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Abstract

Background: Ghrelin stimulates GH secretion and regulates energy and glucose metabolism. The two
circulating isoforms, acyl (AG) and des-acyl (DAG) ghrelin, have distinct metabolic effects and are
under active investigation for their therapeutic potentials. However, there is only limited data on the
pharmacokinetics of AG and DAG.

Objectives: To evaluate key pharmacokinetic parameters of AG, DAG, and total ghrelin in healthy men
and women.

Methods: In study 1, AG (1, 3, and 5 pg/kg per h) was infused over 65 min in 12 healthy (8 F/4 M)
subjects in randomized order. In study 2, AG (1 ng/kg per h), DAG (4 ng/kg per h), or both were infused
over 210 min in ten healthy individuals (5 F/5 M). Plasma AG and DAG were measured using specific
two-site ELISAs (study 1 and 2), and total ghrelin with a commercial RIA (study 1). Pharmacokinetic
parameters were estimated by non-compartmental analysis.

Results: After the 1, 3, and 5 pg/kg per h doses of AG, there was a dose-dependent increase in the
maximum concentration (Cpay) and area under the curve (AUC(g_1,s1)) of AG and total ghrelin. Among
the different AG doses, there was no difference in the elimination half-life, systemic clearance (CL), and
volume of distribution. DAG had decreased CL relative to AG. The plasma DAG:AG ratio was ~2:1
during steady-state infusion of AG. Infusion of AG caused an increase in DAG, but DAG administration
did not change plasma AG. Ghrelin administration did not affect plasma acylase activity.
Conclusions: The pharmacokinetics of AG and total ghrelin appears to be linear and proportional
in the dose range tested. AG and DAG have very distinct metabolic fates in the circulation. There is
deacylation of AG in the plasma but no evidence of acylation.
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Introduction variety of GHSR-la-independent effects on insulin

secretion (6), osteoblast growth (7), and lipid meta-

Ghrelin is a 28-amino acid peptide secreted mainly from
the neuroendocrine X/A-like cells in the gastric mucosa
with smaller amounts derived from the enteroendocrine
cells in the proximal small intestine (1, 2) and from
pancreatic islets (3, 4). During synthesis, a significant
proportion of the peptide undergoes posttranslational
modification in which the serine’ residue is covalently
linked to a medium-chain fatty acid. This acylation
process is required for the peptide to bind to its cognate
receptor, the GH secretagogue receptor (GHSR) 1a (1),
and most biological actions ascribed to ghrelin require
the activation of GHSR-1a (5). The ghrelin isoform that
has not been acylated or has had the acyl group
enzymatically removed, des-acyl ghrelin (DAG), does
not bind to the classical ghrelin receptor (1) but a

© 2013 European Society of Endocrinology

bolism in adipocytes (8) have been attributed to it.
Given the ‘antidiabetic’ properties of DAG as opposed
to the ‘prodiabetic’ effects of acyl ghrelin (AG) observed
in preclinical and clinical studies, DAG analogs have
been developed recently and their potential as thera-
peutics for type 2 diabetes is being investigated (9).
Acylation of ghrelin is a specific process primarily
mediated by the recently discovered enzyme ghrelin
O-acyl transferase (GOAT) (10, 11). It is unclear what
percentage of ghrelin is acylated intracellularly, but
both AG and DAG are detectable in the circulation
where they exist in reported ratios of 1:4 to 1:9
depending on the sample preservation methods, assay,
species, or nutritional state, with AG being the less
common species (1, 12).
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Ghrelin is the only known circulating factor that
promotes food intake. In healthy subjects, plasma
ghrelin levels rise progressively before meals and fall
to a nadir within 2 h after eating, with changes in
plasma levels during meals that vary two- to fourfold
(12, 13). Interestingly, total ghrelin levels do not
increase significantly after long-term food deprivation,
but the two isoforms follow distinct patterns: DAG
remains at peak pre-fasting levels while AG concen-
trations settle near what is the usual nadir following a
typical meal (12). Consistent with these changes in
plasma ghrelin isoforms, expression of Goat (Mboat4)
mRNA decreases in the stomach of fasting mice (14).
These observations suggest that ghrelin secretion and
acylation are processes that may be separately
regulated. Detailed information about ghrelin elimin-
ation in healthy individuals is limited. Substantial
hepatic extraction of AG has been reported (15), but it
is not clear whether deacylation takes place primarily in
the liver. In contrast, there is some evidence that renal
clearance (CL) may be a major pathway for the CL of
DAG (16, 17) typical for the CL of small peptides. In
addition to hepatic and renal elimination, AG is
deacylated to DAG by serum and tissue esterases such
as butyrylcholinesterase (BuChE) (18). It is unclear
whether exogenous ghrelin administration alters the
deacylation process in humans.

