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Biodegradation: Updating the concepts of control for microbial clean-up in contaminated aquifers 1 
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Abstract 5 

Biodegradation is one of the most favored and sustainable means of removing organic pollutants 6 

from contaminated aquifers but the major steering factors are still surprisingly poorly understood. 7 

Growing evidence questions some of the established concepts for control of biodegradation. Here, 8 

we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of 9 

steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if 10 

absence of specific degrader populations can explain poor biodegradation. We propose updated 11 

perspectives on the controls of biodegradation in contaminant plumes. These include the plume 12 

fringe concept, transport limitations, and transient conditions as currently underestimated processes 13 

affecting biodegradation. 14 

 15 

Abstract Art 16 

 17 

 18 

1. Introduction 19 

Over the last 150 years, the number of organic chemicals released into the environment has 20 

increased dramatically 1, leaving an unprecedented chemical footprint on earth. Many groundwater 21 

contaminations result from point sources, originating from accidents or contaminations at industrial 22 
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sites. These contaminations typically form plumes with high concentrations of pollutants (µg/L to 23 

mg/L range). Alternatively, chemicals may enter groundwater via widespread application in 24 

agriculture or release from sewage treatment into rivers. Here, pesticides, pharmaceuticals, or 25 

consumer care products are introduced as non-point sources and typically occur in much smaller 26 

concentrations (micropollutants in ng/L to µg/L range) 2.  27 

For what seems at first sight a daunting perspective, nature fortunately has a remedy in place: 28 

biodegradation. Microorganisms can oxidize organic pollutants to CO2 while reducing electron 29 

acceptors such as molecular oxygen, nitrate, Fe(III) (and other metal oxides), or sulfate (Fig. 1). 30 

Alternatively, some pollutants such as chlorinated solvents may serve as electron acceptors (Fig. 1, 31 

right side).  32 

 

Fig. 1. Contaminants can serve as electron donors or acceptors for aquifer micro-organisms. 33 

 34 

However, despite decades of biodegradation research, the true drivers governing contaminant 35 

degradation are still poorly understood. This article revisits and challenges current concepts on the 36 

controls and limitations of biodegradation in aquifers. It critically discusses (i) whether 37 

biodegradation is primarily governed by thermodynamics (i.e., redox zonation) at contaminated 38 

sites, (ii) if biodegradation can be adequately predicted by considering the subsurface as one 39 

reactive compartment and applying terms of environmental engineering (residence time, reaction 40 
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time), and (iii) the biological controls of biodegradation. We argue that groundwater ecosystems are 41 

much more heterogeneous and dynamic than currently perceived. Furthermore, we suggest that 42 

kinetic controls of biodegradation have been largely overlooked. Current concepts rely to a large 43 

part on thermodynamic considerations and steady state assumptions, while processes are frequently 44 

dynamic. In many cases, the steering parameters were not considered at appropriate spatial and 45 

temporal scales. However, the crucial controls of biodegradation discussed below provide potential 46 

for changing the future design of scientific projects, monitoring campaigns, or remediation 47 

strategies.  48 

2. Revisiting redox zonation in contaminated aquifers 49 

In highly polluted aquifers (e.g. petroleum spills with hydrocarbon concentrations of up to 100 50 

mg/L), an excess of dissolved electron donors (hydrocarbons) prevails over acceptors (Fig. 1). In such 51 

contaminant plumes, electron acceptors are readily depleted which is widely accepted as a major 52 

limitation of biodegradation 3, 4. A longitudinal sequence of redox processes is assumed: 53 

methanogenic degradation close to the contaminant source, followed by sulfate reduction, 54 

manganese(IV) and iron(III)-oxide reduction, nitrate reduction, and finally aerobic processes towards 55 

the distal end of the plume 3-7 (Fig. 2 A). However, this redox zonation concept is challenged in the 56 

following. 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

   67 
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Fig. 2. Comparison of the longitudinal redox zonation concept (A) and the plume fringe concept (B), 68 

both describing the spatial distribution of electron acceptors and respiration processes in a 69 

hydrocarbon contaminant plume. (B) Iron(III) reduction, manganese(IV) reduction, and 70 

methanogenesis may occur simultaneously in the core of the contaminant plume. 71 

 72 

Dissolved electron acceptors depleted at the source zone cannot be readily replenished in the 73 

downstream plume due to laminar flow and the limited transversal dispersion in porous media (Fig. 74 

