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1 Summary

1 Summary

In this master thesis the mRNA transfection dynamics of single cells were studied via time-

lapse fluorescence microscopy. For this purpose six different models were designed that are

based on ordinary differential equations. They were fitted on the mean fluorescence trajec-

tories of single cells using a maximum likelihood approach. The optimization was done for

multiple starting points in the parameter space to find the global maximum of the likelihood

function and the associated model parameters. To compare the fitting performance of the

different models the Akaike and Bayesian Information Criteria were used that balance be-

tween under- and overfitting and enable a ranking of all models within the set.

In the first part of this work the behaviour of both model selection criteria was studied on

artificially created datasets. For this purpose each model was used once to generate an as-

sociated dataset of 100 single trajectories. Afterwards each model of the set was fitted once

to each trajectory per dataset. The models were compared by both selection criteria for the

whole population of trajectory fits as well as for each fit separately. This way it was found

out that the model that was selected as best on the population scale is less complex than

the model that was used to generate the data. In addition it was shown that the selection

criteria selected different models as best for subgroups within the population. For some cases

it was discovered that the model that was selected most frequently for the individual fits

differs from the best model on the population scale.

In the second part of this work the mRNA transfection dynamics were studied for Human

Embryonic Kidney (HEK) cells via time-lapse fluorescence microscopy. Two experiments

were performed in parallel with cells that were transfected with mRNA either coding for

eGFP or d2eGFP proteins. The cells were seeded on microstructured single-cell arrays for

high-throughput measurements. The six different models were fitted on the trajectories of

the mean fluorescence intensities per cell for each population per experiment. The model se-

lection revealed that three models that share the ribosomal translation pathway were highest

ranked on the scale of both populations and selected most frequently for the individual fits.

The parameter uncertainty analysis was done for one individual fit per highest ranked model

and fortunately the protein degradation rates and the measurement noise were indicated as

practical identifiable. These two parameters were compared for the highest ranked models

and yielded very similar statistical quantities on the logarithmic scale. However, the mean

values and the standard deviations of the highest ranked models differed significantly for

the back transformed parameter distributions. Indeed, the median values of the parameter

distributions were almost equal and comparable to the transformed median values of the

logarithmic parameter distributions. This result was expected, as the median is more robust

towards outliers. For this reason the median values were compared with a literature refer-

ence obtained by flow cytometry analysis of Chinese Hamster Ovary cells (CHO) that were
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transfected with plasmid DNA. In this work the following median values of the protein degra-

dation rates were obtained: βeGF P = 0.19 and βd2eGF P = 0.35. As expected, the degradation
rate of the destabilized d2eGFP proteins was estimated higher than of eGFP. The rate of

d2eGFP proteins is close to the literature reference of βd2eGF P,F C = 0.35 [1]. On the contrary

the degradation rate of the eGFP proteins was estimated higher than the literature reference

of βeGF P,F C = 0.04 [1]. On the one hand the literature values can only be guiding values as

the transfection dynamics of plasmid DNA and mRNA are different and on the other hand

the measurement noise was estimated significantly higher for the cells that expressed eGFP

than d2eGFP proteins. The mean value for eGFP constructs is given by σeGF P = 43.92 and

for d2eGFP constructs by σd2eGF P = 16.95. The cells that expressed eGFP proteins were

more vital during the observation which led to more movement on the single-cell array and

could cause higher fluctuations in the trajectories of the mean fluorescence intensities that

were fitted. The global optimization of the likelihood function would probably lead to even

more precise results after an improvement of the image analysis methods.
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2 Introduction

The dynamics of mRNA transfection were previously studied by Leonhardt et al. via time-

lapse microscopy for high-throughput measurements on single cell arrays [2]. The cells were

transfected with mRNA that either coded for eGFP or d2eGFP proteins using the trans-

fection reagent Lipofectamin2000r. The mean fluorescence intensities of single cells were

extracted and fitted by a simple model to obtain the parameter distributions of the degrada-

tion rates of transfected mRNA and reporter proteins. This model assumed direct reaction

pathways of the mRNA translation as well as for the mRNA and protein degradation. The

fitting of the single cell trajectories was done by the commercial software IGOR-PRO that

used the Levenberg-Marquardt algorithm to minimize a loss function of the squared dis-

tances of fitted and observed data points. As only one initial guess was used as a starting

point for the algorithm, the estimated model parameters probably correspond to sub-optimal

solutions of the minimization of the loss-function. In addition it was discovered that the es-

timated mRNA and protein degradation rates were highly correlated and interchangeable

in the analytic solution of the rate equations. Furthermore the residuals of the fits showed

systematic deviations over time from the observed data. This indicated that perhaps even

more complex models are needed to describe the mRNA transfection dynamics. [2]

In this work the mRNA transfection dynamics are analysed for six different models that are

based on systems of ordinary differential equations. Five new models are designed in addition

to the simple model. They differ in their mRNA translation and degradation pathways and

share the direct degradation of reporter proteins. As in the study of Leonhardt et al. cells

were seeded on microstructured single-cell arrays to provide high-throughput measurements

via time-lapse microscopy. By fitting the six models on the mean fluorescence trajectories of

single cells the question is addressed which models are better suited to cover the dynamics of

mRNA transfection than the simple model. To compare their fitting quality, the Akaike and

Bayesian Information Criteria are used that enable a ranking of all models in the set and

a comparison of their fitting quality at a glance. Instead of minimizing the loss function of

squared distances between the observed and fitted data, the probability to observe the data

given the model parameters, called likelihood function, is maximized. To find the model

parameters that are probably related to the global maximum of the likelihood function,

multiple starting points are randomly chosen by latin hypercube sampling. This global

optimization method was established in collaboration with the Institute of Computational

Biology of the Helmholtz Center Munich.
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This work is organized as follows: All basic concepts that were used in this work are explained

in Chapter 3. The six models that were used for fitting are introduced in Chapter 4.1. To

find out whether the model selection criteria select models that are closest to the underlying

reaction dynamics, the model selection is studied on artificial datasets in Chapter 4. The

six models are compared by both selection criteria on the population scale per dataset in

Chapter 4.2.3. The model selection is studied as well for the individual trajectory fits in

Chapter 4.2.4 to obtain a complete picture of models that were selected as best for the

datasets. The mRNA transfection dynamics were studied for the six models via lime-lapse

fluorescence microscopy. HEK-cells were transfected with mRNA that either codes for eGFP

or d2eGFP and observed in parallel. To find out which model is best to describe the mRNA

transfection dynamics the models are compared on the population scale in Chapter 5.2.1 and

in detail for the individual trajectory fits per population in Chapter 5.2.2. The parameter

distributions of the best models per population are analysed in Chapter 5.3 to compare the

protein degradation rates of eGFP and d2eGFP.
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3 Fundamental concepts

3.1 Experimental concepts

3.1.1 Transfection

In the past years the delivery of nucleic acids such as DNA, RNA or plasmids into eukaryotic

cells, which is called transfection, has become an interesting field for clinical studies. The

use of nucleic acids for genetherapy is facilitated by their low toxicity and high target spec-

ification. However, the breakthrough for drug approval is hindered by poor cellular uptake

and low biological stability due to fast degradation rates. [3, 4]

During the past decades several techniques have been developed to enhance gene delivery

including mechanical and electrical methods such as microinjection, particle bombardment,

electroporation or magnetofection as well as viral and non-viral vector-assisted methods [3,5].

Viral delivery methods are most frequently used worldwide as they exhibit high transfection

efficiencies in several different human tissues [3]. Though non-viral methods received increas-

ing attention due to their lower risk of immunology response [3,4,6,7]. Delivery systems based

on cationic helper lipids that form complexes with the negatively charged nucleic acids are

commonly used. These complexes are called lipoplexes and the delivery is also called lipofec-

tion. As mRNA can directly be translated into proteins without entering the nucleus, thereby

reducing the risk of chromosomal integration, its usage instead of DNA is preferred [4, 7].

This was limited by fast degradation rates and immunology response in the past which was

reduced by the development of long-lived, non-immunogenic RNA [8]. Figure 1 shows the

basic principle of mRNA lipofection: [6, 9]

1. Cationic helper lipids and the negatively charged mRNA are mixed within the trans-

fection medium and self-assemble to lipoplexes.

2. The cells are incubated with the solution as long as enough lipoplexes have sedimented

onto the slightly anionic cell membrane.

3. They are incorporated via endocytosis and released into the cytosol. After unpacking

of lipoplexes, the mRNA is translated into unfolded GFP proteins.

4. The latter are activated after folding and maturation of the chromophore and can be

observed via fluorescence microscopy.

In this work the dynamics of translation and protein expression were studied by mRNA

transfection using the commercial liposome-based transfection reagent Lipofectamin2000 r.

As mRNA can directly be translated after entering the cell, short onset times of expression

are achieved [4]. Oppositely the beginning of observation with time-lapse microscopy is

limited by previous preparation steps, e.g. by the incubation time of cells with the lipoplex

solution. Protocols of the experiments in this work can be found in the Appendix 7.2.
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Figure 1: Basic principle of mRNA Lipofection: Lipoplexes are formed by self-assembly of
cationic lipids and negatively charged mRNA. After incubation of cells with trans-
fection medium, lipoplexes sediment on the cell membrane. They are incorporated
via endocytosis. After endosomal release and unpacking of lipoplexes the mRNA
is translated into unfolded GFP proteins. After maturation the active GFP can
be observed via fluorescence microscopy.

3.1.2 Microstructured single-cell arrays

The analysis of single-cell arrays provides a deeper understanding of cell-to-cell variability

and stochasticity of biochemical networks and parameters for example for gene expression

and cell death [10,11]. Therefore several techniques for the fabrication of microstructures for

single as well as multiple cells have been developed that offer well-defined microenvironments

with comparable growth conditions. This includes approaches with physical barriers that

restrict the cells in a small region as well as methods based on selective attachment by

adhesion molecules named metals, proteins or polymers. [12–16]

In this work the same method as described in [17] was used to create microstructered single-

cell arrays. The fabrication is shown in Figure 2. First a master is produced by negative

photolithography and used subsequently to produce PDMS-stamps. The stamp is placed on

a µdish (ibidi) and treated with oxygen plasma to obtain hydrophilic surfaces on exposed

regions. Afterwards they are filled with cell-repellent PLL-g-PEG polymer. The PDMS

stamp is removed and the embedded squares are functionalized with the extracellular matrix

protein fibronectin, which enables cell adhesion [18].

12
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Figure 2: Fabrication of microstructured single-cell arrays: A master is used to create PDMS
stamps (A) that are placed on a µdish. Exposed surfaces are treated with oxygen
plasma (B) and passivated with the cell-repellent polymer PLL-g-PEG (C). After
removal of the PDMS stamp the embedded squares are functionalized with the
extracellular matrix protein fibronectin that is preferred by cells after seeding (D).

3.1.3 Time-lapse fluorescence microscopy

Time-lapse fluorescence microscopy provides an insight into the metabolic dynamics of cells

by the use of fluorescent dyes or proteins. In contrast to electron microscopy and flow cy-

tometry it enables the observation in spatial as well as temporal resolution [19]. The use

of almost non-toxic fluorescent dyes and proteins like GFP and its derivatives enables the

study of complex intracellular processes in intact living cells on the single-cell level or even

subcellular scale [20]. For this reason fluorescenc microscopy is commonly used to study

cellular processes like gene expression, the principle of interference RNA (iRNA) and trans-

fection [12,21,22].

The emission of a photon caused by a transition of an electron from an excited singlet state

orbital into the ground state is called fluorescence. The fluorophore is typically an aromatic

molecule that can be excited by the absorption of a photon. Subsequently a photon of lower

energy is emitted. For this reason the emission spectrum is red-shifted compared to the

absorption spectrum. By a process called fluorescence quenching the intensity decreases by

an interaction of the fluorophores with solvent molecules (quenchers). The fluorophore can

return to the ground state by collision with the solvent molecules without emission of a

photon or can be inactivated by complex-formation with the quencher. [23]

In addition fluorophores can loose there capability of absorption and emission by an ir-

reversible conformational change or reaction. This effect is called photobleaching and is

enhanced for molecules in higher excited states [24].

In this work an inverted epifluorescence microscope was used, more precisely the Nikon TI

Eclipse fluorescence microscope that was equipped with an objective lens (CFI PlanFluor

DL-10 x, Phase 1, N.A. 0.30, Nikon). A LED lamp (SOLA SE II lumencorr) was used to

ensure homogeneous illumination of the probe. The multispectral light passes through an
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excitation filter, is reflected on a dichroic mirror and illuminates the probe. This leads to ex-

citations of the fluorescent proteins. The emitted light passes through the objective lens and

an emission filter before reaching the CCD camera (Andor Clara-E ). The time-lapse movies

were obtained by snap-shots images that were taken in an interval of 10 min. To ensure

optimal growth conditions for the observed cells, a heating chamber was used that provides

a temperature close to 37 �. A motorised stage was used to scan multiple positions of the

probe automatically. The problem of the inherent focus drift during long-term observation

was solved by the commercial hardware Nikon Perfect Focus System.

In this work cells were transfected with mRNA that is translated within the cell into vari-

ants of the green fluorescent protein (GFP), more precisely eGFP and d2eGFP. The eGFP

variant that was used in this work has a major excitation peak at 488 nm and an emission

peak at 507 nm [25]. GFP consists of 238 amino acids that form a cylinder like structure

by eleven β-sheets. The central α-helix contains the chromophore that is protected from the

environmental surrounding by the cylinder. During protein folding the fluorophore is formed

by an autocatalytic process which is called maturation. [26]

3.1.4 Image Analysis

The main challenges of image analysis of single-cell time-lapse movies are the uneven illu-

mination of the probe, the photobleaching of reporter proteins and the autofluorescence of

cells and culture medium. In this work experimental data was collected from a large number

of time-lapse movies that show the evolution of fluorescence intensities of single cells in time

intervals of 10 min. Each movie contains 180 TIFF-images of 1392 × 1040 pixel. As manual

analysis of each image would be error-prone and tedious, an automatic image analysis was

carried out by in-house-written ImageJ plug-ins in two steps: background correction and

well analysis.

Background correction

The method used for background correction is adapted from Schwarzfischer et al. [27]. The

raw image I(x, t) at time point t with space coordinates x = (x1, x2) is decomposed as follows:

� cellular signal s(x, t)
� homogeneous background signal b(t) that decreases over time due to photobleaching

� coordinate-specific uneven illumination function g(x)
� camera offset o(x)

14
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They are summarized by the following equation:

I(x, t) = s(x, t) · g(x) + b(t) · g(x) − o(x) (1)

By rearranging the formula, one obtains the equation of the cellular signal:

s(x, t) = I(x, t) − b(t) · g(x) − o(x)
g(x)

(2)

In this work images were corrected by the illuminated background signal, denoted as B(x, t) =
b(t) · g(x) + o(x). The background was reconstructed for each image per time-lapse movie

separately and subtracted from its original image:

s̃(x, t) = I(x, t) − B(x, t) (3)

As the illumination was nearly homogeneous due to the LED lamp and to reduce the time

needed for image preprocessing, the calculation of the coordinate-specific illumination func-

tion g(x) was omitted and remains for further improvement of the background correction

method. By estimating g(x) the bleaching of each pixel by the uneven illumination can be

taken into account [27].