Given many of the observed opposing metabolic
effects of AG and DAG and suggestion of different routes
of elimination, it is important to understand the
metabolism of these two isoforms and their pharmaco-
kinetic properties when designing physiology or
pharmacology studies for clinical research. The objec-
tive of this study was to determine basic pharmacoki-
netic parameters of AG and DAG in healthy individuals
with normal liver and kidney function. We focused on
the relation of ghrelin dose to change plasma levels and
systemic exposure as measured by area under the
plasma concentration curve (AUC) and peak plasma
levels (Cphax). We also examined the dynamic changes in
AG and DAG concentration during continuous AG,
DAG, or combined AG and DAG infusions in a separate
study of ten healthy subjects. Finally, we assessed the
effects of AG infusion on the serum activity of the
ghrelin deacylation enzyme BuChE.

Materials and methods

Study design

Study 1 This was a randomized, single-blinded study
designed to examine the effect of ghrelin on insulin
secretion and glucose tolerance in healthy subjects (19).
Briefly, healthy volunteers between the ages of 18 and
55 years with a BMI between 18 and 29 kg/m? were
recruited from the greater Cincinnati area. Subjects
with a history or clinical evidence of impaired fasting
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glucose or diabetes mellitus, recent myocardial infarc-
tion, congestive heart failure, active liver or kidney
disease, GH deficiency or excess, neuroendocrine tumor,
anemia, or those who were on medications known to
alter insulin sensitivity were excluded. Study procedures
were performed at the Cincinnati Children’s Medical
Center Clinical and Translational Research Center
(CTRC). All study participants signed informed consent
documents that had been approved by the University of
Cincinnati Institutional Review Board.

After a 10- to 12-h fast, either synthetic human AG
(Bachem AG, Rubendorf, Switzerland) at doses of 1, 3,
and 5 pg/kg per h or 0.9% saline was infused for a total
of 65 min on four separate days. An i.v. bolus of glucose
(11.4 g¢/m? body surface area) was given at 55 min as
part of the intravenous glucose tolerance test (IVGTT) to
assess acute insulin response to i.v. glucose. After
ghrelin infusion was stopped at 65 min, seven
additional blood samples were taken at 2- to 5-min
intervals for 20 min to measure ghrelin CL rate. Blood
samples were stored on ice and plasma separated by
centrifugation within an hour. The plasma samples
were stored at — 80 °C until further analysis.

Study 2 Subjects. Healthy volunteers, similar to those
in study 1, between the ages of 18 and 50 years with a
BMI between 18 and 29 kg/m? were recruited from the
greater Cincinnati area. All study participants signed
informed consent documents that had been approved by
the University of Cincinnati Institutional Review Board.

Subjects received: i) synthetic human AG (Bachem
Americas, Torrance, CA, USA; 0.28 ug/kg bolus
followed by 1 ug/kg per h rate of infusion); ii) human
DAG (C S Bio Co., Menlo Park, CA, USA; 1.1 ug/kg bolus
followed by 4 pg/kg per h continuous infusion); iii) a
combined infusion of AG and DAG (same rate as single
infusions); or iv) saline for a total of 210 min on four
separate study days in randomized order. A frequently
sampled IVGTT (FSIVGTT) designed to quantify insulin
secretion and insulin sensitivity began 30 min after the
infusions were started and continued for 180 min.
Ghrelin measurements were obtained at O, 5, 15, 25,
30, 60, 90, 150, and 210 min during the infusion period.

