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Abstract

Whether considering the relationships among chemical components, geographic events or
currency exchange rates, knowing if and to what extend one process influences another
is of common interest. The term causality detection means the inference of such causal
influences. There exist many different ways to measure this causality, among them the
well-known Granger causality and the mutual information. A different approach to mea-
sure causal dependencies among processes, based on information theoretical principles, is
transfer entropy. In this work, we apply transfer entropy to gene expression data in order
to infer causal relationships among proteins. This is a first step towards the reconstruc-
tion of gene regulatory networks from protein time series data with this method.

For this purpose, we first analyze transfer entropy theoretically as a causality measure.
We find features of the transfer entropy outcome that indicate existence of causal rela-
tionships, and propose two different approaches for their interpretation. Since transfer
entropy uses the processes’ time series for the inference of causality, it is a highly data de-
pendent method. For this reason, we identify important properties of gene expression data
and investigate in simulation studies to what extend the performance of transfer entropy
depends on these properties. In addition to this simulative analysis we apply transfer
entropy to two different protein data sets: a synthetic gene circuit established in E.coli.
and a hematopoietic stem cell data set. Both real world examples stem from time-lapse
fluorescence microscopy experiments and comprise tree-structured protein measurements.
We extend the method to incorporate this tree-structure, since transfer entropy up to that
point could not properly be used for such data. With this novel approach we are able
to rediscover regulatory dynamics for both, artificial and biological protein data sets, to-
gether with regulation times indicating the time scales on which the regulations take place.

Transfer entropy proves to be an appropriate method for measuring causal relationships
among proteins, facilitating the inference of regulatory dynamics. Application of the
method to single time series allows for the detection of interactions on a single cell level,
while averaging over many transfer entropies allows for the detection of regulatory dy-
namics in whole populations.
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Zusammenfassung

Zu wissen, wie sich sich zwei Prozesse gegenseitig beeinflussen, ist in vielen Gebieten
von großem Interesse. Es gibt verschiedene Methoden und Ansätze, um solche Zusam-
menhänge zu untersuchen, unter ihnen die

”
Granger causality“ und die

”
mutual informa-

tion“. In dieser Arbeit wenden wir Transfer Entropy, ein Maß für Kausalität basierend auf
informationstheoretischen Prinzipien, auf Genexpressionsdaten an, um herauszufinden,
ob und wie sich zwei Proteine gegenseitig regulieren. Die vorliegende Masterarbeit stellt
dabei einen ersten Schritt hin zur Rekonstruktion von Proteinnetzwerken mit Transfer
Entropy dar.

Zu Beginn analysieren wir Transfer Entropy als theoretisches Maß für Kausalität. Wir
bestimmen Eigenschaften des Transfer Entropy Ergebnisses, die auf die Existenz von
kausalen Zusammenhängen zwischen zwei Prozessen schließen lassen, und schlagen zwei
verschiedene Ansätze vor, wie die Ergebnisse interpretiert werden können. Nachdem
Transfer Entropy mit den Zeitreihendaten der Prozesse berechnet wird, ist die Meth-
ode stark abhänging von den verwendeten Daten. Aus diesem Grund identifizieren wir
wichtige Kenngrößen von Genexpressionsdaten, und untersuchen in umfangreichen Sim-
ulationsstudien, wie sich Änderungen dieser Kenngrößen auf das Ergebnis der Transfer
Entropy auswirken. Dieser simulative Teil der Arbeit wird ergänzt duch einen Anwendun-
steil, in dem wir Regulationsmechanismen in echten Genexpressionsdaten inferieren. Dazu
untersuchen wir zwei unterschiedliche Datensätze: ein künstlich generiertes Gen-Netzwerk
mit drei unterschiedlichen Proteinen, und einen Datensatz, der Messungen von zwei Tran-
skriptionsfaktoren beinhaltet, die an der Differenzierung hämatopoetischer Stammzellen
beteiligt sind. Beide Datensätze werden mit

”
time-lapse fluorescence microscopy“ gewon-

nen, einem biotechnologischen Verfahren, das einzelne Zellen während ihrem Wachstum
beobachtet und aufgrund der Zellteilung Daten in Baumstruktur liefert. Nachdem Trans-
fer Entropy bisher nur auf Zeitreihendaten angewendet werden konnte, die keine solche
Baum-Struktur aufweisen, erweitern wir die Methode dahingehend. Mit diesem neuen
Ansatz sind wir in der Lage, sowohl auf künstlich erzeugten, als auch auf biologischen
Daten, paarweise Regulationen von Proteinen zusammen mit den jeweiligen Zeitskalen
der Regulationen zu inferieren.