2 B). Accordingly, methanogenic degradation or reduction of insoluble iron(III) and manganese (IV) 75 

phases would be the only electron-accepting processes possible in the source zone or the 76 

downstream plume core. Recent field evidence supports this theoretical concept showing electron 77 

acceptor depletion in the plume center 8,9. This is an evident contradiction to the classical concept of 78 

reverse longitudinal redox zonation (Fig. 2A). If dissolved electron acceptors such as sulfate or 79 

nitrate are consumed already at the source, they cannot become available again downstream 80 

allowing for sulfate or nitrate reduction. Even if not all electron acceptors are depleted during the 81 

passage through the source zone, a downstream redox succession should develop, where first 82 

nitrate and sulfate reduction take place, followed by methanogenesis, and not vice versa. Such 83 

spatial distributions have indeed been found along contaminant plumes when sampling was 84 

performed at appropriate resolution 10,11. 85 

2.1. Is thermodynamics alone determining microbial competition in contaminant plumes?  86 

The theory behind every redox zonation model is that microorganisms reducing a 87 

thermodynamically more favorable electron acceptor can gain more energy (Fig. 1), e.g. nitrate- vs. 88 

sulfate-reducing bacteria12. In electron donor-limited systems such as aquifers with only little 89 

contamination, nitrate reducers should therefore be able to consume organic substrates to 90 

threshold concentrations no longer permissive for the activity of thermodynamically less favored 91 

respiratory guilds, which consequently become outcompeted 13. However, in highly contaminated 92 

aquifers, electron donors are present in excess over the oxidation capacity of all electron acceptors 93 

and at concentrations much higher than where competition for electron donors (i.e., available 94 

organic substrate) can occur. Consequently, respiration processes should rather occur 95 

simultaneously as long as respective electron acceptors are present and do not become limiting for a 96 

certain respiratory guild. Biodegradation activity thus becomes controlled by availability of specific 97 

electron acceptors, rather than by thermodynamics. This concept is supported by studies on 98 
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electron acceptor-limited chemostats where axenic cultures express all respiratory pathways 99 

simultaneously rather than only the energetically most favorable 14-17.  100 

We propose that the reason why more favored respiratory guilds may nevertheless appear in higher 101 

abundance is a kinetic advantage which is based on higher energy conservation. Conserving more 102 

energy leads to higher growth yields (Y) and, therefore, growth rates (µ) (Equations 1-3; where X is 103 

the total biomass, X0 the initial biomass, S the substrate concentration, and t the time of 104 

observation). 105 

µ = dX÷dt × 1÷X0  (1) 106 

dX÷dt = −Y × dS÷dt  (2) 107 

µ = −Y × dS÷dt × 1÷X0  (3) 108 

Thus, nitrate reducers can grow faster and to higher cell numbers in a given plume compartment 109 

suggesting an apparent out-competing of inferior respiratory guilds by thermodynamics. We 110 

propose that in many cases this will be controlled by the availability of electron acceptors and not by 111 

thermodynamic competition between respiratory guilds. Recently, Hansel et al. reported that 112 

microbial sulfate reduction was dominant over iron-reduction in sediments despite the lower 113 

thermodynamic energy gain 18. The study exemplifies the importance of bioavailability rather than 114 

merely the thermodynamic redox potential of the electron acceptor. 115 

2.2. Importance of processes at plume fringes  116 

In recent years, it became apparent that biodegradation in contaminant plumes is much better 117 

explained by the ‘plume fringe concept’ than by the classical longitudinal redox zonation (Fig. 2) 19. 118 

This concept is founded on the depletion of dissolved electron acceptors in the plume core. 119 