Studies 1 and 2 Sample analyses. Blood samples were
collected into 3 ml EDTA-plasma tubes containing
0.06 ml AEBSF, a protease and esterase inhibitor
(4 mM final concentration). Following centrifugation,
200 pl 1 N (0.2 mM) HCI was added to every milliliter of
plasma. Plasma total immunoreactive ghrelin was
measured by RIA using a commercially available kit
(Millipore, Billerica, MA, USA). Lower and upper limits
of detection were 40 and 2560 pg/ml with intra- and
interassay CV of 4 and 14.7% respectively. AG and DAG
levels were measured using separate sensitive and
specific two-site sandwich ELISAs. The sensitivity of
the AG assay was 6.7 pg/ml with an intra- and
interassay CV of ~14 and 18% (12). The sensitivity of
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Figure 1 Plasma acyl ghrelin (AG) levels after 1, 3, and 5 ng/kg
per h doses of AG or saline continuous i.v. infusion (0—-65 min) in
healthy men and women in study 1. Data are presented as
mean+s.E.Mm.

the DAG assay was 4.6 pg/ml with an intra- and
interassay CV of ~13 and 20% (12). BuChE activity
was determined by colorimetric assay following estab-
lished methods (20). Assay results are reported as
enzyme units relative to the activity of a purified bovine
BuChE standard (Sigma—Aldrich #C1057) run on each
plate. The assay showed an intra-assay CV of 3.6% and
an interassay CV of 7.2%. All samples were run in
duplicates, and all specimens from a given participant
were run in the same assay.

Pharmacokinetic analysis. The pharmacokinetic data
were analyzed with the non-compartmental model
using WinNonlin 6.2 (Pharsight, Inc., Cary, NC, USA).
Peak plasma levels (Cp,.y), time required to achieve Cp, .y
(Thmax), mean residence time (MRT), and volume of
distribution (V4) were estimated (21). The elimination
half-life (¢t1/5) of ghrelin was calculated as the ratio of
Ln2/A, (4, slope of the terminal portion of the
concentration vs time curve after the termination of
ghrelin infusion). AUCq j.c Was computed using the
linear trapezoidal rule. Average of the two plasma
ghrelin levels before ghrelin or saline administration
served as baseline. Systemic CL was estimated by
dose/AUCq_jast-

Statistical analysis

All pharmacokinetic estimates are expressed as
mean +s.0. Dose proportionality in C,,, and AUC
were assessed using both linear regression and power
law. Pharmacokinetic parameters between low and high
ghrelin doses were compared using a paired Student’s

Pharmacokinetics and dose proportionality of ghrelin ~ 823
t-test. Repeated measures ANOVA was used to compare
parameters across the three ghrelin doses. Data were
analyzed using GraphPad Prism version 5.0 (GraphPad
Software, La Jolla, CA, USA).

Results

Subject characteristics

Subject characteristics for study 1 were described
in detail elsewhere (19). In brief, 12 healthy men
and women (eight male/four female) with an average
age of 26.0+11.4 years (mean+ts.n.) and BMI of
24.1+4.2 kg/m> completed the study. In study 2,
17 subjects (nine male/eight female) completed the
study. AG and DAG measures were obtained in 10 of the
17 subjects (five female/five male age 25.9 +6.1 years,
BMI 24.5 + 3.4 kg/m?).

Plasma concentrations of ghrelin during
infusions

In study 1, infusions of AG at 1, 3, and 5 pg/kg per h
raised plasma concentrations of AG to peak concen-
trations of 3.9+3.5,11.7£2.4, and 19.6 £2.3 ng/ml,
corresponding to 118-, 355-, and 594-fold increases
from the mean baseline AG concentrations of 0.033
+0.024 ng/ml respectively. A plasma steady state was
reached at 45 min after the start of ghrelin infusion.
Overall, the mean plasma concentration of AG demon-
strated a dose-response increase during the continuous
i.v. infusion (Fig. 1).