Während dieser Masterarbeit zeigte sich, dass Transfer Entropy eine geeignete Methode
ist, um kausale Zusammenhänge in Genexpressionsdaten zu ermitteln. Diese kausalen
Zusammenhänge ermöglichen wiederum Rückschlüsse auf die unterliegenden Regulation-
smechanismen. Die Methode kann dabei entweder verwendet werden, um Regulationen
zwischen Proteinen in einzelnen Zellen, oder in ganzen Zell-Populationen zu finden.
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1 Introduction

Although the term causality is highly controversial and has never been uniquely defined,
it is widely used in mathematics and physics and can be understood as a flow among
processes (see, e.g. [27]). Causality measures whether and to what extend a process
influences the dynamics of another process. The detection of causal relationships among
variables and processes is a fundamental question in science (see, e.g. [35]). In the last
decades, there has evolved a variety of methods to measure causality, based on very dif-
ferent principles and ideas [27]. One of them, the so called transfer entropy [45], will be
analyzed and applied in this work.

Measuring causality among variables is of interest in many different fields, such as econ-
omy, climatology, social sciences, physics, chemistry and biology (see, e.g., [27]). One
possible field of application is stem cell research. Understanding how stem cell differenti-
ate and make their fate decisions, is a highly discussed topic in regenerative medical and
biological research, since stem cells allow for new ways of treatment of different diseases,
such as cancer, neuro-degenerative disorders, diabetes or liver and heart diseases [13, 59],
e.g. by replacing diseased or damaged cellular tissue [56].

In this thesis we aim to infer causal relationships among proteins in cells, with a special
focus on hematopoieses, i.e. the differentiation of blood stem cells to mature blood and
immune cells. The following chapter serves as an introduction to the most important con-
cepts used in this work, including mathematical causality principles and an introduction
to stem cell biology.

Development of the term causality

In earlier literature, two important conditions were defined for causation in deterministic
systems: necessity and sufficieny. Hence, when a process X causes a process Y , necessity
means, that if X occurs, then Y must occur, whereas sufficiency means, that if Y occurs,
X must have occurred. Nevertheless, the assumption of purely deterministic situations is
not in correspondence with reality [27]. Due to this issue, the term causality was modified,
e.g. by including terms of likelihood (see, e.g., [40]) or correlation principles (see, e.g.,
[50]).

In 1956, Norbert Wiener [62] gave the first definition of causality that could be measured
computationally:

’
For two simultaneously measured signals, if we can predict the first signal bet-
ter by using the past information from the second one than by using the infor-
mation without it, then we call the second signal causal to the first one.‘ [27,
p.3]

1



1 Introduction

Wiener’s definition was inspiration to Clive W.J. Granger, whose Granger causality is still
one of the most well known forms of causality. When Granger won his nobel prize in 2003
for

”
methods of analyzing economic time series with common trends (cointegration)“ [23],

he defined two aspects of causality in his nobel lecture [22]:

1. The cause occurs before the effect,

2. The cause contains information about the effect that is unique, and is in no other
variable.

As a consequence, the causal variable can help forecast the effect variable after other data
has first been used.

Measuring causality

Since there exists no universally accepted definition of causality, there exists no unique
method for its inference.

A very common, model based approach to measure causality is the Granger causality
mentioned above.. It is based on the two components for causality identified by Granger
in the preceding section. The Granger causality is a statistical test, that determines,
whether the prediction error of a time series Yt can be reduced by including measure-
ments from the second time series Xt. Is this the case, then Xt is said to Granger cause
Yt [21]. By exchanging the roles of the two time series, the question of causal influence in
the opposite direction can be adressed. The predictors in Granger causality are computed
using linear regression models. For this reason, this form of Granger causality is often
referred to as linear Granger causality (Ancona et al. [1] give a nonlinear extension of
Granger causality).

