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ABSTRACT
Motivation: Single-cell technologies have recently gained popularity
in cellular differentiation studies regarding their ability to resolve
potential heterogeneities in cell populations. Analysing such high-
dimensional single-cell data has its own statistical and computational
challenges. Popular multivariate approaches are based on data
normalisation, followed by dimension reduction and clustering to
identify subgroups. However, in the case of cellular differentiation,
we would not expect clear clusters to be present but instead expect
the cells to follow continuous branching lineages.
Results: Here we propose the use of diffusion maps to deal with the
problem of defining differentiation trajectories. We adapt this method
to single-cell data by adequate choice of kernel width and inclusion
of uncertainties or missing measurement values, which enables
the establishment of a pseudo-temporal ordering of single cells in
a high-dimensional gene expression space. We expect this output
to reflect cell differentiation trajectories, where the data originates
from intrinsic diffusion-like dynamics. Starting from a pluripotent
stage, cells move smoothly within the transcriptional landscape
towards more differentiated states with some stochasticity along their
path. We demonstrate the robustness of our method with respect
to extrinsic noise (e.g. measurement noise) and sampling density
heterogeneities on simulated toy data as well as two single-cell
quantitative polymerase chain reaction (qPCR) data sets (i.e. mouse
haematopoietic stem cells and mouse embryonic stem cells) and an
RNA-Seq data of human pre-implantation embryos. We show that
diffusion maps perform considerably better than Principal Component
Analysis (PCA) and are advantageous over other techniques for non-
linear dimension reduction such as t-distributed Stochastic Neighbour
Embedding (t-SNE) for preserving the global structures and pseudo-
temporal ordering of cells.
Availability: The Matlab implementation of diffusion maps for single-
cell data is available at https://www.helmholtz-muenchen.de/icb/single-
cell-diffusion-map.
Contact: fbuettner.phys@gmail.com,
fabian.theis@helmholtz-muenchen.de
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1 INTRODUCTION
The advantages of single-cell measurements to various biological
research fields have become obvious in recent years. One example
is the stem cell studies for which population measurements fail to
reveal the properties of the heterogeneous population of cells at
various stages of development. Purifying for a certain cell type
or synchronising cells is experimentally challenging. Moreover,
stem cell populations that have been functionally characterised
often show heterogeneity in their cellular and molecular properties
(Huang, 2009; Dykstra et al., 2007; Stingl et al., 2006). To overcome
these barriers, on the one hand researchers conduct continuous
single-cell observation using time-lapse microscopy (Park et al.,
2014; Rieger et al., 2009; Schroeder, 2011), accompanied by single-
cell tracking and analysis tools. However this approach is still
limited as the expression of very few genes (typically one to three)
could be observed. On the other hand, with the advent of new
technologies, such as single-cell qPCR (Wilhelm and Pingoud,
2003) or RNA-Seq (Chu and Corey, 2012) and flow or mass
cytometry (Chattopadhyay et al., 2006; Bandura et al., 2009), it
is now possible to measure hundreds to thousands of genes from
thousands of single cells at different specific experimental time-
points (time course experiments). However, several single cells
measured at the same experimental time point may be at different
developmental stages. Therefore, there is a need for computational
methods which resolve the hidden temporal order that reflects the
ordering of developmental stages of differentiating cells.

While differentiation has to be regarded as a nonlinear continuous
process (Buettner and Theis, 2012; Bendall et al., 2014), standard
methods used for the analysis of high-dimensional gene-expression
data are either based on linear methods such as Principal Component
Analysis (PCA) and Independent Components Analysis (ICA) (e.g.
used as part of the monocle algorithm, (Trapnell et al., 2014))
or they use clustering techniques that groups cells according to
specific properties. Hierarchical clustering methods as used in
SPADE (Qiu et al., 2011) and t-SNE (Van der Maaten and Hinton,
2008) as used in viSNE (Amir et al., 2013) are examples of
clustering methods. However, as these methods are designed to
detect discrete sub-populations, they usually do not preserve the
continuous trajectories of differentiation data. A more recently
proposed algorithm Wanderlust (Bendall et al., 2014) incorporates
the nonlinearity and continuity concepts but provides a pseudo-
temporal ordering of cells only if the data comprise a single branch.
Furthermore, in gene expression measurement techniques, there
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Fig. 1: Schematic overview of diffusion maps embedding. A) The n×G matrix representation of single-cell data consisting of four different
cell types. The last column on the right side of the matrix (colour band) indicates the cell type for each cell. B) Representation of each cell
by a Gaussian in the G-dimensional gene space. Diffusion paths (continuous paths with relatively high probability density) form on the data
manifold as a result of interference of the Gaussians. The Probability density function is shown in the heat map. C) The n × n Markovian
transition probability matrix. D) Data embedding on the first two eigenvectors of the Markovian transition matrix (DC1 and DC2) which
correspond to the largest diffusion coefficients of the data manifold. The embedding shows the continuous flow of cells across four cell types,
however it does not suggest the putative time direction.

is usually a detection limit at which lower expression levels and
non-expressed genes are all reported at the same value. Buettner
et al. (2014) suggested the use of a censoring noise model for PCA,
whereas for the other methods it is unclear how these uncertain or
missing values are to be treated. A variety of other manifold learning
methods including (Hessian) Locally-Linear Embedding (HLLE)
(Donoho and Grimes, 2003) and Isomap (Tenenbaum et al., 2000)
exist in the machine learning community and are discussed in detail
in the discussion and conclusion section.

