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ABSTRACT

Summary: With the widespread availability of high-throughput
experimental technologies it has become possible to study hundreds
to thousands of cellular factors simultaneously, such as coding- or
non-coding mMRNA or protein concentrations. Still, extracting
information about the underlying regulatory or signaling interactions
from these data remains a difficult challenge. We present a flexible
approach towards network inference based on linear programming.
Our method reconstructs the interactions of factors from a
combination of perturbation/non-perturbation and steady-state/time-
series data. We show both on simulated and real data that our
methods are able to reconstruct the underlying networks fast and
efficiently, thus shedding new light on biological processes and, in
particular, into disease’s mechanisms of action. We have
implemented the approach as an R package available through
bioconductor.

Availability and Implementation: This R package is freely
available under the Gnu Public License (GPL-3) from
bioconductor.org
(http://bioconductor.org/packages/release/bioc/html/lpNet.html) and
is compatible with most operating systems (Windows, Linux, Mac
OS) and hardware architectures.
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INTRODUCTION

Using network inference approaches it is possible to understand
how different cellular components (e.g. genes, proteins,
metabolites) interact with each other. Several methods for network
inference exist, such as Boolean networks (Bock, et al., 2012;
Haider and Pal, 2012), (Dynamic) Bayesian networks (BN)
(Friedman, et al., 2000; Sachs, et al., 2005), and methods based on
differential equations (Gardner, et al., 2003; Kimura, et al., 2012).
Boolean networks scale up well for larger networks and are easy to
interpret. Yet, the biological signal is binarized which leads to a
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substantial loss of information. BN and differential equations allow
for a more detailed modeling of the underlying processes, but they
are often applicable only to small-scale problems as they usually
scale-up poorly.

One of the major recent approaches to model signaling networks
based on perturbation data are the Nested Effects Models (NEMs)
(Markowetz, et al., 2007) which have been widely applied and
extended in different ways. This approach assumes a small number
of candidate pathway genes which are silenced (S-genes), and the
effects of this silencing are measured on a large set of “effects”
genes (E-genes) — thus using indirect observations of effects for
network inference. Approaches that use direct observations from
perturbed networks obtained either at a single or several time-
points include (Dynamic) Deterministic Effects Propagation
Networks ((D)DEPNs) (Bender, et al., 2010; Frohlich, et al.,
2009), Dynamic Probabilistic Boolean Threshold Networks (D-
PTBNSs) (Kiani and Kaderali, 2014), and Sorad (Aijé et al, 2014).
However, many of the published network inference approaches are
computationally expensive and thus not suitable for large
networks. Also, although many methods are publicly available, a
substantial fraction of them are dependent on 3rd-party proprietary
software (e.g. Matlab) and are not properly documented, thus
making them very hard to use.

Here, we present a flexible approach implemented as a
bioconductor package, IpNet, freely available for any of the major
operating systems. The method implemented in IpNet extends a
previously developed method in (Knapp and Kaderali, 2013) by
adding support for time-series data. As a result, the method is now
suited for any combination of perturbation / non-perturbation and
steady-state / time-series data, and not only for perturbation steady-
state data, as in the previous version of 2013. Furthermore, the
calculation of a node’s activity, which directly influences the
resulting network, was improved, leading to more accurate results.
Finally, since the method is formulated as a linear programming
approach, inferring networks becomes fast and efficient even for
large-scale problems.
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METHODS

The signaling network to be inferred is modeled by a graph G = (V, W),
were v; € V,i € {1,n} are nodes that can represent, e.g. genes or proteins,
and w;; EW, w;; €R are directed edges from node v; to node v;. If
w;; > 0 node v; activates node v;, if wy; < 0 node v; inhibits node v;, and
if w;; = 0 nodes v; and v; are not connected. For the inference, we define
an observation matrix X € R} which can be 2- or 3-dimensional, with
dimensions representing nodes v;, the perturbation experiments k €
{1,K}, and optionally the time points t € {1, T} in the 3" dimension. We
have previously described the use of linear programming for network
inference from steady state data (Knapp and Kaderali, 2013). IpNet now
implements an extension that enables the use of time-series data and thus
uses a 3D observation matrix.

Perturbation experiments are encoded in an activation matrix B"™K € {0,1},
where by, = 0 means node v; in perturbation experiment k is silenced,
otherwise it is not silenced. This matrix can also be used to encode
experiments with different stimuli, by considering each stimulus to be a
different perturbation experiment.

We assume the signal to propagate through the network as an information
flow, starting in the source nodes and ending in the sink nodes. The signal
propagation is interrupted when either a silenced node or a node inhibited
by its parent nodes is reached. Furthermore, we assume the signal to
propagate from parent nodes to child nodes one step per time point. The
activity of anode i is then given by:

WP + X WiiXjke-1 €))

where w? € R is the baseline activity of node v; and Xjkt—1 € RY is the
observation value for node v;, in perturbation experiment k, at time point
t—1. A node is said to be active if x;,, = J;, otherwise it is inactive.
6; € R is a user-defined threshold, and is key for the method’s
performance. Only active nodes at time point t — 1 can influence other
nodes at t. If a given node v; is considered as inactive at ¢ —1 with
Xjke-1 < O, or if it was silenced, by, = 0, then xj;,_; is set to 0 in eq. (1),
i.e. node v; does not contribute to node v;’s activity.
Given all the stated assumptions, the network G = (V, W) is inferred by
solving a linear programming problem as described in the supplementary
information, section 1, using the simplex method, whose complexity has
been shown to be polynomial in practice.

RESULTS

The performance of the first version of IpNet, suitable only for
perturbation steady-state data, has been assessed (Knapp and
Kaderali, 2013). As for the latest version, with support for a
combination of perturbation / non-perturbation and steady-state /
time-series data, it has been used in the DREAM 8 competition, in
the HPN-DREAM breast cancer network inference challenge,
where it scored 3™ for the in silico challenge (AUROC: 0.68) and
29™ for the experimental challenge (AUROC: 0.57) without using
prior information, among more than 60 competing groups. In the in
silico challenge the goal was to infer the causal edges in a 20 node
network given a dataset containing the 20 nodes observations
across 10 time points and 4 perturbation experiments (one of these
being the control). In the experimental challenge the goal was to
infer 32 causal networks, one for each combination of cell line +
stimulus — there were 4 cell lines and 8 different stimuli. Each of
the 32 datasets contained ~45 nodes observations across 7 time
points and 4 inhibition experiments (one of these being the
control). In the supplementary information, section 3, we briefly
compare IpNet with DDEPN (Bender, 2013), a method also
implemented as a well documented R package and suitable for the
same type of data. Two conclusions from this comparison are
worth emphasizing: i) IpNet is very robust against noise; ii) on the

same platform, IpNet takes on average 15min to infer a network
with 10 nodes, 10 time points, and 2 perturbations, while
DDEPN takes, on average, 101 min (computations done on
an Intel Xeon X5460 @ 3GHz, 2x6MB L2 cache, 32GB
RAM, 64bit Linux OS). More detailed results are presented in
the supplementary materials and in (Matos, 2013).

DISCUSSION AND CONCLUSION

The IpNet package supports now any combination of perturbation /
non-perturbation and steady-state / time-series data, and not only
perturbation steady-state data as in the 2013 version. Moreover, by
formulating network inference as a linear programming problem
and using the simplex method to solve it, IpNet is computationally
very efficient and runs, on average, 6 to 7 times faster than the
DDEPN approach. Results are robust against noise, and due to the
fast running time, cross-validation can be used to fit model
parameters such as 8.
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