To reconstruct the background image B(x, t), cellular and background signals were separated

by a density-based clustering of moments. First each image I(x, t) was divided into small

segments with areas of 16 × 16 pixel and four moments of their intensity distributions were

calculated: mean, variance, skewness and kurtosis. Each segment was represented as a point

in the four-dimensional space of distribution moments. As an example the mean is displayed

in dependence on the standard deviation for all segments of one image in Figure 3a. Their

skewness is displayed in different colours as shown by the colour-bar. Points that correspond

to cellular segments spread widely, whereas those related to background segments accumu-

late in a dense region with nearly the same colour as shown by Figure 3b. The intensity

distributions of background segments have skewnesses of nearly zero as depicted in light

blue and are therefore symmetric. To distinguish between cellular and background points in

the space of moments, a density based clustering was done using the DBSCAN-algorithm

(Density-Based Spatial Clustering of Applications with Noise).
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(a) Points in moment space
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(b) Background cluster

Figure 3: Points in the space of moments defined by mean and standard deviation: The
example image was divided into 16 × 16 pixel segments and three moments of
their intensity distributions were calculated. The skewness is colour-marked as
displayed in the colour-bar. Point that correspond to cellular signals spread widely
in space and colour as depicted in Figure 3a whereas the points that are related to
background segments accumulate with similar moments in a dense region as shown
by Figure 3b.

The algorithm starts with an arbitrary point in moment space and searches for neighbouring

points N within a distance called ϵ. If N is larger than a threshold, denoted as Pmin, they

are assigned to the background cluster together with the starting point. Otherwise they are

assigned to noise which is related to cellular signals. Afterwards the algorithm repeats the

procedure for each neighbour point, thereby looking for next nearest neighbours within the

cluster. By this way the starting point, all neighbours and next neighbours are marked as

visited (Figure 4a) [28]. The process continues by choosing an unvisited point as the new

starting point. The scan repeats until all points have been marked as visited. Points that

are assigned to the cluster are related to background segments whereas the residual points

are assumed to correspond to segments with cellular signals.

The clustering success depends on the choice of the interpoint distance ϵ and the threshold

of minimal required points Pmin. In this work it was assumed that Pmin depends on the loga-

rithm of the total number of segments N given by Pmin = ln(N). This approach was adapted

from Briant et. al. [29]. The distance ϵ is represented by a vector, whose elements consist of

the distances for each moment. As the mean values of the segment intensitiy distributions

decay over time due to photobleaching, the cluster is moving in space within the timespan

of one video. For this reason ϵ was calculated for each image separately. For example ϵmean

stands for the distance of the first moment. It is adjusted by the interquantile distance of

the first (25 %) and third (75 %) quantiles of the distribution of segment means as shown
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by the boxplot in Figure 4b. The segment means are depicted by the y-axis and the red line

in the box represents the median. The blue lines above and beneath the median correspond

to the quantile values. The black lines mark the boundaries whose values of 768 and 812
cover the mean limits of the background cluster of Figure 3b well. The red asterix stand for

outliers in the distribution of means that are mainly related to the mean values for segments

that contain cellular signals. In this example the interquantile distance ϵmean = 11.4 was

determined. This method was used for each moment separately to obtain ϵmean, ϵvariance,

ϵskewness and ϵkurtosis. During the search of the algorithm a point and a neighbour point are

compared by the differences of their moments. If they are all smaller than their related ϵ,

the points fulfil the first condition. If more or equal than Pmin candidates are found for the

point, they are assigned to the background cluster.

The background image is reconstructed by replacing the segments that are member of the

cluster by the median values of their intensity distributions. Segments that were not assigned

to the cluster by the DBSCAN algorithm are set to zero. Hence the background image con-

sists of gaps where cellular segments were detected as depicted in Figure 5b. The Figures are

all contrast adjusted for better visualization. To fill in the gaps an iterative interpolation was

done that is based on the mean of an 8-neighbourhood of zero-valued segments. Most gaps

(a) DBSCAN search (b) Interpoint distance ϵ

Figure 4: Principle of DBSCAN: As shown by figure 4a the algorithm starts at an arbitrary
point in moment space (green) and searches for points within the distance ϵ (dark
blue). If their number exceeds Pmin they are assigned to the cluster together
with the initial point otherwise they are marked as Noise (red). The search is
repeated for the next neighbours (light blue) and starts again till all points have
been marked as visited. The distance ϵ is calculated for each moment separately
by the interquantile distance of the distribution of moments. This is shown for all
segment means of the example image by Figure 4b.
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are surrounded by slightly brighter segments, that were not detected as cellular during the

clustering. For this reason the interpolated regions deviate to higher intensities that differ

from the expected background. This effect is dependent on the segment size. Smaller seg-

ments result in a higher resolution of cellular gaps but exhibit the risk of higher interpolation

errors as the 8 neighbourhood shrinks. For this reason the interpolation method has to be

improved in the future. The background correction in Figure 6b is finished by subtracting

the reconstructed background image that is depicted in Figure 6a from the original shown

by Figure 5a.

Well Analysis

To gather the mean fluorescence intensity per cell, an in-house ImageJ-plug-in written by

Christian Meggele was used. A grid of rectangular regions, called wells, is overlapped with

the images of one time-lapse movie, such that all cells on the microarray fit into the wells.

The well positions, their width and height can be adjusted by the user. Cells of interest are

selected by a click on the corresponding well which is thereupon colour-marked as shown by

Figure 7. This selection is done manually, as dead or migrating cells have to be excluded

from the analysis. By running the program statistical quantities per colour-marked well such

as the mean are calculated over the well area for all image frames of the movie. This way a

dataset is generated that contains the mean fluorescence of all coloured wells over distinct

time points. Afterwards the dataset is stored as an Excel-file for further analysis.

As the mean fluorescence is calculated over the well area, the shrinking and expansion of cells

during the observation is not taken into account. For example in Figure 7 some cells do not

fill in their wells and many low values corresponding to the dark surrounding of the cell are

included in the calculation of the mean. This problem can be solved by calculating the mean

over the cell area, that is given by the gaps in the image after clustering in Figure 5b. By

overlapping the well and the cell area the union indicates which pixel has to be included for

calculation of the mean. Furthermore the interpolation method has to be improved to reduce

the error caused by the reconstructed background that is individually shifted towards higher

values as explained above and shown by Figure 6a. An automatic detection of migrating and

dead cells would reduce the time needed for the image analysis and yield probably result that

are independent of the user. In addition the experimental setup could be improved by well

shapes with adequate depth that are more suitable to the round shapes of the cell bodies

and prevent movement and migration beyond the well area. Perhaps the nutrient supply and

removal of metabolic degradation products could be improved by an automatic, slow fluid

flow during the long-term observation via fluorescence microscopy.
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(a) Original image (b) Segmented, clustered image

Figure 5: Image after clustering: The original image as shown by Figure 5a is segmented
into areas of 16 × 16 pixel. After detection of background related segments by the
DBSCAN algorithm, they are replaced by their median value as shown by Figure
5b. The black gaps are related to segments with cellular signals. Both images are
contrast adjusted for better visualization.

(a) Interpolated background image (b) Background corrected image

Figure 6: Image after interpolation and background correction: The background image was
reconstructed by an iterative interpolation by the mean of the 8-neighbourhood
of each zero valued segment as displayed in Figure 6a. The background corrected
image was obtained after subtraction of the interpolated image from the original
as shown by Figure 6b. As above both images are contrast adjusted.
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Figure 7: Well analysis: An in-house-written ImageJ plug-in was used to calculate the mean
fluorescence per well. For this purpose a grid of user adjusted wells is overlapped
with the image of one time-lapse movie. Cells of interest are manually selected
by colour-marked wells as migrating and dead cells have to be excluded from the
analysis. As most of the cells do not fill in their well, the mean fluorescence is
individually biased towards lower intensity values.
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3.2 Theoretical concepts

3.2.1 Deterministic rate equations

In Systems biology cellular processes are commonly modelled by reaction rate equations

based on systems of ordinary differential equations (ODE) denoted as Σ(θ) that describe the
underlying network of biochemical reactions [30]:

Σ(θ) =


d
dt

x(t, θ) = f(x(t, θ), θ) x(0, θ) = x0(θ)
y(ti, θ) = h(x(ti, θ), θ)

(4)

Molecular concentrations are represented by the dynamical state variables x whereas reaction

rates are described by the model parameters θ. Initial conditions are given by x0(θ). Usually
only a part of the state variables x are experimentally accessible which is modelled by so

called model observables y(ti, θ). Indeed the experimentally measured data ỹ(ti) is collected
at discrete time points ti and often relative to the model observable. In this work the fluo-

rescence intensity and not the absolute concentration of reporter proteins are measured by

time-lapse microscopy and linear relationship between both quantities is assumed. For this

purpose scaling sc and offset κ parameters are used to modify y(ti, θ) and are additionally

assigned to the parameter vector θ of the model:

y(ti, θ) = sc · h(x(ti, θ)) + κ (5)

The observed data ỹ(ti) is corrupted by measurement noise ϵ that was assumed to be addi-

tive and normally distributed ϵ(ti) ∼ N(0, σ(ti; θ)) with zero mean and unknown standard

deviation σ(ti, θ): [30]

ỹ(ti) = y(ti, θ) + ϵ(ti) (6)

The standard deviation σ(ti, θ) was estimated as an additional parameter in θ. Systems that

are modelled by reaction rate equations are assumed to be well-mixed and to exhibit a large

amount of molecules such that their diffusion is fast compared to their reaction rates which

provides spatial homogeneity. [30]
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3.2.2 Global optimization

After experimental measurements and given a model of interest one usually seeks for the

parameter values of the model that yield the best fit of the data [31]. This procedure is

called parameter estimation and Maximum Likelihood Estimation is widely used for this

purpose. It is based on the frequentist perspective which assumes that the values of θ are

deterministic, but uncertain variables. In contrast, the Bayesian perspective assumes that

parameter values are stochastic variables that possess a distribution [32].

The maximum likelihood method is stated as an optimization problem: Given a model of

interest one searches for parameter values θ such that they maximize the probability p(D|θ)
to fit the observed data D = {ỹ(ti)}N

i=1. The probability p(D|θ) = LD(θ) is called likelihood

function and the obtained parameter values are named maximum likelihood estimates θMLE.

Neither existence nor uniqueness is guaranteed for them. By assuming that the likelihood

function is sufficiently smooth, the parameter estimates have to fulfil the following condition

[31]:

∂LD(θ)
∂θi

∣∣∣∣∣
θMLE

= 0 (7)

To ensure that the obtained optimum is a maximum and not a minimum, more precisely that

the shape in the vicinity of the likelihood estimates is convex, the Hessian has to be negative

definite [31]. In this work it was assumed that the measurement noise is normally distributed

and independent for different time points. In this case the likelihood function provides a

distance measure for the experimental data ỹ(ti) and the model observable y(ti, θ) [30]:

LD(θ) =
N∏

i=1

1√
2πσ2(ti, θ)

· exp
(

− 1
2σ2(ti, θ)

· (ỹ(ti) − y(ti, θ))2
)

(8)

Deterministic rate equations in system biology models are often highly non-linear such that it

is not possible to obtain the analytic solution. In this case non-linear optimization algorithms

are applied to search for the maximum likelihood estimates. For numerical reasons it is con-

venient to consider the equivalent minimization problem using the negative log-likelihood

function J(θ). The optimization is done by changing all unknown parameter values such

that the model output y(ti, θ) covers the experimental data ỹ(ti) best. Unfortunately the

algorithm often finds multiple sub-optimal solutions for the parameter estimates that are

called local optima. Several methods have been developed to find the global optimum in-

stead that are based on deterministic, stochastic or hybrid optimization algorithms [30, 33].

Raue et al. compared 15 different algorithms and recommended a deterministic multi-start
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method using sensitivity equations [30]. This approach was used in this work.

The parameter values are adjusted stepwise in an iterative manner to find the most likely

value of the negative log-likelihood function J(θ). The search converges when a predefined

stopping criterion is fulfilled. This could include the maximum allowed number of iteration

steps as well as the strength of the parameter adjustment [31]. The derivatives pointing

to the minimum of J(θ) guide the iteration procedure and can be calculated reliably by

sensitivity analysis. For this purpose the inner derivatives dx(t,θ)
dθ

were calculated numerically

by additional equations simultaneously to the model system Σ(θ) [30]:

d
dt

dx(t, θ)
dθ

= ∂f

∂x

dx(t, θ)
dθ

+ ∂f

∂θ

d
dt

dy(t, θ)
dθ

= ∂h

∂x

dx(t, θ)
dθ

+ ∂h

∂θ

(9)

For this purpose the stiff ODE-solver CVODES was used that is coded in C for efficiency

in combination with a Matlab mex interface. Multiple starting points for the optimization

were drawn by latin hypercube sampling as different starting points could yield different

local optima. This way it was ensured that they cover the whole region in the parameter

space [30]. In this work 150 different starting points have been selected for a parameter space

that ranges from 10−5 to 105 for each considered parameter.

3.2.3 Parameter uncertainty analysis

The aim of systems biology is to find a model that is suitable to make predictions and to

explain the unknown biological processes of complex phenomena. As parameters have to be

estimated with a finite accuracy from experimental noisy data and only a subset of model

state variables are measured experimentally, parameter uncertainty analysis is important.

Though, its methods are not commonly used in the field of systems biology [32].

The issue of parameter uncertainty is closely connected to parameter identifiability that ad-

dresses the question whether the estimated parameter is unique within a defined range [32].

The uncertainty of parameter estimates can be characterized by structural and practical

non-identifiability. The further is caused by the model structure whereas the latter is re-

lated to experimental data and measurement noise [34]. If model parameters are structural

non-identifiable, one could try to improve the identifiability by reducing the number of state

and parameter variables or by fixing parameter values that are less important for prediction.
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On the other hand one could also change the experimental design to measure additional

model observables [35]. If correlations between model parameters are observed, the non-

identifiability can sometimes be improved by replacing them with a combination of them.

However, finding the right combination is a difficult task.