Biodegradation with oxygen, nitrate, or sulfate reduction can then only take place at the fringes of 120 

the plume, where electron acceptors are replenished from surrounding groundwater by dispersion 121 

and diffusion (“mixing in”) (Fig. 2 B) 8,19-21. At an adequately high resolution of sampling, steep 122 

geochemical counter-gradients of electron donors and acceptors have indeed been observed in 123 

several contaminated aquifers thus verifying the ‘plume fringe concept’ 22-24 . The concept also 124 

provides an appropriate explanation for the overall rather limited net biodegradation rates in 125 

hydrocarbon plumes: the small-scale dispersive mixing at plume fringes controls the mass transfer of 126 

electron acceptors and, thus, microbial activities. On the other hand, the concept predicts that the 127 

plume fringes are the true hot spots where biodegradation occurs in situ 25,26. 128 
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The incomplete conceptual understanding of plume redox zonation brings about two fundamental 129 

caveats in many field investigations: (i) sampling at inappropriate scales and (ii) taking samples at the 130 

wrong spot 27,28. Thus, many studies may actually have overlooked the most relevant processes and 131 

zones of biodegradation simply because groundwater sampling was done at meter rather than at 132 

centimeter resolution. While numerous studies reported on marked differences in overall microbial 133 

community assembly along plumes29-32, vertical heterogeneity of biodegradation activities has rarely 134 

been considered 9,33,34. Consequently, appropriately high resolution monitoring and the limitations of 135 

dispersive mixing still await a better incorporation into conceptual models and study design. Future 136 

research should investigate the generic conditions affecting the processes at the plume fringes and 137 

the limitations of biodegradation. 138 

2.3. The plume core as a poorly understood compartment  139 

Even when all dissolved electron acceptors are depleted, methanogenesis and Fe(III)- or Mn(IV)-140 

reduction may still drive biodegradation of hydrocarbons in the plume core (Fig. 2 B) 35. Evidence for 141 

iron-reduction has indeed been reported for contaminated aquifers 36-38. Very little studies, however, 142 

exist on methanogenic hydrocarbon degradation in laboratory incubations which is probably due to 143 

the extremely slow growth of such cultures 39. Even less documented is methanogenic hydrocarbon 144 

degradation in aquifers 10,11. Methanogenic hydrocarbon degradation may thus seem limited in 145 

spatial extent or relative contribution to the overall biodegradation 40,41. An explanation might be 146 

provided by a study where agitation has been shown to impede methane production in soil slurries 147 

42, most likely by disturbing close spatial interactions between syntrophic fermenters and 148 

methanogens. By analogy, groundwater flow may also interfere with efficient interspecies electron 149 

transfer in methanogenic plume zones by flushing away hydrogen or acetate and thus interfering 150 

with the energy fluxes needed for methanogenic activity 43,44.  Nevertheless, the true extent of 151 

methanogenic processes in contaminated aquifers requires further elucidation. 152 

3. Bottlenecks of degradation by mass transfer 153 
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 154 

Fig. 3.  Plug reactor or piston flow conceptual model of contaminated aquifers where contaminant 155 

removal (time constant of reaction, reaction) is inversely proportional to the average residence time 156 

transport (A). However, the distribution of flow paths on the linear pore velocity scale (B), mass 157 

transfer on the pore scale (C), mass transfer through cell membranes on the organism scale, and 158 

(bio)chemical enzymatic transformation on the molecular scale (D) can be important bottlenecks of 159 

biodegradation not taken into account by the simplified model. 160 

3.1. Average residence times ignore heterogeneous flow paths and flow velocities 161 

Current conceptual models frequently treat natural sediments and aquifers like either completely 162 

mixed or plug flow reactors (Fig. 3A) 45,46. In these models adopted from chemical engineering, a 163 

decrease in substrate concentration ( conc.) is proportional to the residence time (transport) in the 164 

reactive compartment (Fig. 3A). The relation of transport and degradation is frequently estimated 165 

from the dimensionless Damköhler number Da  166 

ratetransport 

ratereaction 


reaction

transport
Da




    (4)  167 

where transport is the mean residence time (“how long does it take for a compound to pass the 168 

compartment?”) and reaction the time constant of the reaction (“how long does it take for the 169 

compound to react?”). Note that the time constants are inversely correlated to the respective rates 170 