Here, we propose diffusion maps (Coifman et al., 2005) as a
tool for analysing single-cell differentiation data. Diffusion maps
use a distance metric (usually referred to as diffusion distance)
conceptually relevant to how differentiation data is generated
biologically, as cells follow noisy diffusion-like dynamics in the
course of taking several differentiation lineage paths. Diffusion
maps preserve the nonlinear structure of data as a continuum
and are robust to noise. Furthermore, with density normalisation,
diffusion maps are resistant to sampling density heterogeneities and
can capture rare as well as abundant populations. As a nonlinear
dimension-reduction tool, diffusion maps can be applied on single-
cell omics data to perform dimension-reduction and ordering of
cells along the differentiation path in a single step, thus providing
insight to the dynamics of differentiation (or any other concept with
continuous dynamics). In this article, we

• propose an adaptation of diffusion maps for the analysis of
single-cell data which is less affected by sampling density
heterogeneities and addresses the issues relating to missing
values and uncertainties of measurement,

• propose a criterion for selecting the scale parameter in a
diffusion map,

• evaluate the performance of the diffusion map and its
robustness to noise and density heterogeneities using a toy
model that mimics the dynamics of differentiation,

• apply the adapted diffusion map algorithm to two typical
qPCR and one RNA-Seq data sets and show that it captures
the differentiation dynamics more accurately than other
algorithms.

2 METHODS

2.1 Diffusion maps
Let n be the number of cells and let G be the number of genes measured for
each cell. Denote the set of all measured cells by Ω. We allow each cell x to
diffuse around its measured position x ∈ RG through an isotropic Gaussian
wave function,

Yx(x
′) =

(
2

πσ2

)1/4

exp

(
−
||x′ − x||2

σ2

)
(1)

The normalisation of Yx(x′) is such that
∞∫

−∞
Y 2
x (x′)dx′ = 1. The

Gaussian width σ2 determines the length scale over which each cell can
randomly diffuse. The transition probability from cell x to cell y is then
defined by the interference of the two wave functions Yx and Yy . One can
easily show that this interference product is another Gaussian (all prefactors
cancel out):

∞∫
−∞

Yx(x
′)Yy(x

′)dx′ = exp

(
−
||x− y||2

2σ2

)
(2)

Hence, we can construct the n× n Markovian transition probability matrix
P for all pairs of cells in Ω as follows:

Pxy =
1

Z(x)
exp

(
−
||x− y||2

2σ2

)
(3)

Z(x) =
∑
y∈Ω

exp

(
−
||x− y||2

2σ2

)
(4)

At the position of each cell, Z(x) is the partition function which provides
an estimate of the number of neighbours of x in a certain volume defined
by σ. Hence it can be interpreted as the density of cells at that proximity.
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Fig. 2: A) Toy model of a differentiation regulatory network consisting of three pairs of antagonistic genes simulated by the Gillespie
algorithm. The arrows show activation or inhibition interactions between genes. The toy model employs two classes of gene regulation: B)
Gi is connected to an inhibitor, its production rate αi is proportional to a Hill function of the concentration of the inhibitor Proteini′ , C) Gi

is connected to an inhibitor Gi′ and an activator Gi”, its production rate αi is proportional to product of an inhibiting and an activating Hill
function. The degradation rate γ is constant for all proteins.

Consequently, we redefine the density normalised transition probability
matrix P̃ as:

P̃xy =
1

Z̃(x)

exp
(
− ||x−y||2

2σ2

)
Z(x)Z(y)

, P̃xx = 0 (5)

Z̃(x) =
∑

y∈Ω/x

exp
(
− ||x−y||2

2σ2

)
Z(x)Z(y)

(6)

Because we are only interested in the transition probabilities between cells
and not the on-cell potentials imposed by local densities, we set the diagonal
of P̃ to zero and exclude y = x from the sum in the partition function Z̃.
For a large enough σ, the matrix P̃ defines an ergodic Markovian diffusion
process on the data and has n ordered eigenvalues λ0 = 1 > λ1 ≥ ... ≥
λn−1 with corresponding right eigenvectors ψ0...ψn−1.