Other approaches to detect regulations among processes are based on correlation. These
approaches exploit the fact that the effect occurs with a certain time delay. Due to this
time delay, there is a misalignment between the two time series. Shifting one signal in
time, while letting the other stay constant and measuring correlation among the variables
yields the causal relationships together with the corresponding time delay for that rela-
tionship [9]. Such approaches have been applied to electroencephalography (EEG) and
electromyography (EMG) data [20] and to synthetic gene circuits [15, 16]. Nevertheless
it should be mentioned that correlation between two processes does not necessarily mean
causation. There are many examples of so called spurious correlations where two pro-
cesses correlate but do not have causal effects onto each other. (see, e.g., [24]).

A third approach to causality detection is by exploiting information theoretical princi-
ples. Information theory provides a variety of methods for measuring causal influences
among time series (see, e.g. [27] for an overview). One of them is transfer entropy [45]. It
is based on transition probabilities that contain all information on the causality between
two variables and can therefore distinguish between driving and responding variables [14].
Transfer entropy has successfully been applied to chemical processes [6] and in the field of
neurosciences [60], e.g. for the inference of of signaling pathways in the human brain [28,

2
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FIGURE 1 | Model of the hematopoietic hierarchy. The HSC resides at the top of the hierarchy and is defined as the cell that has both the
self-renewal capacity and the potential to give rise to all hematopoietic cell types (multipotency). Throughout differentiation, an HSC first loses
self-renewal capacity, then loses lineage potential step-by-step as it commits to become a mature functional cell of a certain lineage. The cell surface
phenotype of each population is shown for the mouse and human systems. Intermediate precursors between the first lineage-committed progenitors
(LCP) and final mature cell, and different subsets of mature B- and T-cells are omitted. In the mouse system, heterogeneity of MPPs has been revealed
by differences in cell surface marker phenotypes and functional differences of their subsets discussed. For example, evidence suggests that some of
MPPs directly give rise to MEP without passing through CMP (dashed arrow). CLP, common lymphoid progenitor; CMP, common myeloid progenitor;
DC, dendritic cell; EP, erythrocyte progenitor; GMP, granulocyte/macrophage progenitor; GP, granulocyte progenitor; HSC, hematopoietic stem cell;
MacP, macrophage progenitor; MEP, megakaryocyte/erythrocyte progenitor; MkP, megakaryocyte progenitor; NK, natural killer; Lin, lineage markers.

of these antigen-presenting cells (CD8α+ DC, CD8α−

DC, and plasmacytoid DC) can be derived either from
CMP or CLP28–30; the biological functions of the six
different DC subsets identified in our studies are yet
to be elucidated.

HUMAN HSC AND DOWNSTREAM
PROGENITORS
Human HSCs were isolated using similar technologies
to those used for mouse HSCs, i.e., isolation of
cells representing different stages of differentiation
on the basis of cell surface marker phenotype, coupled
with functional assays. For human hematopoiesis, the
property of long-term reconstitution of the various
cell subsets is evaluated in xenotransplantations

models, utilizing immunodeficient mice, sometimes
transplanted with fetal human hematolymphoid
organs for irradiation–reconstitution assays.31,32 The
first cell surface marker used to enrich human HSCs
was CD34, a ligand for l-selectin that is expressed by
only 0.5–5% of blood cells in human fetal liver, cord
blood, and adult BM.33–35 In vitro assays revealed not
only that almost all CD34+ cells have multipotency
or oligopotency, but also that the population was still
very heterogeneous.

The first prospective isolation of human HSC
exhibited the phenotype of CD34+ CD90+ Lin−,
where the Lin markers include T, B, NK, and myelo-
erythroid specific markers.31 These cells generated
lymphoid and myeloid progeny in both in vitro colony

642 © 2010 John Wiley & Sons, Inc. Volume 2, November/December 2010

Figure 1.1: Differentiation of hematopoietic stem cells (HSCs) to mature blood cells. HSCs
are able to renew themselves and to differentiate to any mature blood cell. For the
differentiation, the stem cell becomes a progenitor and thereby loses its power to
renew itself. It follows a cascade of subsequent cell types, until it reaches a mature
cell state. During this differentiation, the cell has to chose between different cell
fates and commit to the respective lineage. Figure adapted from J. Seita and I.
Weissman [49].

