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ABSTRACT 

Summary: With the widespread availability of high-throughput 

experimental technologies it has become possible to study hundreds 

to thousands of cellular factors simultaneously, such as coding- or 

non-coding mRNA or protein concentrations. Still, extracting 

information about the underlying regulatory or signaling interactions 

from these data remains a difficult challenge. We present a flexible 

approach towards network inference based on linear programming. 

Our method reconstructs the interactions of factors from a 

combination of perturbation/non-perturbation and steady-state/time-

series data. We show both on simulated and real data that our 

methods are able to reconstruct the underlying networks fast and 

efficiently, thus shedding new light on biological processes and, in 

particular, into disease’s mechanisms of action. We have 

implemented the approach as an R package available through 

bioconductor. 

Availability and Implementation: This R package is freely 

available under the Gnu Public License (GPL-3) from 

bioconductor.org 

(http://bioconductor.org/packages/release/bioc/html/lpNet.html) and 

is compatible with most operating systems (Windows, Linux, Mac 

OS) and hardware architectures. 

Contact: bettina.knapp@helmholtz-muenchen.de 

INTRODUCTION  

Using network inference approaches it is possible to understand 
how different cellular components (e.g. genes, proteins, 
metabolites) interact with each other. Several methods for network 
inference exist, such as Boolean networks (Bock, et al., 2012; 
Haider and Pal, 2012), (Dynamic) Bayesian networks (BN) 
(Friedman, et al., 2000; Sachs, et al., 2005), and methods based on 
differential equations (Gardner, et al., 2003; Kimura, et al., 2012). 
Boolean networks scale up well for larger networks and are easy to 
interpret. Yet, the biological signal is binarized which leads to a 
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substantial loss of information. BN and differential equations allow 
for a more detailed modeling of the underlying processes, but they 
are often applicable only to small-scale problems as they usually 
scale-up poorly.  
One of the major recent approaches to model signaling networks 
based on perturbation data are the Nested Effects Models (NEMs) 
(Markowetz, et al., 2007) which have been widely applied and 
extended in different ways. This approach assumes a small number 
of candidate pathway genes which are silenced (S-genes), and the 
effects of this silencing are measured on a large set of “effects” 
genes (E-genes) – thus using indirect observations of effects for 
network inference. Approaches that use direct observations from 
perturbed networks obtained either at a single or several time-
points include (Dynamic) Deterministic Effects Propagation 
Networks ((D)DEPNs) (Bender, et al., 2010; Frohlich, et al., 
2009), Dynamic Probabilistic Boolean Threshold Networks (D-
PTBNs) (Kiani and Kaderali, 2014), and Sorad (Äijö et al, 2014). 
However, many of the published network inference approaches are 
computationally expensive and thus not suitable for large 
networks. Also, although many methods are publicly available, a 
substantial fraction of them are dependent on 3rd-party proprietary 
software (e.g. Matlab) and are not properly documented, thus 
making them very hard to use. 
Here, we present a flexible approach implemented as a 
bioconductor package, lpNet, freely available for any of the major 
operating systems. The method implemented in lpNet extends a 
previously developed method in (Knapp and Kaderali, 2013) by 
adding support for time-series data. As a result, the method is now 
suited for any combination of perturbation / non-perturbation and 
steady-state / time-series data, and not only for perturbation steady-
state data, as in the previous version of 2013. Furthermore, the 
calculation of a node’s activity, which directly influences the 
resulting network, was improved, leading to more accurate results. 
Finally, since the method is formulated as a linear programming 
approach, inferring networks becomes fast and efficient even for 
large-scale problems. 
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METHODS 

The signaling network to be inferred is modeled by a graph � = (�,�), 
were �	 ∈ �, �	 ∈ 
1, �� are nodes that can represent, e.g. genes or proteins, 
and �	� ∈ �, �	� ∈ ℝ are directed edges from node �	 to node �� . If  
�	� > 0 node �	 activates node �� , if �	� < 0 node �	 inhibits node �� , and 
if �	� = 0 nodes �	 and ��  are not connected. For the inference, we define 
an observation matrix � ∈ ℝ�

� which can be 2- or 3-dimensional, with 
dimensions representing nodes �	, the perturbation experiments �	 ∈
	
1,��, and optionally the time points � ∈ 
1, �� in the 3rd dimension. We 
have previously described the use of linear programming for network 
inference from steady state data (Knapp and Kaderali, 2013). lpNet now 
implements an extension that enables the use of time-series data and thus 
uses a 3D observation matrix.  
Perturbation experiments are encoded in an activation matrix ��×! ∈ 
0,1�, 
where "	# = 0 means node �	 in perturbation experiment � is silenced, 
otherwise it is not silenced. This matrix can also be used to encode 
experiments with different stimuli, by considering each stimulus to be a 
different perturbation experiment.  
We assume the signal to propagate through the network as an information 
flow, starting in the source nodes and ending in the sink nodes. The signal 
propagation is interrupted when either a silenced node or a node inhibited 
by its parent nodes is reached. Furthermore, we assume the signal to 
propagate from parent nodes to child nodes one step per time point. The 
activity of a node � is then given by:  

 �	
� + ∑ ��	&�#'()�*	 																																																								(1) 

where �	
� ∈ ℝ is the baseline activity of node �	 and &�#'() ∈ ℝ�

� is the 
observation value for node �� , in perturbation experiment �, at time point 
� − 1. A node is said to be active if &	#' ≥ -	, otherwise it is inactive. 
-	 ∈ ℝ

� is a user-defined threshold, and is key for the method’s 
performance. Only active nodes at time point � − 1 can influence other 
nodes at �. If a given node ��  is considered as inactive at � − 1 with 
&�#'() < -	, or if it was silenced, "	# = 0, then &�#'() is set to 0 in eq. (1), 
i.e. node ��  does not contribute to node ��’s activity. 
Given all the stated assumptions, the network � = (�,�) is inferred by 
solving a linear programming problem as described in the supplementary 
information, section 1, using the simplex method, whose complexity has 
been shown to be polynomial in practice.  

RESULTS 

The performance of the first version of lpNet, suitable only for 
perturbation steady-state data, has been assessed (Knapp and 
Kaderali, 2013). As for the latest version, with support for a 
combination of perturbation / non-perturbation and steady-state / 
time-series data, it has been used in the DREAM 8 competition, in 
the HPN-DREAM breast cancer network inference challenge, 
where it scored 3rd for the in silico challenge (AUROC: 0.68) and 
29th for the experimental challenge (AUROC: 0.57) without using 
prior information, among more than 60 competing groups. In the in 
silico challenge the goal was to infer the causal edges in a 20 node 
network given a dataset containing the 20 nodes observations 
across 10 time points and 4 perturbation experiments (one of these 
being the control). In the experimental challenge the goal was to 
infer 32 causal networks, one for each combination of cell line + 
stimulus – there were 4 cell lines and 8 different stimuli. Each of 
the 32 datasets contained ~45 nodes observations across 7 time 
points and 4 inhibition experiments (one of these being the 
control). In the supplementary information, section 3, we briefly 
compare lpNet with DDEPN (Bender, 2013), a method also 
implemented as a well documented R package and suitable for the 
same type of data. Two conclusions from this comparison are 
worth emphasizing: i) lpNet is very robust against noise; ii) on the 

same platform, lpNet takes on average 15min to infer a network 
with 10 nodes, 10 time points, and 2 perturbations, while 
DDEPN takes, on average, 101 min (computations done on 
an Intel Xeon X5460 @ 3GHz, 2×6MB L2 cache, 32GB 
RAM, 64bit Linux  OS). More detailed results are presented in 
the supplementary materials and in (Matos, 2013).  

DISCUSSION AND CONCLUSION 

The lpNet package supports now any combination of perturbation / 

non-perturbation and steady-state / time-series data, and not only 

perturbation steady-state data as in the 2013 version. Moreover, by 

formulating network inference as a linear programming problem 

and using the simplex method to solve it, lpNet is computationally 

very efficient and runs, on average, 6 to 7 times faster than the 

DDEPN approach. Results are robust against noise, and due to the 

fast running time, cross-validation can be used to fit model 

parameters such as δ. 
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