The t-th power of P̃ will present the transition probabilities between cells
in a diffusion (random walk) process of length t. Noting that P̃ t has the
same eigenvectors as P̃ , one can show that this transition probability can be
represented as follows:

P̃ t
xy =

n−1∑
i=0

λt
iψi(x)ψi(y)Z̃(y) (7)

Each row of P̃ t can be viewed as a vector, which we represent as pt(x, ·)
and consider as the feature representation (Shawe-Taylor and Cristianini,
2004) for each cell x. By computing the weighted L2 distance in the feature
space, the diffusion distance D2

t between two cells x and y is defined as
follows:

D2
t (x,y) = ||pt(x, ·)− pt(y, ·)||2

1/Z̃
=
∑
z

(P̃ t
xz − P̃ t

yz)
2

Z̃(z)
(8)

This diffusion distance can be expressed in terms of the eigenvectors of P̃
such that:

D2
t (x,y) =

n−1∑
i=1

λ2t
i (ψi(x)−ψi(y))

2 (9)

The corresponding eigenvector to the largest eigenvalue λ0 is a constant
vector ψ0 = 1. Therefore, it only contributes a zero term to D2

t and
is excluded from the spectral decomposition of D2

t in Equation 9. That
means the Euclidean distance of the cells in the first l eigenvector space
represents an approximation of their diffusion distance D2

t . Moreover, the

eigenvalues of P̃ determine the diffusion coefficients in the direction of the
corresponding eigenvector. As real data usually lie on a lower dimensional
manifold than the entire dimensions of space G, these diffusion coefficients
drop to a noise level other than a few first (l) prominent directions. Therefore,
if there is a significant gap between the l-th and (l+1)-th eigenvalue, the sum
up to the l-th term usually determines a good approximation for diffusion
distances. Thus, for data visualisation we select these eigenvectors and
instead of the mathematical notationψ, we call them Diffusion Components
(DCs).

Figure 1 presents a summary of diffusion map embedding. Each cell is
represented by a Gaussian wave function in the G-dimensional gene space.
On an adequate Gaussian width, the wave functions of neighbouring cells
interfere with each other and form the diffusion paths along the (nonlinear)
data manifold in the high-dimensional space. Hence, we construct the
Markovian transition probability matrix, the elements of which are the
transition probabilities between all pairs of cells. The eigenfunctions of the
Markovian transition probability matrix (DC1 and DC2) are then used for
low-dimensional representation and visualisation of data.

2.2 Accounting for missing and uncertain values
The data generated from qPCR, RNA-Seq or cytometry experiments are
very often prone to imperfections such as missing values or detection
limit thresholds. It is important to properly treat such uncertainties of data
(McDavid et al., 2013; Buettner et al., 2014). Our probabilistic interpretation
of diffusion maps allows a straightforward mechanism of handling missing
and uncertain data measurements. First, we have to decompose the kernel
into G components. Then, instead of a Gaussian, we can use any other
wave function that best represents our prior knowledge on the probability
distribution of the missing or uncertain values, which then should be
square-normalised to ensure equal contribution of the G components. For
example, for missing values and non-detects (measurements below the limit
of detection), one might choose a uniform distribution over the whole range
of possible values.
In the following we describe how to account for the uncertainty of non-
detect measurements in qPCR data. The statistical subtleties of non-detect
values in qPCR experiments have been systematically studied by McDavid
et al. (2013) for univariate models. In addition, for a multivariate PCA
analysis, Buettner et al. (2014) proposed that different kernels be allowed
in each dimension. For the diffusion map implementation, we assume any
value between the detection limit (M0) and a completely non-expressed
(off) state of genes valued as M1, is equally possible for the non-detect
measurements. Considering the kernel width formulated in the diffusion map
wave functions, we assume an indicator wave function between M0−σ and
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M1 + σ normalised by (M1 −M0 +2σ)−1/2. Thus, we have to calculate
three different kinds of interference of wave functions:
The interference of two cells with definite measured values for gene g is the
standard Gaussian kernel (see section 2.1):

∞∫
−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g = exp

(
−
(xg − yg)2

2σ2

)
,

the interference of two cells both with non-detect values for gene g is 1 (due
to the square-normalisation constraint):

∞∫
−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g = 1,

the interference of a missing (non-detect) value to a definite measured value
xg is:

∞∫
−∞

Yx(x
′
g)Yy(x

′
g)dx

′
g =

∫ M1+σ

M0−σ

1
√
M1 −M0 + 2σ

(
2

πσ2
)1/4 exp

(
−
(x′

g − xg)2

σ2

)
dx′

g

=
1

√
M1 −M0 + 2σ

(
πσ2

8

)1/4

·
(
erfc

(
M0 − σ − xg

σ

)
− erfc

(
M1 + σ − xg

σ

))
.

For data with missing or uncertain values, we need to check the pairwise
interference of the wave functions for each gene. The computation time is
thus proportional to the number of genes G for a fixed number of cells n.
Therefore, it might be preferable (especially in the case of large G) to choose
the wave function of the missing (or uncertain) value also in the form of a
Gaussian such that the multiplication of the G components of interference
can be expressed as the sum of the exponents and the exponentiation step
can be performed only once at the end of the algorithm for computation of
the transition matrix. An implementation of this fast version of the censoring
algorithm is also provided in the codes package. Figure S1 in the supplement
provides an illustration of our approach for accounting for missing and
uncertain values.