In study 2 (Fig. 2 A, B, C, and D), the 1 pg/kg per h
AG infusion raised plasma AG concentrations from
0.043+£0.038 to 1.93+1.30 ng/ml and DAG concen-
trations from 0.0784+0.045 to 1.294+1.12 ng/ml
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Figure 2 (A, B, C, and D) Plasma AG and DAG concentrations

during i.v. AG and DAG infusions in healthy men and women
(n=10) in study 2. Data are presented as mean +s.E.m.
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Figure 3 Plasma AG concentration during DAG and saline infusions
in 10 healthy men and women (Study 2). Data are presented as
mean + SEM.

respectively, corresponding to a 44- and 17-fold
increase from baseline (Fig. 2B). Conversely, the
4 ng/kg per h DAG infusion exclusively increased
plasma DAG levels (from 0.068+0.044 to 15.9+
4.91 ng/ml) corresponding to a 233-fold rise. AG levels
did not change with administration of DAG (baseline
0.036+0.014 to 0.050+0.021 ng/ml) (Fig. 2C) and,
in fact, were similar to those during the saline infusion
(Fig. 3). The combined AG and DAG infusions raised
plasma AG 54-fold, and DAG concentrations 272-fold,
changes of similar magnitude to the individual infusions
(Fig. 2D).

The DAG:AG ratio was 1.85+0.07 at baseline
and did not change during the saline infusion (DAG
AUCq _1ast:AG AUC(_jast=1.90£0.50), remaining con-
stant during the entire FSIVGTT (Table 1 and Fig. 2A).
The 1 pg/kg per h AG infusion reversed the DAG:AG
ratio to 0.4:1 (DAG AUCy_jas:AG AUCq 15t =0.61+0.3;
Table 1 and Fig. 2B), and although DAG increased
significantly with the AG infusion, levels remained
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lower than AG during the entire 210 min. DAG was
the predominant plasma isoform with the combined AG
and DAG infusion (Fig. 2D).

Pharmacokinetics of AG and DAG

The pharmacokinetic estimates of AG and total ghrelin
for study 1 as determined by the non-compartmental
analysis are summarized in Table 2. The mean t;,,
of AG was in the range of 9-11 min. The Cpax
achieved with the 3 and 5 pg/kg per h dose AG
infusions was approximately three and five times that
with the 1 ug/kg per h dose respectively. AUCq_j. also
increased linearly with dose, and like C.y, it demon-
strated a dose-proportional change. The observed
differences in C,,x and AUCy_j.st Were abolished when
the measures were normalized to dose for AG. The MRT,
CL, and the steady-state V4 were similar between the
three doses (Table 2).

Plasma total ghrelin concentrations during AG
infusion were reported previously (19). A summary of
the pharmacokinetic properties of total ghrelin is shown
in Table 2. In comparison with AG, total ghrelin had a
longer t;,> of ~35 min. Consistent with the findings for
AG, C.y for total ghrelin increased proportionally with
higher doses of AG infusion (5.491+0.61, 17.13+4.50,
and 28.734+11.59 ng/ml, from low to high respect-
ively). Similarly, the AUCq_ . for total ghrelin during
AG infusions was 531.9+155.0, 1583.14+574.8, and
2326.1£587.9 min Xng/ml from low to high doses
respectively. There was no significant difference in MRT,
CL, or V4 between the three doses (Table 2).

The relationship between dose and plasma total ghrelin
and AG concentrations were examined using linear
regression analysis. Both plasma AG and total ghrelin
Cmax and AUC increased linearly with increased doses
of AG administration (R>=0.86 and 0.94 for AG, Fig. 4A
and B; R?=0.66 and 0.72 for total ghrelin, Fig. 4C and
D respectively) whereas the dose-adjusted Cp,.x (Cinax/D)
and AUCq _ 1.5t (AUCy _ 1.5/ D) remained constant (Table 2).

Table 1 Pharmacokinetic parameter estimates of plasma AG and DAG after administration of varying doses of
AG or DAG or the combination of AG and DAG by continuous i.v. infusion in healthy men and women obtained by
non-compartmental analysis. Results are presented as mean+s.p.