Asymptotic confidence intervals

A confidence interval [θi,−, θi,+] to the level α provides a range for the parameter estimate

θi that is located within this interval with probability α [36]. The asymptotic confidence

interval points θi,± are calculated for the parameter θi,MLE by the following equation:

θi,± = θi,MLE ±
√

∆α · Σii

2
(10)

The confidence level is given by ∆α and related to the α′th percentile of the Gaussian

distribution with the covariance matrix Σ. The estimated parameters θMLE converge to a

Gaussian distribution in the asymptotic limit of large observation points N . If the model

parameters are identifiable, their covariance matrix Σ is given by the inverse of the Fisher

Information Matrix F −1 [32]:

F (θtrue) =
N∑

i=1

1
σ(ti)

· (∇θy|ti,θtrue)T (∇θy|ti,θtrue) (11)

As the true parameters θtrue are unknown, F is evaluated at the estimated parameters θMLE.

If the standard deviations of the measurement noise σ(ti) are stated as an additional param-

eter, the Fisher Information Matrix is approximated by the Hessian matrix H. For small

datasets and parameters that are non-linearly correlated or exhibit multiple optima more

reliable confidence intervals can be calculated by the Profile Likelihood method [32].

Profile Likelihood Analysis

Parameter uncertainty for datasets with large measurement noise is preferably studied with

Profile Likelihood Analysis. The profile likelihood function PL(θi) of parameter θi is calcu-

lated by fixing θi and optimizing the likelihood function by varying all other model parame-

ters θj along the profile interval [37].

PL(θi) = max
θj ̸=i

LD(θ) (12)
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If several local maxima have been found during the optimization, the profiles should be

evaluated for each of them to obtain an complete impression of the structure of the likelihood

function in the vicinity of the estimates. [32] The profile ration R(θi) of θi is obtained by

dividing the profile likelihood function of θi by the maximum likelihood function along the

profile interval [37]:

R(θi) = PL(θi)
L(D|θMLE)

(13)

A ration above 1 would indicate, that the profile likelihood function is higher valued than

the maximum likelihood function. The confidence intervals for the parameter θi are given

by [37]:

Ci =
{

θi| R(θi) < exp
(

−δα

2

)}
(14)

A parameter is called practical non-identifiable if the likelihood ration R(θi) is not lower

than the threshold δα = χ(α, 1) for increasing and decreasing values of θi on the profile

interval [37].

3.2.4 Model selection

Model selection is philosophically split into two different viewpoints concerning the question

if there exists a true model that fully reflects the unknown reality or if all models are merely

approximations and could never be true. The latter is assumed in an information theoretic

perspective. George Box made a famous statement: “All models are wrong but some are

useful” [38,39]. Every model should be as simple as possible only including what is necessary.

On the one hand a model with high complexity including a large number of parameters is able

to cover the observed data best but it is often bad for prediction as too many spurious effects,

e.g. noise, are covered as well. One the other hand a model with too few parameters leads

to high bias from the data and its underlying process. Thus model selection is faced with

the problem to find a model complexity that balances between under- and over-fitting. [40]

Model selection should include the principle of “multiple working hypotheses” by using a

set of models. During analysis of the observed data some models will be less often chosen

as best than others. By rejecting models that were less favoured during model selection,

adding new models to the set and compare them with the models that were selected as best

previously, a set of models can be obtained that evolves such that the suitability to fit the

data increases [40].
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In this work two widely used model selection criteria were used that enable to obtain an easy

comparison and ranking of models: the Akaike and Bayesian Information Criterion.

Akaike information criterion

The Akaike information criterion (AIC) is based on the Kullback-Leibler (KL) divergence

which is a measure of how much information I(f, m) is lost by model m that approximates

the reality f [38]:

I(f, g) =
∫

f(x) log
(

f(x)
m(x|θ)

)
dx (15)

= C − Ef [log (m(x|θ))] (16)

The best model that loses the least information is obtained by minimizing I(f, m) over all

models m in the set M . The KL information cannot be used directly as the full reality f is

unknown and model parameters θm often exhibit uncertainty. As C is an unknown constant,

that does not depend on the data or the model, one is restricted to estimate the relative

KL-information Ef [log (m(x|θ))] for each model m in the set. Akaike found out, that the

maximized log-likelihood function is a biased estimator of the relative KL-information for

large sample sizes N and that the bias is approximately equal to the number of estimable

parameters nθ [39]. This relationship is expressed in the AIC value as follows: [38]

AIC = −2 · log (LD(θ)) + 2 · nθ (17)

By calculating the AIC for each model mi in a set of models M , a ranking is obtained by

sorting the values in ascending order. The best model is then the one with minimal AIC

value. For a large sample size more complex models will be selected as the different numbers

of adjustable parameters are negligible compared to the likelihood function [39]. As the

AIC is defined for a large sample size, a small sample size version should be used, when the

number of parameters nθ is relative large compared to the number of data points N , namely

( n
nθ

≤ 40) [38]:

AICc = −2 · log (LD(θ)) + 2 · nθ + 2 · nθ · (nθ + 1)
N − nθ − 1

(18)
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The AIC values themselves are not easily interpretable and it is common to rescale them to

the minimum value [38]:

∆AIC,i = AICi − AICmin (19)

Instead one could also calculate the AIC weights wAIC,i that are related to the normalized

model likelihoods and interpretable as the probability of model mj to be the best model in

the set M = {mi}nM

i=1 in the sense of the KL-divergence [38,41]. The weights can be obtained

as follows:

wAIC,j =
exp

(
−1

2∆AIC,j

)
∑nM

i=1 exp
(
−1

2∆AIC,i

) (20)

Bayesian information criterion

The Bayesian information criterion (BIC) is based on an approximation of the posterior

probability p(m|D, θm) that model m is the true model given the observed data D and

model parameters θm:

p(m|D, θm) = p(D|m, θm) · p(m)
p(D)

=
∫

p(D|θm) · p(θm|m) · p(m)dθm

p(D)
(21)

The approximation assumes non-informative prior probabilities p(θm|m) = 1 and integrates

out all model parameters θm by a Taylor expansion of p(D|θm) at the maximum likelihood

estimate θML
m . For this purpose identifiable model parameters are assumed and constant

terms as the prior probability p(m) for the model m are neglected in the limit of a large

number of data points N . [42] The result is given by the BIC as follows:

BIC = −2 · log (p(m|D)) ≈ −2 · log
(
LD(θML

m )
)

+ nθ · log(N) (22)

∆BIC,i = BICi − BICmin (23)
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It is common to rescale the values with respect the minimum value to obtain ∆BIC,i per

model mi. Even though the equations of BIC and AIC are similar, they are based on dif-

ferent approaches. As with AIC the model with the smallest BIC is selected as the best

model in the set M. The selected model is not meant to be the model that has generated the

data. If the number of data points N increases to infinity, the BIC will select the quasi-true,

most parsimonious model with probability 1 assuming a finite model set and independent

and identically distributed data points. The quasi-true model is closest to the true model in

the sense of the KL-divergence and the best that can be used for interference if the sample

size is very large. In practice the number of data points is limited and the selected model

is of lower complexity than the quasi-true model. The property that BIC will select the

quasi-true model if the sample size grows to infinity is named asymptotic consistency. [38]

However, in contrast to AIC, the BIC tends to select less complex models as the penalty

term depends on both the number of parameters nθ and the sample size N [43].

The weights wBIC are related to the model posterior probabilities p(m|D) and can be calcu-

lated as follows [38]:

p(mj|D) ≈ wBIC,j =
exp

(
−1

2∆BIC,j

)
∑M

i=1 exp
(
−1

2∆BIC,i

) (24)
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4 Deterministic modelling of mRNA transfection

In this work six models based on ordinary differential equations were used to study the dy-

namics of mRNA transfection. All models are introduced in Chapter 4.1. The Akaike and

Bayesian Information Criteria were used to compare the fitting performance of the different

models. To find out, whether these criteria select models as best, that are closest related to

the underlying network of biochemical reactions, the model selection was studied on artificial

datasets in Chapter 4.2. Each model was used once to generate an associated dataset as

described in Chapter 4.2.1. Afterwards each model was fitted once on the trajectories of each

dataset as explained in Chapter 4.2.2. The model selection was studied on the population

scale per dataset in Chapter 4.2.3 and for the individual fits per population in Chapter 4.2.4.

This way the question is addressed, whether the generating models will be selected as best

by the model selection criteria.

4.1 Introduction of considered models

The modelling of cellular processes such as gene expression is limited by the complexity

of biochemical reaction networks and by the various interactions between several cellular

compartments. For this reason a model can only be an approximation of the natural process

of interest and the modelling process should be closely related to the experiment [44]. In

this work the mRNA transfection dynamics were modelled via rate equations as explained in

Chapter 3.2.1. The fluorescence intensities of reporter proteins were measured via time-lapse

fluorescence microscopy. For this reason the concentration of fluorescent proteins was used

as the model observable. In addition to the simple model that was used in the previous

study of Leonhardt et al. [2], five new models were designed to find out which model is best

suitable to describe the dynamics of mRNA transfection. All models that were used in this

work are introduced in the following.
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The Trivial-Model M1

The least complex model M1 includes direct degradation pathways for the transfected

mRNA, named m, with the rate δ and reporter proteins, named G, with the rate β. As

shown by Figure 8a the mRNA is translated directly into proteins with the rate kT L. The

initial concentration of mRNA, denoted as m0, was assumed to be unknown and added to

the parameter vector θ1 = (δ, β, kT L, m0). The Trivial-Model M1 is the least complex model

in the set with a parameter number of nθ,1 = 4. The rate equations of M1 are given as

follows:

ṁ = −δ · m

Ġ = −β · G + kT L · m
(25)

The Two-Degradation-Model M2

The Two-Degradation-Model incorporates two pathways for mRNA degradation as displayed

in Figure 8b. On the one hand the mRNA, denoted as m, decays directly with the rate δ1

and on the other hand it binds to enzymes E with the rate δ2 and degrades with the rate

δ3 via release of the mRNA-enzyme complex mE. As for the Trivial-Model M1 the mRNA,

m, is translated with the rate kT L into proteins, G, which decay directly with the rate

β. The initial concentrations of mRNA and degradation enzymes, denoted as m0 and E0,

are unknown and added to the parameter vector θ2 = (δ1, δ2, δ3, β, kT L, m0, E0). Thus, the

number of parameters of M2 is equal to nθ,2 = 7 and the rate equations are given as follows:

ṁ = −δ1 · m − δ2 · m · E

Ġ = −β · G + kT L · m

Ė = −δ2 · m · E + δ3 · mE

ṁE = −Ė

(26)
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(a) Trivial-Model M1 (b) Two-Degradation-Model M2

Figure 8: In Figure 8a the model M1 describes the translation of mRNA (m) into GFP (G)
with the rate kT L and the degradation of both with the rates δ and β. Model M2
shown by Figure 8b includes an additional decay pathway of mRNA by enzymatic
binding with the rate δ2 and release with the δ3.

The Ribosome-Model M3

In comparison to the Trivial-Model M1 the Ribosome-Model M3 is modified by a translation

pathway using ribosomal binding with the rate k1 and release with the rate k2 as displayed

in Figure 9a. The ribosomes are denoted as R and the mRNA-ribosome complex as mR.

The degradation pathways of mRNA and proteins are modelled directly with the rates δ and

β respectively. The initial concentrations of mRNA, m0, and ribosomes, R0, are unknown

and added to the parameter vector of M3 given by θ3 = (δ, β, k1, k2, m0, R0). The number of

model parameters for the Ribosome-Model equals nθ,3 = 6 and the rate equations are stated

as follows:

ṁ = −δ · m − k1 · m · R + k2 · mR

Ġ = −β · G + k2 · mR

Ṙ = −k1 · m · R + k2 · mR

ṁR = −Ṙ

(27)
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The Enzyme-Degradation-Model M4

As shown by Figure 9b the mRNA in the Enzyme-Degradation-Model degrades via an enzy-

matic pathway. After binding to the enzymes with the rate δ1 the mRNA is depleted with the

rate δ2 by the release of the mRNA-enzyme complex mE. The translation pathway as well

as the degradation pathway of the proteins remain unchanged in comparison to the Trivial-

Model M1. The parameter vector of M4 is therefore given by θ4 = (δ1, δ2, β, kT L, m0, E0)
and includes the initial concentrations of mRNA and enzymes, denoted as m0 and E0. The

Enzyme-Degradation-Model has the same complexity as the Ribosome-Model with a param-

eter number of nθ,4 = 6. The rate equations are given as follows:

ṁ = −δ1 · m · E

Ġ = −β · G + kT L · m

Ė = −δ1 · m · E + δ2 · mE

ṁE = −Ė

(28)

(a) Ribosome-Model M3 (b) Enzyme-Degradation-Model M4

Figure 9: In model M3 in Figure 9a the mRNA is translated into GFP via ribosomal binding
and release with the rates k1 and k2. The mRNA degrades with the rate δ and the
proteins with the rate β. Model M4 in Figure 9b describes a direct translation
of mRNA with the rate kT L and a direct decay of proteins with the rate β. The
mRNA degrades via an enzymatic pathway with the rates δ1 and δ2.
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The Two-Degradation-Ribosome-Model M5

The Two-Degradation-Ribosome-Model is the most complex model in the set as it includes a

translation pathway of mRNA into proteins via ribosomes and two degradation pathways of

the mRNA as shown by Figure 10a. The first is modelled by a direct decay and the second by

an enzymatic degradation. The Two-Degradation-Ribosome-Model M5 is therefore a com-

bination of the Ribosome-Model M3 and the Two-Degradation-Model M2 with a parameter

vector of θ5 = (δ1, δ2, δ3, β, k1, k2, m0, E0, R0) with nθ,5 = 9 elements. The rate equations are

given as follows:

ṁ = −δ1 · m − δ2 · m · E − k1 · m · R + k2 · mR

Ġ = −β · G + k2 · mR

Ṙ = −k1 · m · R + k2 · mR

ṁR = −Ṙ

Ė = −δ1 · m · E + δ2 · mE

ṁE = −Ė

(29)

(a) Two-Degradation-Ribosome-Model M5 (b) Enzyme-Degradation-Ribosome-Model M6

Figure 10: In Figure 10a the mRNA is translated by ribosomes with the rates k1 and k2 and
degraded by enzymes with the rates δ2 and δ3. In addition the mRNA decays
with the rate δ1. The proteins degrade directly with the rate β. Model M6 in
Figure 10b exhibits the same pathways as model M5 except of the simple decay
of mRNA with the rate δ1.
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The Enzyme-Degradation-Ribosome-Model M6

The Enzyme-Degradation-Ribosome-Model M6 includes a ribosomal translation of mRNA

into proteins with the binding rate k1 and release rate k2. As shown by Figure 10b the trans-

fected mRNA degrades via an enzymatic pathway with the binding rate δ1 and the release

rate δ2. As for the Trivial-Model M1 the proteins degrade directly with the rate β. The

Enzyme-Degradation-Ribosome-Model is thus a combination of the Enzyme-Degradation-

Model M4 and the Ribosome-Model M3. The parameter vector θ6 = (δ1, δ2, β, k1, k2, m0, E0, R0)
includes the rates and the unknown initial concentrations of ribosomes R0, enzymes E0 and

transfected mRNA m0. The number of model parameters is equal to nθ,6 = 8 and the rate

equations are given as follows:

ṁ = −δ1 · m · E − k1 · m · R + k2 · mR

Ġ = −β · G + k2 · mR

Ṙ = −k1 · m · R + k2 · mR

ṁR = −Ṙ

Ė = −δ1 · m · E + δ2 · mE

ṁE = −Ė

(30)

4.2 Model selection for artificial datasets

In this chapter the question is addressed, whether a model that is closest to the underlying

network of biochemical reactions is selected as best model by AIC and BIC. For this purpose

each introduced model in the set is used once to generate an associated dataset of 100

trajectories which is explained in Chapter 4.2.1. Afterwards each model in the set is fitted

on the trajectories per dataset as explained in Chapter 4.2.2 and the AIC and BIC values are

calculated for each individual fit as described in Chapter 3.2.4. To compare the models on

the level of the population of the 100 trajectories, the AIC and BIC population weights were

calculated and sorted in decreasing order to obtain a ranking. The results on the population

scale are analysed in Chapter 4.2.3. Furthermore the model selection is studied in detail for

each individual fit per population in Chapter 4.2.4 to find out, whether multiple models were

selected as best within the population.