2.3 Determination of Gaussian kernel width
The parameter σ in Equation 1 determines the scale at which we visualise
the data. If σ is extremely small, most elements of the transition probability
matrix P̃ will tend to be zero and we do not get an overall view of a
connected graph structure. In fact, when σ is too small, the number of
degenerate eigenvectors with eigenvalue equal to one, indicates the number
of disconnected segments that P̃ defines on the data. For too large σ
however, the transition probability sensitivity on the distance between the
cells blurs. There is a certain range of σ variations for which P̃ defines
an ergodic diffusion process on the data as a connected graph and still the
diffusion distances between the cells are informative.

The un-normalised density at each cell (Z(x) in Equation 3) is
proportional to the number of cells in a fixed volume in its neighbourhood
and depends on σ. At scales of σ close to zero, cells do not have any
neighbours and their average density is 1 (because of the 1s on the diagonal
of P ). By increasing σ, the average density gradually increases as more
cells find other cells in their neighbourhood. There is a density saturation
point where σ reaches the system size and all cells form part of one
neighbourhood. At this point, for every cell x ∈ Ω, the density Z(x) will
be equal to the entire system size n.

Assuming that the density gradient is not extremely sharp along the data
manifold, the number of neighbours of cell x in the neighbourhood σ will
be proportional to the volume of a hypersphere of radius σ, hence:

Fig. 3: The average dimensionality of the data ⟨d⟩ as a function of
log10(σ) for the balanced and imbalanced toy data sets.

Z(x) ∝ σd(x,σ) (10)

where d(x, σ) is the dimensionality of data manifold at the position of cell
x and at the scale σ. By differentiating both sides with respect to log(σ), we
find that the average dimensionality of the manifold can be estimated by the
slope of the log-log plot of the number of neighbours versus the length scale:

⟨d(σ)⟩x =
∂ ⟨log(Z(x))⟩x

∂ log(σ)
(11)

where we compute the average of log(Z(x)) with consideration of density
heterogeneities such that:

⟨log(Z(x))⟩x =

∑
x(log(Z(x)) · (1/Z(x)))∑

x(1/Z(x))
(12)

It is worth noting that this average density underestimates the real
dimensionality of the structure due to the contribution of the cells lying on
the surface of the manifold. However, this does not affect our heuristic since
the variation of ⟨d⟩ is our main interest rather than ⟨d⟩ itself.

Each time ⟨d⟩ reaches its maximum and starts to decrease, one can deduce
that an intrinsically lower-dimensional structure is emerging from the noise-
enriched distributed cells in the original high-dimensional space. Therefore
several characteristic length scales of the data manifold (i.e. width of its
linear parts, radius of its curves, etc.) give rise to several local maxima in ⟨d⟩.
Such characteristic scales indeed make our choice for the Gaussian width σ

since they indicate the scale at which the Euclidean distances used in the
Gaussian kernel are sensible in an assumed Euclidean tangent space to the
manifold. Although Euclidean distances are also valid for smaller σs than the
characteristic length scale, they are not recommended because smaller kernel
width would mean less connectivity in the cells graph which in turn results
in an increased sensitivity to noise. Figures S2 and S3 in the supplement
illustrate the resulting diffusion map on optimal kernel width and several
other kernel widths values for a U-shaped toy data. Also the performance of
diffusion map at the optimal kernel width when there is no distinguishable
pattern in the data (e.g. normally distributed data in all dimensions or sparse
data) is illustrated in the supplementary Figure S4.

2.4 Toy model for differentiation
As toggle switches are known to play a role in differentiation branching
processes (Orkin and Zon, 2008), we designed a regulatory network of
three pairs of toggle genes to evaluate the performance of our method on
a toy data set that mimics a differentiation tree (Krumsiek et al., 2011).
Assuming a genetic regulatory module as presented in Figure 2A, we
simulated the stochastic differentiation process by the Gillespie algorithm
(Gillespie, 1977) with the reactions as shown in 2B and 2C (Strasser et al.,
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2012). More details about the chemical reactions and the reaction rates used
in the Gillespie algorithm model can be found in the supplement (Figure
S5 A and B). Genes G1 and G2 are antagonistic to each other through an
inhibiting Hill function. Therefore, starting from an initial undifferentiated
state where G1 and G2 are both in a very low expression level, single
samples may end up in either of the states where G1 or G2 is exclusively
expressed. At this stage, the next pair of toggle genes in the differentiation
hierarchy is activated (through an activating binding Hill function), which
are again antagonistic to each other. This model generates four different
types of fully differentiated cells in the six-dimensional space of genes.

