23,0.17) 0.75 
ILMN_1773650 LRRN3 cg00501876 CSRNP1 0.02(-0.18,0.22) 0.41 -0.23(-0.54,0.08) 0.15 0.03(-0.27,0.33) 0.82 
ILMN_1773650 LRRN3 cg14099685 CUGBP1 -0.01(-0.14,0.12) 0.44 -0.02(-0.22,0.18) 0.81 -0.01(-0.21,0.18) 0.88 

ILMN_1773650 LRRN3 cg14179389 GFI1 0(-0.28,0.28) 0.49 -0.49(-0.93,-0.05) 0.03 0.01(-0.42,0.43) 0.98 

ILMN_1773650 LRRN3 cg24741609 GLIS1 -0.01(-0.19,0.16) 0.45 -0.11(-0.38,0.17) 0.45 -0.02(-0.29,0.25) 0.89 

ILMN_1773650 LRRN3 cg13708645 KDM2B 0.01(-0.15,0.16) 0.47 -0.16(-0.41,0.08) 0.20 0.01(-0.23,0.24) 0.95 
ILMN_1773650 LRRN3 cg09837977 LRRN3 -0.09(-0.34,0.16) 0.24 -0.12(-0.51,0.26) 0.53 -0.13(-0.51,0.24) 0.48 

ILMN_1773650 LRRN3 cg19918734 ME3 0.04(-0.06,0.13) 0.24 -0.08(-0.23,0.07) 0.28 0.05(-0.09,0.2) 0.47 
ILMN_1773650 LRRN3 cg00687674 MIR548H4 -0.11(-0.3,0.08) 0.13 0.38(0.09,0.67) 0.01 -0.17(-0.45,0.11) 0.25 

ILMN_1773650 LRRN3 cg07381806 MOBKL2A 0.02(-0.19,0.24) 0.41 -0.22(-0.57,0.13) 0.23 0.04(-0.35,0.43) 0.83 

ILMN_1773650 LRRN3 cg23842572 MPRIP -0.11(-0.27,0.04) 0.07 0.37(0.14,0.61) 0.00 -0.18(-0.4,0.05) 0.14 

ILMN_1773650 LRRN3 cg04039799 NAV2 0.02(-0.14,0.18) 0.40 -0.12(-0.37,0.13) 0.34 0.03(-0.21,0.27) 0.79 
ILMN_1773650 LRRN3 cg02532700 NCF4 0.08(-0.07,0.23) 0.15 -0.34(-0.56,-0.11) 0.01 0.12(-0.1,0.34) 0.29 
ILMN_1773650 LRRN3 cg21280392 PHOSPHO1 0.1(0.01,0.19) 1.73E-02 0(-0.13,0.13) 0.97 0.15(0.02,0.27) 0.03 

ILMN_1773650 LRRN3 cg05460226 PIK3R5 -0.01(-0.24,0.21) 0.45 -0.17(-0.52,0.19) 0.35 -0.02(-0.36,0.32) 0.91 

ILMN_1773650 LRRN3 cg16503724 PLCL2 0.05(-0.13,0.23) 0.31 0.02(-0.26,0.3) 0.89 0.07(-0.2,0.34) 0.61 
ILMN_1773650 LRRN3 cg23771366 PRSS23 0.06(-0.04,0.16) 0.12 -0.28(-0.44,-0.12) 1.20E-03 0.09(-0.06,0.25) 0.24 
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ILMN_1773650 LRRN3 cg11094248 RARA 0.04(-0.06,0.14) 0.21 -0.16(-0.32,-0.01) 0.04 0.06(-0.09,0.21) 0.42 
ILMN_1773650 LRRN3 cg16704246 RBM20 -0.1(-0.28,0.08) 0.13 0.29(0.02,0.56) 0.04 -0.15(-0.42,0.11) 0.26 

