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Abstract

Mitochondrial dysfunction has been observed in skeletal muscle of people with diabetes and insulin-resistant individuals.
Furthermore, inherited mutations in mitochondrial DNA can cause a rare form of diabetes. However, it is unclear whether
mitochondrial dysfunction is a primary cause of the common form of diabetes. To date, common genetic variants robustly
associated with type 2 diabetes (T2D) are not known to affect mitochondrial function. One possibility is that multiple
mitochondrial genes contain modest genetic effects that collectively influence T2D risk. To test this hypothesis we
developed a method named Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://www.
broadinstitute.org/mpg/magenta). MAGENTA, in analogy to Gene Set Enrichment Analysis, tests whether sets of functionally
related genes are enriched for associations with a polygenic disease or trait. MAGENTA was specifically designed to exploit
the statistical power of large genome-wide association (GWA) study meta-analyses whose individual genotypes are not
available. This is achieved by combining variant association p-values into gene scores and then correcting for confounders,
such as gene size, variant number, and linkage disequilibrium properties. Using simulations, we determined the range of
parameters for which MAGENTA can detect associations likely missed by single-marker analysis. We verified MAGENTA’s
performance on empirical data by identifying known relevant pathways in lipid and lipoprotein GWA meta-analyses. We
then tested our mitochondrial hypothesis by applying MAGENTA to three gene sets: nuclear regulators of mitochondrial
genes, oxidative phosphorylation genes, and ,1,000 nuclear-encoded mitochondrial genes. The analysis was performed
using the most recent T2D GWA meta-analysis of 47,117 people and meta-analyses of seven diabetes-related glycemic traits
(up to 46,186 non-diabetic individuals). This well-powered analysis found no significant enrichment of associations to T2D or
any of the glycemic traits in any of the gene sets tested. These results suggest that common variants affecting nuclear-
encoded mitochondrial genes have at most a small genetic contribution to T2D susceptibility.
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Introduction

Mitochondrial dysfunction has been implicated in both rare and

common forms of type 2 diabetes (T2D) [1–4]. Individuals with

T2D contain less mitochondria in their skeletal muscle [5,6], and

impaired mitochondrial function has been associated with T2D

and insulin resistance, an intermediate phenotype and risk factor

of diabetes [7]. In particular, oxidative phosphorylation (OX-

PHOS) activity in mitochondria, central for energy production in

the cell, is reduced in certain populations of diabetic and insulin-

resistant individuals [5,8]. Furthermore, we found that the

expression of OXPHOS genes is coordinately downregulated in

diabetic versus healthy muscle [9,10]. It has been proposed that

decreased OXPHOS activity may contribute to T2D development

by causing fatty acid accumulation in muscle cells, which in turn

may inhibit insulin-stimulated glucose uptake [1,2,7,8,11], or by

indirectly reducing glucose-stimulated insulin secretion from

pancreatic ß-cells due to a decrease in ATP production [1].

However, it is still not clear whether the molecular and physiologic

associations of mitochondria with diabetes are a cause or effect of

the common form of T2D [1,2,12].

One way to test whether mitochondrial genes play a causal role

in the pathogenesis of T2D is to search for inherited DNA variants

in mitochondrial genes that influence T2D risk. Proof of concept
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comes from rare mutations in mitochondrial DNA (mtDNA) that

cause Maternally Inherited Diabetes with Deafness (OMIM

#520000). This raises the question of whether inherited variants

affecting mitochondrial biology play a more general causal role in

the common form of T2D. Candidate gene studies of mitochon-

dria-related genes have yet to conclusively demonstrate (at

genome-wide significance) that common variants in nuclear-

encoded mitochondrial genes or transcriptional regulators of

mitochondrial genes associate with T2D risk [13–15]. Also, we

published a systematic scan for associations of common single-

nucleotide polymorphisms (SNPs) in mtDNA (that encodes 13

genes) that failed to identify significant associations with T2D [16].

Recently, several genome-wide association (GWA) studies of

,2,000 to 5,000 individuals [17–19], and a meta-analysis of

10,128 individuals [20], all of European descent, have identified

,18 common nuclear DNA variants robustly associated with T2D

that collectively explain ,6% of the genetic contribution to T2D

risk. While these associations suggest genes involved in various

biological processes, such as WNT signaling, NOTCH signaling

and the cell cycle, none have implicated mitochondrial processes.

The only gene with a mitochondrial isoform near a validated T2D

SNP is the insulin-degrading enzyme, IDE (Entrez ID 3416), but it

exerts its insulin degrading activity primarily in the cytoplasm [21].

Given the large number of nuclear-encoded mitochondrial

genes (,1,000 known based on the mitochondrial protein

compendium MitoCarta [22]) and the largely unexplained genetic

basis of T2D, it is possible that many (tens or hundreds of)

common variants in or near mitochondrial genes are associated

with T2D. While each gene might have a modest effect too small

to be detected on its own, together they could have a more

substantial collective impact. It is also possible that several nuclear

regulators of mitochondrial genes could harbor common variants

of modest effects on T2D risk.

These hypotheses could be tested using a Gene Set Enrichment

Analysis (GSEA) approach applied to genetic variant association

data [23]. We originally described GSEA to test whether

predefined biological processes or gene sets are enriched for genes

with coordinate modest expression differences between two

samples, differences that are hard to detect when inspecting each

gene separately [9,24]. In fact, GSEA was first used to show that

OXPHOS genes are collectively downregulated in human muscle

in diabetic compared to non-diabetic individuals [9].

In the context of genetic association data, GSEA has been

suggested to be a promising approach to identify sets of

functionally related genes, such as biological pathways, enriched

for associations of modest effects (hard to detect with single-marker

analysis) on a polygenic disease or trait [23]. Several groups have

begun to apply different variations of GSEA to GWA studies to

study disorders such as Parkinson’s disease [23], dyslipidemia [25],

T2D [26–28], Crohn’s disease [25,29,30], and multiple sclerosis

[31]. While the principal concept is similar in these studies,

alternative implementations differ substantially, for example in

how genes are scored or enrichment is evaluated. In addition,

researchers have only begun to evaluate the ranges of parameters

(e.g. effect size or fraction of causal genes) under which gene-set

approaches have power to identify associations not found by

single-variant analysis [32,33].

To maximize power, it is critical to make use of meta-analyses of

multiple independent GWA studies whose increasing sample size

(from thousands of people in single studies to tens of thousands in

meta-analyses) boosts the statistical power for detecting clustering

of modest associations. Yet, as opposed to traditional GWA

studies, information about individual genotypes is not available for

most meta-analyses, making it impossible to evaluate statistical

significance through standard phenotype permutation analysis.

While several GSEA variations have been recently applied to

meta-analyses, the extent to which they account for confounding

effects on gene association scores has not been tested.

Here we introduce a GSEA approach applied to genome-wide

variant association data, which we named ‘‘Meta-Analysis Gene-

set Enrichment of variaNT Associations’’ (MAGENTA). MA-

GENTA does not require genotype data, making it especially

relevant to GWA study meta-analyses. We tested and validated

MAGENTA using the Diabetes Genetics Initiative (DGI) GWA

study [17], and three GWA meta-analyses of cholesterol and lipid

blood levels [34]. Using simulations, we identified the conditions

under which our method has increased power to detect

associations for which there is low detection power with single

SNP analysis. Finally, to test whether mitochondrial dysfunction

may be causal to T2D, we applied MAGENTA to a set of known

nuclear regulators of mitochondrial genes [35], the OXPHOS

genes [9], and all known (,1,000) autosomal human mitochon-

drial genes [22], using the latest T2D meta-analysis of a total of

47,117 individuals (DIAGRAM+) [36], as well as meta-analyses

(up to 46,186 individuals) of seven glucose and insulin-related traits

relevant to T2D pathogenesis (MAGIC; [37,38], Soranzo N. et al.,

unpublished data).

Results

Meta-Analysis Gene-set Enrichment of variaNT Associations

(MAGENTA) evaluates pre-specified gene sets for enrichment of

modest associations with a complex disease or trait. MAGENTA

consists of four main steps: First, DNA variants, e.g. single-nucleotide

polymorphisms (SNPs), are mapped onto genes (Figure 1A). Second,

each gene is assigned a gene association score that is a function of its

regional SNP association p-values (Figure 1B). Third, confounding

effects on gene association scores are identified and corrected for,

without requiring genotype data (enabling use of meta-analyses or

other types of GWA studies where only variant association statistics

are available) (Figure 1C). Fourth, a Gene Set Enrichment Analysis

Author Summary

Mitochondria play a crucial role in metabolic homeostasis,
and alteration of mitochondrial function is a hallmark of
diabetes. While mitochondrial activity is reduced in people
with diabetes, it is unclear whether mitochondrial dys-
function is a cause or effect of type 2 diabetes. Genome-
wide association studies for type 2 diabetes have
explained <10% of the heritability of the disease, but
none of the loci are known to affect mitochondrial activity.
It is possible though that a mitochondrial contribution is
hidden in the remaining 90%. Hence, we tested the
hypothesis that multiple mitochondria-related genes
encoded in the nucleus, each having a weak effect (hard
to detect individually), can collectively influence type 2
diabetes. To address this, we developed a computational
method (MAGENTA) that allowed us to adequately analyze
large collective datasets of human genetic variation
obtained from collaborative studies of type 2 diabetes
and related glycemic traits. Despite the increased sensitiv-
ity of MAGENTA compared to single-DNA variant analysis,
we found no support for a causal relationship between
mitochondrial dysfunction and type 2 diabetes. These
results may help steer future efforts in understanding the
pathogenesis of the disease. MAGENTA is broadly appli-
cable to testing associations between other biological
pathways and common diseases or traits.

Mitochondrial Gene Set Analysis of Type 2 Diabetes
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(GSEA)-like statistical test is applied to predefined biologically

relevant gene sets to determine whether any of the gene sets are

enriched for highly ranked gene association scores compared to

randomly sampled gene sets of identical size from the genome

(Figure 1D). These four steps are described below, and further

detailed in the Materials and Methods section.

From SNPs to genes: scoring genes based on SNP
association scores

To analyze genetic association data at the level of genes and

gene sets, we first needed to compute a gene score based on local

SNPs. We assigned to each gene g in the genome a set of SNPs that

lie within 110 kilobase (kb) upstream and 40 kb downstream of the

gene’s most extreme transcript boundaries, in attempt to capture

signals from potential causal variants affecting regulatory elements,

in addition to coding sequence (Figure 1A; see Materials and

Methods for boundary choice). Each gene g is then assigned a

score PBestSNP
g , defined in this instantiation as the most significant

p-value among the association p-values PSNP
i of all individual SNPs

i within the extended gene boundaries (Figure 1B). We used the

best SNP rather than an average value, as we expect only one or a

few associated variants per gene.

When PBestSNP
g was calculated for all 966 nuclear-encoded

mitochondrial genes using the T2D DIAGRAM+ GWA meta-

analysis, we found that their scores were on average less significant

than random (Figure S1). Observing that the mitochondrial genes

are smaller on average than all other genes in the genome (Table

S1), we next examined the effect of confounders on the most

Figure 1. Description of Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) method. (A) Step 1: Map genetic
variants and their association scores onto genes. MAGENTA uses as input the association z-scores or p-values of DNA sequence variants across the
entire genome. In this work, we used association p-values of single-nucleotide polymorphisms, SNPs (circles) from a genome-wide association study
or meta-analysis, denoted as PSNP

i for SNP i. Gene boundaries (vertical dashed lines) are defined here as predetermined physical distances added
upstream and downstream to the most extreme transcript start and end sites of the gene (red arrow), respectively. Linkage-based distances can also
be used. Each gene is assigned a set of SNPs that fall in its gene region boundaries. Two genes are shown for simplicity. (B) Step 2: Score genes based
on their local SNP PSNP

i . Here the most significant PSNP
i of all SNPs i that lie within the extended gene boundaries is assigned to each gene g in the

genome (PBestSNP
g ). (C) Step 3: Correct for confounding effects on the gene score, PBestSNP

g in the absence of genotype data. In this study we used
step-wise multivariate linear regression analysis to regress out of PBestSNP

g the confounding effects of several physical and genetic properties of genes
(listed in Table 1); PGene0

g refers to the corrected gene p-value for gene g. In cases where two genes are assigned the same best SNP p-value, PGene0

g

tends to be more significant for small genes than for large genes. (D) Step 4: Calculate a gene set enrichment p-value for each biological pathway or
gene set of interest. We used a non-parametric statistical test to test whether PGene0

g for all genes in gene set gs are enriched for highly ranked gene
scores more than would be expected by chance, compared to randomly sampled gene sets of identical size from the genome. PGSEA

gs refers to the
nominal gene set enrichment p-value for gene set gs.
doi:10.1371/journal.pgen.1001058.g001

Mitochondrial Gene Set Analysis of Type 2 Diabetes
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significant SNP p-value per gene, PBestSNP
g . Towards this goal, we

generated 1,000 null distributions of gene scores, through

phenotype permutations of the Diabetes Genetics Initiative

(DGI) GWA study, for which we have access to genotype data

(see Materials and Methods). In these randomized data sets no

genome-wide significant associations are expected. We observed

significant correlations of the scores for each gene across

permutations (mean Pearson’s correlation coefficient across all

genes for pairs of permutations: r = 0.36). This suggested that

inherent properties of genes (not specific to the phenotype studied)

confound gene scores.