4.2.1 Generation of artificial data

For each model Mi an artificial dataset Dj was generated by simulating the corresponding

ODE-System Σ(θMi
) with Matlab. To capture cell-to-cell-variability the parameters of the

deterministic system have to differ among each other.
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For this purpose fixed parameter values θi,fixed are altered as follows:

θi,noise = θi,fixed · eσθ·r (31)

The value r is a pseudorandom number drawn from the standard normal distribution with

mean µ = 0 and standard deviation σ = 1 and is multiplied by a value σθ = 0.1. To cover

the different onset times of protein expression, the starting time tn(0) of the simulation per

trajectory n was given as an additional model parameter. To generate artificial measurement

errors for each trajectory n, the data Dj,n was multiplied by normal noise with σnoise = 0.7:

Dj,n,stochastic = Dj,n · eσnoise·r (32)

This way N = 100 trajectories per dataset Dj were generated. The data that was simulated

for time points below 1.9 h was excluded from the artificial datasets to be in accordance with

the experimental datasets which can not be observed during the time of approximately 1 to

2 h when the cells are incubated with the transfection medium.

4.2.2 Fitting of artificial data

Each model Mi in the set M = {Mi}6
i=1 was fitted once on each trajectory in the dataset

Dj of the set D = {Dj}6
j=1. A sigmoid function τ was used to model the different expression

onset times:

τ = t10

t10 + t10
0

(33)

This function was multiplied either by the translation rate kT L of the models M1, M2 and

M4 or by the ribosomal binding rate k1 of the models M3, M5 and M6. The parameter

t0 was added to the parameter vector together with the unknown measurement noise σ and

the scaling and offset parameters denoted as sc and κ as explained in Chapter 3.2.1. The

parameters were estimated by the global optimization of the likelihood function as explained

in Chapter 3.2.2 using 150 different starting points that were chosen by latin hypercube

sampling.
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4.2.3 Model selection on the scale of populations

In this chapter the question is addressed whether the model that generated the data is

selected as best model on the population level. For this purpose artificial datasets were

generated that consists of N = 100 individual trajectories as explained in Chapter 4.2.1.

Each model Mi in the set was used once to fit the trajectories of dataset Dj. Afterwards,

the AIC values of the N trajectory fits were summed up for each model Mi in dataset Dj

to obtain the AIC population values AICi,j
pop.. They were used to calculate the differences

∆i,j
AIC,pop. for all six models with respect to the best model that is given by the lowest AIC

population value mini AICi,j
pop.:

AIC i,j
pop. =

N∑
n=1

AICn,i,j

∆i,j
AIC,pop. = AICi,j

pop. − min
i

AICi,j
pop.

(34)

As the differences ∆i,j
AIC,pop. are not easily interpretable, the AIC population weights wi,j

AIC,pop.

were calculated for each model Mi in the dataset Dj as follows:

wi,j
AIC,pop. =

exp
(
−1

2 · ∆i,j
AIC,pop.

)
∑6

i=1 exp
(
−1

2 · ∆i,j
AIC,pop.

) (35)

In accordance to the AIC weights that were explained in Chapter 3.2.4 the AIC population

weights refer to the probability that model Mi is the best model on the population scale of

dataset Dj. The same method was used to calculate the BIC population weights wi,j
BIC,pop..

A ranking of models was obtained for each dataset Dj by sorting the population weights in

decreasing order. The rankings are analysed in the following for each dataset dependent on

either AIC or BIC as model selection criterion.

Model selection based on AIC population weights

The matrix pattern in Figure 11a shows a ranking of all models Mi based on the AIC pop-

ulation weights for each dataset Dj. The six ranking positions are represented by different

colours as displayed in the colour-bar. For example model M1 was selected as the best model

for dataset D1 in the last row, followed by the models M3, M4, M6, M2 and M5.

It was expected that for each dataset the model that generated the data would be selected

as best model. In this case the ranking pattern would show a brown-red coloured diagonal of

first ranks from the bottom left corner to the upper right in Figure 11a. This assumption is

obviously not confirmed by the ranking. Except for the datasets D4 and D6 the Trivial-Model

M1 was selected as best model. Thus, the least complex model with the fewest number of
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parameters nθ,1 = 8 was able to cover the data not only for dataset D1 but also for datasets

that were generated by more complex models. Oppositely the most complex model M5 with

the highest number of parameters nθ = 13 was low ranked for all datasets except of D6.

Only for datasets D6 and D4 similar complex models than those that generated the data

were highest ranked.

In completion to the ranking in Figure 11a the matrix pattern in Figure 11b shows the

probability of model Mi to be the best model on the population scale of dataset Dj. The

corresponding weights within specific ranges are shown in colours from dark green to yellow

as displayed in the colour-bar. As their values are related to probabilities, they sum up to 1

in a row of one dataset. The Trivial-Model M1 shows high values above 0.83 for the datasets

D1, D2, D3 and D5 which is in agreement with the first rank in Figure 11a. Dataset D6 shows

the highest weight for its generating model M6. Astonishingly model M3 has the highest

weight in dataset D4 even though model M4 was used to generate the data and has the same

number of parameters nθ,4 = 10.

Model selection based on BIC population weights

In comparison to AIC less complex models are selected by BIC as the calculation of BIC

values includes the number of observation points in the penalty term for model complexity.

This property is reflected in the ranking matrix based on BIC population weights shown by

Figure 12a. Most datasets show a ranking pattern that is similar to the order of the model

complexity in increasing order as follows: M1, M3, M4, M2, M6 and M5. In agreement

with the result obtained by AIC population weights the ranking deviates from this tendency

for the datasets D4 and D6. The BIC population weights are displayed in Figure 12b and

exhibit the same pattern as for the AIC population weights 11b.

Conclusion

The expectation that the generating model will be selected as best model for its associated

dataset was not confirmed by the model selection based on AIC and BIC population weights.

On the contrary both selection criteria favoured less complex models. As explained in chapter

3.2.4 the BIC selects less complex models than its target model when the number of data

points per trajectory is small. In this work a trajectory per dataset consists of 116 data

points. The AIC depends on the number of data points as well and would select more

complex models with an increasing number of data points. Both model selection criteria are

defined in the limit of an infinite sample size. In practice this is not the case and less complex

models are favoured as best models than the target models. In addition both criteria assume

identifiable parameters, which is not ensured for the models that were used in this work.
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(a) Ranking matrix of AIC population weights (b) Matrix of AIC population weights

Figure 11: Model selection based on AIC population weights: The matrix pattern in Figure
11a depicts the ranking of models for each dataset that are represented by different
colours as displayed in the colour-bar. The matrix coloured from dark green to
yellow in Figure 11b shows the probability of model Mi to be the best model for
dataset Dj in the sense of AIC. They are divided into ranges as displayed in the
colour-bar.

(a) Ranking matrix of BIC population weights (b) Matrix of BIC population weights

Figure 12: Model selection based on BIC population weights: In comparison to AIC less com-
plex models were favoured by model selection based on BIC population weights
and the same models were highest ranked as shown by Figure 12a. The same
pattern is obtained in the matrix of BIC population weights in Figure 12b.
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4.2.4 Model selection of individuals

The model selection on the population scale yields a model that is able to describe the dy-

namics best for an ensemble of cells. This way the method ignores the potential presence

of subgroups within the population that favour different models as best for their fits. In

this work the cell-to-cell variability was modelled by fixed parameters that were altered by

random numbers drawn from a normal distribution as explained in Chapter 4.2.1. This may

cause subgroups and different model selection patterns within the population of a dataset.

These model selection substructures are analysed in the following by considering the model

selection of individual fits.

Artificial dataset D1

The artificial dataset D1 was generated by model M1 and fitted by each model in the set as

shown by Figure 13. The data points that were generated below the time 1.9 h were removed

from the dataset to be in accordance with the experimental datasets, that consists only of

measurement points after the incubation time of the transfection medium. For this reason

the data points below 1.9 h were removed for all datasets Dj in this work. By considering

the AIC and BIC weights for each fit within the population of 100 trajectories, the model

selection pattern of individuals is obtained.

Figure 13: Artificial dataset D1: The data was generated by the Trivial-Model M1 with pa-
rameters log10(θ) = log10 (m0, δ, β, kT L, t0, sc) = (3, −0.5, −1, 1, 0, 0). Afterwards
each model Mi in the set M = {Mi}6

i=1 was used once to fit the individual tra-
jectories. For each fit the model selection was done using AIC and BIC weights.
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In Chapter 4.2.3 the model selection based on AIC population weights yields a ranking pat-

tern as follows: M1, M3, M4, M6, M2, M5 (Figure 11a). Less complex models were thus

able to fit the data best which was expected as the least complex model M1 was used to

generate the data. Figure 14a shows, how frequently each model was selected as best model

within the population based on the highest AIC weight. The highest ranked models M1 and

M3 were chosen most frequently followed by M6 and M4. Interestingly model M6 was se-

lected more often as best model than M4 which was higher ranked on the population scale.

In Figure 14b the AIC weights per model are displayed as empty circles for each colour-

marked individual trajectory fit in the population of N = 100 fits. The weights of model

M1, M3 and M6 spread over a wide range whereas those of M2, M4 and M5 are more

densely distributed at low values. However, the majority of individual fits in the population

shows higher weights for model M4 than M6. This explains, why M4 was higher ranked.

M4 has higher weights and lower AIC values than M6. The AIC population weights were

obtained by summing up all AIC values per model over all individuals. For this reason the

AIC population value is smaller for M4 than M6 which leads to a higher population weight

and ranking position.

The ranking pattern based on BIC population weights differs from the ranking obtained by

AIC population weights in an interchange of model M2 and M6 as shown by Figure 12a.

The models are in the same order as it would be obtained by sorting them with increasing

complexity. Figure 15a shows the frequency of best models that were selected by the highest

BIC weight. Model M1 was chosen most frequently followed by M3. In comparison to the

best models that were selected by the highest AIC weight in Figure 14a the frequency of

M1 as best model is increased and reduced for M3 whereas M4 and M6 are excluded as

best model. In Figure 15b only the models M1 and M3 exhibit BIC weights on a wide

range whereas those of the other models are more restricted at low values. The property of

BIC to select less complex models than AIC is reflected on the individual as well as on the

population scale.

In conclusion the generating model M1 was highest ranked on the population scale and

selected most frequently for the individual fits independent of AIC or BIC as model selection

criterion. Only a few individuals selected the Ribosome-Model M3 as best model that was

ranked on the second position on the population scale.
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Figure 14: Model selection based on AIC weights: Figure 14a shows the frequency of in-
dividuals that selected the displayed models as best based on the highest AIC
weight. Figure 14b shows the AIC weight per model as empty circles for each
colour-marked individual fit within the population of 100 trajectories. The mod-
els M1 and M3 were selected most frequently as best model and exhibited the
highest weights.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
0

10

20

30

40

50

60

70

80

90

100

N
u

m
b

er
 o

f 
ce

lls

Artifical Dataset 1

(a) Frequency of selected best models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Artifical Dataset 1

w
B

IC

(b) Individual BIC weights

Figure 15: Model selection based on BIC weights: As shown by Figure 15a the frequency as
best model based on the highest BIC weight is increased for the least complex
model M1 and reduced for all other models in comparison to AIC. As displayed
in Figure 15b the BIC weights of model M1 are significantly higher than for all
other models except for a small minority that shows high values for M3.
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Artificial dataset D2

As shown by Figure 16 the dataset D2 was generated by the Two-Degradation-Model M2. All

models in the set were fitted once to each trajectory in the dataset as explained in Chapter

4.2.2. By this way the AIC and BIC weights were calculated for each fit individually.

As shown by Figure 11a the model selection based on AIC population weights yielded a

ranking of models for the dataset D2 as follows: M1, M3, M4, M2, M6, M5. Even though

the Two-Degradation-Model M2 was used to generate the dataset, less complex models were

favoured as best model on the population scale. The model selection based on BIC population

weights shows the same ranking as depicted in Figure 12a. In comparison to the population

scale the models M1, M3, M4 were as well selected most frequently as best models for the

individual fits within the population as shown by Figure 17a. On the other hand the complex

model M6 was selected more often by highest AIC weights than the generating model M2

which was higher ranked on the population scale. In Figure 17b the AIC weights of the

colour-marked individual fits are shown in detail for each model. Two substructures are

displayed: The first group shows highest weights close to 1 for model M1 and nearly zero

valued weights for all other models. The second group shows approximately highest weights

in the range from 0.3 to 0.5 for model M3 closely followed by model M4 with weights in

the range from 0.2 to 0.4. Only a few individuals deviate from both groups by exhibiting

highest weights for model M2, M5 or M6.

Figure 16: Artificial dataset D2: The dataset was generated by model M2 with loga-
rithmic parameter values of log10 (θ) = log10 (m0, E0, δ1, δ2, δ3, β, kT L, t0, sc) =
(2, 0.5, −1, 2, −1, −0.5, 2, 0, 0) as explained in Chapter 4.2.1. All models in the
set M = {Mi}6

i=1 were fitted once to the dataset as explained in Chapter 4.2.2.
Thereby the AIC and BIC weights per fit were calculated.
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Figure 17: Model selection based on AIC weights: The histogram 17a shows that most in-
dividuals selected model M1 as best model based on their highest AIC weight
followed by M3, M4, M6, M2 and M5. Figure 17b shows two substructures: The
first shows highest weights for M1 whereas the second exhibits highest weights
for M3 and M4.
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Figure 18: Model selection based on BIC weights: As shown in Figure 18a the models
M1, M3 and M4 were selected as best models with the highest BIC weights per
individual fit. In comparison to the individual model selection by AIC weights
the frequencies of the models M3 and M4 are increased and reduced for all other
models as shown by Figure 18b.
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Figure 18a shows the best models that were selected for the individual fits based on the

highest BIC weights. In comparison to AIC the models M2, M5 and M6 were not selected

as best models whereas the frequencies of M3 and M4 were slightly increased. In Figure

18b the weights of M3 and M4 were shifted towards higher values whereas those of M2, M5

and M6 were further decreased.