61] and to measure brain connectivity [44]. It has been modified for network analysis [4]
and determination of multiple time delays in systems [41]. Apart from biology, there are
other interesting applications of TE, e.g. for the analysis of stock markets [3], robotics
[58] or other technological applications [33].

Barnett et al. [5] have shown, that transfer entropy and Granger causality are equivalent
for processes that capture the dynamics of Gaussian random variables. Since it is a strong
assumption to have data that follows a Gaussian distribtution, K. Hlaváčková-Schindler
[26] investigated under which conditions on the probability density function of the data
this equivalence can be extended (see [26] for details).

Hematopoiesis

Stem cells are specific cells that are capable of renewing themselves and to differentiate
to any type of mature cell (see, e.g., [36]). This implies, that stem cells have the potency
to rebuilt damaged tissue. Therefore, stem cell research is of high interest in the field of
regenerative medicine [13, 56, 59].

The stem cells considered in this work are blood stem cells, termed hematopoietic stem

3



1 Introduction

Transplantation experiments in mice suggest that some charac-
teristics that distinguish fetal liver and adult HSCs are intrinsically
regulated (Bowie et al., 2007). Furthermore, HSCs in older age
mice exhibit different self-renewal and gene expression patterns
than those from younger animals (see Review by D. Rossi et al.,
page 681 of this issue). How the distinctive properties of HSCs at
different developmental stages are programmed is of particular
interest in correlating biological read-outs with molecular deter-
minants. Recently, the HMG-box containing factor Sox17, which
is also critical to endoderm specification, has been identified as
critical for generation of fetal, but not adult, HSCs (Kim et al.,
2007). ‘‘Geriatric’’ HSCs are less efficient at homing to and en-
grafting in the bone marrow, possibly linked to their increased
cycling frequency. In addition, the differentiation potential of
older HSCs is biased toward myeloid versus lymphoid lineages
(Sudo et al., 2000). Several changes in gene expression of old
versus young HSCs have been described, including increased
expression of leukemia-associated genes and decreased ex-
pression of genes contributing to DNA damage repair, genomic
integrity, and chromatin remodeling (Rossi et al., 2005; Nijnik
et al., 2007). Some of these properties are posited to predispose
older HSCs to myeloid leukemias (see Review by D. Rossi et al.).

Moreover, the transcription factors required for specification
and formation of HSCs may not be required continuously for
the subsequent survival or self-renewal of HSCs. Although
SCL/tal1 is an obligate factor for hematopoietic fate specification
during development, conditional inactivation in adult HSCs has
surprisingly little consequence on maintenance or self-renewal
of HSCs and multipotent progenitors (Mikkola et al., 2003). Un-
der these circumstances, the role of this factor in maturation of
erythroid and megakaryocytic cells is revealed. Similarly, inacti-
vation of Runx1 in adult HSCs does not ablate HSC properties
but instead perturbs differentiation of specific lineages (mega-
karyocytes, lymphocytes) (Ichikawa et al., 2004). Such observa-

tions point to differences in the transcription factor composition
of emerging HSCs and adult HSCs and suggest that the pheno-
type of HSCs is quite stable.
Multilineage Gene Expression in HSCs
Generally, the expression of the lineage-affiliated transcription
factors can be readily reconciled with the simple hierarchy dia-
grams of hematopoiesis (see Figures 1 and 4). For instance,
GATA-1 is highly expressed in megakaryocytic/erythroid pro-
genitors (called MEPs) that give rise to megakaryocyte and
red blood cell precursors, whereas a ‘‘myeloid factor,’’ such
as C/EBPa, is present in GMPs. Indeed, in committed progeni-
tors and precursors one can conveniently match cell-surface
phenotypes (defined by monoclonal antibodies) and the subset
of hematopoietic transcription factors expressed in these cells.
However, this relationship breaks down at earlier stages in the
hierarchy. A simple one-to-one correspondence of lineage-re-
stricted transcription factors and progenitors is challenged by
findings that earlier multipotential progenitors and HSCs ex-
press markers of disparate lineages even within single cells, al-
beit generally at low levels (Orkin, 2003). This phenomenon,
termed lineage priming, suggests that the fate of these imma-
ture cells is not sealed and that lineage selection is largely a pro-
cess in which alternative possibilities are extinguished rather
than one in which new programs are imposed on an otherwise
blank slate.