(Fig. 3A and Equation 4). The larger Da, the more biodegradation can potentially take place. This 171 

well-established concept might be a good proxy for identifying mass transfer as limiting factor in 172 

steady state systems dominated by advection. However, it is challenged by the fact that transport and 173 
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reaction are not well defined in natural systems because they depend on multiple parameters on 174 

different scales (Fig. 3). Black box approaches not considering multiple limitations will miss the 175 

opportunity for profound understanding of the steering parameters of such systems. 176 

If transport is limiting on the pore velocity scale, increased flow velocities (decreasing residence 177 

times) may affect reaction and increase biodegradation. This counterintuitive observation can be 178 

explained when considering that increased flow velocities induce more heterogeneous flow due to a 179 

wider distribution of flow paths length. This results in higher transversal and longitudinal dispersion 180 

47,48 and thus increases the apparent reaction rate by bringing reactants together. However, also the 181 

opposite can occur and contaminants may bypass reactive zones due to increased preferential flow. 182 

Furthermore, changes in flow velocities can create unfavorable growth conditions 48 due to shifts in 183 

nutrient fluxes and redox conditions (see section 4) adversely affecting degradation (longer reaction). 184 

Concluding, the average residence time alone will not provide information on such ecological 185 

consequences. Rather, the distribution of residence times and the biogeochemical history along 186 

individual flow paths are governing mass transfer limitations in aquifers. This can be analyzed by 187 

high resolution monitoring which also allows for identifying dynamic flow fields and true solute 188 

fluxes 49.  However, there is a need to systematically investigate the influence of flow velocities and 189 

dynamic conditions on microbial degradation.    190 

3.2. Does diffusion limit bioavailability on the pore scale? 191 

In groundwater, most microorganisms are attached to sediments 50 where diffusion may become the 192 

dominant mode of substrate transport to cells at the pore scale 51,52 (Fig. 3C). If supply by diffusion is 193 

slow, biodegradation is availability-limited because microorganisms consume the substrate faster 194 

than it can be delivered 53. The apparent reaction in a given environmental compartment is then 195 

determined by diffusion (Fig. 3C). Because diffusion to the cells takes place on the micrometer scale, 196 

steep diffusive gradients can create a situation in which much larger concentrations are observed in 197 

the surrounding water. Such limitations tend to be overlooked in conventional sampling. Whether or 198 

not such diffusion limitation is important, depends also on flow velocities because diffusion gets 199 

more important if water flow velocities are low 54. This is exemplified in three scenarios regarding 200 

concentrations and the state of the system.  201 

(i) At high concentrations and steady state, diffusive gradients between pore centers and sediment 202 

surfaces only build up if water flow velocities are low and if degradation rates are faster than the 203 

supply of contaminants. (ii) For low concentrations and transient conditions Langner et al. found that 204 

degradation rates of 2,4-dichlorphenoxyacetic acid were higher when water flow was slower, even 205 
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though the flow path was shorter 55. This indicates that molecules needed sufficient time to diffuse 206 

into micropores and transport has to be sufficiently long compared to diffusion, since otherwise 207 

molecules were flushed through the pores without degradation. (iii) For low to medium 208 

concentrations and at steady state, one can expect that diffusive gradients become shallow if transport 209 

is long and concentrations are low. Consequently, also the substrate supply by diffusive fluxes 210 

becomes slower according to Fick’s law. Then, higher flow velocities would actually be advantageous 211 

because they replenish the substrate creating steeper gradients and increasing diffusive substrate 212 

supply to the organisms.  213 

Thus, the pore water velocity is an important parameter contributing to diffusion limitations on the 214 

pore scale. However, both, too high and too small pore water velocities can induce limitations in 215 

bioavailability 51 which implies a need for a systematic elucidation of this topic. 216 