ILMN_1773650 LRRN3 cg16969872 RBM26 -0.03(-0.26,0.2) 0.39 -0.13(-0.49,0.23) 0.47 -0.05(-0.4,0.3) 0.79 

ILMN_1773650 LRRN3 cg08884752 SKI 0.1(-0.1,0.3) 0.17 -0.19(-0.49,0.12) 0.24 0.15(-0.15,0.44) 0.33 

ILMN_1773650 LRRN3 cg16547579 SLC23A2 -0.09(-0.24,0.07) 0.14 0.09(-0.15,0.33) 0.46 -0.13(-0.36,0.1) 0.27 

ILMN_1773650 LRRN3 cg05438378 SMAD3 0.11(-0.04,0.26) 0.07 -0.28(-0.5,-0.05) 0.02 0.17(-0.05,0.39) 0.13 

ILMN_1773650 LRRN3 cg01763916 SMAP2 0.09(-0.09,0.27) 0.16 -0.37(-0.65,-0.09) 0.01 0.14(-0.13,0.41) 0.32 

ILMN_1773650 LRRN3 cg04425624 TNF 0.06(-0.03,0.15) 0.11 -0.17(-0.31,-0.03) 0.02 0.08(-0.05,0.22) 0.22 

ILMN_1773650 LRRN3 cg08553327 TNF 0.04(-0.07,0.15) 0.23 -0.2(-0.37,-0.02) 0.03 0.06(-0.1,0.23) 0.47 

ILMN_1773650 LRRN3 cg21222743 TNF 0(-0.12,0.12) 0.49 -0.09(-0.28,0.1) 0.36 0(-0.19,0.18) 0.98 
ILMN_1773650 LRRN3 cg26729380 TNF 0.07(-0.05,0.2) 0.12 -0.23(-0.42,-0.04) 0.02 0.11(-0.07,0.3) 0.24 

ILMN_1773650 LRRN3 cg10825315 TSHR 0.08(-0.19,0.34) 0.28 0.24(-0.16,0.65) 0.24 0.11(-0.28,0.51) 0.57 

ILMN_1773650 LRRN3 cg00295485 UXS1 0.04(-0.2,0.28) 0.38 -0.02(-0.4,0.35) 0.90 0.06(-0.31,0.42) 0.77 

ILMN_1773650 LRRN3 cg00980649 0.06(-0.13,0.24) 0.27 -0.23(-0.52,0.06) 0.13 0.09(-0.19,0.37) 0.55 

ILMN_1773650 LRRN3 cg01208318 0.04(-0.3,0.39) 0.40 -0.45(-0.98,0.09) 0.11 0.07(-0.45,0.59) 0.80 

ILMN_1773650 LRRN3 cg01513913 -0.02(-0.21,0.16) 0.40 -0.14(-0.43,0.14) 0.33 -0.04(-0.32,0.24) 0.80 
ILMN_1773650 LRRN3 cg00073090 

 0.02(-0.04,0.08) 0.24 -0.14(-0.23,-0.05) 3.44E-03 0.03(-0.06,0.12) 0.48 
ILMN_1773650 LRRN3 cg05339037 

 0.06(-0.07,0.19) 0.18 -0.27(-0.48,-0.06) 0.01 0.09(-0.11,0.29) 0.37 

ILMN_1773650 LRRN3 cg03547355 0.04(-0.11,0.19) 0.29 -0.25(-0.48,-0.02) 0.04 0.06(-0.16,0.29) 0.59 

ILMN_1773650 LRRN3 cg12547807 -0.01(-0.19,0.18) 0.47 -0.02(-0.31,0.27) 0.90 -0.01(-0.29,0.27) 0.95 
ILMN_1773650 LRRN3 cg12593793 

 
0.1(0,0.2) 2.36E-02 -0.25(-0.4,-0.1) 0.00 0.15(0.01,0.3) 0.04 

ILMN_1773650 LRRN3 cg27449150 0.07(-0.07,0.2) 0.17 -0.19(-0.39,0.01) 0.07 0.1(-0.1,0.3) 0.33 

ILMN_1773650 LRRN3 cg27537125 -0.01(-0.09,0.07) 0.42 -0.1(-0.23,0.03) 0.13 -0.01(-0.14,0.11) 0.84 
ILMN_1773650 LRRN3 cg14753356 

 0.06(-0.1,0.23) 0.23 -0.5(-0.76,-0.24) 4.44E-04 0.1(-0.16,0.35) 0.46 

ILMN_1773650 LRRN3 cg24540678 0(-0.07,0.07) 0.49 -0.09(-0.2,0.02) 0.11 0(-0.11,0.11) 0.98 
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