Summarized less complex models than the generating model M2 were able to fit the data

and were selected as best models on the population scale as well as for the individual fits.

By considering the model selection results in detail for each fit two substructures were found.

The first exhibits highest weights for the Trivial-Model M1 whereas the second shows high

weights for the Ribosome-Model M3 closely followed by the Enzyme-Degradation-Model M4.
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Artificial dataset D3

The artificial dataset D3 was generated by model M3 as shown by Figure 19. Each model in

the set was fitted once to each trajectory in the dataset as explained in Chapter 4.2.2. This

way the AIC and BIC weights for each model per individual fit were calculated.

The model selection based on the AIC population weights revealed a ranking pattern in

decreasing order as follows: M1, M3, M4, M5, M2, M6 (Figure 11a). The result based on

BIC population weights only differs in an exchange of the model M5 by M2 (Figure 12a).

Astonishingly the model M5 was selected more frequently as best model based on the highest

AIC weight than M1 or M3 as displayed in Figure 20a. In Figure 20b the AIC weights for the

individual fits in the population are shown in detail for each model. Two substructures were

found. The first group selected model M5 as best model with highest AIC weights close to 1

and weights close to zero for all other models. The second group shows highest weights for the

models M1 or M3 and weights close to zero for the model M5. The substructures indicate

that only M5 was able to fit the data of the second group whereas the models M1 and M3

are similar good to fit the data of the first group. In comparison the model selection based

on AIC weights the frequency of the Trivial-Model M1 is higher for model selection based

on BIC weights. On the contrary the models M3 and M4 were selected less frequently. This

result reflects the property of BIC to favour less complex models. However, the frequency of

M5 that was selected as best model for the second group remained unchanged.

Figure 19: Artifical dataset D3: Model M3 was used to generate the data as explained
in Chapter 4.2.1. The fixed logarithmic parameters to base 10 were chosen as
follows log10(θ) = log10 (m0, R0, δ, β, k1, k2, t0, sc) = (3, 2, 0.5, −0.75, 2, 2.5, 0, 0).
Afterwards each model in the set was fitted once to the trajectories of dataset D3
and the individual AIC and BIC weights were calculated.
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Figure 20: Model selection based on AIC weights: Figure 20a shows that the most complex
model M5 was selected most frequently as best model followed by M1, M3 and
M4. Figure 20b shows two substructures. The first exhibits highest AIC weights
for model M5 and low values for all other models. The second shows high AIC
weights for M1 and M3 followed by M4, M2 and M6.
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Figure 21: Model selection based on BIC weights: In comparison to model selection based on
AIC weights more individuals selected M1 as best model whereas the frequencies
of M3 and M4 are decreased. Model M5 is selected most frequently. In Figure
21b the models M1 and M5 show highest BIC weights for most of the individuals.
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Artificial dataset D4

The dataset was generated by the Enzyme-Degradation-Model M4 and fitted by each model

in the set as shown by Figure 22. The AIC and BIC weights were calculated for each

individual fit separately. Model M3 was highest ranked and exhibits population weights

above 0.83 for AIC as well as BIC. The ranking obtained by AIC population weights

M3, M4, M2, M6, M5, M1 only differs from the ranking by BIC population weights in an

exchange of the most complex model M5 by the least complex model M1.

In Figure 23a the Enzyme-Degradation-Ribosome-Model M6 was selected most frequently

based on the highest AIC and BIC weights even though it was ranked on the fourth position

on the population scale as shown by Figure 11a. However, the number of individuals that

chose the highest ranked model M3 is close to the frequency of M6. In Figure 23b two

substructures can be found. The first group shows high AIC weights close to 1 for model

M6 whereas those of all other models are close to zero. The second group exhibits highest

AIC weights for the Ribosome-Model M3 and for the Enzyme-Degradation-Model M4. The

model selection based on BIC weights yields similar frequencies for the models that were

selected as best by AIC. As shown by Figure 24a only a few more individuals selected the

Trivial-Model M1 as best. As shown by Figure 24b the BIC weights of M1 are increased

but only a few individuals show higher weights for M1 than for M3.

Figure 22: Artificial dataset D4: The dataset was generated by model M4 using logarith-
mic parameters to base 10 of log10(θ) = log10 (m0, E0, δ1, δ2, β, kT L, t0, sc) =
(3, −1.5, 1, 3.5, −1, 1.5, 0, 0) as explained in Chapter 4.2.1. Each model in the
set M = {Mi}6

i=1 was fitted once to each trajectory of the dataset. This way the
AIC and BIC weights were calculated for each fit.
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Figure 23: Model selection based on AIC weights: As depicted in histogram 23a model M6
was selected most frequently as best model based on the highest AIC weights
followed by M3, M4 and M1. The Figure 23b shows two substructures. On the
one hand model M6 exhibits high AIC weights close to 1 and on the other hand
model M3 and M4 show similar high weights that are most densely located at
values close to 0.45.
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Figure 24: Model selection based on BIC weights: In comparison to model selection based
on the highest AIC weights the same models were selected as best by highest BIC
weights as shown in Figure 24a. The BIC weights of model M1 shown by Figure
23b are higher than the AIC weights in Figure 23b.
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Artificial dataset 5

Dataset D5 was generated with the Two-Degradation-Ribosome-Model M5 as shown by Fig-

ure 25 and explained in Chapter 4.2.1. Each model Mi in the set M = {Mi}6
i=1 was used

once to fit the N = 100 trajectories of the dataset as explained in Chapter 4.2.2. The AIC

and BIC weights were calculated for each fit separately to study the model selection for the

individual fits.

As shown by Figure 11a and 12a the model selection on the population scale yields the same

ranking for AIC and BIC as follows: M1, M3, M4, M2, M6, M5. This is the same order that

is obtained by sorting the models with increasing complexity. Indeed, the Trivial-Model M1

is selected most frequently for the individual fits based on the highest AIC and BIC weight

as shown by Figure 26a and 27a. In contrast to BIC the models M3 and M4 were selected

as best for a few individual fits by AIC. Their AIC weights are more widely distributed to

higher values as shown by Figure 26b than their BIC weights that are displayed in Figure

27b. In conclusion the Trivial-Model M1 with the fewest number of parameters in the model

set was sufficient to fit the data that was generated by the Two-Degradation-Ribosome-Model

that is the most complex model in the set.

Figure 25: Artificial dataset D5: Model M5 was used to generate the data with loga-
rithmic parameters of log10(θ) = log10 (m0, R0, E0, δ1, δ2, δ3, β, k1, k2, t0, sc) =
(3, 2.3, 2, 0.1, 3, −2, −1, 0.2, 1.8, 0, 0) as explained in Chapter 4.2.1. Each model
in the set M = {Mi}6

i=1 was fitted once the individual trajectories. This way the
AIC and BIC values were calculated for each model per individual fit.
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Figure 26: Model selection based on AIC weights: The histograms 26a shows that the least
complex model in the set M1 was selected as best model based on the highest
AIC weights followed by M3 and M4. In Figure 26b the AIC weights of model
M1 and M3 are distributed over a wide range, but the majority of weights shows
values above 0.6 for M1 and close to 0.1 for M3 and M4.
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Figure 27: Model selection based on BIC weights: In histogram 27a the Trivial-Model M1
was solely selected as best model based on the highest BIC weight. Figure 27b
illustrates that all BIC weights of M3 and M4 are decreased whereas those of
M1 are increased in comparison to the individual AIC weights in Figure 26b.
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Artificial dataset D6

The Enzyme-Degradation-Ribosome-Model M6 generated the data of dataset D6 as shown

by Figure 28 and explained in Chapter 4.2.1. Each model of the set was fitted to the data

and the AIC and BIC weights for each fit were calculated. The model selection based on

AIC population weights as shown in Figure 11a yielded a ranking as follows: M6, M5, M3,

M4, M2, M1. The order based on BIC population weights differs only in an exchange of

M5 by M3 as shown by Figure 12a.

In agreement with the highest ranked model on the population scale the Enzyme-Degradation-

Ribosome-Model M6 was selected most frequently for the individual fits based on the highest

AIC weights as shown in Figure 29a. On the contrary the Ribosome-Model M3 was selected

more frequently as best model based on the highest BIC weights than M6 as shown by

Figure 30a. The AIC and BIC weights of both models are widely distributed in comparison

to the other models in the set as displayed in Figure 29b and 30b. The BIC tends to select

less complex models than AIC, as the penalty term for the model complexity includes the

number of observation points per trajectory. For this reason the frequency of M3 as best

model is increased in Figure 30a whereas the frequency of the more complex model M6 is

reduced. Even though M3 was selected most frequently it was not highest ranked by BIC

on the population scale.

Figure 28: Artificial dataset D6: The model M6 was used to generate the data with
logarithmic parameters of log10(θ) = log10 (m0, R0, E0, δ1, δ2, β, k1, k2, t0, sc) =
(2.5, 1.4, 2.4, −2.1, −1.2, −0.4, 2.5, 2.7, 0, 0). As explained in Chapter 4.2.2 each
model in the set M = {Mi}6

i=1 was used once to fit the trajectories. This way
the AIC and BIC values for each model per individual fit were calculated.
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Figure 29: Model selection based on AIC weights: Figure 29a shows that model M6 was
selected most frequently as best model based on the highest AIC weights followed
by M3. In Figure 29b the models M3, M6 and M5 exhibit AIC weights above
zero in contrast to M1, M2 and M4. The weights for most of the individual fits
are given in an order that is equal to the first three ranks on the population scale
by AIC as follows: M6, M5 and M3.
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Figure 30: Model selection based on the BIC weights: As shown by Figure 30a model M3
was selected most frequently as best model followed by M6. In comparison to
the selection based on AIC the individual fits exhibit higher BIC weights for M3
and lower weights for M5 as shown by Figure 30b.
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4.3 Conclusion

The model selection on the population scale reveals that less complex models were favoured

as best models for the artificial datasets and not the generating models. By considering

the model selection for individual fits, several subgroups were found within the population

that favoured different models in comparison to the highest ranked models on the popula-

tion scale. For example the model M3 was highest ranked for the artificial dataset D4 even

though the generating model M4 has the same complexity as M3. By considering the model

selection of the individual trajectory fits, the more complex model M6 was selected most

frequently as best model.

On the one hand a part of the artificial data was removed to be in accordance with the

experimental data but on the other hand the model selection could perhaps lead to different

results given a complete dataset. In addition the AIC and BIC information criteria are

based on the assumption that the size of the observed data points is large in the sense of an

asymptotic limit. Burnham et al. demonstrated the different target models and philosophies

of AIC and BIC [38]. With increasing sample size, the complexity of the model that is

selected by AIC increases. Its target model is the best approximating model with lowest

discrepancy to the truth in the Kullback-Leibler information. In contrast to BIC the AIC is

not consistent. For the latter the probability that the quasi-true model is selected converges

to one for an increasing sample size. The target model is in addition not assumed to be the

data generating model, as it is defined as the model that is most parsimonious. In practice

the sample size is smaller than theoretically required and the BIC selects less complex models

than its target model. This property of BIC may explains why the BIC selects less complex

models than the generating models. Furthermore identifiable model parameters are assumed.

In this work the artificial data consists of 116 data points and the identifiability of model

parameters is not ensured. However, AIC and BIC are commonly used in practice and enable

a comparison of all models within the set at a glance.
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5 Model selection for single-cell mRNA transfection

This chapter is organized as follows: After fitting each model of the set on the datasets of

the cells that either expressed eGFP or d2eGFP proteins, the model selection is studied on

the population scale in Chapter 5.2.1 to obtain a ranking of models. In Chapter 5.2.2 the

model selection is done for each individual fit to obtain a complete picture of favoured models

within the two populations. For the two highest ranked models the parameter distributions

are analysed in Chapter 5.3.2 for the cells that expressed eGFP and in Chapter 5.3.3 for

the cells that expressed d2eGFP proteins. To find out whether the parameters of the two

highest ranked models could be practical identifiable, parameter uncertainty is studied for

one individual fit per population using the profile likelihood method and the local approxi-

mation of the negative log-likelihood function as explained in Chapter 3.2.3. The parameters

that are indicated as practical identifiable are compared for the highest ranked models for

each dataset separately in chapter 5.3.2 and 5.3.3. In the last Chapter 5.3.4 the protein

degradation rates of the two populations are compared to each other.

5.1 Experimental methods

In this work HEK-293 cells that show high transfection efficiencies were seeded on microstruc-

tured single-cell arrays. A multi-channel slide was used that consists of six microstructured

channels, to study the protein expression dynamics for different mRNA constructs in parallel.

Furthermore the fluorescence microscope was equipped with a heating chamber to provide

optimal temperature conditions of approximately 37 °C for the long-term observation of cells

with a duration of almost 30 h. However, temperature gradients have been observed at the

edges of the multi-channel slide. For this reason the first and the sixth channel were excluded

from the experiment. After seeding and growing of the cells on the single cell-arrays they

were transfected with mRNA using Lipofectamin2000 r. The transfection medium with

mRNA coding for eGFP was filled in the second and third channel whereas the medium

with mRNA coding for d2eGFP was added to the fourth and fifth channel. A protocol of

the transfection process can be found in the Appendix 7.2.
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5.2 Model selection

In this chapter the six models that are introduced in Chapter 4.1 are compared in their

suitability to fit the experimental data that was gathered by the mRNA transfection using

eGFP and d2eGFP as reporter proteins. To study whether a single model can describe

the underlying dynamics of mRNA transfection for both datasets, the model selection was

done on the scale of populations as explained in Chapter 4.2.3. The models were ranked for

each dataset in decreasing order of their probability to be the best model in the set. For

this purpose the Akaike (AIC) and Bayesian (BIC) Information Criteria were used that are

explained in Chapter 3.2.4. This way the model architectures of highly ranked models of

both datasets can be compared to find common pathways that are independent of the used

mRNA coding sequence. The results are described in Chapter 5.2.1.

Cell-to-cell variability and inhomogeneous culture conditions as for example temperature

gradients or variable nutrient concentrations could lead to variations of best models within

a population. As shown in Chapter 4.2.4 this inhomogeneity in model selection can be

studied by considering the best models for the individual trajectory fits. The two popula-

tions that either expressed eGFP or d2eGFP proteins are analysed this way in Chapter 5.2.2.

5.2.1 Model selection for populations

For each population that either expresses eGFP or d2eGFP proteins the ranking was ob-

tained by sorting the AIC and BIC population weights in decreasing order. The weights are

related to the probability of being the best model in the set in the sense of AIC or BIC.