To establish a steady state in the cell population, once a cell hits the end of
each branch, we remove it from the population and initiate a new cell at the
original undifferentiated state. This approach maintains the population size
of cells. After an extended simulation run, the steady state of the population
is established and resembles the haemostatic state of (e.g. haematopoietic)
stem cells in natural organisms.

We sampled cells from this toy model in two different sets, a balanced
toy data set, wherein 600 samples serve as a a snapshot of the steady state of
the system with no additional extrinsic noise, and an imbalanced toy data set,
wherein 1800 sample are derived from a non-steady-state density distribution
with heavier sampling density on the G+

1 G+
3 branch. We also added an

extrinsic Gaussian noise with a variance of 25% maximum expression to
each gene. The gene expression plot for a simulated single cell as it proceeds
from the initial pluripotent state to a fully differentiated state is presented in
the supplement (Figure S5 C and D).

2.5 Experimental data
2.5.1 qPCR data of mouse haematopoietic stem cells. We
calculated a diffusion map embedding for the haematopoietic and progenitor
stem cells data set from Moignard et al. (2013). In this experiment, 597
cells from five different haematopoietic cell types, namely, haematopoietic
stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP),
megakaryocyte-erythroid progenitor (PreMegE), common lymphoid progenitor
(CLP) and granulocyte-monocyte progenitor (GMP) were gated by FACS
sorting. Single-cell qPCR expression level measurement was then performed
for 24 genes. Housekeeping genes were only used for cell-cycle
normalisation, where for each cell, all expression values were divided by
the average expression of its housekeeping genes. Furthermore we excluded
the five housekeeping genes, as well as c-Kit, which is a stem-cell receptor
factor expressed on the surface of all analysed cells, from the diffusion map
analysis.

2.5.2 qPCR data of mouse stem cells from zygote to blastocyst.
To understand the earliest cell fate decision in a developing mouse embryo,
Guo et al. (2010) conducted a qPCR experiment for 48 genes in seven
different developmental time points. The gene expression levels were
normalised to the endogenous controls Actb and Gapdh. The authors also
identified four cell types, namely, inner cell mass (ICM), trophectoderm
(TE), primitive endoderm (PE) and epiblast (EPI) using characteristic
markers. The total number of single cells used in the diffusion map analysis
was 429.

2.5.3 RNA-Seq of human preimplantation embryos. For the data
set published by Yan et al. (2013), RNA-Seq analysis was performed on
90 individual cells from 20 oocytes and embryos. The sequenced embryos
were picked at seven crucial stages of preimplantation: metaphase II oocyte,
zygote, 2-cell, 4-cell, 8-cell, morula and late blastocyst at the hatching stage.

3 RESULTS
In this section we evaluate the performance of the diffusion map on
each of the data sets described in the Methods section and compare it
to the performance of two other dimension-reduction methods PCA
and t-SNE. Data embeddings with several other methods including
ICA, SPADE, kernel-PCA (Schölkopf et al., 1998), isomap and

Hessian Locally-Linear Embedding (HLLE) are provided in the
supplementary Figures S16-S20.

3.1 Diffusion maps cope with high noise level and
sampling density heterogeneity for toy data

3.1.1 Gaussian width determination of the toy data. We
demonstrate the heuristic determination of σ on balanced and
imbalanced toy data sets. The average dimensionality of the
structure of some chosen characteristic length scale can be estimated
by Equation 11. Figure 3 shows the average dimensionality ⟨d⟩
for balanced toy data (red) and imbalanced toy data (black) as
a function of log(σ). The balanced set exhibits two maxima.
The first one arises at the length scale of the thickness of the
differentiation branches which include only a few cells. At this σ
several subpopulations form at the more densely populated stages
of the steady state. The second maximum appears at a larger length
scale when several subpopulations become visible to each other
and the continuous branches form. We picked the σ at the second
maximum for visualisation (data visualisation at the first maximum
is provided in the supplementary Figure S6). For the imbalanced set,
however, due to the high noise level, the first maximum vanished
and we only detected one maximum which we then used for the
visualisation.