When we explicitly tested the potential confounding role of gene

size, previously suggested [23,25], we observed that large genes

tended to receive more significant scores than small genes in the

randomized data set (Figure S2).

Correcting for confounding effects on gene association
scores in the absence of genotype data

When genotype data are available, such as in individual GWA

studies, confounding effects on PBestSNP
g , e.g. gene size, can be

corrected for using phenotype permutation analysis that does not

require a priori knowledge of the confounders (described in

Materials and Methods). However, to exploit the power of large

GWA study meta-analyses, where permutation analysis cannot be

performed due to unavailability of genotype data, we needed an

alternative correction method. We chose a linear regression-based

approach that adjusts for the effects of multiple confounders on the

gene score. This required identifying a substantial amount of the

confounding effects on PBestSNP
g .

To find confounders on PBestSNP
g we systematically tested for

correlations between the unadjusted gene score, PBestSNP
g calculated

from permuted DGI GWA study (see Materials and Methods) and six

potential gene score confounders (listed in Table 1; correlations

reported for z-scores). We examined both physical properties of

genes - physical gene size and number of SNPs per kilobase for each

gene, and genetic properties that consider the dependency between

subsets of SNPs due to genetic linkage between proximal markers.

The genetic properties tested included estimated number of

independent SNPs per gene (SNPs in linkage equilibrium), number

of recombination hotspots spanning each gene, genetic distance of the

gene, and linkage disequilibrium (LD) unit distance per gene,

normalized to the size of the gene and its extended boundaries (see

Materials and Methods). We found significant correlations for all six

properties tested (average values across 1,000 permuted data sets:

0.17,r,0.38; p,2e-70) (Table 1), suggesting that all variables may

have a confounding effect on PBestSNP
g . A similar trend was observed

using PBestSNP
g from the actual DGI GWA study (Table 1, column 2;

0.14,r,0.39, p,1e-74), and the T2D GWA meta-analysis, used

below to test the mitochondria-diabetes hypothesis (Table S2).

Having identified six potential gene score confounders, we used

step-wise multivariate linear regression to remove these confound-

ing effects from PBestSNP
g , to generate a corrected gene score,

PGene0

g (see Materials and Methods and Figure 1C). In this analysis

the confounders are removed sequentially, accounting for the

correlations between the various gene properties. Aside from the

genetic distance, all five remaining properties listed in Table 1

were significant under the step-wise linear regression model

(p,0.05) applied to PBestSNP
g in either about half or all of the 1,000

permuted DGI data sets (Table S3). As a result the first five

properties listed in Table 1 were used for subsequent analyses (see

Table S4 for model coefficients and p-values for the DGI study and

the DIAGRAM+ T2D meta-analysis).

The effectiveness of this approach was confirmed by comparing

the DGI gene scores corrected with step-wise regression analysis to

the corresponding gene scores corrected with traditional permu-

tation analysis, as the latter corrects for all confounding effects

(Figure 2; see Materials and Methods). The high correlation

between the regression-corrected gene scores, PGene0
g and the

permutation-corrected gene scores, PGene
g for all genes (Pearson’s

correlation coefficients, r = 0.95; p,1e-30, Figure 2B) compared to

before correction (r = 0.69, Figure 2A) indicates that only a small

fraction of the confounding effects on PBestSNP
g is not explained by

Table 1. Correlation between type 2 diabetes gene association scores and potential gene score confounders.

Mean across 1,000
permuted DGI GWA datasets DGI GWA study

Gene property
Correlation with ZBestSNP

(No correction)
Correlation with ZBestSNP

(No correction)
Correlation with ZGene0

(Regression correction)
Correlation with ZGene

(Permutation correction)

Gene size, kilobase (kb){ 0.26 0.25 20.03 0.01

# SNPs per kb{ 0.38 0.39 20.05 20.02

# independent SNPs per kb{ 0.32 0.31 20.07 20.001

# recombination hotspots
per kb{

0.17 0.14 20.04 0.01

Linkage disequilibrium
units per kb*

0.22 0.19 20.06 0.02

Genetic distance,
centi-Morgan per kb

0.19 0.16 20.05 0.03

Pearson’s correlation coefficients were calculated between ZBestSNP , ZGene0 or ZGene and six different physical and genetic properties of genes. ZBestSNP is a vector of the
unadjusted best SNP per gene z-scores for all genes in the genome, ZGene0 is a vector of corrected gene z-scores using regression analysis for all genes, and ZGene is a
vector of corrected gene z-scores using phenotype permutation analysis for all genes. This was computed for 1,000 phenotype permutation data sets of the Diabetes
Genetics Initiative (DGI) GWA study and the actual DGI GWA study. Aside for gene size, all gene properties were converted to per kilobase (kb) units for each gene by
dividing by gene region size using the extended physical boundaries. All correlations between ZBestSNP and the six variables were statistically significant (mean p,2e-70
across 1,000 DGI permutations and p,1e-74 for the actual DGI study). Similar correlations were obtained for the five latter variables in Table 1 before normalizing to
gene region size (data not shown).
{These gene properties were significant in almost all 1,000 DGI GWA permutations tested under a step-wise multivariate linear regression model of ZBestSNP regressed
against the six gene properties (see Table S3).

*The linkage disequilibrium units per kb variable was significant under the regression model for about half of the permutations tested (Table S3).
doi:10.1371/journal.pgen.1001058.t001
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our regression method. Similar results were obtained when gene

score ranks were compared (r = 0.95 versus r = 0.82; p,1e-30). A

comparison of the distributions of PGene0

g for different sized genes

using the permuted DGI data sets, demonstrates that the

regression-based correction has indeed removed the confounding

effect of gene size on PBestSNP
g (Figure S2).

We next compared the performance of the regression-based

correction to an analytical method previously proposed to correct for

the difference in number of (genotyped or imputed) SNPs per gene

(Sidak’s correction, [26,39]). The Sidak correction did not perform as

well as the regression-based correction (correlation with permutation-

corrected gene p-values: r = 0.94, p,1e-30, but most gene p-values lie

below diagonal; see Figure S3 for details). This is probably due to the

method’s assumption of independence between all SNPs in a gene

region (eq. 4 in Materials and Methods). We then tested a

modification of Sidak’s correction proposed by Saccone et al. [40],

which assumes that about 50% of all SNPs in a given chromosomal

region are in high linkage disequilibrium (eq. 5 in Materials and

Methods). This correction was comparable to, or slightly better than

the regression method in the DGI test case (correlation with

permutation-corrected gene p-values: r = 0.97, p,1e-30; Figure S3).

These results are in concordance with our findings that number or

density of SNPs is a dominant confounder on the best SNP per gene

score, PBestSNP
g (Table 1), and that correcting for linkage disequilib-

rium between SNPs is necessary.

For the current study we used the regression-based correction,

as it seems to behave equally well for different GWA studies (e.g.

DGI study and DIAGRAM+ meta-analysis; see Figure S4A, S4B),

while the modified Sidak’s correction (in particular its correction

for dependency between SNPs) may need to be adjusted for

specific studies, e.g. due to different SNP densities (see Figure S4C,

S4D). In any case, we later show that all GSEA results presented in

this work are robust relative to the correction method used.

From genes to gene sets: estimating power of MAGENTA
using simulations

After correcting for the majority of confounding effects on gene

association scores, we next combined gene scores at the level of gene

sets. We developed an approach similar to GSEA that tests whether

predefined sets of functionally related genes are enriched for genes

associated with a given complex disease or phenotype, more than

would be expected by chance (Figure 1D). Specifically, the GSEA

algorithm in MAGENTA tests for over-representation of genes in a

given gene set above a predetermined gene score rank cutoff. The

enrichment is evaluated against a null distribution of gene sets of

identical set size that are randomly sampled from the genome

multiple times (see Materials and Methods for details). The 95th

percentile of all gene scores for a given GWA study or meta-analysis

was used here as the enrichment cutoff (see Figure S5 for cutoff

choice). Since subsets of genes in biological pathways are often

physically proximal in the genome [25], for each gene set, we

removed all but one gene from each subset of genes assigned the same

best SNP, to prevent inflation of an enrichment signal due to

positional clustering of genes (assuming one gene per associated

variant).

We first evaluated the power (sensitivity) of the method to

identify enrichment of modest associations. We considered models

in which there is low detection power with single SNP analysis. We

Figure 2. Regression analysis corrects for majority of confounding effects on gene association scores in a genotype-independent
manner. The performance of a step-wise regression analysis approach in correcting for confounders on PBestSNP

g was evaluated against permutation
analysis correction, since the latter corrects for all confounders without requiring a priori knowledge of them. T2D gene association p-values were
plotted for all genes g in the genome (A) before gene score adjustment (PBestSNP

g ) and (B) after correction for confounders using regression analysis
(PGene0

g ), as a function of corrected gene p-values using phenotype permutation analysis (PGene
g ). The Diabetes Genetics Initiative (DGI) GWA study was

used for the analysis, since we had access to all individuals’ genotypes. PBestSNP
g is the association p-value of the best regional SNP for gene g before

correction (y-axis in A). To compute PGene0

g (y-axis in B), step-wise multivariate linear regression analysis was applied to PBestSNP
g against the first four

confounders listed in Table 1 (this approach does not require genotype data). The Pearson’s correlation coefficient (calculated between p-value
vectors before log transformation) increased significantly following the regression-based correction (from r = 0.69 to r = 0.95). The spread around the
diagonal (red line) also decreased following the regression correction (from a coefficient of variation (mean/std) of 1.13 to 0.56). The minimum PGene

g is
1024 as the p-values were calculated based on 1,000 permutations for genes with PGene

g w0:01, and 10,000 permutations for genes with PGene
g ƒ0:01.

Some of the variation in the low p-value tail is due to having done only 10,000 permutations (PGene
g §0:0001), and some to limitations of the linear

regression method. Note that the four dots in (A) with PGene
g ƒ0:0001 contain ten overlapping dots that refer to four sets of 2–3 genes, each set

assigned the same PBestSNP
g . Gene association p-values are plotted on a 2log10(p-value) scale.

doi:10.1371/journal.pgen.1001058.g002

Mitochondrial Gene Set Analysis of Type 2 Diabetes
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varied as parameters gene set size, fraction of genes in the set

assigned a causal SNP (referred to as causal genes), effect size of

the causal SNPs, and total number of causal genes. We performed

multiple computer simulations where small effect sizes were

randomly assigned to SNPs near different fractions of genes in a

given gene set, against a background of randomized DGI PSNP
i for

all SNPs i. Power was estimated for a given set of parameters as the

fraction of simulation runs in which gene set enrichment was

detected (described in Materials and Methods).

Figure 3 shows how the power of MAGENTA increases

proportionately with the fraction (Figure 3A) or number

(Figure 3B) of causal genes in three different gene set sizes, for a

set of parameters chosen to be consistent with the lower bound

effect size found to date in T2D and glycemic traits studied herein.

For a given number of causal genes, small gene sets are more

powerful; for a given fraction of causal genes, big gene sets have

more power. Furthermore, as may be expected, power increases

with the associated SNP effect size, and decreases with the total

number of causal genes in the genome (Figure S6).

Our simulations identified scenarios under which analysis of

GWA SNP data at the level of gene sets adds power in detecting

associations of small effect (e.g. odds ratio of 1.07 for an allele

frequency of 0.2–0.3 and sample size of 10,000 individuals [41])

compared to single SNP analysis. For example, consider a total of

100 causal genes in the genome each with an effect size, sufficient

to provide 1% power of detecting an association at the individual

SNP level at genome-wide significance. In this setting, MAGEN-

TA has 50% power of detecting enrichment if a given set of 1,000

genes (e.g. nuclear-encoded mitochondrial genes) contains ,3%

or 30 genes with a modest effect, when 100 genes (e.g. OXPHOS

genes) contain ,10% or 10 genes with a modest effect, or when 25

genes (e.g. on the order of the number of nuclear regulators of

mitochondrial genes) contain ,25% or 6 genes with a modest

effect.

Validation of MAGENTA on lipoprotein and lipid GWA
study meta-analyses

We next tested empirically the performance of MAGENTA on

LDL cholesterol, HDL cholesterol and triglyceride blood levels.

The molecular pathways involved in lipid and lipoprotein

metabolism are relatively well known, and many of the genes that

lie near the 30 SNPs so far reported to be associated with one or

more of these traits function in known processes related to lipid or

lipoprotein metabolism [34]. MAGENTA was applied to three

GWA meta-analyses [34], whose sample size (19,840 individuals) is

on the same order of magnitude as that of the largest available

T2D meta-analysis (DIAGRAM+) used below to test for

mitochondria-related associations with T2D. A total of 51

(partially overlapping) gene sets related to lipid, lipoprotein and

fatty acid metabolism were tested (defined by PANTHER [42] and

Gene Ontology [43] databases; see Materials and Methods). Of

these gene sets, we found biological processes related to lipid,

lipoprotein and fatty acid metabolism, binding and transport

activities, and triglyceride metabolism to be significantly enriched

for LDL cholesterol, HDL cholesterol and/or triglyceride

associations after Bonferroni correction (top gene sets are listed

in Table 2; full list in Tables S5, S6, S7). These results are robust

relative to the method used to correct for confounders on gene

association scores (Tables S8, S9, S10). Enrichment of LDL and

HDL associations in the lipid transport process has been

previously reported [25]. While most of the enriched processes

contain at least one gene near a validated lipid SNP, this analysis

also found enrichment in a pathway with unknown associations

(the fatty acid metabolic process). The fact that the enrichment

signals for many of the significant processes were still detectable

after removing the known lipid genes from the GSEA analysis,

suggests that some of the nominally significant associations in these

pathways may represent true associations of more modest effects

yet to be identified.