Saline AG infusion DAG infusion AG+DAG infusion
infusion (1 ng’kg per h) (4 ng/kg per h) (1+4 pg/kg per h)

Pharmacokinetic parameters of AG

Trnax (Min) 148189 65166 101163

Cinax (ng/ml) 0.045+0.02 1.931+1.30 0.05+0.021 1.65+0.63

AUC (0asty (minX ng/ml) 5.67+3.10 267.86+180.83 7.7+1.88 253.57+90.86

MRT (min) 107 +11 108+10 106+8 1077

CL (ml/min per kg) 5.4+2.8 4.5+2.0
Pharmacokinetic parameters of DAG

Trnax (min) 109+74 170149 175132

Crmax (ng/ml) 0.078+0.03 1.29+1.12 15.941+4.91 15.481+3.6

AUC g_iasty (Min X ng/ml) 11.04+5.05 172.35+132.2 2696.53+953.3 2556.56+714.6

MRT (min) 107+10 107 £11 106+8 110+9

CL (ml/min per kg) 1.7+£0.9 1.7+0.6
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Pharmacokinetics and dose proportionality of ghrelin

Table 2 Pharmacokinetic parameter estimates of plasma acyl and total ghrelin
after administration of 1, 3, and 5 pg/kg per h dose AG by continuous i.v. infusion
(study 1) in healthy men and women obtained by non-compartmental analysis.

Results are presented as mean+s.p.

AG infusion dose

Parameter 1 ng/kg per h 3 ng/kg per h 5 ng/kg per h
Acyl ghrelin
Half-life (min) 1114 10+3 9+2
Crnax (ng/ml) 3.87+3.46 11.724+2.39 19.64+2.34
maxi 3.87+3.46 3.91+0.79 3.92+0.47
AUCo_g0) (Min X ng/ml) 142+47 5494100 896+ 174
(0-90) 142+47 183+33 179+35
MRT (min) 45+3 45+2 45+2
CL (ml/min per kg) 7.661+2.36 5.73+0.91 5.47+0.69
Vg (mlkg) 126458 79124 78+22
Total ghrelin
Half-life (min) 39+17 32+10 34113
Cinax (ng/ml) 5.494+0.61 17.13+4.5 28.73+11.59
AUC 090y (MinxXng/ml) 323+61 955+202 1550+492
AUC 90/D 323+61 318167 310498
MRT (min) 85+19 91149 47+14
CL (ml/min per kg) 2.274+1.003 2.26+0.77 2.48+0.71
Vg (ml/kg) 114+21 127156 119+65

BuChE is the enzyme that accounts for the majority of
deacylation of AG in the circulation of humans (18).
Plasma BuChE activity was measured during saline and
ghrelin infusion in six subjects at 0, 44, and 65 min into
the AG infusion. Neither infusion time nor treatment
assignment affected plasma BuChE levels (P=0.95,
two-way repeated measures ANOVA), suggesting that
neither the exogenous AG infusion nor the dose of AG
altered the ghrelin des-acylation process.

Study 2

The pharmacokinetic estimates of AG and DAG obtained
by non-compartmental analysis are summarized in
Table 1. Both C,,., and AUCq_j.s for AG and DAG in
the plasma increased during the 1 pg/kg per h AG
infusion, while the DAG infusion only increased C, .y
and AUCy_j,s for DAG. MRTs were similar across all
infusions. The systemic CL was similar between single-
peptide and combined-peptide (AG-+DAG) infusions
but the CL of DAG was approximately three times
smaller than AG when they were infused alone
(Table 1). Unlike study 1, a direct measure of AG or
DAG tq,> could not be achieved because ghrelin was
infused at a constant rate till the end of the study.

Discussion

Recent experimental findings indicate that ghrelin plays
an important role in the regulation of energy balance and
glucose metabolism (22). The available information
suggests that the two ghrelin isoforms, AG and DAG,
have distinct metabolic effects (23), and analogs of both
compounds are being developed for potential therapeutic

application (9, 24). Despite the accumulation of evidence
supporting physiological roles for ghrelin, little is known
about its metabolism and CL. In this study, we analyzed
data from studies with AG and DAG infusions to determine
pharmacokinetic parameters for the two isoforms in
healthy, nonobese individuals with normal liver and
kidney function. Our findings suggest that AG and DAG
have different metabolic rates in the circulation with
distinct rates of CL. Moreover, the results presented here
indicate that AG is actively deacylated in the plasma.