3.1.2 Performance of the diffusion map on the toy data as
compared to the other methods. Definition of diffusion distance
(Equation 8) based on probability of transition between cells
through several paths renders diffusion maps very robust to noise.
Figure 4 presents a comparison between the performance of the
diffusion map and the other two methods PCA and t-SNE on the
balanced toy data set. The eigenvalues of the diffusion map (Figure
4D) suggest that there are four leading dimensions that explain the
data structure and the higher dimensions present noise rather than
the intrinsic structure of the data manifold. The complete set of two-
by-two projections up to the fourth eigenvector can be found in the
supplementary Figure S7. PCA of this data set generated results
that were similar to the diffusion map, where all four branches
of the data could be distinguished. However, standard t-SNE did
not preserve the data structure continuity. Visualisation using t-
SNE with non-standard perplexity values are also provided in the
supplementary Figure S8. To determine how additional extrinsic
noise and density heterogeneities affect each method, we also
applied the three methods on imbalanced toy data (Figure 5). The
eigenvalues plot of the diffusion map in this figure suggests the
same order of significance for the third and fourth eigenvectors as
λ4 almost equals λ3 and that the higher-order eigenfunctions mostly
present noise. We chose two projections (DC, DC2, and DC3) and
(DC1, DC2, and DC4) for illustration in Figure 5. The complete set
of two-by-two projection can be found in the supplementary Figure
S9. From Figure 5A, one can infer the same size for all four branches
of differentiation despite different sampling densities. This figure
also suggests that the diffusion map clearly shows four branches of
the imbalanced toy data, whereas PCA and t-SNE produce noisier
visualisation and represent the two rarer branches as smaller. For
additional t-SNE visualisations with non-standard perplexity values
for the imbalanced toy data see Figure S10 in the supplement.
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Fig. 4: Visualisation of the balanced toy data on A) the first three eigenvectors of the diffusion map, B) PCA and C) t-SNE. The colours (heat
map of blue to red) indicate the maximum expression among all genes. Eigenvalues sorted in decreasing order for D) diffusion map and E)
PCA.

Fig. 5: Visualisation of the imbalanced toy data on A) the first three eigenvectors of the diffusion map, B) the first, second and fourth
eigenvectors of the diffusion map, C) the first three components of the PCA D) the first, second and fourth components of PCA and E)
t-SNE. The colours (heat map of blue to red) indicate the maximum expression among all genes. Eigenvalues sorted in a decreasing order for
F) diffusion map and G) PCA.

3.1.3 Refinement of the transition matrix by density normalisation,
zero diagonal and accounting for missing values. In order to
adapt the standard diffusion map algorithm to the properties of
single-cell gene expression parameters, we refined the transition
matrix in different ways. First, we set the diagonal of the transition
matrix to zero (Equation 5) since the (non-zero version) diagonal
carries information about local sampling densities. Unlike many
other applications where the information about local densities has
some value, the sampling density in the context of single-cell data
is somewhat arbitrary (e.g. only specific cell types are monitored,
different proliferation rates in several stages of differentiation alters
the sampling density, outlier cells show lower density, etc.). For
a demonstration of how zero diagonal improves the quality of the
diffusion map see supplementary Figure S11. Second, we refined
the Markovian transition matrix by density normalisation (Equation
5) since the number of diffusion paths between two cells depends
on the density of cells connecting them and more densely sampled
regions of the data would seem to have smaller diffusion distance
to each other on a diffusion map without density normalisation.
Supplementary Figure S12 demonstrates how density normalisation
improves the quality of the diffusion map. The third refinement that

we used in our implementation of diffusion maps is accounting for
missing and non-detect values (section 2.2). Generally speaking as
the proportion of missing and non-detect values increases, there is a
decrease in the quality of the diffusion map. However the magnitude
of this effect depends highly on the architecture of the gene
regulatory network and the role of the corresponding gene in the
network. For example, for a toggle switch, low expression of a gene
would always imply high expression of the other gene. Therefore,
increasing the detection threshold (i.e. increasing number of non-
detects) does not have a major influence on the analysis, as the
information is still present in the other gene with high expression.
We evaluate the performance of diffusion map in several proportions
of missing values for the balanced toy data in supplementary Figure
S13.

3.2 Diffusion map allows identification of
differentiation trajectories on experimental data

3.2.1 Performance on haematopoietic stem cells qPCR data as
compared to the other methods. The diffusion map embedding
for the haematopoietic stem cells (Figure 6A) indicates a major
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Fig. 6: Visualization of haematopoietic stem cells data on the first three eigenvectors of A) diffusion map, B) PCA and C) t-SNE. Eigenvalues
sorted in a decreasing order for D) diffusion map and E) PCA. F) The hierarchy of haematopoietic cell types.

branching of HSCs to PreMegE and LMPP cell types and a further
branching of LMPPs to CLP and GMP cells. The branching
structures are less clear in the PCA plot (Figures 6B). Moreover,
PCA produces artificial planes of data in the embedding because
of the non-detect measurements in the qPCR data. The t-SNE plot
(Figure 6C) almost separated the cell types (except for LMPPs)
into different clusters. However, the notion of temporal progress is
less clear compared to the diffusion map embedding. In addition,
since uncertainties in the values of non-detects were not considered,
a widening within the clusters is observed. Detailed visualisation
using the three methods and the Gaussian width determination for
diffusion map embedding are provided in the supplementary Figure
S14. The ordered eigenvalues plot for the diffusion map and PCA
are shown in Figures 6D and 6E. The ordered eigenvalues plot
of the diffusion map suggests that there is no clear separation
between the eigenvectors of the diffusion map that captures the
intrinsic low-dimensional data manifold and those characterising
noise for this data set. However, what makes the diffusion map
embedding of this data set more plausible is the concordance
between the branching structure as suggested by the diffusion map
and the recently established hierarchy of haematopoietic cell types
(Moignard et al., 2013; Arinobu et al., 2007) illustrated in Figure
6F.