Figure 3. Estimating power of the GSEA algorithm in MAGENTA using computer simulations. We used simulations to assess the power
(sensitivity) of the gene set enrichment analysis (GSEA) algorithm in MAGENTA to detect enrichment of genes with modest effect sizes that are hard
to detect with single SNP analysis. Power is plotted as a function of fraction (A) or number (B) of causal genes of modest effect in gene sets of 25
(triangles), 100 (squares), or 1,000 (circles) genes. The modest effect size spiked into genes is equivalent to 1% power of detecting an association at
genome-wide significance using single SNP analysis. A total of 100 causal genes in the genome were assumed here. Randomized PSNP

i vectors from
case/control permutations of the DGI study were used as the background association values. Simulations were repeated 1,000 times for each unique
set of parameters. Power was calculated as the fraction of times the simulated gene set received a PGSEA

gs ,0.01. For specificity estimations we used
SNPs with no effect size, sampled from a null distribution that assumes no association. The false positive rate of the method (1-specificity) was
comparable to the p-value cutoff used (0.3–1.7%). Note the x-axis in both panels is on a log10 scale.
doi:10.1371/journal.pgen.1001058.g003
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Table 2. Top GSEA results for lipid-related pathways using LDL cholesterol, HDL cholesterol, and triglyceride GWA meta-analyses.

Database Gene set

# genes
analyzed by
GSEA Nominal PGSEA

gs

Nominal PGSEA
gs without

known lipid genes
Genes near validated
lipid SNPs

Top lipid-related gene sets enriched for LDL cholesterol associations

GO, BP LIPID TRANSPORT 27 0.0001* 0.0352 APOE, LDLR

GO, BP LIPID HOMEOSTASIS 14 0.0005* 0.0204 APOE, PCSK9

GO, BP LIPOPROTEIN METABOLIC PROCESS 31 0.0010* 0.0038 LDLR

GO, BP LIPID METABOLIC PROCESS 291 0.0013* 0.0046 APOC1, APOC2, APOC4, LDLR

GO, BP FATTY ACID METABOLIC PROCESS 58 0.0019* 0.0024 -

GO, BP LIPID CATABOLIC PROCESS 36 0.0079 0.0078 -

GO, MF LIPID TRANSPORTER ACTIVITY 27 0.0090 0.0352 APOC4

GO, MF LIPOPROTEIN BINDING 18 0.0106 0.0466 LDLR

PANTHER FATTY ACID METABOLISM 88 0.0120 0.0112 -

GO, BP REGULATION OF LIPID METABOLIC
PROCESS

11 0.0140 0.0143 -

Top lipid-related gene sets enriched for HDL cholesterol associations

GO, BP TRIACYLGLYCEROL METABOLIC PROCESS 9 1e-6* 8.3e-5* APOC3, CETP, LPL, APOA5

GO, BP LIPID TRANSPORT 27 1e-6* 0.0023 ABCA1, APOA1, APOA4,
APOC3, CETP, LCAT

GO, MF LIPID BINDING 79 1.8e-5* 0.0036* APOA1, APOA4, CETP, APOA5

GO, BP LIPID HOMEOSTASIS 14 1e-5* 0.0012* ABCA1, APOA1, APOA4, CETP,
LCAT

GO, MF PHOSPHOLIPID BINDING 43 2.8e-5* 0.012 APOA1, APOA4, CETP, APOA5

PANTHER LIPID AND FATTY ACID TRANSPORT 99 4e-5* 0.0162 ABCA1, APOA1, APOA4,
APOC3, CETP, PLTP, APOA5

GO, BP LIPID METABOLIC PROCESS 287 6e-5* 0.0179 APOA1, APOA4, APOA5,
APOC3, CETP, HNF4A, LCAT,
FADS1, FADS2, LPL, MVK,
PLTP

GO, BP CELLULAR LIPID METABOLIC PROCESS 229 0.0003* 0.0548 APOA1, APOC3, CETP, LCAT,
FADS1, LPL

GO, MF STEROL BINDING 9 0.0004* 0.0435 APOA1, CETP

GO, BP LIPID CATABOLIC PROCESS 36 0.0006* 0.0068 APOA4, APOA5

GO, BP CELLULAR LIPID CATABOLIC PROCESS 33 0.005 0.0206 APOA5

GO, BP LIPID BIOSYNTHETIC PROCESS 87 0.0110 0.2327 APOA1, LCAT, FADS1, FADS2,
MVK

Top lipid-related gene sets enriched for triglyceride associations

GO, BP LIPID HOMEOSTASIS 14 0.0001* 0.0974 APOA1, APOA4, ANGPTL3

GO, BP TRIACYLGLYCEROL METABOLIC PROCESS 9 0.0008* 0.307 APOC3, LPL, APOA5

GO, MF LIPID TRANSPORTER ACTIVITY 25 0.0012* 0.3238 APOA1, APOA4

GO, BP LIPID TRANSPORT 26 0.0023 0.3154 APOA1, APOC3, ANGPTL3,
APOA4

GO, BP LIPOPROTEIN METABOLIC PROCESS 31 0.0044 0.4123 APOA1, APOA4, ANGPTL3

GO, BP PHOSPHOLIPID METABOLIC PROCESS 69 0.0081 0.0061 APOA1, FADS1, LPL

GO, BP LIPID CATABOLIC PROCESS 36 0.0083 0.0811 APOA4, APOA5, ANGPTL3

GO, BP GLYCEROPHOSPHOLIPID METABOLIC
PROCESS

42 0.0149 0.0036 APOA1

The most significant lipid-related biological gene sets with a gene set enrichment p-value of PGSEA
gs ,0.015 are presented using GWA meta-analyses of LDL cholesterol,

HDL cholesterol and triglyceride blood levels across a total of 19,840 individuals. Complete results for all 51 lipoprotein and lipid related pathways are presented in
Tables S5, S6, S7. GSEA p-values marked with an asterisk are significant under a conservative Bonferroni correction (each database was corrected separately due to
considerable overlap between gene sets across the different databases). The number of genes per gene set analyzed with MAGENTA in column three is after removing
genes without SNPs in their extended gene boundaries and after adjusting for chromosomal proximity between subsets of genes in a gene set (see Materials and
Methods). The fifth column contains GSEA p-values following exclusion of genes near validated SNPs for the relevant lipid trait (19 genes for LDL cholesterol, 20 genes
for HDL cholesterol and 19 genes for triglyceride levels; taken from Table 2 in [34]). The sixth column lists all genes near validated lipid SNPs (as of [34]) that fall in a
given gene set, including the genes removed due to adjustment for physical proximity in the genome. GO stands for Gene Ontology, BP for Biological Process, and MF
for Molecular Function.
doi:10.1371/journal.pgen.1001058.t002
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Gene set enrichment analysis of T2D associations in
mitochondria-related gene sets

Having validated the utility of MAGENTA, we next used the

method to test whether mitochondria-related gene sets are

enriched for multiple genes that lie near common variants with

modest effects on T2D susceptibility. We tested three molecular

hypotheses based on the observations of reduced OXPHOS

activity and expression levels and fewer and smaller mitochondria

in diabetic muscle (described in the Introduction). The three

hypotheses were: DNA variants that alter the function of different

nuclear regulators of the OXPHOS pathway and/or other

mitochondrial processes are associated with T2D, variants that

cause core defects in OXPHOS activity that may result in

compensatory alterations of OXPHOS levels are associated with

T2D, and variants that affect other mitochondrial functions in

addition to the OXPHOS process are associated with T2D. To

test these hypotheses, we tested for enrichment of T2D

associations in the following three gene sets: a set of known

nuclear regulators of mitochondrial genes, the OXPHOS genes,

and all known nuclear-encoded mitochondrial genes. In parallel to

testing the relevance of these three sets to T2D, we explored their

possible associations (in non-diabetic individuals) with seven

specific glycemic traits that are risk factors for T2D (listed below).

We first analyzed a set of 16 nuclear regulators of mitochondrial

genes assembled based on the literature (listed in Table S11)

[35,44–48], using the latest DIAGRAM+ T2D GWA meta-

analysis of 8,130 cases and 38,987 controls from eight GWA

studies [36]. Since no individual mitochondria regulator was found

to date to be significantly associated with T2D at genome-wide

significance, we tested the hypothesis that common variants in

more than one regulator may affect T2D risk (possibly through

OXPHOS downregulation) in the diabetic populations analyzed

here. Upon applying MAGENTA to the set of nuclear regulators

we did not observe significant enrichment of T2D associations

compared to the genomic background of gene scores (Table 3;

PGSEA
gs = 0.19; Quantile-quantile plot of gene p-values in Figure

S7A). The peroxisome proliferator-activated receptor delta,

PPARD (Entrez ID 5467) [44], received the best T2D gene p-

value, although it was not gene-wide significant (PGene0

g = 0.0089).

The gene scores of the 16 known nuclear regulators of

mitochondrial functions are listed in Table S11.

Next, we tested for enrichment of T2D associations in a set of

91 autosomal OXPHOS genes (highlighted in the full list of

mitochondrial gene scores in Table S12). Using MAGENTA, no

significant enrichment of T2D associations was found among the

91 OXPHOS genes analyzed (Table 3; PGSEA
gs = 0.47). A plot of

the OXPHOS T2D gene scores against an expected distribution

of gene scores is shown in Figure S7B.

Finally, we applied MAGENTA to 966 nuclear-encoded human

mitochondrial genes taken from the MitoCarta compendium

(,85% of all mitochondrial genes; see Materials and Methods)

[22]. We did not observe significant enrichment of T2D

associations for the whole set of mitochondrial genes either

(Table 3; nominal PGSEA
gs = 0.91). A more detailed view of the

mitochondrial gene score distribution is shown in Figure S7C (see

Table S12 for a list of all mitochondrial gene association p-values).

While the above findings show no evidence of association

between relevant mitochondrial gene sets and T2D, these genes

could still display causal associations with specific intermediate

phenotypes linked to the disease. Support for this comes from

reported mitochondrial dysfunction in insulin-resistant individuals

[8]. Therefore, we tested the same three gene sets described above

for enrichment of associations with seven different glucose and

insulin-related traits characteristic of T2D, using GWA meta-

analyses of up to 46,186 non-diabetic individuals [37,38] (Soranzo

N. et al., unpublished data). The quantitative traits analyzed

include fasting levels of glucose and insulin, glucose and insulin

levels 2 hours following a 75-gram oral glucose tolerance test,

indices of b-cell function (HOMA-B) and insulin resistance

(HOMA-IR) [49], and glycated hemoglobin levels (HbA1C), which

reflect long-term plasma glucose concentrations (see Materials and

Methods).

No significant enrichment of genes associated with either of the

seven glycemic traits tested was observed for the set of nuclear

regulators of mitochondrial genes, the OXPHOS genes or the full

set of nuclear-encoded mitochondrial genes, after correcting for

multiple hypothesis testing (Table 4). Similar results were obtained

between all three gene sets and T2D or the seven glycemic traits

tested, using an alternative GSEA statistical test based on a rank-

sum test (see Materials and Methods and Table S13) or using an

alternative gene score correction method (modified Sidak’s

correction; Table S14), confirming the robustness of these results.

In summary, our gene set analysis of T2D and glycemic traits

did not provide support for many weak mitochondria-related

associations.

Discussion

We tested the open question of whether mitochondrial

dysfunction is a primary cause of type 2 diabetes (T2D) as

opposed to a secondary cause or an outcome of the disease. Using

a genetic approach, we comprehensively analyzed common

variant associations at the level of genes and gene sets, in search

for multiple modest genetic effects on T2D pathogenesis in a set of

nuclear regulators of mitochondrial activity, the oxidative

phosphorylation (OXPHOS) genes, or the full known set of

Table 3. Mitochondria-related gene sets are not enriched for associations with type 2 diabetes.

Gene set Total # genes
# genes without
SNPs in vicinity

# genes removed due to
physical clustering in
genome*

Effective
# genes{ Nominal PGSEA

gs

Nuclear regulators of mitochondrial genes 16 0 0 16 0.1889

Oxidative phosphorylation genes 91 0 0 91 0.4722

Nuclear-encoded mitochondrial genes 966 11 70 885 0.9125

PGSEA
gs is the nominal gene set enrichment p-value for a given gene set gs, calculated here using the DIAGRAM+ T2D GWA study meta-analysis and an enrichment cutoff

that equals the 95th percentile of all gene p-values, PGene0
g .