Lineage priming may be an efficient means by which chroma-
tin invested in important hematopoietic programs is maintained
in an available or open configuration in HSCs. Transient repres-
sion of alternative fates, followed by more permanent silencing,
maintains the inherent plasticity of multipotential progenitors.
Moreover, the coexistence of transcription factors representing
different lineages within a common cell (the HSC or immature
progenitor) offers the potential for immediate ‘‘crosstalk’’ be-
tween different fates at the molecular level (see below).

Recently, by FACS sorting of cells initiating expression GATA-
1 or PU.1, it has been demonstrated that short-term repopulating
HSCs may be further subdivided into those committed to mye-
loerythroid and myelolymphoid lineages (Arinobu et al., 2007).
As these findings illustrate, continued fractionation of HSC or
progenitor populations reveals increasing diversity in the choice
of lineage. Thus, the schematic lineage diagrams that are gener-
ally presented cannot be taken literally but rather as guides to the
options available to progenitors. The extent to which HSCs ex-
hibit developmental potential beyond hematopoiesis remains
controversial (Graf, 2002). Experiments purportedly demonstrat-
ing ‘‘plasticity’’ through transplantation of marrow cells to recip-
ient mice are plagued by possible cell fusion of differentiated
hematopoietic cells with host cells and by inadequate character-
ization of input populations.
Mechanisms of Action for Principal Hematopoietic
Regulators
The requirements and functions of the principal transcriptional
regulators are context dependent (Orkin, 2000). The key line-
age-restricted factors are endowed with the complementary
tasks of promoting their own lineage differentiation while simul-
taneously acting against factors favoring other choices (Figure 5).
Combining positive and antagonistic roles in the major regulators
provides an efficient means for resolving and reinforcing lineage

Figure 5. Transcription Factor Antagonism in Lineage Determina-
tion
Examples of antagonism are depicted in red. The transcription factors present

in the mature precursors following choice of specific lineage are shown at the

bottom in black. Abbreviations: CMP, common myeloid progenitor; MEP,

megakaryocyte/erythroid progenitor; GMP, granulocyte/macrophage progen-

itor; RBCs, red blood cells.

638 Cell 132, 631–644, February 22, 2008 ª2008 Elsevier Inc.

Figure 1.2: Differentiation of common myeloid progenitors (CMPs) to megacaryocyte-
erythroid progenitors (MEPs) and granulocyte-macrophage progenitors (GMPs).
The transcription factors PU.1 and GATA-1 are known to play important roles in
the lineage choice of CMPs. They mutually inhibit each other. Over-expression of
GATA-1 leads the CMP to commit to the MEP-lineage, over-expression of PU.1
leads the cell to commit to the GMP-lineage. Figure adapted from Orkin et al.
[39].

cells (HSC), that reside in the bone marrow of adult mammals. The differentiation pro-
cess of HSCs is called hematopoiesis and refers to the differentiation of pluripotent blood
stem cells to mature blood and immune cells.

As long as a HSC is still in its pluripotent state, it can renew itself or differentiate to any
mature blood cell (see, e.g. [46, 49]). When the cell starts differentiating, it leaves the
HSC state, and thereby its power to renew itself, and turns into a multipotent progenitor.
The cell then follows a cascade of subsequent cell types until it reaches a mature cell state.
During this differentiation, the cell has to chose between different cell fates and commit
to the respective lineages (see Fig. 1.1).

Our study focuses on the differentiation of the common myeloid progenitor (CMP) to the
megacaryocyte-erythroid progenitor (MEP) and the granulocyte-macrophage progenitor
(GMP). MEP give rise to erythrocytes (red blood cells) and megacaryocytes, while GMP
turn into macrophages, and granulocytes (see Fig. 1.2).