3.2.2 Performance of the diffusion map on mouse embryonic stem
cells qPCR data as compared to the other methods. For the mouse
embryonic stem cells, diffusion map visualisation using the first
three eigenvectors indicated a branching at the early 16-cell stage to
the ICM and TE cell types, and further branching of the ICM at the
late 32-cell stage into the EPI and PE (Figure 7A). The branching
structure is unclear in the PCA and t-SNE plots (Figure 7B and 7C).
The ordered eigenvalues plot for the diffusion map and PCA are
shown in Figures 7D and 7E. The branching structure indicated by
the diffusion map is in agreement with the results of previous studies
on this data set (Guo et al., 2010; Buettner and Theis, 2012), which
suggests a branching into the two cell types, ICM and TE, after the

8-cell stage and further branching of the ICM into EPI and PE cells
(Figure 7F). More information on Gaussian width determination and
two-dimensional projections of data on each pair of the first to fourth
eigenvectors of the diffusion map are provided in the supplementary
Figure S15.

3.2.3 Performance on human pre-implantation embryos RNA-
Seq data compared with other methods. The performance of the
diffusion map on this RNA-Seq data set is comparable (although
slightly sharper with respect to pseudo-time ordering) to the other
two methods, PCA and t-SNE (Figure 8). The number of single cells
measured in RNA-Seq is currently limited due to high sequencing
costs. A low number of sampled cells could not meaningfully
indicate a complex structure. Hence, PCA and t-SNE performance
is almost as good as that of the diffusion map. However, with
the expected development of new and cheaper RNA sequencing
technologies, we propose a diffusion map that could be used as a
powerful dimension-reduction tool the computation time of which
is only linear with respect to the number of genes.

4 DISCUSSION AND CONCLUSION
In this manuscript, we have demonstrated the capabilities of
diffusion maps for the analysis of continuous dynamic processes,
in particular, differentiation data in a toy data set and a few
experimental data sets. Using a biologically relevant distance
metric (i.e. diffusion distance), the adapted diffusion map
method outperforms other dimension-reduction methods in pseudo-
temporal ordering of cells along the differentiation paths and could
capture the expected differentiation structure in all cases. Table
1 provides a general comparison of several dimension-reduction
methods, detailing capabilities and limitations in application to
single-cell omics data. Among these methods, isomap and (H)LLE
have not been applied for the analysis of single-cell differentiation
data and pseudo-time ordering so far, mainly because they do
not meet the specific requirements for the analysis of such data
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Fig. 7: Visualisation of mouse embryonic stem cells on A) the first three eigenvectors of diffusion map, B) PCA and C) t-SNE. Eigenvalues
sorted in a decreasing order for D) diffusion map and E) PCA. F) The hierarchy of cells for mouse embryonic stem cells.

Fig. 8: Visualisation of human preimplantation embryos data on A) the first three eigenvectors of the diffusion map, B) PCA, and C) t-SNE.
Eigenvalues sorted in a decreasing order for D) the diffusion map and E) PCA.

including capability to handle high levels of technical noise,
sampling density heterogeneities, detection limits and missing
values. Figures S19 and S20 in the supplement demonstrate the
poor performance of these methods for finding the differentiation
manifold in presence of noise and density heterogeneity for our
toy data set as well as the three experimental single-cell data sets.
For any data set, it is important to consider the advantages and
disadvantages of each method with respect to the data properties
and the purpose of the analysis, in order to make a suitable choice
for applying to that data set.

In our diffusion maps implementation, by performing density
normalisation and setting the diagonal of the transition probability
matrix to zero, we propose a mapping technique wherein the
closeness of cells in the diffusion metric is unaffected by density
heterogeneities in data sampling (see supplementary Figures S9
and S10). This feature can be crucial for the detection of rare
populations, which is one of the main challenges in the analysis of
differentiation data.

By breaking the diffusion kernel (Mohri et al., 2012) to
its multiplicand wave functions, we also propose a method in
accommodating the uncertainties of measurement and missing
values into the wave function. Consequently, we have successfully
addressed uncertainties in the value of non-detects in qPCR data.

Tuning the scale parameter σ is also important for generating
insights into the structure of the data, for which we proposed
a criterion on the basis of the characteristic length scales of
the data manifold. Because of computational limitations, for our
criterion we compute the average intrinsic dimensionality and
hence the average characteristic length scale. However, when
density heterogeneities are extremely large, or the data manifold
has many sharp changes and several scales, a single σ may not
provide a globally optimal scale for data embedding. Therefore,
implementation of an efficient and cost-effective method for several
locally valid σs determinations, instead of a single global value is of
interest.