{The effective number of genes is the number of genes analyzed after removing genes with no SNPs in their extended gene boundaries, and after correcting for
chromosomal clustering of subsets of genes in a gene set, i.e. removing all but one gene of each subset of genes assigned the same best local SNP p-value (*).

doi:10.1371/journal.pgen.1001058.t003
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,1,000 nuclear-encoded mitochondrial genes (an estimated 85%

of all mitochondrial genes). For this analysis, we developed a

modified GSEA approach applied to genetic association data (p-

values or z-scores), which we named MAGENTA. MAGENTA

was especially designed to exploit the increased power of meta-

analyses of multiple GWA studies. In the process we identified and

adjusted for confounders on gene scores and gene set enrichment

scores in the absence of genotype information. This method was

rigorously tested and evaluated using real and simulated GWA

data, and we demonstrate realistic scenarios in which this

approach could identify significant set-wide association signal that

is likely to be overlooked in individual SNP analysis.

Identifying and correcting for confounders on SNP to
gene association p-values

In testing for possible confounding effects, we observed that the

unadjusted most significant SNP per gene p-value is affected by

several gene properties, most notably physical gene size and

number or density of SNPs per gene, and the genetic properties:

number or density of SNPs across a gene that are in linkage

equilibrium to each other and number or density of recombination

hotspots that span a gene. While gene size and number of SNPs

per gene have been recently reported to be correlated with the

unadjusted best SNP p-value [23,25,33], we have quantitatively

demonstrated the magnitude of these and linkage-based effects

using randomized GWA study data, confirming their potential

confounding effects. We show that large genes tend to receive a

more significant score than small genes by chance (Figure S2).

By using regression analysis to adjust the gene scores for the

confounding effects we identified, we provide a viable approach to

determine gene association p-values in the absence of genotype

data, which should prove useful for mining large GWA study

meta-analyses or other types of GWA studies where only variant

association statistics are available. Using the Diabetes Genetics

Initiative (DGI) study, we showed that our correction accounts for

most of the confounding effects on the most significant SNP score

and yields gene scores that are much more accurate than those

obtained without correction [31]. Notably, this regression

approach and the DGI permutation system can be used to

identify and adjust for confounders on other types of SNP to gene

scores (e.g. considering best SNP per LD block [25,33] or the set–

based test in PLINK http://pngu.mgh.harvard.edu/,purcell/

plink/anal.shtml#set). While in the current work we focus largely

on developing a gene set approach following gene score correction,

we envisage that the corrected gene p-values might be valuable in

future gene-centric studies, allowing one to properly weigh specific

genes (e.g. small genes) that may otherwise be missed.

Power of MAGENTA evaluated using simulated and true
association data

Using computer simulations, we show that MAGENTA has

considerable power (i.e. sensitivity) in detecting multiple modest

effects relative to traditional single SNP analysis for a range of

parameters. For example, for a gene set size of 100 genes, our

method has 50% power of detecting enrichment when ,10 genes

have weak effects (that are equivalent to 1% detection power at

single SNP level) versus 10% power of detecting only one of the 10

genes in single SNP analysis. By applying MAGENTA to GWA

scan meta-analyses for LDL cholesterol, HDL cholesterol and

triglyceride levels, we confirmed the method’s ability to pick out

relevant biological processes. We note that the nominal MAGEN-

TA p-values for these positive controls were not exceedingly low

(on the order of 1022 to 1026), emphasizing the limited power of

the gene set approach. Our simulations allowed us to provide

quantitative estimates of these limitations, and indications of

possible limiting factors. For example, we found that power levels

increase considerably with gene set size, fraction of causal genes in

a gene set, and effect size of associated SNPs, and decrease with

total number of causal genes in the genome. Similar trends, as a

function of effect size and fraction of causal SNPs, have been

shown with other types of GSEA methods that test for enrichment

in SNP sets across pathways [32,33].

No evidence for a causal role of mitochondrial
dysfunction in T2D

Despite a large sample size, comprehensive gene lists, and a

calibrated statistical method, we did not find evidence that

common variants in proximity to ,1,000 known nuclear-encoded

mitochondrial genes contribute to T2D susceptibility. Similarly,

we found no indication of significant associations between variants

near these genes and intermediate physiological phenotypes

related to T2D. Simulations of MAGENTA performance suggest

that if there is a genetic contribution it is small - probably no more

than 2–4% of nuclear-encoded mitochondrial genes (,20–40

genes) harbor common variants of modest effect (e.g. an odds ratio

of ,1.07 for allele frequency of 0.2–0.3 and sample size of 10,000

individuals) on T2D risk. This number may vary to some extent

depending on the actual effect sizes and total number of causal

genes for the disease (see Figure S6). As of the latest T2D meta-

analysis used here (DIAGRAM+), three mitochondrial genes (IDE,

C8orf38 (Entrez ID 137682), and ACADS (Entrez ID 35)) lie near

validated T2D SNPs amongst other genes in the interval [20], but

a causal connection for these genes with T2D has not yet been

shown.

Although the expression of multiple OXPHOS genes is

downregulated in skeletal muscle of patients with diabetes [9],

and OXPHOS activity is reduced in diabetic and insulin-resistant

individuals, we did not find evidence that OXPHOS genes lie

Table 4. Mitochondria-related gene sets are not enriched for
associations with type 2 diabetes-related glycemic traits.

Glycemic trait

Nuclear-encoded
mitochondrial

genes PGSEA
gs

OXPHOS

genes PGSEA
gs

Nuclear
regulators of
mitochondrial

genes PGSEA
gs

Fasting glucose 0.1255 0.8354 0.5568

Fasting insulin 0.2489 0.9490 0.1878

2 hour glucose 0.3026 0.6696 1.0000

2 hour insulin 0.2900 0.9462 1.0000

HOMA-IR 0.6567 0.9429 0.1855

HOMA-B 0.7678 0.8375 0.5661

HbA1c 0.0179{ 0.9901 1.0000

PGSEA
gs is the nominal gene set enrichment p-value for gene set gs computed for

each glycemic trait separately. The enrichment cutoff calculated for each
phenotype is the 95th percentile of all gene p-values computed from the
corresponding GWA study meta-analysis. HOMA-IR is an index for insulin
resistance, HOMA-B is an index for ß-cell function, and HbA1c represents
glycated hemoglobin concentrations, which is a measure of long-term plasma
glucose concentrations.
{Not significant after Bonferroni correction (most stringent cutoff p,0.002
given 3 gene sets and 8 traits; a less stringent cutoff, p,0.0083 correcting for 3
gene sets and 2 traits due to correlation between the glucose and insulin-
related traits).

doi:10.1371/journal.pgen.1001058.t004
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near genetic variants that affect T2D risk or related glycemic

traits. This is consistent with a previously reported pathway

analysis of one of the T2D GWA studies included in the

DIAGRAM+ meta-analysis [27]. Lack of enrichment in the

OXPHOS genes suggests that either the changes in expression

are an effect and not a cause of diabetes, or that one or few

regulators of OXPHOS [35] contain yet undetected rare or

common variants, or inherited epigenetic changes associated with

T2D or a related phenotype. Since, to date, there is no conclusive

evidence for a strong association of any of the 16 known nuclear

regulators of mitochondrial genes to T2D, we tested whether

several regulators might harbor common variants with modest

effect on T2D risk in the population. In our analysis we could not

find strong support for this possibility. Our simulations suggest

that we would have considerable power to detect enrichment if at

least ,9 OXPHOS genes or at least ,3 nuclear regulators were

modestly associated with T2D or a related trait. While specific

genes ranked high among the 16 regulators (but not at gene-wide

significance), such as GABPA (the GA binding protein transcrip-

tion factor, alpha subunit) [50] with respect to T2D associations

or SIRT1 (sirtuin, silent mating type information regulation 2

homolog 1; Entrez ID 23411) [51,52] with respect to fasting

insulin levels and measures of insulin resistance and ß-cell

function, our statistical tests do not constitute a proof of their

involvement in T2D. Future gene-centric approaches using our

corrected gene scoring system or others may be used to examine

more closely these and similar instances.

We note that while lack of enrichment of associations with T2D

and related-traits does not provide support for a causal connection,

it does not eliminate the possibility that individual genes could still

be found to have a genetic effect and thus be instrumental to T2D

predisposition. For example, the absence of enrichment in the

OXPHOS genes does not disprove the association to T2D of one

of its genes, C8orf38 (an assembly factor in Complex I, the first

complex in the mitochondrial electron transfer chain; Entrez ID

137682) [22], which lies near a validated T2D SNP found in the

recent DIAGRAM+ T2D meta-analysis [36], but it does not

provide further support for C8orf38 being causal.

Limitations of MAGENTA and other GSEA approaches
applied to variant association data

Our finding that specific mitochondria-related gene sets

functionally implicated in T2D are not enriched for associations

could be due to several reasons, of potential relevance also to the

study of other diseases: (i) The fraction of causal genes in the

given gene set, while considerable, may not be significantly higher

than the total fraction of causal genes in the genome (especially

relevant to gene permutation analysis); (ii) The causal variants

may be spread across a large number of biological processes or

there may be allelic heterogeneity in the population, making it

hard to detect clustering of associations into pathways; (iii) Causal

genes for certain phenotypes may cluster in small pathways,

which are more sensitive to individual gene score fluctuations

than large pathways; (iv) The relevant pathways or sets of

functionally related genes may have not yet been tested; (v) By

considering only variants within a given distance around each

gene, potential signals from more distant transcriptional regula-

tory elements, such as enhancers or epigenetic marks, might be

missed; future genome-wide maps of regulatory elements may be

used to generate a discontinuous and precise map of potential

causal regions per gene; and finally (vi) Rare variants were not

tested, but when the data are available the MAGENTA

framework can be applied to this class of variants.

General applications of MAGENTA and other GSEA
approaches to GWA studies

Certain common diseases and traits may be more amenable to

GSEA approaches than others, depending on their genetic

architecture. In addition to identifying new biological pathways

or processes associated with disease risk or trait variation, GSEA

methods, such as MAGENTA, may provide predictions for new

disease or trait genes of modest effects (top ranked gene scores in

enriched gene sets). Such joint analysis of SNPs (or other types of

variants) at the gene and gene set levels should be most useful for

detecting associations in a narrow range of nominal significance

levels (between noise levels, e.g. p,0.1, and SNP replication cutoff,

e.g. p.,0.0001), a range that has been shown to contain

associations of small effect in polygenic disorders [53]. The GSEA

approach may also help prioritize potential causal genes in

validated association regions that contain multiple genes.

Our method which explicitly accounts for important confounders

on the association scores of genes (e.g. gene size) and gene sets (e.g.

positional effects of genes in a gene set) in the absence of genotype

data, and that provides upper-bound estimates of number of

associations per gene set, should provide accurate tests of gene sets

of interest, especially for analyzing large GWA scan meta-analyses.

MAGENTA can also be applied to sets of genetic loci other than

genes, such as linkage disequilibrium blocks. More generally, such

GSEA approaches may be valuable for gene and pathway analysis of

other types of genetic studies that deal with multiple measurements

per gene, such as exon resequencing in case-control studies.

Materials and Methods

Ethics statement
The study constitutes a secondary analysis of genetic data

derived from de-identified samples, and thus has an IRB

exemption.

GWA studies and meta-analyses analyzed
Two type 2 diabetes (T2D) GWA studies were analyzed in this

work. The first is the Diabetes Genetics Initiative (DGI) GWA

study, used for method development purposes. 381,099 genotyped

SNPs were analyzed using only the population-based individuals,

that consist of 1,022 diabetic patients and 1,075 matched control

individuals (a total of 2,097 individuals) [17]. The second study is

the most recent T2D GWA meta-analysis (DIAGRAM+) [36],

used to test the mitochondrial-diabetes hypothesis with MAGEN-

TA. The meta-analysis was performed across eight GWA studies,

with a total of 8,130 diabetic patients and 38,987 non-diabetic

controls (47,117 individuals total, effective sample size n = 22,044),

and 2,255,856 genotyped and imputed autosomal SNPs.

The GWA study meta-analyses of seven diabetes-related

glycemic traits analyzed in this work were part of the Meta-

Analyses of Glucose and Insulin-related traits Consortium

(MAGIC) [37,38] (Soranzo N. et al., unpublished data). These

seven traits include fasting glucose concentrations, fasting insulin

concentrations, 2-hour glucose and 2-hour insulin concentrations

after an oral glucose tolerance test, indices of b-cell function

(HOMA-B) and of insulin resistance (HOMA-IR), calculated from

fasting glucose and insulin measures using homeostasis model

assessment [49], and HbA1C (glycated hemoglobin) levels. The

meta-analyses for fasting glucose, fasting insulin, HOMA-B and

HOMA-IR were performed on 20 or 21 GWA studies with a total

of 36,466 to 46,186 non-diabetic individuals [37,38], the meta-

analyses for 2-hour glucose and 2-hour insulin were performed

across 9 studies and a total of 15,234 individuals [37,38], and the

meta-analysis for HbA1C was performed across 23 cohorts with a
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total of 35,920 non-diabetic individuals (Soranzo N. et al.,

unpublished data). The total number of genotyped and imputed

autosomal SNPs analyzed in these seven meta-analyses varied

between 2,323,569 and 2,748,910 SNPs.