The transcription factors PU.1 and GATA-1 were identified as important factors in
hematopoiesis and the relation between them determines the decision of the CMP to
commit to a lineage [2]. PU.1 and GATA-1 were found to mutually inhibit each other
[12, 64] and enhance their own expression via auto-regulatory loops [11, 55]. This reg-
ulatory model is called toggle switch (see, e.g. [57]). As long as the concentration of
both proteins is at a low, balanced level, the HSC will stay in the CMP state (see, e.g.
[38]). A disturbance of this balance drives the cell either into the MEP or the GMP
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lineage, where over-expression of GATA-1 leads the cell to commit to the MEP lineage,
and over-expression of PU.1 is required for expression of lineage markers affiliated to the
GMP lineage.

Understanding the processes taking place during hematopoiesis, like those of PU.1 and
GATA-1, is of great interest in stem cell research. Since the protein configuration of each
individual HSC is responsible for its cell fate (see, e.g. [39]), this has to be addressed at
a molecular, single cell level. In order to learn about these molecular processes involved
in the differentiation of HSCs, long-term observation experiments have to be conducted,
e.g. by imaging the cell fate at a single cell level [42, 48].

Structure of the thesis

In this thesis we address the question whether transfer entropy is an appropriate measure
to infer pairwise interactions among proteins given their time series. For this purpose
we start by analyzing transfer entropy on artificially generated gene expression data and
then use the insights gained with this analysis for the application of transfer entropy to
biological data sets.

In the second chapter we introduce the methods and materials used in this project. This
includes methods for the generation of artificial data, a detailed introduction to transfer
entropy, including its derivation and its relation to other causality measures. Furthermore
we present a method for the detection of regulatory dynamics based on correlation. The
remainder if this methodological chapter is dedicated to the acquisition of gene expression
data with time-lapse fluorescence microscopy and the description of the two data sets used
in this thesis.

Chapter 3 of the thesis comprises the results we found during the research phase of this
thesis: The first section is considering the generation of artificial gene expression data in
detail. Using this artificial data, we characterize transfer entropy and evaluate different
approaches for its application in causality inference. To address the question, whether
transfer entropy is appropriate for the inference of regulatory dynamics on any data set,
or whether its application is restricted to data satisfying special requirements, we identify
important properties of gene expression data and test, to what extend the performance
of transfer entropy is influenced by these data properties. This part also includes a new
implementation of transfer entropy in C++, which leads to a significant run time im-
provement compared to the existing Matlab implementation. Then we introduce a new
version of transfer entropy that considers the special properties of tree-structured data,
since the real gene expression data analyzed with transfer entropy in this thesis is struc-
tured as cell-trees. In the end of the result chapter, we apply transfer entropy to two
different biological data sets, namely to synthetic gene circuit data and gene expression
data measured during hematopoiesis.

In the last chapter we discuss the results found during the project, suggest ideas for future
work in this field and conclude with a short summary.
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2 Methods and Materials

This chapter provides an introduction to the methods and materials used in this work.
The first part is dedicated to the generation of artificial data. We present two different
approaches for this purpose: the stochastic simulation algorithm and Ornstein Uhlenbeck
models, which are based on ordinary differential equations (ODEs). The second part in-
troduces two methods that allow for the inference of pairwise interactions among processes
by using the processes’ time series: the cross correlation and the transfer entropy. Since
we will mainly focus on the application of the latter in this thesis, transfer entropy will be
presented in greater detail. The last part of this chapter describes time-lapse fluorescence
microscopy and cell tracking. The gene expression data sets used later are acquired with
these techniques.

2.1 Generation of artificial data

Generation of artificial data is a crucial step for the qualitative evaluation of a method.
It allows for testing the method on data with known ground truth, such that the quality
of the method can be estimated. In our case, we simulate time series data that captures
the interactions among two proteins. The question to be addressed is, whether transfer
entropy will rediscover these interactions.

The stochastic simulation of protein dynamics is often conducted with the stochastic sim-
ulation algorithm. It is based on the simulation of the chemical master equation and
allows for a discrete simulation of molecular dynamics. The SSA can be simulated in
different ways, one of them is the tau-leaping algorithm. This algorithm represents a
transition from the discrete to the continuous form of the SSA.

As an alternative, the SSA dynamics can be approximated by simulating an ODE model
that includes noise sources to account for stochasticity. These noise sources can be mod-
eled with Ornstein Uhlenbeck processes, giving rise to models that comprise deterministic
and stochastic parts. The tau-leaping approach can be used to connect the SSA and the
Ornstein-Uhlenbeck models.