3.3. Thermodynamics, mass transfer, or enzyme kinetics: what is limiting on the organism scale? 217 

It is often observed that micropollutants are only incompletely degraded even when competent 218 

bacterial degraders are present56. This unsolved paradox of threshold concentrations might be due to 219 

different reasons. (i) Thermodynamic limitation for biodegradation is an often considered explanation, 220 

but can typically be excluded. For example at nM toluene concentrations, the Gibbs enthalpy of 221 

reaction G for aerobic degradation (-3890 kJ/mol) would be large enough to consume even the last 222 

toluene molecule. At high dilution, biodegradation is rather kinetically limited by mass transfer to the 223 

cell as explained above. (ii) An alternative explanation for incomplete degradation is a kinetic 224 

limitation by insufficient substrate uptake into the cell57. (iii) Furthermore, slow biochemical 225 

transformation rates (enzyme kinetics) might be due to the intrinsically difficult-to-degrade molecular 226 

structures of xenobiotics58. This is supported by comparably slow degradation rates of persistent 227 

compounds at higher but non-toxic concentrations in batch cultures59.  228 

In natural systems, it was so far not possible to distinguish the different kinds of limitation of 229 

biodegradation on the organism scale, which opens future research fields.  230 

4. Microbial controls of biodegradation  231 

Absence of specific degrader populations is often assumed when insufficient biodegradation is 232 

observed at a given site. At organohalide-contaminated sites, bioaugmentation (amending 233 

respective degraders) of microbial consortia containing e.g. Dehalococcoides (Dhc) strains capable of 234 

reductive dechlorination of trichloroethylene (TCE ) to ethene has been successful 60-62. Similarly, the 235 

effectiveness of bioaugmentation in atrazine- and MTBE-contaminated (methyl-tert-butylether) 236 

aquifers has been demonstrated 63-65. However, even highly specialized organohalide-respiring 237 
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bacteria are generally widespread in aquifers66-68. Thus for certain settings, it remains questionable 238 

whether respective degrader organisms were truly absent before bioaugmentation or only present 239 

at very low abundance.  240 

4.1. Limitation of biodegradation by microbial growth.  241 

In aquifers, a substantial fraction of the microbes is suggested to be in a status of low 242 

activity,inactive, or even dormant 69. Moreover, microbial communities in aquatic systems exhibit 243 

growth efficiencies (yields) much lower than known from batch cultures and chemostats, with 244 

median values below 0.3 (g biomass / g substrate) for rivers, lakes, and oceans70,71. In situ growth 245 

rates are also low (equation 3) for aquifer systems, and doubling times can be in the range of 246 

months to years 72. Under optimum conditions in the laboratory, the presence of one degrader cell 247 

at the moment of a hydrocarbon spill would allow aerobes to form notable biomass (e.g. 105 to 106 248 

cells per liter groundwater) within a day, while e.g. sulfate reducers or organohalide reducers 249 

(doubling time: ~10 d) may require >100 d to establish a critical population size. Indeed, a fast 250 

response has been observed for an oxic aquifer system receiving a short contaminant pulse73, while 251 

anaerobic degradation coupled to denitrification established only over several weeks. For more 252 

recalcitrant compounds and pollutants, requiring anoxic conditions for degradation (such as 253 

halogenated solvents), it might take years before reasonable numbers of degraders have developed. 254 

Thus in aquifers, a slow community response might be misinterpreted as absence of degrader 255 

populations which needs to be verified in the future.   256 

4.2. Limitations of biodegradation by microbial physiology 257 

Total concentrations of dissolved organic carbon (DOC) in pristine groundwater are usually in the 258 

low mg L-1 range (0.5-2 mg L-1), of which only 0.5 to 5% are readily assimilable organic carbon 259 

(AOC)74-76. This AOC consists of a plethora of individual compounds at extremely low individual 260 

concentrations, including organic micropollutants such as pesticides, pharmaceuticals, and many 261 

other low-level contaminants77. The latter are often present below the threshold concentrations of 262 

initial induction of catabolic genes and degradation pathways75. At very low concentrations in the 263 

environment, it is likely that microorganisms do not feed on only one substrate at a time. Mixed 264 

substrate utilization – where microbes can utilize a wide range of offered substrates simultaneously - 265 

has been observed in carbon-limited chemostats78. This leads to much lower threshold 266 

concentrations for individual compounds implying that the degradation of one compound “helps” to 267 