To test the performance of MAGENTA on traits whose

underlying biology has been well studied, we analyzed three GWA

study meta-analyses of low-density lipoprotein (LDL) cholesterol,

high-density lipoprotein (HDL) cholesterol and triglyceride blood

levels [34]. All three meta-analyses were performed with 19,840

individuals from seven GWA studies, on 2,552,754, 2,552,580 and

2,552,773 genotyped and imputed SNPs for the LDL cholesterol,

HDL cholesterol and triglyceride meta-analyses, respectively.

The association tests of all the aforementioned GWA studies were

performed at the single SNP level, assuming an additive allelic model.

The individuals in all GWA studies are of European descent.

Meta-Analysis Gene-set Enrichment of variaNT
Associations (MAGENTA)

Step 1: Mapping SNPs onto genes. A list of 26,914 human

gene transcripts was downloaded from the UCSC Genome

Browser (http://genome.ucsc.edu/) in RefFlat format based on

the human March 2006 (hg18) assembly. In the current study,

18,434 unique genes were used (17,680 on autosomes, and 754 on

sex chromosomes), after filtering out genes with two or more

transcripts that lie more than 1Mb apart on the same chromosome

or that lie on separate chromosomes. All the genotyped or imputed

SNPs that lie within an added physical distance upstream or

downstream to a gene’s most extreme transcript start and end sites

of all its known splicing isoforms (intron and other non-coding

sequences included) were assigned to each of the 18,434 genes. For

gene set enrichment analysis of T2D, glycemic traits, and lipid and

lipoprotein traits we used 110 kb upstream to the gene’s most

extreme transcript start site and 40 kb downstream to the gene’s

most extreme transcript end site. These boundaries were chosen as

they represent the 99th percentile of the distances of cis-eQTLs

from their adjacent gene’s transcript start and end sites. This is

according to a comprehensive genome-wide analysis of putative

functional regulatory elements (cis-eQTLs) using expression data

from human lymphoblastoid cell lines [54]. These boundaries

were chosen in attempt to capture association signals from

proximal regulatory regions, in addition to the coding region.

For the analysis of the DGI GWA study and the DGI

permutations (used for method development purposes), 650 kb

was used, as these analyses were done before the Veyrieras et al.

publication [54]. In the future, when transcriptional elements are

comprehensively characterized for all genes in the genome, a

discontinuous and more precise map of regulatory regions for each

gene could be used for assigning SNPs to genes.

Steps 2 and 3: Scoring genes based on SNP association

scores and correcting for confounders. For each gene g in

the genome we calculated a score, PGene0

g that is the probability

that the gene is associated with a given disease or trait. In

computing this score we corrected for the confounding effects of

physical and genetic properties of genes on the gene p-value.

Step 2. The scoring metric used here is as follows: For each gene

g, the minimum GWA p-value of all SNPs with index i that fall within

the extended gene boundaries (see Step 1) is chosen, PBestSNP
g :

PBestSNP
g ~ min

i[I gð Þ
fPSNP

i g ð1Þ

where I(g) is the set of indeces of SNPs whose chromosome positions

fall between the extended gene boundaries. PSNP
i is the association p-

value for SNP i calculated in a GWA study or meta-analysis (see

GWA studies and meta-analyses section). A z-score ZBestSNP
g is then

computed based on PBestSNP
g for each gene g, using a mean of 0 and

standard deviation of 1, assuming a normal distribution. PBestSNP
g

should be most powerful for genes that contain one major target

region or haplotype with potential causal mutations in or around their

coding sequence. Other SNP to gene scoring metrics can be used

here.

Step 3. To correct for confounding effects on PBestSNP
g we

regressed out the effect of several potential confounders from

PBestSNP
g , using step-wise multiple linear regression analysis [55].

The method begins by regressing out the effect of a variable with high

correlation with the gene score; it then adds the next significant

variable, and evaluates whether the added variable should be kept

and whether any existing variables should be eliminated from the

regression model. The latter step is repeated until all variables are

considered. A variable was added at p,0.05 and removed at p.0.1.

The step-wise nature of this method should account for correlations

between the variables. We initially tested this model using 1,000 DGI

GWA permutations and six gene properties as potential confounders

(predictor variables). In this case, step-wise multivariate linear

regression was applied to ZBestSNP
g using the full list of genes, and

the coefficients a, b, d, c, g, and k were estimated such that for every

gene g one can calculate:

ZBestSNP
g ~a:dgzb:ngzd:ugzc:hgzg:cgzk:lgzrg ð2Þ

where rg is the residual of the association score for gene g that cannot

be explained by the effects of the predictor variables considered. After

the regression a corrected gene z-score, ZGene0
g can be written as

follows:

ZGene0
g ~ZBestSNP

g {a:dg{b:ng{d:ug{c:hg{g:cg{k:lg ð3Þ

A corrected gene p-value PGene0
g is calculated from ZGene0

g assuming a

normal distribution and a mean of 0 and standard deviation of 1

(reasonable approximation but not perfect, in particular for the less

significant values of PGene0
g ; see Figure S8). Of all six gene properties

tested, only the genetic distance, cg, was not significant (p.0.05) in

most of the DGI permutations subjected to the regression analysis

(Table S3), and hence g~0 was used for all analyses in this paper.

Similar GSEA results were obtained for all gene sets and traits

analyzed in this paper when only the first four variables listed in

Table 1 (significant in almost all 1,000 DGI permutations tested; see

Table S3) were used for the regression-based correction of gene scores

(k~0 and g~0) (data not shown).

This step-wise linear regression approach can be used to adjust

for confounders on other types of variant to gene scoring metrics,

and an appropriate set of potential confounders can be identified

using the DGI permutation system described below.

Comparison to analytical gene score correction

methods. The regression-based method was compared to

Sidak’s combination test, also known as Sidak’s correction [26],

and to a modified version of Sidak’s correction [40]. The corrected

gene p-value, PGene0

g based on Sidak’s correction is defined as follows

for gene g:

PGene0
g ~1{ 1{PBestSNP

g

� �N

ð4Þ

where PBestSNP
g , defined in eq. 1, is the most significant SNP p-value

for gene g, and N is the total number of SNPs with available
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association statistics for gene g. A modification of eq. 4 proposed in

[40] uses (N+1)/2 as the exponent to adjust for linkage disequilibrium

between regional SNPs, assuming ,50% of SNPs in a given genomic

region are in tight linkage disequilibrium:

PGene0
g ~1{ 1{PBestSNP

g

� �Nz1
2 ð5Þ

Step 4: Gene set enrichment analysis of genome-wide

association data. To test for over-representation of genes with

modest genetic effects on a complex disease or trait in predefined

sets of genes, we developed a gene set enrichment analysis (GSEA)

algorithm that is applied to gene association p-values adjusted for

confounding effects. This algorithm does not require the genotypes

of individuals in the association scans in order to estimate gene set

enrichment significance. Our GSEA test was inspired by the

original GSEA algorithm applied to expression data [9,24], more

recently modified for SNP association data [23,25,28,32], but uses

a different statistical test. The null hypothesis is that the gene

association score ranks of all genes with index g that belong to a

given gene set gs are randomly distributed. The alternative

hypothesis is that there is an over-representation in gene set gs of

gene score ranks above a given rank cutoff compared to multiple

random gene sets of identical size that were randomly sampled

from all genes in the genome.

The specific steps of the GSEA statistical test employed here are

as follows: (i) Corrected gene association p-values were calculated

for all genes in the genome, based on a given GWA study or meta-

analysis. In this study, we used the corrected gene p-value, PGene0

g

as it can be computed for studies where individuals’ genotypes are

not available. If genotype data are available, the gene score PGene
g

can also be computed (see above for PGene0
g definition and section

below for PGene
g definition). (ii) Several types of genes were

removed from gene sets. Genes with no SNPs in their extended

gene boundaries were not included in the analysis. In addition, for

each subset of genes in a given gene set that were assigned the

same most significant SNP, all genes but one were removed from

the analysis; the gene with the most significant gene score was

retained. This was done to eliminate potential inflation of gene set

enrichment significance due to two or more genes in a gene set

that are physically proximal along the chromosome and hence

may capture the same association signal (assuming one causal gene

per associated locus). This yielded an effective number and set of

genes that was used for the next steps of the GSEA test. (iii) For

each gene set gs the fraction of genes with PGene0

g ,PCutoff was

recorded (denoted here as the ‘leading edge fraction’), where

PCutoff is a predetermined gene p-value cutoff, defined as a given

percentile of all gene p-values in the genome. PCutoff is specific for

a given GWA study or meta-analysis. In this study, we used

PCutoff = 95th percentile of PGene0

g for all genes g in the genome, as

it gave the optimal power of five cutoffs tested (99th, 95th, 90th,

75th, and 50th percentile of all gene p-values) with power

simulations (see Figure S5 and Simulations section below). (iv)

Finally, a nominal GSEA p-value, PGSEA
gs was calculated for each

gene set gs, defined as the fraction of randomly sampled gene sets

of identical set size, whose leading edge fraction is equivalent to or

larger than the observed leading edge fraction of gene set gs. The

null distribution of leading edge fractions was generated for each

gene set gs by randomly sampling 10,000 gene sets from the

genome (or more when PGSEA
gs ,1024) that are of identical set size

to the effective size of gene set gs (after adjusting for physical

clustering in the genome of subsets of genes in each randomly

sampled gene set separately, as described above). Genes in gene set

gs were not excluded from the random sampling procedure. (v) To

correct for multiple hypothesis testing, Bonferroni correction was

used (i.e. significance cutoff p = 0.05 divided by the number of

hypotheses tested). This may be too stringent when a large number

of gene sets is tested due to overlap of genes between the different

gene sets.

To test the robustness of our GSEA results for the mitochon-

dria-related gene sets, we applied an alternative GSEA statistical

test, based on a one-tailed Mann-Whitney rank-sum test (Table

S13). First, for each gene set gs we calculated a one-tailed rank-sum

p-value that tests the alternative hypothesis that PGene0

g ranks for all

genes in gene set gs are skewed towards high ranks compared to

the gene score ranks of the rest of the genes in the genome.

Second, a similar one-tailed rank sum p-value was calculated for

10,000 random gene sets of identical size that were randomly

sampled from the genome and adjusted for chromosome clustering

of subsets of genes in the gene set. Finally, a rank-sum based

GSEA p-value, PGSEA
gs was computed for gene set gs as the fraction

of randomly sampled gene sets whose rank-sum p-value was

equivalent to or more significant than the rank-sum p-value of the

tested gene set gs.

Identifying confounders on gene association scores
The potential confounding effects of six gene properties on the

most significant SNP p-value, PBestSNP
g for all genes g were

examined using 1,000 DGI study permutations, described below.

The gene features tested include: (1) Physical gene size for gene g,

dg, defined as the distance in kilobase (kb) units between the most

extreme transcript start and end sites of all isoforms of a given gene

(including introns), plus an added distance. For the extended

boundaries of 2110kb/+40kb used for the mitochondrial and lipid

analyses, 150 kb were added, and for the 650 kb boundaries used

for method development purposes, 100 kb were added; (2)

Number of genotyped and imputed (if available) SNPs per kb

for each gene g, ng; (3) Estimated number of independent SNPs

(that are in approximate linkage equilibrium with each other) per

kb for each gene g, ug. This was calculated using the –indep option

in PLINK that prunes SNPs based on the variance inflation factor,

VIF (http://pngu.mgh.harvard.edu/,purcell/plink/summary.

shtml#prune; default parameters were used). The genotypes of

the CEU population from HapMap version 19 were used, since

the GWA samples analyzed in this work are of European

descendent. This yielded 310,399 independent autosomal SNPs;

(4) Number of recombination hotspots spanning gene g per kb, hg.

Recombination hotspot positions were taken from [56]; (5)

Genetic distance of each gene g, cg in centi-Morgan (cM) per kb

units calculated based on a fine-scale map of recombination rates

[56]; and (6) Linkage disequilibrium units (LDU) per kb for each

gene g, lg, calculated based on an LDU map downloaded from

http://cedar.genetics.soton.ac.uk/pub/PROGRAMS/LDMAP

[57]. All variables were calculated based on the extended gene

boundaries. All variables but gene size, dg were transformed to ‘per

kilobase’ units: variables ng, ug, and hg, were divided by dg, and

variables cg and lg were divided by the physical distance between

the most extreme genetic markers within the gene boundaries for

which genetic distance or LDU data were available. All six

variables showed a significant correlation with PBestSNP
g for all

genes g, using 1,000 DGI study permutations, both before and

after normalization to gene region size.

Permutation analysis of Diabetes Genetics Initiative GWA
study

We used the Diabetes Genetics Initiative (DGI) GWA study

[17] as a test case for developing MAGENTA, as we had access to
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genotypes of all individuals in this study (as opposed to the GWA

meta-analyses analyzed in this paper where we do not have access

to genotype data). The analysis was done only on the population-

based samples of the DGI study - 1,022 cases and 1,075 controls

that were matched for age, gender, body mass index and region of

origin. Specifically, the T2D case/control labels were randomly

permuted 1,000 times between individuals from the same

collection center and the same gender. A genome-wide association

test (logistic regression) that assumes an additive allelic model (1

degree of freedom) followed by a genomic control (adjustment for

lambda larger than 1) was then applied to each of the 381,099

genotyped SNPs across the 1,000 permutations, resulting in an

association p-value, PSNP
i for each SNP i and each permutation.