They were calculated in the same manner as for the artificial datasets which is described in

Chapter 4.2.3. The rankings are displayed in Figure 31 in colours from red brown to white as

shown by the colour-bar. Additionally the population weights are illustrated in colours in the

range from dark green to yellow in steps of 0.16 intervals as depicted by the second colour-bar.

The population that was transfected with mRNA coding for eGFP includes 236 cells. The

ranking for this population is displayed in Figure 31 and reveals that the Enzyme-Degradation-

Ribosome-Model M6 is selected as best model by AIC and the Ribosome-Model M3 by BIC.

Both models include a ribosomal translation of mRNA into proteins and a direct degradation

of reporter proteins. Model M6 is more complex than M3 as the mRNA degradation path-

way involves enzymatic binding and release whereas model M3 assumes a direct degradation

of mRNA. As expected the BIC selects a model of lower complexity than the AIC.

55



Model selection and parameter estimation of deterministic models of single-cell mRNA

transfection

Figure 31: Model selection on the population scale: The ranking of models is represented
in colors from red brown to white for each population and model selection cri-
terion separately. The associated ranking positions are shown by the colour-bar.
Additionally the population weights are illustrated in colours from dark green to
yellow in interval steps of 0.16 which are displayed in the second colour-bar.

The population weights of all models except of M3 and M6 are below 0.16 which indicates

that they were less able to describe the underlying dynamics on the population scale. The

population of 394 cells that expressed d2eGFP proteins selects the model M5 by AIC and

model M6 by BIC. These models are the most complex models in the set with the highest

number of model parameters. They include a ribosomal translation and enzymatic degrada-

tion of mRNA and differ only by an additional pathway of direct mRNA degradation. All

other models exhibit population weights beneath a value of 0.16 as illustrated in dark green.

Even though the first ranking positions of both population differ and depend on the model

selection criterion, they have in common that model M3, M5 and M6 are placed on the

first three ranking positions. They share the pathway of ribosomal translation into mRNA

and the direct degradation of reporter proteins and only differ in their mRNA degradation

pathways. In contrast the Trivial-Model M1 with the fewest number of parameters is ranked

on the last position. According to this result even more complex models could be designed

and compared with M3, M6 and M5 to find a model that is even more suitable to describe

the underlying dynamics. On the other hand the quality of the data has a crucial influence

on the model selection. For this reason all previous steps including the observation via time-

lapse fluorescence microscopy and image analysis should be improved before increasing the

complexity of considered models in the set.
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5.2.2 Individual model selection

In the following the individual model selection is analysed for both populations separately.

To address the question whether these populations incorporates subgroups that favour mod-

els that are different from the highest ranked model on the population scale, the AIC and

BIC weights were calculated for each fit separately. The best model for an individual fit is

given by the highest AIC or BIC weight.

Figure 32a shows the frequencies of best models for the individual fits given by the highest

AIC weight. The individual trajectory fits correspond to the population of 236 cells that

expressed eGFP proteins. Interestingly model M3 is selected more frequently than M6

which is highest ranked on the first position by AIC population weights in Figure 31. For

this reason the sum of AIC values of M3 has to be higher than for M5 and M6. Figure

32b shows the individual AIC weights for each model in detail. The weights are represented

by empty circles for each colour-marked trajectory fit. At least three substructures can be

identified. The first group shows high weights for the model M6, low values for M5 and

nearly zero values for all other models. The second group exhibits high weights for M5 and

values close to zero for all other models and the third group shows high weights for M3 and

low values for all other models.

As shown by Figure 33a the models M3, M6 and M5 are frequently selected as best models

by BIC with frequencies in decreasing order. This order reflects the ranking of models by

BIC on the population scale in Figure 31. As expected the weights of less complex models

are increased by BIC in comparison to AIC as shown by Figure 33b.

In conclusion the model selection of individuals reveals that the model that is selected most

frequently as best for the individual fits can differ from the highest ranked model of the

population. On the population scale all AIC or BIC values contribute to the population

weights and therefore to the ranking. On the contrary the best models that are selected

frequently for the individual fits are solely based on the highest weights of AIC or BIC

respectively. For this reason both methods can yield different results. For the population of

cells that expressed eGFP proteins the Ribosome-Model M3 and the Enzyme-Degradation-

Ribosome-Model M6 are highest ranked on the population scale and selected most frequently

as best models for the individual fits. In Chapter 5.3.2 they are used to analyse the parameter

estimates for the population of 236 single cells that expressed eGFP proteins.
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Figure 32: Model selection by AIC weights for eGFP constructs: Figure 32a shows the fre-
quency of selected best models based on the highest AIC weight for 236 cells.
Figure 32b displays all AIC weights of the colour-marked individual fits as empty
circles. Model M3, M6 and M5 are selected most frequently as best model and
exhibit the highest AIC weights.
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Figure 33: Model selection based on BIC weights for eGFP constructs: The models M3 and
M6 are selected most frequently as best models based on the highest BIC weights
as shown by Figure 33a. Three substructures can be found in Figure 33b that
show high weights for M3, M6 or M5 and low values for all other models.
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Figure 34a shows the frequencies of best models based on the highest AIC weight in the

population of 394 cells that expressed d2eGFP proteins. Model M6 is selected most fre-

quently followed by model M5 and M3. They are ranked at the first three positions on the

population scale in the same order. Figure 34b shows the same substructure of individual

AIC weights as the individuals of the population that expressed eGFP proteins. Only the

tendency to select model M6 is even more emphasized for individuals that expressed d2eGFP

in comparison to those that expressed eGFP proteins.

In Figure 35a most of the individuals select M6 as best model based on their highest BIC

weights followed by M3 and M5. Oppositely M5 is higher ranked than M3 on the pop-

ulation level by BIC in Figure 31. For this reason the sum of BIC values which was used

to obtain the ranking has to be lower for M5 than for M3. Indeed, the weights of M5 are

more widely distributed over the entire range from 0 to 1 in comparison to M3 as shown by

Figure 35b. However, more individuals exhibit highest weights for M3 than for M5 which

explains the contradiction to the population ranking.

Summarized the most complex models in the set are able to fit the experimental data

best that was gathered from the population of cells that expressed d2eGFP proteins. The

Ribosome-Model M3, the Two-Degradation-Ribosome-Model M5 and the Enzyme-Degradation-

Ribosome-Model M6 are selected most frequently as best models for the individual fits. In

Chapter 5.3.3 the parameter estimates are analysed for the highest ranked models M5 and

M6 for the population of 394 cells that expressed d2eGFP proteins.

5.2.3 Conclusion

The model selection by AIC and BIC population weights reveals that more complex models

than the Trivial-Model M1 are selected as best models for both populations. The Enzym-

Degradation-Ribosome-Model M6 is highest ranked by AIC and the Ribosome-Model M3

by BIC for the population of 236 cells that expressed eGFP proteins. On the other hand

the Two-Degradation-Ribosome-Model M5 was highest ranked by AIC and the Enzyme-

Degradation-Ribosome-Model M6 by BIC for the population of 236 cells that expressed

d2eGFP proteins.

The model selection reveals that the models that were most frequently chosen as best for

the individual fits can differ from the highest ranked models on the population scale. This

is caused by the different approaches of calculating the associated weights. By taking into

account the results of both methods it was determined that the models M3, M5 and M6

are best suited to describe the dynamics of mRNA transfection. They share the ribosomal

translation of mRNA and the simple degradation of fluorescent proteins and differ only in

the complexity of the mRNA degradation pathways.
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Figure 34: Model selection based on AIC weights for d2eGFP constructs: As shown by the
histogram 34a model M6 is selected most frequently as best model for the 394
individual fits, followed by M5 and M3. The weights are shown in detail in Figure
34b. The majority of individuals exhibits high weights for M6 in the range from
0.7 to 1 and low values for M5 around 0.2.
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Figure 35: Model selection based on BIC weights for d2eGFP constructs: As shown by Figure
35a the models M6, M3 and M5 are selected most frequently as best models for
the individual fits based on the highest BIC weight. The weights are shown in
detail in Figure 35b. At least three substructures can be found that exhibit high
weights for M6, M3 or M5.
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5.3 Parameter estimation

In this chapter the parameter distributions are analysed for each highest ranked model

separately. Parameter uncertainty analysis is used for one fit of a single cell trajectory

to find the model parameters that could be practical identifiable. In Chapter 5.3.2 the

analysis is done for the population of cells that expressed eGFP proteins and in Chapter

5.3.3 for those that expressed d2eGFP proteins. First, the Trivial-Model is analysed as a

case study in Chapter 5.3.1 to emphasize the importance of parameter uncertainty. Finally,

the degradation rates of the mRNA constructs that either code for eGFP or d2eGFP proteins

are compared in Chapter 5.3.4.

5.3.1 The Trivial-Model as a case study

In the following the parameter estimates of the Trivial-Model M1 that was fitted on the

trajectories of the cells that expressed eGFP proteins are examined to point out the impor-

tance of parameter uncertainty analysis. The model M1 is the least complex model in the

set as it only includes direct reaction pathways. The mRNA is translated into proteins with

the rate kT L and degrades with the rate δ. The proteins degrade directly with the rate β

as shown by Figure 8a. In this case study the initial concentration of transfected mRNA

m0 was unknown and estimated as an additional parameter by global optimization of the

likelihood function as explained in Chapter 3.2.2. The rate equations of M1 can be solved

analytically and the solutions m(t) for the mRNA and G(t) for the reporter proteins are

given by the following equations:

m(t) = m0 · e−δ·(t−t(0)) (36)

G(t) = kT L · m0

δ − β
· e−β·(t−t(0)) ·

(
1 − e−(δ−β)·(t−t(0))

)
(37)

Unfortunately the rates δ and β can be interchanged without leading to different values of the

solution G(t) of the reporter proteins which is used as the model observable y for the global

optimization of the likelihood function. Both parameters are not distinguishable which is

caused by the model structure. For this reason they are called structural non-identifiable.

This problem is not visible in the parameter distributions that are shown by Figure 36 on the

logarithmic scale to base 10. The degradation rates log10(δ) and log10(β) are both densely

distributed within the range from 0 to -2.
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Figure 36: Parameter estimates of model M1 without outliers: The degradation rates δ of
transfected mRNA and β for eGFP proteins are densely distributed whereas the
translation rate kT L and the initial concentration of mRNA m0 spread over a wide
range of the predefined parameter interval from -6 to 5.

As explained in chapter 3.2.3 two methods are chosen in this work to study parameter

uncertainty: The profile likelihood analysis and the local approximation of the objective

function J(θ) based on the Hessian matrix. The profile likelihood analysis leads to more

reliable results for non-linear rate equations [37]. For all models that are discussed in this

work, the parameter uncertainty analysis was done for one individual fit of a single-cell

trajectory within a population. In this case the population consists of cells that expressed

eGFP proteins. This fit exhibits the same maximum of the likelihood function for at least

10 multistarts in comparison to the 150 multistarts. This is illustrated in Figure 37 by

the Subfigure in the the bottom left: The log-likelihood function shows the same value

of log(LD(θ)) = −991.1 for ten multistarts. As shown by the Subfigure in the top left

several lower valued maxima were found by the global optimization of the likelihood function

that correspond to local maxima in the parameter space. Each maximum is related to one

combination of model parameters of the Trivial-Model M1 as shown by the Subfigure on

the right-hand side. The red line corresponds to the combination of parameters that yield

the best, probably global maximum of the likelihood function with a value of log(LD(θ)) =
−991.1. The black lines represent combinations that lead to local maxima that are close

to the highest value. With increasing greying of the lines, the parameters correspond to

sub-optimal values of the maximum likelihood function.
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Figure 37: Parameter uncertainty analysis of model M1 for one individual fit: As shown
by the Subfigure in the bottom left a maximum of the likelihood function with
a value of log(LD(θ)) = −991.1 was found for at least 10 multistarts. Several
local maxima were found by the global optimization that exhibit lower values
as shown by the Subfigure in the top left. The red line in the Subfigure on the
right-hand side corresponds to a parameter combination of the Trivial-Model M1
that yielded probably the global maximum of the likelihood function. The lines
coloured from dark to grey are related to parameters of lower valued, local maxima
of the likelihood function.

The uncertainty of the parameters of the Trivial-Model that correspond to the red line in

Figure 37 was studied by the profile likelihood analysis and by the second-order local approx-

imation of the negative log-likelihood function J(θ). The profile rations are displayed by the

red lines and the local approximations are shown by the blue lines in Figure in 38. The profile

rations are calculated as explained in chapter 3.2.3. A parameter is practical identifiable if

the ration values are below the threshold for increasing and decreasing values of the profile

interval. The threshold is given by the black, dashed line in Figure 38 and is related to the 95

% confidence interval. The red circles in Figure 38 correspond to all optima that have been

found by the global optimization of M1 using the multi-start method that are within the 95

% confidence interval. In Figure 38 the profile rations are bounded for the degradation rates

δ and β as well as for the measurement noise σ and the expression onset parameter t0, which

indicates that they are practical identifiable. On the other hand one can observe two different

optima for δ and β at values close to -1.4 and -1.1 that are identical for both parameters. Ad-

ditionally the arrangements of the red-circled optima that have been found to be within the

95% confidence interval are completely symmetric and located at these optima. To obtain a

complete picture of the likelihood function one could perform the profile likelihood analysis
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Figure 38: Parameter uncertainty analysis of model M1 for one individual fit: The profile
rations are illustrated by the red lines whereas the local approximation of the
objective function is shown by the blue lines. The black, dashed threshold is
related to the 95 % confidence interval. Practical identifiability is indicated by
bounded lines with increasing and decreasing parameter values.

for each of the red-circled optima within the confidence interval. The symmetry in the pro-

file rations of δ and β reflects the structural non-identifiability of both parameters caused

by their interchangeability which was explained above. However, the local approximation

of the likelihood function displayed in blue only yields that both parameters are practical

non-identifiable. This result further emphasizes that the profile likelihood analysis yields a

deeper insight into the structure of the likelihood function in the parameter space than the

local approximation. Both methods indicate practical non-identifiability for all model pa-

rameters except for δ, β, σ and t0 as shown by the unbounded red and blue lines in Figure 38.

In conclusion it was shown by this case study that parameter uncertainty analysis is im-

portant to obtain reliable parameter estimates. The profile likelihood analysis and the local

approximation of the objective function for one fit yield an impression of practical identi-

fiability of the model parameters of the Trivial-Model which can not be obtained by solely

considering the parameter distributions and the associated statistical quantities like the mean

and standard deviation.
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5.3.2 Parameter estimation for eGFP constructs

The models M3 and M6 were highly ranked on the population scale by AIC as well as

BIC and most frequently selected for the individual trajectory fits as described in chapter

5.2. They share the rates of ribosomal binding and release, denoted as k1 and k2, as well

as the degradation rate β of the eGFP proteins as shown by Figure 39. In this chapter the

parameter histograms of both models are analysed and the question is addressed whether

their common model parameters are probably identifiable and comparable in the sense that

the values of their median, mean and standard deviation are approximately equal.

