
Martin Heni,^{1,2,3} Robert Wagner,^{1,3} Stephanie Kullmann,^{2,3,4} Hubert Preissl,^{2,3,4} and Andreas Fritsche^{1,2,3}

RESPONSE TO COMMENT ON HENLET AL.

Central Insulin Administration Improves Whole-Body Insulin Sensitivity via Hypothalamus and Parasympathetic Outputs in Men. Diabetes 2014;63:4083–4088

Diabetes 2015;64:e8-e9 | DOI: 10.2337/db15-0209

Dhindsa et al. (1) provide the interesting hypothesis that obese humans could be resistant to "brain outputs" that regulate peripheral insulin sensitivity. Indeed, such a mechanism might contribute to the resistance of our obese participants to the insulin-sensitizing effect of intranasal insulin. We agree that resistance of peripheral tissues to brain outputs, such as the autonomic nervous system, is well conceivable. In line with this hypothesis, altered activity of mainly the parasympathetic nervous system is well known in obesity (see ref. 3). However, we are not aware of studies on the transmission of autonomic nerves on target organs such as the liver in the context of obesity.

On the other hand, data from our group and others show that brain insulin resistance is present in obesity (reviewed in refs. 4 and 5). We therefore believe that altered brain responsiveness to nasal insulin has a major contribution to our current findings in obese participants.

Of note, Figs. 3 and 4 in our article (2) are both adjusted for BMI. This allowed the inclusion of obese

subjects into the models to enhance statistical power. Hence, these figures do not indicate that lean and obese participants reacted equally to nasal insulin in terms of hypothalamic activity and high-frequency band activity. Unfortunately, our subgroups were too small to statistically address differences between the two weight groups for those measurements.

We would like to thank Dhindsa et al. (1) for emphasizing that nasal insulin was shown to affect free fatty acid (FFA) levels (6), a mechanism that could indeed contribute to the regulation of peripheral insulin sensitivity. To address this issue, we analyzed FFA concentrations during our study. Initiation of the hyperinsulinemic clamp rapidly caused a dramatic decline in plasma FFAs from a baseline level of 421 \pm 31 μ mol/L to 96 \pm 12 μ mol/L before spray application. Intranasal insulin did not further reduce FFA concentrations; there were no significant differences between intranasal insulin and placebo administration (MANOVA, P =0.7 for lean and P = 0.9 for obese participants). These results indicate a marked suppression of lipolysis by the intravenous insulin infusion during the clamp that cannot be further influenced by intranasal insulin. Thus, brain insulin action regulates lipolysis under fasting conditions (6), a mechanism that is diminished or even absent in the presence of systemic hyperinsulinemia. Hence, altered FFA concentrations cannot explain the regulation of peripheral insulin sensitivity in our study (2).

Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, Eberhard Karls University Tübingen, Tübingen, Germany

Corresponding author: Martin Heni, martin.heni@med.uni-tuebingen.de.

© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

¹Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany

²Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany

³German Center for Diabetes Research (DZD e.V.), Tübingen, Germany

Just as Dhindsa et al., we are looking forward to forthcoming clinical studies on the exciting topic of how the brain regulates whole-body metabolism.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

References

 Dhindsa S, Dhindsa G, Chemitiganti R. Comment on Heni et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 2014;63:4083–4088 (Letter). Diabetes 2015;64:e7. DOI: 10.2337/db15-0131

- Heni M, Wagner R, Kullmann S, et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 2014;63:4083

 –4088
- 3. Arone LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol 1995;269:R222-R225
- Scherer T, Lehnert H, Hallschmid M. Brain insulin and leptin signaling in metabolic control: from animal research to clinical application. Endocrinol Metab Clin North Am 2013;42:109–125
- Kullmann S, Heni M, Fritsche A, Preissl H. Insulin action in the human brain: evidence from neuroimaging studies. J Neuroendocrinol. 6 January 2015 [Epub ahead of print]. DOI: 10.1111/jne.12254
- Iwen KA, Scherer T, Heni M, et al. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J Clin Endocrinol Metab 2014;99:E246–E251