PBestSNP
g was calculated for all genes in the genome, across the

1,000 DGI permutations. A gene p-value adjusted for confounding

effects with permutation analysis, PGene
g was then calculated for

each gene g in the genome. PGene
g is defined as the fraction of

permutations whose PBestSNP
g is equal to or lower (more significant)

than the observed DGI PBestSNP
g . We performed an additional

10,000 case/control permutations for SNPs within 650 kb around

genes with PGene
g ƒ0:01 to increase resolution. Genes with

PGene
g v10{4 were assigned PGene

g ~0:99:10{4.

The gene score vectors before correction (PBestSNP) calculated

for the 1,000 DGI permuted data sets were used to quantify the

correlation between six gene properties of potential confounding

effects on PBestSNP
g and PBestSNP

g (Table 1). The permutations were

also used to evaluate which of the correlated gene properties had a

significant confounding effect on PBestSNP
g based on a step-wise

multivariate linear regression model (Table S3). The resulting

significant confounders were used in all gene set analyses presented

in this study. To assess the performance of our regression-based

correction of confounders on PBestSNP
g , Sidak’s correction and a

modified Sidak’s correction, we compared the corrected gene p-

values, PGene0

g to the corresponding gene p-values corrected with

permutation analysis, PGene
g for all genes g, using the actual DGI

study. Permutation analysis was used as the gold standard for

adjusting for confounders on SNP to gene scores as it generates

gene-specific null distributions while maintaining the physical and

genetic structure of SNPs across gene regions. This enables

correcting for all possible confounding effects on gene association

scores without requiring a priori knowledge of the confounders.

The performance of our regression-based correction, Sidak’s

correction and a modified Sidak’s correction were evaluated by

comparing the Pearson’s correlation coefficient between PGene0
g

and PGene
g to the correlation coefficient between the unadjusted

gene score, PBestSNP
g and PGene

g for all genes g in the genome.

The permuted PSNP
i for all SNPs i were also used for power

simulations described in the next section.

Simulations used to estimate sensitivity and specificity of
MAGENTA

We developed a simulation framework to evaluate the power of

MAGENTA to identify enrichment of multiple associations for

which we have low detection power with single SNP analysis.

SNPs with a small effect size were randomly spiked into varying

numbers of genes (referred to as causal genes) in pre-specified gene

sets (one SNP per gene), and into genes outside the gene set,

maintaining the total number of causal genes in the genome. The

simulations were performed on a background of randomized SNP

association p-values, PSNP
i for all SNPs i in the genome, generated

with phenotype permutations of the DGI study (see section above).

For each set of parameters tested, 1,000 simulation runs were

performed. In each simulation run, the genes representing a

simulated gene set of a given size were randomly chosen from the

genome, and the various fractions of genes assigned a SNP of small

effect size were also randomly chosen from all genes in the gene

set. The remaining number of causal SNPs was randomly assigned

to genes outside the gene set. The small effects were randomly

assigned to SNPs within the 650kb extended gene boundaries (see

above for boundary definition). To eliminate artifacts that could

arise from using one specific vector of permuted PSNP
i , each

simulation run was done on a different GWA study permutation

background that was randomly chosen from 1,000 different DGI

phenotype permutations. For each of the 1,000 simulation runs,

gene p-values corrected with multivariate regression analysis (see

above), PGene0

g were calculated for all genes g in the genome. The

GSEA algorithm in MAGENTA was then applied to the

simulated gene set with a given fraction of causal genes of weak

effect. Finally, GSEA power (i.e. sensitivity) was estimated as the

fraction of 1,000 spike-in simulations whose gene set enrichment p-

value, PGSEA
gs exceeded a given significance level (in this study

PGSEA
gs #0.01, a suitable cutoff for the few hypotheses tested in the

mitochondrial gene set analysis). The power does not decrease

significantly when a more stringent cutoff is used: PGSEA
gs #0.001

(Figure S9).

The parameters used in the simulations are: (i) Gene set size of

25, 100 or 1000 genes; (ii) Fraction of genes in a gene set that got

assigned a SNP with a modest effect size: 0 (negative control), 1%,

5%, and 10%, 20%, 30%, 40%, 50% and 60%; (iii) The small

effect size of each spiked-in SNP was estimated by randomly

sampling from a noncentral chi-square distribution with one

degree of freedom (assuming an additive allelic test). The non-

centrality parameters (NCP) used were: NCP = 0 for estimating

specificity or false positive rate of our GSEA method, NCP = 2.5

for a very weak effect size (equivalent to 1% power of detection at

p#1e-4 using single SNP analysis; e.g. odds ratio of 1.03–1.04 for

an allele frequency of 0.2–0.3 and sample size of 10,000

individuals [41]; Figure S6A), and NCP = 10 for a modest effect

size (equivalent to 1% power of detection at genome-wide

significance (p#5e-8) using single SNP analysis; e.g. odds ratio

of 1.07 for an allele frequency of 0.2–0.3 and sample size of 10,000

individuals [41]; Figure 3); and (iv) A total of 100 (Figure 3) or 500

(Figure S6B) causal genes in the genome. The chi-square test

statistic was then converted to a z-score by taking the square root

of the chi-square test statistic. Parameters were chosen in attempt

to reflect what we know about the genetic architecture of complex

diseases and traits.

This simulation framework was also used to choose an optimal

gene score enrichment cutoff, PCutoff for our GSEA algorithm.

Five cutoffs were tested: 99th, 95th, 90th, 75th, and 50th percentile

of all gene p-values for two effect sizes: NCP = 2.5 and NCP = 10,

assuming a total of 100 causal genes in the genome. A PCutoff

equivalent to the 95th percentile of PGene0
g for all genes g in the

genome yielded the optimal power, when considering power plots

for both effect sizes (Figure S5). The 75th percentile cutoff

performed a bit better than the 95th percentile cutoff for very weak

effects (NCP = 2.5; Figure S5B), especially when assuming a total

of 500 causal genes (data not shown). Hence, the 75th percentile

cutoff could be used for diseases or traits that are highly polygenic

with many associations of weak effects.

Gene sets analyzed with MAGENTA
Mitochondria-related gene sets. Of the 1,012 unique

human mitochondrial genes described in MitoCarta [22], we

analyzed 966 autosomal mitochondrial genes. This number was

obtained after removing 13 genes encoded by the mitochondrial

DNA and 31 mitochondrial genes that lie on the X and Y

chromosomes, as they were not analyzed in the GWA studies and
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meta-analyses used in this work. Two autosomal genes were

removed, as they were absent from the human gene list used for

our analyses. For the DIAGRAM+ T2D meta-analysis, the

effective gene set size of all mitochondrial genes was 885 genes,

as 11 genes did not have any genotyped or imputed SNPs within

their extended gene boundaries (110 kb upstream and 40 kb

downstream to the most extreme transcript boundaries) and 70

genes were removed following physical proximity adjustment

described in the GSEA section. There are 110,060 unique SNPs

that fall within the gene regions of the 966 nuclear-encoded

mitochondrial genes, based on the DIAGRAM+ meta-analysis

(4.9% of all SNPs).

A list of 91 oxidative phosphorylation (OXPHOS) genes out of

the 966 autosomal, mitochondrial genes was manually curated

(marked in Table S12). This list does not include 12 OXPHOS

genes encoded by the mitochondrial DNA and 3 genes on

chromosome X. There are 9,693 SNPs that fall within the gene

regions of the 91 OXPHOS genes based on the DIAGRAM+
meta-analysis (0.4% of all SNPs).

A set of 16 known nuclear transcriptional regulators of

mitochondrial functions was assembled based on the literature

[35,44–48] (Table S11). All mitochondria regulators had SNPs in

their extended gene boundaries using the DIAGRAM+ meta-

analysis.

Lipid- and lipoprotein-related gene sets. We tested 15

biological processes related to lipid, fatty acid and steroid

metabolism defined by the PANTHER classification method

(http://www.pantherdb.org/) [42], and 36 gene sets related to

lipid, lipoprotein and fatty acid metabolism defined by Gene

Ontology [43], which include 7 molecular functions and 29

biological processes. The Gene Ontology gene sets were taken

from the Molecular Signatures Database (MsigDB, http://www.

broad.mit.edu/gsea/msigdb/collections.jsp).

In this paper we analyzed gene sets with an initial gene set size

of 10 genes or more.

Software
MAGENTA is freely available for use at http://broadinstitute.

org/mpg/magenta.

Supporting Information

Figure S1 Cumulative distribution of mitochondrial and non-

mitochondrial gene scores before and after adjustment for

confounders. The cumulative p-value distributions are plotted for

the most significant SNP T2D association p-value within each

gene’s extended boundaries (A) before and (B) after adjustment for

gene score confounders. The distributions are plotted for 966

autosomal mitochondrial genes (red line), the oxidative phosphor-

ylation (OXPHOS) subset (green line), and the rest of the genes in

the genome that have at least one SNP in their region (non-

mitochondrial genes; blue line) (see Materials and Methods for

details). The correction presented in panel B is following a step-

wise multivariate linear regression analysis of the most significant

SNP p-value against the first five gene properties listed in Table 1.

The x-axis is on a log10 scale in both panels.

Found at: doi:10.1371/journal.pgen.1001058.s001 (0.25 MB PDF)

Figure S2 Distribution of T2D gene p-values for small, large and

all genes before and after correction for confounders. (A) The

distribution of the mean PBestSNP
g (best SNP association p-value per

gene g) calculated across 1,000 phenotype permutations of the

Diabetes Genetics Initiative (DGI) GWA study is shown for all

genes in genome (blue line), only large genes ($100 kilobase (kb);

red line), and only small genes (#10 kb; green line). Large genes

tended to receive on average a more significant gene score (lower

p-values) than all genes in the permuted datasets, and small genes

tended to receive on average a less significant gene score (higher p-

values) than all genes. (B–D) The distribution of gene association p-

values is shown for the actual DGI study for all gene sizes (blue

line), large genes (red line) and small genes (green line) (B) before

correcting for confounders (PBestSNP
g ), and after correcting for

confounders on PBestSNP
g , such as gene size, using either (C)

phenotype permutation analysis (PGene
g ) or (D) step-wise multivar-

iate linear regression analysis (PGene0

g ). The regression-based

correction transforms the gene p-values to a distribution that is

close to uniform and removes the confounding effect of gene size,

similar to the permutation-based correction, which corrects for all

confounding effects without a priori knowledge of them. The

regression correction seems to slightly over-correct the gene p-

values of large genes (red line in D) in the high p-value end of the

distribution (p.0.8). A bin of 0.01 was used for all four plots.

Found at: doi:10.1371/journal.pgen.1001058.s002 (0.66 MB PDF)

Figure S3 A comparison of the performance of several gene

association score correction methods. T2D gene association p-values

were plotted (A) before gene score adjustment (PBestSNP
g ) and after

correction for potential SNP-to-gene score confounders (PGene0

g ), as a

function of gene p-values corrected with phenotype permutation

analysis (PGene
g ). The correction methods tested: (B) step-wise

multivariate linear regression analysis, (C) Sidak’s correction (eq. 4

in Materials and Methods) and (D) a modified version of Sidak’s

correction (eq. 5 in Materials and Methods; Saccone SF et al.,

Human Molecular Genetics 16(1): 36–49, 2007). The Diabetes

Genetics Initiative (DGI) study was used for the analysis, as we had

access to genotype data in this study. The unadjusted gene p-value,

PBestSNP
g is the association p-value of the best regional SNP for gene

g (y-axis in A). Phenotype permutation analysis was used as the gold

standard to test goodness of gene score correction as it corrects for

all confounders without requiring a priori knowledge of the

confounders (PGene
g ). The Pearson’s correlation coefficient (calcu-

lated between p-value vectors before log transformation) increased

significantly following each of the three correction methods (from

r = 0.69 to r = 0.94–0.97), but the Sidak’s correction (C) did not

perform as well, as it tends to overcorrect (most of the dots fall below

the diagonal, the red line). The spread around the diagonal also

decreased for all three correction methods. While the modified

Sidak’s correction (D) performs a bit better than the regression-

based correction (B) in the DGI study, Figure S4 shows that its

performance varies between GWA studies of different SNP

densities. The correction for linkage between SNPs in the modified

Sidak’s correction equation may need to be adjusted for different

GWA studies or meta-analyses with different SNP densities (see

Figure S4 for details). The minimum PGene
g is 1024 as the p-values

were calculated based on 1,000 permutations for genes with

PGene
g w0:01 and 10,000 permutations for genes with PGene

g ƒ0:01.

Gene scores are plotted on a 2log10(p-value) scale.