Parameter estimates of the Ribosome-Model M3

The histograms of the estimated parameters of the Ribosome-Model M3 are shown by Figure

40. The degradation rate of transfected mRNA δ and of eGFP proteins β as well as the

parameters for t0 that were used to cover the different onset times of protein expression

are most densely distributed. Taking into account that the parameter values are shown on

the logarithmic scale to base 10, the other parameters spread widely over the logarithmic

parameter interval to base 10 from -5 to 5 in several orders of magnitude. To study parameter

uncertainty, the profile likelihood rations were calculated for an individual fit that yielded

the highest maximum likelihood function for at least 10 multistarts as explained in Chapter

5.3.1 for the Trivial-Model M1.

(a) Ribosome-Model M3 (b) Ribosome-Enzyme-Model M6

Figure 39: Best models of the set for eGFP coding mRNA constructs: Model M6 was selected
as best model based on AIC population weights and model M3 based on BIC
population weights. Both models were selected most frequently with respect to
the highest AIC and BIC weights of the individual fits. The models share the
pathways of ribosomal binding and release with rates k1 and k2 as well as the
pathway of eGFP degradation with the rate β.
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Figure 40: Parameter estimates of model M3 without outliers: As shown by the histograms
most of the parameters are widely distributed over the parameter interval from
-5 to 5 on the logarithmic scale to base 10. Only the degradation rates δ of
the transfected mRNA and β of the eGFP proteins as well as the parameter t0
that was used to cover the different onset times of protein expression are densely
distributed.

The profile likelihood analysis indicates that the mRNA degradation rate δ, the eGFP degra-

dation rate β and the measurement noise σ are practical identifiable. Their values are below

the threshold with decreasing and increasing values of the profile interval as shown by the

red lines in Figure 41. The threshold is given by the black, dashed line and is related to

the 95 % confidence interval. The expression onset parameter t0 could be practical iden-

tifiable as well which is not obviously given by the profile rations. In contrast the local

approximation shows that only the measurement noise σ is practical identifiable as displayed

by the bounded blue line in Figure 41. In contrast all other model parameters are indi-

cated as practical non-identifiable by this method. All other parameters except for those

discussed above are indicated as practical non-identifiable by the profile rations and by the

local approximation.
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Figure 41: Parameter uncertainty analysis of model M3 for one individual fit: The profile
rations displayed in red are bounded for the mRNA degradation rate δ, the eGFP
degradation rate β and the measurement noise σ. The threshold depicted as the
black dashed line is related to the 95 % confidence interval. The local approxima-
tion of the objective function displayed in blue indicates that only σ is practical
identifiable. However, both methods yield practical non-identifiable for all other
model parameters.

In conclusion, the Ribosome-Model M3 could have practical identifiable parameters for the

individual trajectory fit for the mRNA and eGFP degradation rates, denoted as δ and β,

as well as for the measurement noise σ. The model M3 was selected as best model by BIC

population weights for the dataset that is related to the cells that expressed eGFP proteins.

In the end of this chapter statistical quantities like the mean, standard deviation and median

are calculated for these parameters over all single-cell trajectories of the population and

are compared with the Enzyme-Degradation-Ribosome-Model M6 that was selected as best

model by AIC population weights.
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Parameter estimates of the Enzyme-Degradation-Ribosome-Model M6

The Enzyme-Degradation-Ribosome-Model M6 was selected as best model by AIC popuation

weights and similar frequently as the Ribosome-Model M3 as best model for the individual

fits. In contrast to M3 it includes an enzymatic degradation pathway of the transfected

mRNA with binding and release rates denoted as δ1 and δ2. Figure 42 shows the histograms

of parameter estimates of M6. The degradation rate β of eGFP proteins and the expression

onset parameter t0 are most densely distributed. However, this does not reveal that they are

identifiable as explained in Chapter 5.3.1. The other parameters are widely distributed over

the parameter interval form -5 to 5. The parameter uncertainty was studied for one indi-

vidual fit with at least 10 multistarts that yielded the same best maximum of the likelihood

function. The results for each parameter are shown by Figure 43.
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Figure 42: Parameter estimates of model M6 without outliers: The degradation rate β of
eGFP proteins and the parameter t0 that was used to cover the different onset
times of protein expression are most densely distributed. The other model pa-
rameters are widely distributed over the parameter interval from -5 to 5 on the
logarithmic scale to base 10.
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The profile rations of the degradation rate β of the eGFP proteins are bounded below the

threshold with decreasing and increasing parameter values. Additionally the measurement

noise σ exhibits almost bounded rations as well. For this reason it was assumed that they

are practical identifiable for this individual fit. The profile rations of the other model pa-

rameters show various structures and sudden steep decrements. The latter could be caused

by a failure of numerical integration of the rate equations. To obtain a complete picture

over the entire profile interval one has to perform the profile likelihood analysis for each of

the red-circled optima above the black, dashed threshold that refers to the 95 % confidence

interval. The second-order local approximation of the objective function J(θ) indicates as

well that β and σ could be identifiable even though the blue lines are not bounded. However,

both methods indicate practical non-identifiability for all other model parameters.
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Figure 43: Parameter uncertainty analysis of model M6 for one individual fit: The profile
likelihood analysis reveals that the degradation rate β of eGFP proteins is prac-
tical identifiable. This is confirmed by the local approximation of the objective
function as the values displayed by the blue line are almost bounded. In the same
manner the measurement noise σ could be practical identifiable. However, both
methods yield practical non-identifiability for all other model parameters.
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In conclusion the degradation rate β of the eGFP proteins and the measurement noise σ were

indicated as practical identifiable for the individual fit of the Enzyme-Degradation-Ribosome-

Model M6. It was selected as best model on the population scale by AIC and frequently as

best model for the individual fits. In the end of this chapter statistical quantities like the

median, mean and standard deviation are calculated over the population of all single-cell fits

and compared with the results of the Ribosome-Model M3.

Protein and mRNA degradation rates for eGFP constructs

The degradation rate β of eGFP proteins and the measurement noise σ are indicated as

practical identifiable by the profile likelihood analysis for a single fit using the Ribosome-

Model M3 and the Enzyme-Degradation-Ribosome-Model M6. Both models were selected

as best models in the set by AIC or BIC population weights and most frequently for the

individual fits. In addition the degradation rate δ of the transfected mRNA was indicates

as practical identifiable for an individual fit by model M3. On the contrary the degradation

rates δ and β of the Trivial-Model are structural non-identifiable as they are interchangeable

in the analytic solution of the proteins as explained in Chapter 5.3.1. The model M1 was

ranked on the last position by AIC as well as BIC population weights as shown by Figure

31. The median, mean and standard deviation of the degradation rates β and δ and the

measurement noise σ are summarized in Table 1.

Table 1: Median, mean and standard deviation of the degradation rate of transfected mRNA
δ and eGFP proteins β and the parameter of the measurement noise σ.

rate median mean standard deviation

M1 M3 M6 M1 M3 M6 M1 M3 M6

δ [h−1] 0.08 0.71 - 0.24 0.87 - 0.44 0.73 -

β [h−1] 0.05 0.20 0.18 0.13 0.69 1.43 0.20 3.21 9.87

σ 54.49 45.36 42.47 99.55 85.68 82.41 143.06 128.16 123.62

log10(δ) -1.17 -0.14 - -1.16 -0.23 - 0.82 0.64 -

log10(β) -1.24 -0.70 -0.74 -1.52 -1.11 -1.03 1.28 1.21 1.13

log10(σ) 1.74 1.65 1.63 1.67 1.58 1.57 0.57 0.59 0.59
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Most logarithmic parameters to base 10 were almost normally distributed as shown by the

histograms in Figure 40 and 42. On the other hand the parameters themselves are log-

normally distributed. For this reason the mean of the parameter distributions is shifted

considerably towards higher values in comparison to the mode. In contrast the median is

more robust towards outliers. As shown by Table 1 the logarithmic degradation rates β of

the eGFP proteins and the logarithmic values of the measurement noise σ are similar for the

highest ranked models M3 and M6. On the contrary they are only similar in their median

values for the back transformed parameters. In comparison to the Trivial-Model M1 both

models yield higher degradation rates δ and β but lower values for the measurement noise σ.

This result emphasizes that they were more able to fit the trajectories of the population of

cells that expressed eGFP proteins. Interestingly the degradation rate δ of transfected mRNA

was estimated higher by model M3 than the protein degradation rate β which confirms the

assumption that the mRNA is less stable than the proteins.
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5.3.3 Parameter estimation for d2eGFP constructs

The most complex models M5 and M6 were highest ranked by AIC and BIC population

weights and selected most frequently as best models for the individual fits together with

M3 as described in Chapter 5.2. As shown by Figure 44 the models M5 and M6 share all

pathways except of the additional direct mRNA degradation pathway in model M5. The

binding and release rates of the enzymatic degradation pathways are denoted differently.

Parameter estimates of the Two-Degradation-Ribosome-Model M5

The Two-Degradation-Ribosome-Model M5 was selected as best model by considering the

AIC population weights for the cells that expressed d2eGFP proteins as shown by Figure

31. The model M5 was frequently selected as best model for the individual fits together

with M6 and M3 as described in Chapter 5.2.2. The histograms of parameter estimates

of model M5 are shown by Figure 45. The degradation rate β of d2eGFP proteins, the

measurement noise σ, the offset parameter κ and the expression onset parameter t0 are most

densely distributed. All other parameters spread widely over the parameter interval from

-5 to 5 on the logarithmic scale to base 10. The profile likelihood rations and the local

approximations of the maximum likelihood function are studied for one individual fit that

yielded the same maximum likelihood values for at least 10 multistarts. The results of the

parameter uncertainty analysis are shown by Figure 46.

(a) Two-Degradation-Ribosome-Model M5 (b) Enzyme-Degradation-Ribosome-Model M6

Figure 44: Best models of the set for d2eGFP coding mRNA construct: Model M5 was
selected as best model based on AIC population weights and model M6 based
on BIC population weights. They were frequently chosen as best models for the
individual fits together with M3. Model M5 and M6 differ in the degradation
pathways of mRNA as M5 includes an additional pathway of degradation without
enzymes.
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Figure 45: Parameter histograms of model M5 without outliers: The d2eGFP decay rate β,
the offset parameter κ, the measurement noise σ as well as the parameter t0 that
was used to cover the different onset times of protein expression are more densely
distributed than the other model parameters.
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The profile rations of model M5 are shown for each parameter separately by the red lines in

Figure 48 together with the second-order local approximation of the negative log-likelihood

function J(θ) based on the Hessian given by the blue lines. The profile rations are bounded

for the decay rate β of d2eGFP proteins and the measurement noise σ with increasing and

decreasing parameter values. The threshold that is given by the black, dashed line is related

to the 95 % confidence interval. On the contrary the local approximation in blue reveals

practical identifiability only for the measurement noise σ. However, both methods yield

practical non-identifiability for all other model parameters. As the observation exhibits only

116 time points and the model parameters could be highly non-linear correlated, the profile

likelihood analysis yields more reliable results than the second-order local approximation of

the negative log-likelihood function. For this reason it was assumed that both β and σ are

practical identifiable for this single fit.
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Figure 46: Parameter uncertainty analysis of model M5 for one individual fit: The profile
rations are displayed in red are bounded for the d2eGFP decay rate β and the
measurement noise σ. The threshold given by the dashed black line is associ-
ated to the 95 % confidence intervals. In contrast the rations obtained from the
second-order local approximation of the objective function J(θ) reveals practical
identifiability only for the measurement noise σ. Both methods indicate practical
non-identifiability for the other model parameters.
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Estimated parameters of the Enzyme-Degradation-Ribosome-Model M6

In addition to the Two-Degradation-Ribosome-Model M5 the Enzyme-Degradation-Ribosome-

Model M6 was highly ranked by BIC population weights and was frequently selected as best

model for the individual fits. The parameter histograms of M6 are shown by Figure 47. The

degradation rate of d2eGFP proteins β, the offset parameter κ, the measurement noise σ

and the expression onset parameter t0 are most densely distributed. On the other hand all

other parameters spread over several orders of magnitude in the parameter interval from -5

to 5 on the logarithmic scale to base 10. The parameter uncertainty analysis was done for

one individual that exhibits the same best maximum of the likelihood function for at least

10 multistarts. The results are shown by Figure 48.
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Figure 47: Parameter histograms of model M6 without outliers: The d2eGFP decay rate
β, the offset parameter κ, the measurement noise σ and the expression onset
parameter t0 are more densely distributed than the other model parameters. The
parameter uncertainty analysis was done for one individual trajectory fit that
exhibits the same optimum for at least 10 multistarts.
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The profile rations that are represented by the red lines in Figure 48 are bounded for the

d2eGFP degradation rate β and the measurement noise σ. This indicates that they are

practical identifiable. The threshold that is given by the dashed black line is related to

the 95 % confidence interval. The profiles of other model parameters show various de- and

increases even above the ration of 1 which indicates that higher maxima were found by the

optimization of the profile likelihood than given by the maximum likelihood function. In

addition the calculation of the profiles were interrupted as displayed by the sudden steep

decrements of the red lines. Maybe the numerical integration of the rate equations was not

possible at this point. To obtain a complete picture of the profile rations one could perform

the optimization of the profile likelihood function for each of the illustrated red-circled optima

that are above the threshold. In this case it was assumed that the profile rations indicate

practical non-identifiability for all parameters except of β and σ. The second-order local

approximations of the objective function J(θ) given by the blue lines yield practical non-

identifiability for all model parameters except for the measurement noise σ.

2 3 4 5
0

0.5

1

log
10

(m
0
)

ra
tio

n,
 R

0 2 4
log

10
(R

0
)

−2 0 2
log

10
(E

0
)

−2 0 2 4
log

10
(δ

1
)

0 2 4
0

0.5

1

log
10

(δ
2
)

ra
tio

n,
 R

−0.65−0.6−0.55−0.5−0.45
log

10
(β)

0 2 4
log

10
(k

1
)

0 1 2
log

10
(k

2
)

0.6 0.8 1
0

0.5

1

log
10

(t
0
)

ra
tio

n,
 R

−60 −40 −20 0
log

10
(κ)

0 2 4
log

10
(sc)

2.2 2.25 2.3
log

10
(σ)

Figure 48: Parameter uncertainty analysis of model M6 for one individual fit: The profile
rations displayed in red are bounded for the d2eGFP degradation rate β and
the measurement noise σ. The second-oder local approximation of the nega-
tive log-likelihood J(θ) indicates that only the measurement noise σ is practical
identifiable. Both methods yield practical non-identifiability for the other model
parameters.
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Protein degradation rates for d2eGFP constructs

The Profile likelihood analysis yield practical identifiability for one single fit for the eGFP

degradation rate β and the measurement noise σ for both models M5 and M6. They were

selected as best models in the set on the population scale by AIC and BIC respectively. In

contrast the Trivial-Model was ranked on the last position by both model selection criteria.