In study 1, the wide range of ghrelin doses and
frequent measures of AG and DAG allowed us to
examine the dose proportionality of i.v. ghrelin
administration. Relative to the 1 pg/kg per h dose, the
Cax for AG resulting from the 3 and 5 ug/kg per h dose
infusions increased by three- and fivefold while AUC
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Figure 4 Relationships of observed Cnax and AUC o) values for

acyl ghrelin (AG) and total ghrelin vs AG infusion dose with linear
regression (bold line) and the 95% CI (dashed line)
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increased by four- and sixfold respectively. Consistent
with this, the dose-normalized C,,, and AUC values
were not different between doses (Table 2). These
observations demonstrate a clear and strong linear
relationship between plasma AG concentration and
treatment dose (Fig. 2A and B). In keeping with
the dose proportionality of the pharmacokinetics, the
elimination characteristics of AG, as reflected in the
t1/2, MRT, systemic CL, and V4, were largely unchanged
with different administration rates (Table 2). Thus, our
findings demonstrate that, for AG, the increase in
plasma levels can be reliably predicted based on the
observed linear relationship for the dose range of
1-5 pg/kg per h. A similar positive linear relationship
was also observed between total ghrelin C,,.,, AUC, and
AG dose (Fig. 2C and D) (12). Of note, the C,.x, MRT,
and CL estimates were quite different for comparable AG
doses in study 1 and 2 (Tables 1 and 2). The ghrelin
ELISA platform was changed between study 1 and 2 to
improve assay sensitivity (these assays have very
different specificies). This could partially explain the
difference of pharmacokinetic parameters between
the two studies. Differences in subject characteristics
(i.e. body weight) between the two studies could
also contribute to the pharmacokinetic variances.
However, the fold increase in C,,,, and AUC from saline
to 1 pg/kg per h dose ghrelin infusion was quite similar
between studies.

As the majority of the studies using exogenous ghrelin
administer AG, the pharmacokinetics reported here
provides some guidance for the appropriate dose and
route of administration for further research. In addition
to the novel observation of a dose proportionality,
our findings on other pharmacokinetic parameters for
ghrelin are consistent with those reported previously.
For example, the first-order elimination t,,, we
determined using non-compartmental analysis was
9-11 min for AG and 30-34 min for total ghrelin
using doses ranging from 1 to 5 pg/kg per h. This is
comparable to the findings of Akamizu et al. (25) who
reported a t1/,» of 9—13 min for AG and 27-31 min for
total ghrelin following ghrelin bolus injections 1 and
5 ug/kg using a one-compartment model analysis.
Vestergaard et al. (26) employed a two-compartmental
model to describe the pharmacokinetics of total ghrelin
following administration of AG using a dose of 5 pmol/kg
per min (equivalent to 1 pg/kg per h) for 180 min. Their
observed pharmacokinetic parameters for total ghrelin
(Crnax of 4.41 £0.29 pg/l, initial t1,5 of 24.2 4+ 2.5 min,
and MRT of 92.7 +16.3 min) are in general agreement
with the ones we report here. Likewise, the results of
Paulo et al. (27) of a mean t;,, of 36 + 2.4 min for total
ghrelin estimated from the 1 ng/kg AG injection is very
similar to our estimates. However, their t;,, for AG of
214 3.0 min is longer than our estimate of 11 + 4 min.
In contrast to our observations, the metabolic CL and
the t1,, of AG and total ghrelin were reported to
be increasing with higher doses of ghrelin in that study.

www.eje-online.org
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If these results are accurate, it would suggest that the
CL/inactivation of AG is nonlinear and concentration-
dependent. Differences in study design, study population,
and assay methods are likely to explain the apparent
discrepancy between our findings and those from
Paulo et al.