Found at: doi:10.1371/journal.pgen.1001058.s003 (0.42 MB PDF)

Figure S4 Distribution of gene association p-values for different

T2D GWA studies and gene score correction methods. Presented

here are the distributions of the best SNP per gene p-values for all

genes after adjustment for confounders (PGene0

g ), using two different

correction methods: (A–B) a step-wise multivariate linear regres-

sion analysis that regresses out physical and linkage-related

confounders from the most significant SNP association z-score,

and (C–D) a modification of the Sidak’s correction equation that

uses an exponent of about half the number of SNPs per gene to

adjust for linkage disequilibrium between SNPs in a given

chromosomal region (eq. 5 in Materials and Methods). A bin of
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0.01 was used in all four panels. The distribution of PGene0

g

following regression analysis is similar for the DGI study (A) that

contains ,3.8e5 genotyped SNPs (on average 1 SNP/8kb) and the

DIAGRAM+ T2D meta-analysis (B) that contains ,2.3e6

genotyped or imputed SNPs (on average 1 SNP/1.3kb). The

regression-corrected PGene0

g distributions in both studies are close to

uniform, aside for an excess in the low p-value tail and a slight

deviation from uniformity in the high p-value tail. Panels A and B

show that the regression correction, which explicitly takes into

account linkage disequilibrium properties between SNPs in a gene-

specific manner, is adjustable to studies with different SNP

densities and linkage properties. The distribution of PGene0

g

following the modified Sidak’s method is also close to uniform in

the DGI study (C). However, in the DIAGRAM+ meta-analysis,

which contains about 6-fold more SNPs than the DGI study, the

modified Sidak’s correction distribution is largely skewed towards

high values of PGene0

g (D) (,11.4% of genes with PGene0

g w0:999
where only 0.1% is expected, and ,19.4% of genes with

PGene0
g w0:99 where only 1% is expected). This difference in

performance of the modified Sidak correction between the DGI

and DIAGRAM+ studies may be due to differences in SNP

density, which may affect the effective fraction of SNPs that are in

tight linkage disequilibrium in different regions along the genome.

Hence, the exponent in Sidak’s equation (eq. 5 in Materials and

Methods) might need to be adjusted for different studies.

Found at: doi:10.1371/journal.pgen.1001058.s004 (0.42 MB PDF)

Figure S5 Using simulations to find an optimal gene set

enrichment cutoff. The power of detecting gene set enrichment

of multiple modest (A) or weak (B) effects was estimated with

simulations as a function of fractions of causal genes in a gene set

of 100 genes, for five different enrichment cutoffs: 99th percentile

(black line), 95th percentile (dark blue line), 90th percentile (green

line), 75th percentile (red line), or 50th percentile (cyan line) of all

corrected gene p-values (with regression analysis). The modest

effect size in (A) represents 1% power of detecting an association at

genome-wide significance (p-value,5e-8) using single SNP anal-

ysis, and the weak effect size in (B) represents 1% power of

detecting an association at p-value,1e-4 using single SNP analysis.

A total of 100 causal genes in the genome was assumed here.

These plots show that power of MAGENTA to detect enrichment

of multiple modest effects is fairly robust to the enrichment cutoff

used. Overall, the 95th percentile cutoff performed the best. While

the 99th and 95th percentile cutoffs performed similarly in

detecting enrichment of multiple modest effects (A), the 95th

percentile cutoff performed significantly better in detecting

enrichment of many weak effects (B). Note the log10 scale of the

x-axis in both panels.

Found at: doi:10.1371/journal.pgen.1001058.s005 (0.41 MB PDF)

Figure S6 Power of MAGENTA as a function of effect size and

total number of causal genes in the genome. (A) Power of detecting

gene set enrichment of multiple modest associations increases with

effect size. Using computer simulations we assessed the power of

MAGENTA to detect enrichment of multiple SNPs of modest

effect spiked into various fractions of genes (causal genes) in a gene

set size of 100 genes (one SNP per gene). Two different effect sizes

were tested: (i) the modest effect (solid line) represents 1% power of

detecting a SNP association at genome-wide significance (p-

value,5e-8) using single SNP analysis, and the weak effect (dashed

line) represents 1% power of detecting an association at p-

value,1e-4 using single SNP analysis (details in Materials and

Methods). A similar trend was obtained for a gene set size of 25

and 1,000 genes (data not shown). The false positive rate for the

parameters used here was between 0.4–1.7%. (B) Power of

detecting gene set enrichment of modest associations decreases as

the total number of causal genes in the genome increases. Power

was estimated assuming a total of 100 (solid line) or 500 (dashed

line) causal genes in the genome. For both panels a gene set was

considered significant at a GSEA p-value cutoff of PGSEA
gs ,0.01.

Note the logarithmic scale of the x-axis for both plots.

Found at: doi:10.1371/journal.pgen.1001058.s006 (0.28 MB PDF)

Figure S7 Quantile-quantile plots of T2D gene association p-

values for mitochondria-related gene sets. The T2D gene

association p-values adjusted for confounding effects using step-

wise multivariate linear regression analysis, PGene0
g (see Materials

and Methods) were plotted for (A) 16 nuclear regulators of

mitochondrial genes, (B) 91 oxidative phosphorylation genes, and

(C) all known nuclear-encoded autosomal mitochondrial genes

with at least one SNP in their region (955 genes), as a function of

their corresponding null distributions of PGene0

g assuming a

uniform distribution. Three mitochondrial genes that lie near

validated T2D SNPs, as of the most recent DIAGRAM+ T2D

meta-analysis are labeled in red (IDE, C8orf38, and ACADS). The

red line marks the diagonal, and the dashed lines represent 5%

and 95% confidence intervals estimated based on 1,000 randomly

sampled gene sets from the genome of identical set size to the

given gene set. All gene p-values lie within the non-parametric

95% confidence intervals. Similar results were obtained when the

observed gene p-values were plotted against an expected

distribution that was adjusted according to a non-parametric

null distribution, generated based on 1,000 randomly sampled

gene sets from the genome of identical size to that of the tested

gene set (data not shown). PGene0

g is plotted on a 2log10(p-value)

scale. Note the x and y-axes of the three plots are not on the same

scale.

Found at: doi:10.1371/journal.pgen.1001058.s007 (0.31 MB PDF)

Figure S8 Distribution of T2D gene association p-values

following correction for confounders. (A) The distribution of the

unadjusted best SNP association p-value, PBestSNP
g for all genes g in

the genome is shown using the Diabetes Genetics Initiative (DGI)

GWA study. Since the most significant SNP in a gene region was

chosen for each gene the distribution is skewed towards low p-

values. (B) The distribution of all DGI gene p-values following

correction for confounders using phenotype permutation analysis

(PGene
g ) demonstrates how the correction transforms PBestSNP

g into a

uniform distribution. An excess of significant genes is seen at

PGene
g ,0.001. (C) The distribution of all DGI gene p-values

following correction using step-wise multivariate linear regression

analysis (PGene0

g ) on the first four confounders listed in Table 1 is

close to uniform, similar to PGene
g (in panel B). A slight deviation

from uniformity is seen for PGene0
g at the less significant end of the

p-values. An excess of significant genes is also observed at

PGene0
g ,0.001. (D) The distribution of all gene p-values computed

for the DIAGRAM+ T2D GWA meta-analysis, following step-

wise linear regression of PBestSNP
g against the first five confounders

listed in Table 1 (PGene0

g ) transforms the skewed PBestSNP
g

distribution to a reasonably uniform one, similar to the DGI

study. An excess of significant genes is also observed at

PGene0
g ,0.001. A bin of 0.001 was used for all four plots.

Found at: doi:10.1371/journal.pgen.1001058.s008 (0.53 MB PDF)

Figure S9 Power of MAGENTA as a function of gene set

enrichment significance threshold. We compared the effect of two

p-value thresholds used to call a gene set significantly enriched in a

given simulation run, on the power of MAGENTA to detect gene

set enrichment. The two cutoffs tested were: PGSEA
gs ,0.01 (solid

line) and PGSEA
gs ,0.001 (dashed line). PGSEA

gs is the nominal

enrichment p-value for gene set gs. Power is plotted as a function of
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the fraction of causal genes that were randomly assigned a SNP

with a modest effect size equivalent to 1% power of detecting an

association at genome-wide significance (p-value,5e-8) using

single SNP analysis. Two gene set sizes were examined: 100

genes (squares) and 1,000 genes (circles). Power appears to

decrease only slightly with a more stringent GSEA p-value

threshold. Note the x-axis is on a log10 scale.

Found at: doi:10.1371/journal.pgen.1001058.s009 (0.24 MB PDF)

Table S1 Average gene size of nuclear-encoded mitochondrial

genes compared to non-mitochondrial genes. Mitochondrial

genes refer to nuclear-encoded mitochondrial genes on autosomal

chromosomes taken from the MitoCarta compendium (Pagliarini

DJ, et al. (2008), Cell 134: 112–123). OXPHOS genes refer to the

oxidative phosphorylation gene subset. The calculations are based

on the March 2006 (hg18) assembly of all human genes. bp, base

pairs.

Found at: doi:10.1371/journal.pgen.1001058.s010 (0.04 MB PDF)

Table S2 Correlation between T2D gene association scores,

computed from DIAGRAM+ meta-analysis, and six potential

confounders. Pearson’s correlation coefficient (r) was calculated

between the unadjusted and adjusted best SNP per gene z-scores,

ZBestSNP and ZGene0 , respectively, and six physical and linkage-

related gene properties, using the DIAGRAM+ T2D GWA study

meta-analysis. Aside for gene size, all gene properties were divided

by the size of the gene plus its extended physical boundaries

(150 kb was added to the most extreme transcript size for each

gene, as the 2110kb/+40kb extended gene boundary was used).

ZBestSNP is a vector of the uncorrected gene z-scores for all genes

in genome, and ZGene0 is a vector of corrected gene z-scores for all

genes, using step-wise multivariate linear regression analysis. All

correlations between ZBestSNP and the six variables were

statistically significant (p,1e-28). {These gene properties were

significant at p,0.05 under a step-wise multivariate linear

regression model that regresses ZBestSNP against all six gene

properties (see Table S4 for regression model parameters and p-

values).

Found at: doi:10.1371/journal.pgen.1001058.s011 (0.20 MB PDF)

Table S3 Using GWA permutations to identify significant

confounders on gene scores under a multivariate regression

model. For each of the 1,000 Diabetes Genetic Initiative (DGI)

GWA study permutations (described in Materials and Methods)

we applied step-wise multivariate linear regression analysis to the

most significant SNP per gene p-value, PBestSNP
g for all genes g,

against the six gene properties listed in the table. We used the

fraction of permuted GWA studies for which a given gene

property was included in the regression model (at p,0.05) to assess

the significance of each gene property as a confounder on

PBestSNP
g . GWA study permutations are not expected to contain

true associations, and hence any correlation between PBestSNP
g and

a gene property in a permuted dataset should be due solely to

artificial or confounding effects. All gene properties aside for gene

size were divided by the size of the gene and its extended physical

boundaries (the gene boundaries used in this analysis were 650kb

around the gene’s most extreme transcript boundaries). For all

gene set analyses performed in this paper, we chose to include the

gene properties that were significant under the regression model in

at least ,50% of permutations for gene score adjustment, and

therefore we used the first five properties listed in this table. We

obtained very similar GSEA results for all gene sets and GWA

studies tested in this paper, when only the first four properties

listed in the table, that were significant in almost all permutations

tested, were used (data not shown).

Found at: doi:10.1371/journal.pgen.1001058.s012 (0.13 MB PDF)

Table S4 Parameters of step-wise multivariate linear regression

models of T2D gene scores against gene score confounders. The

parameters of a step-wise multivariate linear regression model of

the best SNP p-value, PBestSNP
g (the response variable) for all genes

g, on five gene properties (potential gene score confounders; the

predictor variables) are listed here for the Diabetes Genetics

Initiative (DGI) GWA study and the DIAGRAM+ T2D GWA

meta-analysis. The confounding variables imputed into the

regression model were those variables that were significant under

the regression model in more than about half of the 1,000 DGI

GWA permutations tested (Table S3). Hence, only the first five out

of six properties listed in Table 1 were considered here. At each

step of the regression analysis, an additional variable (gene score

confounder) is added for consideration under the regression

model. Variables with p,0.05 were considered significant and

included in the regression model, and variables with p.0.1 were

removed from the model. Variables are listed in the table in

the order they were added to the model. Similar ß coefficients

and p-values were obtained within each study using either

2110kb/+40kb gene boundaries or 650kb boundaries. The main

differences between the DGI GWA study and the DIAGRAM+
meta-analysis were in the ß coefficients of SNP density and of

linkage disequilibrium unit density. The ß coefficient for SNP

density is smaller in the DIAGRAM+ meta-analysis compared to

the DGI study, possibly because the overall SNP density is much

larger in the meta-analysis (,6-fold higher), which may decrease

the difference in SNP density between small and large genes. The

linkage disequilibrium unit gene property was not considered

significant for the DGI study. This may also be due to differences

in SNP density, since a lower SNP density may decrease the

fraction of SNPs in a given chromosomal region that are in strong

linkage disequilibrium. {All gene properties aside for gene size

were divided by the size of the gene and its extended physical

boundaries. *p-value is the probability for testing the null

hypothesis that ß = 0 (i.e. probability that a variable should not

be added to the regression model).

Found at: doi:10.1371/journal.pgen.1001058.s013 (0.13 MB PDF)

Table S5 GSEA results for lipid and lipoprotein-related

pathways using LDL cholesterol GWA meta-analysis of 19,840

individuals. A total of 51 (partially overlapping) gene sets related to

lipid, lipoprotein and fatty acid metabolism taken from the

PANTHER and Gene Ontology databases were tested with

MAGENTA for enrichment of genetic associations to LDL

cholesterol blood levels, using a GWA meta-analysis of 19,840

individuals (Kathiresan S. et al., 2009, Nature Genetics 41: 56–65).