To compare the parameters β and σ of these three models, the median, mean and standard

deviation were calculated for the log-10 as well as the back transformed parameter distribu-

tions. The results are summarized in Table 2. As the log-parameters are almost normally

distributed, the back transformed parameters are log-normally distributed. The median is

more robust towards outliers and closer to the mode than the mean of the parameter distri-

butions.

The Two-Degradation-Ribosome-Model M5 and the Enzyme-Degradation-Ribosome-Model

M6 yield very similar rates on the logarithmic scale to base 10. On the contrary the loga-

rithmic rates of the Trivial-Model M1 differ significantly from the results of M5 and M6.

On the one hand M1 was ranked on the last position by AIC and BIC population weights as

shown by Figure 31 and one the other hand the degradation rate β of the reporter proteins is

structural non-identifiable as explained in Chapter 5.3.1. For this reason the rates obtained

by M5 and M6 are more reliable. The median values of the back transformed parameter

distributions are very similar for M5 and M6 whereas the mean values and standard de-

viations differ significantly. As already explained above the median is more reliable as it is

more robust towards outliers and closer to the mode of the parameter distribution.

Table 2: Median, mean and standard deviation of the degradation rate of d2eGFP proteins
β and the parameter of the measurement noise σ.

rate median mean standard deviation

M1 M5 M6 M1 M5 M6 M1 M5 M6

β [h−1] 0.19 0.34 0.35 35.36 1.79 17.54 489.57 11.40 219.5

σ 35.49 16.94 16.95 68.20 33.05 33.27 96.39 46.58 46.62

log10(β) -0.73 -0.47 -0.46 -0.59 -0.35 -0.33 0.60 0.50 0.59

log10(σ) 1.55 1.23 1.23 1.49 1.19 1.20 0.59 0.56 0.56
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5.3.4 Comparison of eGFP and d2eGFP degradation rates

As described in Chapter 5.3.2 and 5.3.3 the median, mean and standard deviation were

calculated for the parameter distributions of the protein degradation rates β and of the mea-

surement noise σ for the highest ranked models. For the population of cells that expressed

eGFP proteins the Enzyme-Degradation-Ribosome-Model M6 was selected as best model by

AIC and the Ribosome-Model M3 by BIC. For the population of cells that expressed d2eGFP

proteins the Two-Degradation-Ribosome-Model M5 was chosen as best model by AIC and

the Enzyme-Degradation-Ribosome-Model M6 was highest ranked by BIC. To compare the

degradation rates and the values of measurement noise for the eGFP and d2eGFP constructs,

the mean and median values and standard deviations were averaged over the highest ranked

models per population. The results are summarized in Table 3.

The average over the highest ranked models is only justified for the statistical quantities of

the logarithmic parameter distributions as their values were very similar for both models. On

the contrary the average is not reasonable for the mean and standard deviation of the back

transformed parameter distributions as they were significantly different for both models. As

expected the degradation rate of the d2eGFP proteins is higher than of eGFP which is con-

firmed by the mean as well as the median values of log10(β) for the two different constructs

in Table 3. Interestingly the measurement noise log10(σ) shows higher median and mean

values for eGFP than for d2eGFP. As both constructs have been used in the same experi-

mental setup, this difference can only be traced back to the image analysis. The cells that

were transfected with mRNA coding for eGFP proteins were more vital than those express-

ing d2eGFP proteins. They showed more movement within their wells and migration over

parameter
median mean standard deviation

eGFP d2eGFP eGFP d2eGFP eGFP d2eGFP

(β) 0.19 0.35 1.06 9.67 6.54 115.45

(σ) 43.92 16.95 84.05 33.16 125.89 46.60

log10(β) -0.72 -0.47 -1.07 -0.34 1.17 0.55

log10(σ) 1.64 1.23 1.58 1.20 0.59 0.56

Table 3: Median, mean and standard deviation of the logarithmic parameters of the protein
degradation β and the measurement noise σ that were averaged over the highest
ranked models per population.
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the single-cell-array. Migrating cells were manually excluded from the image analysis but

the movements of the cellular body on the well edges led to increased fluctuations of mean

fluorescence intensities that were calculated over the well area. In addition the cell division

often starts with a shrinkage of the cell body followed by an expansion at later observation

points. As the mean fluorescence intensities were calculated over the well area, too much

background pixel were included in the calculation. This leads to an temporary decrease of

the protein expression trajectory until the two daughter cells expand. This effect as well as

the fluctuations of the cell beyond the well area increased the measurement noise. As the

cells expressing eGFP proteins were more vital than those expressing d2eGFP proteins, this

could explain why the values of the estimated measurement noise differ significantly between

both constructs. In addition the statistics were obtained for different cell numbers as many

of the migrating cells had to be excluded from the population of 236 that expressed eGFP

proteins. In contrast the population that expressed d2eGFP proteins consists of 394 cells.

In the literature the fluorescence of reporter proteins were measured by flow cytometry for

Chinese Hamster Ovary cells (CHO) that were transfected with plasmid DNA to express

d2eGFP and eGFP proteins. The analysis yielded approximate half-lives of 2h for d2eGFP

and 17 h for eGFP proteins [1]. By assuming exponential decay of the proteins, the half-lives

τ can be transformed into rates as follows:

rate = ln(2)
τ

(38)

This way the degradation rates for d2eGFP with β = 0.35 and for eGFP with β = 0.04 are

calculated. These associated logarithmic degradation rates are given by log10(β) = −0.45
for d2eGFP proteins and by log10(β) = −1.40 for eGFP proteins. The degradation rate

of d2eGFP proteins is well reflected by the median value of the logarithmic distribution

given by log10(β) = −0.47 in Table 3. In contrast the logarithmic degradation rates for

the eGFP proteins were estimated higher than the literature value with a median value of

log10(β) = −0.72. On the one hand this difference could be caused by the high measurement

noise obtained for eGFP and on the other hand the transfection dynamics of mRNA and

plasmid DNA are not directly comparable. In contrast to mRNA the DNA has to enter

the nucleus before the translation into proteins. For this reason the onset times of protein

expression are more widely distributed and shifted to later time points for plasmid DNA than

for mRNA [45]. The broad distribution of expression onset times of plasmid DNA should

lead to a higher variability of fluorescence intensities at given observation points than for

mRNA in the flow cytometry analysis. This affects the half-lives given in the literature as

they were obtained by calculating the mean fluorescence intensities over all cells at different

time points. For this reason the rates that are associated to the half-lives can only be guiding

values.
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In the previous study of Leonhardt et al. [2] the degradation rates were estimated by fitting

the Trivial-Model M1 on single-cell trajectories of populations of different cell lines. The

optimization was done by the software IGOR-PRO that used the Levenberg-Marquart algo-

rithm that minimizes the squared distances of observed and fitted data. As only one initial

guess was given as a starting point for the optimization per trajectory fit the parameter

estimates probably correspond to local maxima of the likelihood function and not to the

global maximum in parameter space. In addition the model was structural non-identifiable

in the degradation rates of transfected mRNA δ and proteins β as explained in Chapter 5.3.1.

Leonhardt et al. yielded protein degradation rates for d2eGFP of βd2eGF P = 0.165±0.142 for

HU7-cells and 0.124±0.082 for A459 cells. These values are roughly close to the median value

βd2eGF P,M1 = 0.19 for d2eGFP that have been obtained by the Trivial-Model M1 in this

work. As shown in Chapter 5.3.3 the results of the Trivial-Model are significantly different

from the statistical values that were obtained by the Two-Degradation-Ribosome-Model M5

and the Enzyme-Degradation-Ribosome-Model M6. The average over these highest ranked

models yield a median value of βd2eGF P = 0.35 instead that is close to the literature reference.
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6 Conclusion and Outlook

Within my master thesis the dynamics of mRNA transfection of single cells were studied us-

ing six deterministic models that are based on rate equations. For this purpose the cells were

seeded on microstructured single-cell arrays that provide high-throughput measurements for

time-lapse microscopy. An improved fitting method was established in collaboration with

the Institute of Computational Biology of the Helmholtz Center Munich that is based on a

global optimization of the likelihood function using a multistart approach. To compare the

fitting quality of the different models, the Akaike and Bayesian Information Criteria were

applied that enable a ranking of models at a glance.

In the first part of this work model selection was studied on artificially generated datasets

that were closely related to the experimental conditions. For this purpose each model was

used once to create an associated dataset of single cell trajectories that started at randomly

chosen time points. As the observation of cells is not possible during the incubation time

of the transfection medium within the first hours, the data was removed from the artificial

datasets for this timespan. By fitting each model once on the trajectories of the datasets,

the question was addressed whether the generating models will be selected as best during

model selection. This expectation was not confirmed by this master thesis. In most of the

cases less complex models were favoured as best model for the whole population of single cell

trajectories. By considering the model selection in detail for each trajectory fit, it was shown

that multiple models were selected as best within the population per artificial dataset. To

gain an deeper understanding of the observed model selection patterns, it could be beneficial

to preserve the data that was removed for the first hours. This would implicate a modifi-

cation of the experimental setup such that the dynamics can be observed in time with the

incubation of the transfection medium. Furthermore the model selection could be studied

by criteria that are more suitable for small datasets and models that exhibit parameter non-

identifiability.

In the second part of this work the model selection was studied for experimental datasets. For

this purpose HEK-cells were transfected with mRNA that either coded for eGFP or d2eGFP

proteins. After observation via time-lapse microscopy the mean fluorescence intensities per

single cell were gathered by an automatic image analysis. This way the data was obtained

for each of the two populations. Afterwards, the six models were fitted on the experimental

data by the global optimization method and the model selection was done on the population

scale as well as for the individual trajectory fits. This way it was observed that models were

selected as best that include a pathway of ribosomal translation of the transfected mRNA

and only differed in the degradation pathways of the mRNA. Parameter uncertainty analysis

was done for one individual fit per dataset for the highest ranked models on the population

scale. This way an impression was obtained which model parameters could be practical
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identifiable. To obtain a deeper insight into the identifiability of the model parameters, the

analysis should be done for each single-cell trajectory fit per population. Furthermore it was

observed that the profile likelihood method was sometimes interrupted during the optimiza-

tion. In this cases the analysis should be done for each optimum of the likelihood function

that was found to be within the 95 % confidence interval.

The models that were selected as best for the description of mRNA transfection dynamics

in this work yielded very similar statistical quantities for the distributions of the logarithmic

protein degradation rates β that were indicated as practical identifiable by the parameter

uncertainty analysis. For this reason they were averaged over the highest ranked models

to facilitate the comparison of the degradation rates of the eGFP and d2eGFP reporter

proteins. It was shown that the mean and median degradation rates of the d2eGFP pro-

teins were estimated significantly higher than of eGFP. Additionally the median degradation

rate of d2eGFP, given by βd2eGF P = 0.35, was found to be very close to the literature

value of βd2eGF P,F C = 0.35 that was gathered by flow cytometry analysis of CHO-cells that

were transfected with plasmid DNA [1]. However, the median degradation rate of eGFP

given by βeGF P = 0.19 was estimated significantly higher than the literature reference of

βeGF P,F C = 0.04. On the one hand the transfection dynamics of plasmid DNA and mRNA

are not direclty comparable but on the other hand this difference could also be caused by

the measurement noise that was found to be higher for eGFP than for d2eGFP.

Within my master thesis the background correction of time-lapse movies was improved. A

density based clustering algorithm was used to detect cellular signals on each image frame

separately. They were removed from the image and the resulting gaps were reconstructed by

an iterative interpolation method based on an 8-neighbourhood of the segmented image. As

the surrounding of the cell is often brighter than the background due to the light scattering

of the cellular fluorescence, the interpolation led to a bias towards higher values. This effect

depends on the individual cell and on the image segmentation and reduced the data qual-

ity in this work. In addition the mean fluorescence intensities were gathered over the area

of their confinements on the single-cell array. The movements of the cell body within this

confinement, called well, caused high fluctuations in the mean intensities. This is especially

increased during the cell division due to the shrinkage and subsequent expansion of the cell.

An improvement of the interpolation method as well as of the well analysis is needed to

reduce the measurement noise of the image analysis.
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7.1 The model set at a glance

(a) Trivial-Model M1 (b) Two-Degradation-Model M2

Figure 49: In Figure 49a the model M1 describes the translation of mRNA (m) into GFP
(G) with the rate kT L and the degradation of both with the rates δ and β. Model
M2 shown by Figure 49b includes an additional decay pathway of mRNA by
enzymatic binding with the rate δ2 and release with the δ3.

(a) Ribosome-Model M3 (b) Enzyme-Degradation-Model M4

Figure 50: In model M3 in Figure 50a the mRNA is translated into GFP via ribosomal
binding and release with the rates k1 and k2. The mRNA degrades with the rate
δ and the proteins with the rate β. Model M4 in Figure 50b describes a direct
translation of mRNA with the rate kT L and a direct decay of proteins with the
rate β. The mRNA degrades via an enzymatic pathway with the rates δ1 and δ2.
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(a) Two-Degradation-Ribosome-Model M5 (b) Enzyme-Degradation-Ribosome-Model M6

Figure 51: In Figure 51a the mRNA is translated by ribosomes with the rates k1 and k2 and
degraded by enzymes with the rates δ2 and δ3. In addition the mRNA decays
with the rate δ1. The proteins degrade directly with the rate β. Model M6 in
Figure 51b exhibits the same pathways as model M5 except of the simple decay
of mRNA with the rate δ1.
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7.2 Transfection protocol

Date of experiment: 13.01.2015

� SNIM RNA given by Mehrje: d2eGFP - eGFP II

� cells: HEK293

� transfection medium: Lipofectamine2000

� medium: RPMI + NaPyruvat+Hepes + 10 % FCS + Glutamin; OptiMEM; L-15

Medium + 10 % FCS

HEK293-cells were disseminated in growth medium in prepared slides (µ slide 6 channel) and

flushed with 60µ medium. The cell seeding started at 8:45 and was stopped after at 12:15.

Afterwards the medium was removed and the channels were washed with PBS. OptiMEM

and 50ng transfection medium per channel were added. After incubation for 2 hours, the

medium was exchanged for L15-Medium and the slides were moved to the microscope. The

ratio of mRNA to lipoplexes was 1µg : 2.5µl.

Preparation of Lipoplexes

1. dilute of 50 ng mRNA in OptiMEM-medium; GV = 25µl

2. dilute of 0.125 µl Lipofectamine 2000 in OptiMEM-medium and incubation at room

temperature for 5 min; GV = 25µl

3. mix the mRNA solution and lipoplexes at room temperature for 20 min

4. add lipoplexes to cell slides: remove 100 µl, add 50 µl transfection medium, add 80 µl

L15-medium and flush twice

Cells were observed for 30 h under the Nikon microscope, in which one frame was taken each

10 min, in the beginning transmitted light, later eGFP-Fluorescence scanning.
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