DAG does not bind to the GHSR-1a and its biological
role has been questioned since no cognate receptor has
been identified (1). Some investigators have reported that
DAG can exert beneficial effects on insulin secretion and
glucose tolerance that, in general, tend to be opposite
those of AG (28, 29, 30). DAG analogs are being developed
as therapeutic agents for metabolic diseases such as type 2
diabetes (9). However, the pharmacokinetics of synthetic
human DAG has not been well characterized. We found
that when AG (1 pg/kg per h) alone was infused, both
plasma AG and DAG levels increased significantly
showing a 47- and 16-fold increase in C,,,,, from baseline
respectively. Conversely, the DAG (4 pg/kg per h) alone
infusion preferentially increased DAG concentration in
the circulation without altering the levels of AG relative to
saline infusion (Fig. 2A, B, and C). These findings are
consistent with observations made by Vestergaard et al.
(31) and suggest that AG is metabolized to DAG in
peripheral circulation while little acylation of exogenous
DAG is occurring. The combined AG and DAG infusion
raised plasma levels of AG and DAG to the same extent as
that observed with individual administration. The
pharmacokinetic parameters such as CL and V4 of both
AG and DAG were similar whether given as single agents
or in combination.

It is not known what percentage of the ghrelin is
acylated when secreted from ghrelin—producing cells.
Both duration of fasting and dietary medium-chain fatty
acid composition can impact ghrelin acylation (12, 14).
Using a highly sensitive and specific two-site sandwich
assay to measure AG and DAG, we found that DAG:AG
ratio was 1.8 0.7 at baseline (after an overnight fast)
and 1.910.5 during saline infusion (DAG AUCq_j.s:AG
AUC(_jast). This ratio remained quite constant during the
FSIVGTT (Fig. 2A) and is consistent with a previous
report by Liu et al. (12) using the same ghrelin assay.
Following AG infusion, plasma concentrations of both AG
and DAG increased substantially but the ratio of DAG:AG
in plasma remained constant during the infusion period
(Fig. 2B and C). This would suggest that in addition to the
production of ‘new’ DAG from AG breakdown, DAG
elimination was also increased in proportion to load
resulting in a steady state with a constant DAG:AG ratio.
Data on the route of elimination of ghrelin is limited and
seems to differ for the two isoforms as AG is extracted
substantially by the liver (15, 32) while DAG appears to
undergo significant renal CL (16, 17). Several enzymes
have been identified as responsible for the removal of the
octanoyl group from the AG peptide. BuChE is the main
deacylating enzyme in humans (18). In our study, BuChE
activity was not altered by AG infusion. We did not
measure renal CL of ghrelin in this study.
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Even though the t;,5 could not be directly determined
in study 2 due to the study design (bolus injection
followed by continuous infusion), the observed
difference between the CL of these compounds (DAG
1.7+0.9 vs AG 5.4+2.8 ml/min per kg, Table 1)
suggests that the half-life of DAG is approximately
threefold longer than that of AG, assuming that other
parameters such as V4 between AG and DAG are similar.
This may be the primary factor contributing to the
observed longer t; ,, of total ghrelin. In all likelihood, the
t1,> of DAG reflects CL of the peptide from the
circulation, while the much shorter t;,, of AG is
principally due to deacylation in the circulation and
conversion to DAG. In fact, the conversion of AG to DAG
is relatively slow compared with other regulatory
peptides that are metabolized intravascularly such as
glucose-dependent insulinotropic polypeptide (33) and
glucagon-like peptide 1 (34). Moreover, the CL of DAG is
also slower than peptides like insulin and glucagon (35).
Thus, based on our analyses, the ghrelin isoforms are
relatively long lived in the circulation, which may have
implications for their biological effects.

In conclusion, this study is the first to examine the
proportionality of pharmacokinetic parameters of AG
and total ghrelin in healthy humans. The pharmacoki-
netic parameters of AG reported in this study provided
useful information for investigators who conduct
clinical research on ghrelin physiology or pharma-
cology. This understanding is important as both AG and
DAG appear to have therapeutic properties and are
currently being investigated in the clinical setting for
pharmacological activity.
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