It is worth noting that the mathematical ergodicity in diffusion
maps reached by adequate kernel width selection does not
necessarily imply biological ergodicity. If there appears a trace of
transitory cells between two clusters, we conclude the two clusters
are also biologically connected to each other in an ergodic sense.
However this trace might be not present if the transition is too fast or
switch-like abrupt, so that no transitory cells have been caught in the
finite set of sampled cells of snapshot data. Thus it has to be proven
with dedicated biological experiments (e.g. as used by Buganim
et al. (2012) and Takahashi and Yamanaka (2006)) whether the data
is biologically ergodic or not.
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ref. methodology
linear/ 
non-
linear

structure 
faithfulness

robustness to 
noise / density 
heterogeneities

no. of dims 
needed for 
embedding

handles 
missing /
uncertain 
values?

keeps 
single-cell 
resolution?

clustering 
/ keeping 
continuity

tuning
parameters

best performance

PCA
Hotteling, 

1993

orthogonal 
transformation

linear global + / -
depends on 
eigenvalues

+ (Buettner

et al., 2014)
+ - / + none

linear data 
subspace

ICA Stone, 2004
orthogonal 

transformation
linear global + / - arbitrary - + - / + none

linear data 
subspace, 

known no. of 
sources

SPADE
Qui et al., 

2011

agglomerative / k-
means clustering, 

minimum spanning
trees

non-
linear

local and 
(weak) 
global

- / + 2D - - + / +

-outlier density
-target density
-desired no.of

clusters

low noise,
desired no. of 

clusters ≿O(2d*)

t-SNE
Van der 

Maaten and 

Hinton, 2008

attraction /
repulsion balance 

non-
linear

local + / ++ 2 or 3D - + + / - perplexity

clustering to 
separate groups,
presence of noise 

and density 
heterogeneities

kernel-
PCA

Scholkopf et 

al., 1998 kernel methods
non-
linear

global + / -
depends on 
eigenvalues

+ (Buettner

et al., 2014)
+ + / +

depends on the 
used kernel

physically relevant 
kernel

Isomap
Tenenbaum et

al., 2000
spectral clustering, 
geodesic distance

non-
linear

global - / +
depends on 
eigenvalues

- + - / +
no. of nearest 
neighbours

low noise or a 
priory known

geodesics 

(H)LLE
Donoho and 

Grimes, 2003

weighted linear 
combination of 

nearest neighbours

non-
linear

global - / - arbitrary - + - / +
no. of nearest 
neighbours

continuos data 
manifold,
low noise,

uniform sampling

Diffusion 
map

Coifman et al., 

2005

spectral clustering, 
diffusion distance

non-
linear

global ++ / +
depends on 
eigenvalues

+ (our 
implementat

ion)
+ - / + kernel width

continuos data 
manifold, presence 

of noise and 
density 

heterogeneity

* d is the intrinsic dimensionality of the data manifold

Table 1: Comparison of several dimension-reduction algorithms in the view of single-cell omics data application.

A possible strategy for enhancing the capacity of capturing
details of the structure of rare populations using diffusion maps
is to limit the transition possibility of each cell only to its closest
neighbours. In this scenario, we could render the diffusion map
more local by building the transition matrix P̃ in Equation 6
for k nearest neighbours only. This method, however, might
end up with several disconnected sub-graphs of cells when the
sampling density along the intrinsic data manifold is extremely
heterogeneous. Furthermore, P̃ (without the row normalisation) will
not be symmetric any more and we cannot ensure real eigenvalues
for the transition probability matrix. However, as long as the graph
is connected and eigenvalues are real, we can benefit from a more
locally detailed map.

One caveat in the current version of diffusion map is the n2 ×G
computation time which can be prohibitive for large cell numbers
(> 104) as generated from cytometry experiments. Choosing the
k nearest neighbours version of diffusion map can therefore be
a solution to this problem. Diffusion distances are based on a
robust connectivity measure between cells which is calculated over
all possible paths of a certain length between the cells. Thus, a

diffusion mapping obtained by accounting for a smaller fraction
of all possible paths (namely those going through each cells’
nearest neighbours) can still provide a good approximation of
the diffusion distance between the cells and yet avoid computing
all n2 elements of the transition probability matrix. With such
modifications, diffusion maps prevail as a promising method for the
analysis of large cell numbers omics data.

Another issue is the number of embedding dimensions. The
number of significant dimensions of the diffusion map is determined
where a remarkable gap occurs in its sorted eigenvalues plot. This is
not intrinsically bound to the conventional visualisable dimensions
two or three. In contrast, for some other methods such as t-SNE,
one can pre-determine the number of visualisation dimensions for
the embedding optimisation to two or three dimensions.

We conclude that diffusion maps are appropriate and powerful
for the dimension-reduction of single-cell qPCR and RNA-Seq cell
differentiation data as they are able to handle high noise levels,
sampling density heterogeneities, and missing and uncertain values.
As a result diffusion maps can organise single cells along the
nonlinear and complex branches of differentiation, maintain the
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global structure of the differentiation dynamics and detect rare
populations as well.
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