degrade another compound in energetic co-metabolism. However, at excess of substrate in 268 

hydrocarbon plumes, catabolite repression, competitive inhibition, or metabolic flux dilution might 269 

take place 79,80. 270 
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Today, it is totally unclear how microbial metabolism is regulated in the environment. Such 271 

knowledge will be useful for designing strategies for removing micropollutants from drinking water 272 

in engineered systems or improving the licensing practice of pesticides77.  273 

4.3. Limitations of ecosystem response  274 

Low microbial growth rates imply that even under steady state conditions where organisms can 275 

develop without disturbance, long time spans are required to establish significant degrader biomass 276 

and thus biodegradation capacities. However in contaminated groundwater, conditions are not 277 

necessarily in steady state 81-83. In fact, temporal hydraulic fluctuations may represent a major 278 

control of biodegradation in groundwater by repeatedly changing the environmental conditions 279 

encountered by degraders (e.g. sudden exposure of anaerobes to oxygen). This can be exemplified 280 

by plume fringes which are characterized not only as hot spots of biodegradation activity, but also by 281 

an apparently ‘specialized’ degrader microbiota 25,9 over only a few dm. If the prevailing geochemical 282 

conditions for microorganisms shift, degraders must continuously follow or re-establish in other 283 

strata. Geochemical shifts of the plume could thus represent a further, as-yet unrecognized kinetic 284 

limitation of biodegradation.  285 

Moreover, transient supply of substrates by such fluctuations may not be sufficient to support 286 

growth of degrader populations. It can be speculated that under spatially and temporarily dynamic 287 

hydraulic conditions, degrader populations may never reach the biomass levels required to 288 

efficiently degrade substrate pulses. Once formed, however, degrader biomass may persist for 289 

months and perhaps even years after the source of contamination has disappeared 73,84. Biomass 290 

established upon previous locations of the plume could sustain biodegradation capacities for future 291 

contaminations. Thus, aquifers could become preconditioned to efficiently degrade pollutants. 292 

4.4. Further research needs.  293 

The role of grazers (protozoa) and viruses (phages) in shaping prokaryotic degrader communities and 294 

influencing in situ degradation rates is totally overlooked to date 85. While the influence of protozoa 295 

on bacterial community composition and vice versa has been shown also for contaminated 296 

groundwater habitats 86,87, there is contradicting evidence on either the stimulation 88,89 or inhibition 297 

90,91 of biodegradation by protozoan grazing. Only a few studies are available on bacteriophages in 298 

groundwater 92-94 but their influence on degrader communities and activities have not been 299 

addressed, so far. Extrapolating recent advances from surface aquatic environments and marine 300 

systems, bacteriophages can be expected to play a significant role in controlling prokaryotic 301 
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production and diversity. With reference to the highly specialized degrader populations found in 302 

biodegradation hot spots, ecological concepts such as the ‘killing the winner’ hypothesis await to be 303 

tested. It predicts that when a given population grows beyond a critical density, grazers and viruses 304 

will decimate the population 95 affecting biodegradation.  305 

5. Conclusion and outlook 306 

Here we discuss several controls for biodegradation in contaminated aquifers that have been 307 

recognized in recent years, and call for an update of classical black box approaches in site 308 

assessment and restoration. New perspectives in groundwater research should include the plume 309 

fringe concept and mass transfer limitations as steering factors for biodegradation. On the organism 310 

scale, physiological properties of degraders and ecological drivers of degrader community structure 311 

have been identified to affect biodegradation. We propose that biodegradation in contaminated 312 

aquifers is largely controlled by kinetics. Different kinetic controls are interacting in complex ways 313 

and cannot be described by flow- or residence-time-dependent degradation rates alone. An 314 

important caveat is that many of these mechanisms act at the µm-to-cm scale, while sampling is still 315 

mostly conducted at the meter scale. To fully understand process limitations, samples have to be 316 

taken at adequate resolution, often including intact sediment cores or highly-resolved water 317 

sampling. Furthermore, temporal dynamics of processes demand for extended monitoring with 318 

more frequent sampling intervals in time and space.  319 

 320 
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