GSEA p-values that passed the Bonferroni significance threshold

were marked with an asterisk (each database was corrected for

multiple hypothesis testing separately due to considerable overlap

between the gene sets from the different databases). The

Bonferroni cutoffs for the different databases are: PANTHER

(15 pathways): p,0.0033, Gene Ontology, biological process terms

(29 gene sets): p,0.0017, and Gene Ontology, molecular function

terms (7 gene sets): p,0.0071. In the third column, GSEA p-values

in parentheses are following exclusion of 19 genes that lie near 11

validated SNPs associated with LDL cholesterol (taken from

Table 2 in Kathiresan S. et al., 2009). Interestingly, the association

signals of some of the gene sets, including lipid and lipoprotein

metabolism and lipid transport processes are still detectable when

genes near validated SNPs are removed from the GSEA analysis.

The 95th percentile of the adjusted LDL gene association p-values

(PGene0

g ) for all genes in the genome was used as the gene set

enrichment cutoff.

Found at: doi:10.1371/journal.pgen.1001058.s014 (0.05 MB PDF)
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Table S6 GSEA results for lipid and lipoprotein-related

pathways using HDL cholesterol GWA meta-analysis of 19,840

individuals. A total of 51 (partially overlapping) gene sets related to

lipid, lipoprotein and fatty acid metabolism taken from the

PANTHER and Gene Ontology databases were tested with

MAGENTA for enrichment of genetic associations to HDL

cholesterol blood levels, using a GWA meta-analysis of 19,840

individuals (Kathiresan S. et al., 2009, Nature Genetics 41: 56–65).

GSEA p-values that passed the Bonferroni significance threshold

were marked with an asterisk (each database was corrected for

multiple hypothesis testing separately due to considerable overlap

between the gene sets from the different databases). The

Bonferroni cutoffs for the different databases are: PANTHER

(15 pathways): p,0.0033, Gene Ontology, biological process terms

(29 gene sets): p,0.0017, and Gene Ontology, molecular function

terms (7 gene sets): p,0.0071. In the third column, GSEA p-values

in parentheses are following exclusion of 20 genes that lie near 14

validated SNPs associated with HDL cholesterol (taken from

Table 2 in Kathiresan S. et al., 2009). Interestingly, the association

signals of some of the gene sets, including lipid metabolism,

binding and transport processes and triacylglycerol metabolism are

still detectable when genes near validated HDL cholesterol SNPs

are removed from the GSEA analysis. The 95th percentile of the

adjusted HDL gene association p-values (PGene0
g ) for all genes in the

genome was used as the gene set enrichment cutoff.

Found at: doi:10.1371/journal.pgen.1001058.s015 (0.05 MB PDF)

Table S7 GSEA results for lipid and lipoprotein-related

pathways using triglyceride GWA meta-analysis of 19,840

individuals. A total of 51 (partially overlapping) gene sets related

to lipid, lipoprotein and fatty acid metabolism taken from the

PANTHER and Gene Ontology databases were tested with

MAGENTA for enrichment of genetic associations to triglyceride

blood levels, using a GWA meta-analysis of 19,840 individuals

(Kathiresan S. et al., 2009, Nature Genetics 41: 56–65). GSEA p-

values that passed the Bonferroni significance threshold were

marked with an asterisk (each database was corrected for multiple

hypothesis testing separately due to considerable overlap between

the gene sets from the different databases). The Bonferroni cutoffs

for the different databases are: PANTHER (15 pathways):

p,0.0033, Gene Ontology, biological process terms (29 gene

sets): p,0.0017, and Gene Ontology, molecular function terms (7

gene sets): p,0.0071. In the third column, GSEA p-values in

parentheses are following exclusion from the analysis of 19 genes

that lie near 11 validated SNPs associated with triglyceride levels

(taken from Table 2 in Kathiresan S. et al., 2009). Interestingly, the

association signals of some of the gene sets, in particular

phospholipid binding and metabolic processes are still detectable

when genes near validated SNPs are removed from the GSEA

analysis. The 95th percentile of the adjusted triglyceride gene

association p-values (PGene0

g ) for all genes in the genome was used

as the gene set enrichment cutoff.

Found at: doi:10.1371/journal.pgen.1001058.s016 (0.05 MB

PDF)

Table S8 GSEA of LDL cholesterol GWA meta-analysis is

robust to the gene score correction method used. GSEA results for

lipid and lipoprotein-related gene sets using a GWA meta-analysis

of LDL cholesterol blood levels (Kathiresan S. et al., 2009, Nature

Genetics 41: 56–65) are presented following two different gene

score correction methods: a modified version of Sidak’s correction,

proposed by Saconne et al. (Saccone SF et al., Human Molecular

Genetics 16(1): 36–49, 2007) (column 3) and a step-wise

multivariate regression analysis method (column 4). GSEA p-

values that passed the Bonferroni significance threshold are

marked with an asterisk (each database was corrected for multiple

hypothesis testing separately, due to considerable overlap between

the gene sets from the different databases). The GSEA results are

quite robust to the correction method used. In the third and fourth

columns, GSEA p-values in parentheses are following exclusion of

19 genes that lie near 11 validated SNPs associated with LDL

cholesterol (taken from Table 2 in Kathiresan S. et al., 2009). The

number of genes analyzed by MAGENTA in column 2 was taken

from the analysis that applied the modified Sidak’s correction of

gene p-values. This number was in most cases identical to that

following regression-based correction (Table S5). The 95th

percentile of the adjusted LDL cholesterol gene association p-

values (PGene0
g ) for all genes in the genome was used as the gene set

enrichment cutoff.

Found at: doi:10.1371/journal.pgen.1001058.s017 (0.06 MB PDF)

Table S9 GSEA of HDL cholesterol GWA meta-analysis is

robust to the gene score correction method used. GSEA results

for lipid and lipoprotein-related gene sets using a GWA meta-

analysis of HDL cholesterol blood levels (Kathiresan S. et al.,

2009, Nature Genetics 41: 56–65) are presented following two

different gene score correction methods: a modified version of

Sidak’s correction, proposed by Saconne et al. (Saccone SF et al.,

Human Molecular Genetics 16(1): 36–49, 2007) (column 3) and a

step-wise multivariate regression analysis method (column 4).

GSEA p-values that passed the Bonferroni significance threshold

are marked with an asterisk (each database was corrected for

multiple hypothesis testing separately, due to considerable

overlap between the gene sets from the different databases).

The GSEA results are quite robust to the correction method

used. GSEA p-values in parentheses are following exclusion from

the analysis of 20 genes that lie near 14 validated SNPs associated

with HDL cholesterol (taken from Table 2 in Kathiresan S. et al.,

2009). The number of genes analyzed by MAGENTA in column

2 was taken from the analysis that used the modified Sidak’s

correction of gene p-values. This number was in most cases

identical to that following regression-based correction (Table S5).

The 95th percentile of the adjusted HDL cholesterol gene

association p-values (PGene0

g ) for all genes in the genome was used

as the gene set enrichment cutoff.

Found at: doi:10.1371/journal.pgen.1001058.s018 (0.05 MB PDF)

Table S10 GSEA of triglyceride GWA meta-analysis is robust to

the gene score correction method used. GSEA results for lipid and

lipoprotein-related gene sets using a GWA meta-analysis of

triglyceride blood levels (Kathiresan S. et al., 2009, Nature Genetics

41: 56–65) are presented following two different gene score correction

methods: a modified version of Sidak’s correction, proposed by

Saconne et al. (Saccone SF et al., Human Molecular Genetics 16(1):

36–49, 2007) (column 3) and a step-wise multivariate regression

analysis method (column 4). GSEA p-values that passed the

Bonferroni significance threshold are marked with an asterisk (each

database was corrected for multiple hypothesis testing separately, due

to considerable overlap between the gene sets from the different

databases). The GSEA results are quite robust to the correction

method used. GSEA p-values in parentheses are following exclusion

from the analysis of 19 genes that lie near 11 validated SNPs

associated with triglyceride blood levels (list of known genes taken

from Table 2 in Kathiresan S. et al., 2009). The number of genes

analyzed by MAGENTA in column 2 was taken from the analysis

that used the modified Sidak’s correction method. This number was

in most cases identical to that following regression-based correction

(Table S5). The 95th percentile of the adjusted triglyceride gene

association p-values (PGene0
g ) for all genes in the genome was used as

the gene set enrichment cutoff.
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Found at: doi:10.1371/journal.pgen.1001058.s019 (0.05 MB PDF)

Table S11 List of nuclear regulators of mitochondrial genes and

their T2D association scores. T2D gene p-values adjusted for

confounding effects with step-wise multivariate linear regression

analysis (PGene0

g ) were computed for 16 known nuclear regulators of

nuclear-encoded mitochondrial genes, using the DIAGRAM+
T2D GWA study meta-analysis (Voight BF et al., Nature Genetics,

in press, 2010).

Found at: doi:10.1371/journal.pgen.1001058.s020 (0.02 MB

XLS)

Table S12 List of T2D gene association scores for all known

autosomal mitochondrial genes taken from MitoCarta. T2D gene p-

values adjusted for confounders with multivariate linear regression

analysis (PGene0

g ) are listed for 966 nuclear-encoded (autosomal)

mitochondrial genes, taken from the MitoCarta compendium

(Pagliarini DJ, et al., 2008, Cell 134: 112–123). The DIAGRAM+
T2D GWA study meta-analysis (Voight BF, et al., Nature Genetics,

in press, 2010) was used here. Genes in bold lie near validated T2D

SNPs, as of the DIAGRAM+ meta-analysis. The last column marks

genes that belong to the oxidative phosphorylation (OXPHOS)

pathway with the number 1. ‘NaN’ refers to genes that had no SNPs

in their extended gene boundaries (110kb upstream to the gene’s

most extreme transcript start site, and 40kb downstream to the

gene’s transcript most extreme end site).

Found at: doi:10.1371/journal.pgen.1001058.s021 (0.23 MB

XLS)

Table S13 GSEA results of mitochondria-related gene sets are

robust to GSEA statistical test used. We tested the robustness of the

mitochondria-related gene set enrichment results with respect to

T2D and seven diabetes-relevant glycemic traits by using an

alternative GSEA statistical test to the enrichment cutoff approach.

A one-tailed Mann-Whitney rank-sum test was applied (described in

Materials and Methods) to GWA study meta-analyses of T2D and

seven glucose and insulin-related traits. PGSEA
gs is the nominal gene

set enrichment p-value for gene set gs computed for each phenotype

separately. The enrichment cutoff used was the 95th percentile of all

gene p-values computed from the corresponding GWA meta-

analysis. The GSEA results obtained with the rank-sum approach

are very similar to those obtained using the enrichment cutoff

approach (see Table 3 and Table 4). HOMA-IR is an index for

insulin resistance, HOMA-B is an index for b-cell function, and

HbA1C represents glycated hemoglobin concentrations. OXPHOS

stands for the oxidative phosphorylation process. The nuclear

regulators are regulators of nuclear-encoded mitochondrial genes.
{These gene sets are not significant after Bonferroni correction

(most stringent cutoff p,0.002, given 3 gene sets and 8 traits tested;

a less stringent cutoff p,0.0083, correcting for 3 gene sets and 2

traits due to considerable correlation between the glucose and

insulin-related traits).

Found at: doi:10.1371/journal.pgen.1001058.s022 (0.15 MB PDF)

Table S14 GSEA results of mitochondria-related gene sets are

robust to the gene score correction method used. We tested the

effect of using a different gene score correction method other than

the regression-based method on mitochondria-related gene set

enrichment results with respect to type 2 diabetes and seven related

glycemic traits. We applied a modification of the Sidak’s correction

(described in Materials and Methods; Saccone SF et al., Human

Molecular Genetics 16(1): 36–49, 2007) to correct for confounding

effects on the most significant SNP p-value, PBestSNP
g for each gene g.

PGSEA
gs is the nominal gene set enrichment (GSEA) p-value for gene

set gs computed for each phenotype separately. The enrichment

cutoff used was the 95th percentile of all gene scores computed from

the corresponding GWA study meta-analysis. HOMA-IR is an

index for insulin resistance, HOMA-B is an index for b-cell

function, and HbA1C represents glycated hemoglobin concentra-

tions. OXPHOS stands for the oxidative phosphorylation process.

The nuclear regulators are regulators of nuclear-encoded mito-

chondrial genes. { This gene set is not significant after Bonferroni

correction (most stringent cutoff p,0.002, given 3 gene sets and 8

traits tested; a less stringent cutoff p,0.0083, correcting for 3 gene

sets and 2 traits due to considerable correlation between the glucose

and insulin-related traits and type 2 diabetes). The GSEA results are

comparable to those using step-wise multivariate linear regression

analysis to correct for confounders on gene association p-values

(Table 3 and Table 4).

Found at: doi:10.1371/journal.pgen.1001058.s023 (0.16 MB PDF)

Text S1 Lists of consortia participants and affiliations.

Found at: doi:10.1371/journal.pgen.1001058.s024 (0.10 MB

DOC)
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