The first part of this sections provides an introduction to the derivation of the CME and
its simulation. In the second part, we present the approximation of the SSA for protein
data generation with ODEs and Ornstein Uhlenbeck processes and explain the connection
between the two approaches.
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2 Methods and Materials

2.1.1 Models of gene regulation using the chemical master equation

Due to low copy numbers of single molecules, many chemical reactions among single
molecules are highly stochastic. Especially in the case of small systems with low molecule
numbers, such as in gene expression, stochasticity and discreteness play an important role
for the dynamics. While purely deterministic approaches hardly suffice to describe these
dynamics, stochastic chemical kinetics are capable of capturing the systems behavior [63].
We will present the latter here in short, for a detailed introduction, we refer to the work
of D. Gillespie [19, 18], whose notation we will follow here.

Derivation of the chemical master equation

We are considering a system with the following properties: it is well stirred, i.e. we ne-
glect spatial concentration differences, and consists of molecules belonging to N chemical
species, S1, ..., SN that are interacting through M different chemical reactions R1, ..., RM .
The system is in thermal equilibrium and has a constant volume Ω. Xi(t) denotes the
number of molecules in species Si at time point t.

Our goal is the estimation of the state vector X(t) = (X1(t), ..., XN(t)) at time point t
given some initial state X(t0) = x0. The state vector X changes whenever a reaction
takes place. A reaction Rj is characterized by two different quantities: its state-change
vector and its propensity function. The state-change vector νj = (ν1j, ..., νNj) describes
the effect reaction Rj has on the different species, i.e. when the system is in state x and
one reaction Rj occurs, the systems changes to x + νj. The propensity function aj for
reaction Rj is defined such that aj(x)dt corresponds to the probability that one reaction
Rj will occur inside the volume Ω in the infinitesimal time interval [t, t + dt] for a given
state X(t) = x. The propensity can be written as

aj(x) = cjhj(x), (2.1)

where cj is the specific rate constant for reaction Rj and is defined such that cjdt gives
the probability that a randomly chosen pair of Rj reactants will react in the next time
interval dt. hj(x) is a function of the reactants of reaction Rj.

Example:
Consider the chemical species S1 and S2 with state vector X(t) = (X1(t), X2(t)) and
the reaction R1 : X1 + 2X2

c1−→ 2X1. Hence, the propensity function is a1(x) = c1x1x
2
2

with state-change vector ν1 = (1,−2). Reactions of this type are called bimolecular, as
molecules of two different species are interacting (in comparison to unimolecular reactions,
where only one reactant occurs).

The state vector X is a jump-type Markov process on the space of the molecules. Our
goal is to infer the probability

P (x, t|x0, t0) , Prob (X(t) = x given X(0) = x0) . (2.2)

Under the assumption that per time interval [t, t + dt] at most one reaction takes place,
the probability of being in state x at time t + dt can be written depending on the past
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2.1 Generation of artificial data

values:

P (x, t+ dt|x0, t0) =P (x, t|x0, t0)×

[
1−

M∑
j=1

aj(x)dt

]

+
M∑
j=1

P (x− νj, t|x0, t0) aj(x− νj)dt.

(2.3)

Eq. (2.3) can be reformulated to the chemical master equation (CME) (2.4) when taking
the limit of infinitesimal short time intervals, i.e. dt→ 0:

∂

∂t
P (x, t|x0, t0) =

M∑
j=1

[
aj(x− νj)P (x− νj, t|x0, t0) .

− aj(x)P (x, t|x0, t0)
]
.

(2.4)

This equation contains all information about the process X(t). An analytical solution
of the CME can be found only in very few cases [18]. Nevertheless, Eq. (2.4) allows for
numerical simulation of X(t)-trajectories. For this purpose, the so called next-reaction
density function p(τ, j|x, t) can be used. It describes the probability that the next reaction
will occur in the infinitesimal time interval [t+ τ, t+ τ + dτ ] and it will be a reaction Rj.
It can be shown [19] that

p(τ, j|x, t) = aj(x)exp

(
M∑
k=1

ak(x)τ

)
. (2.5)

where 0 ≤ τ <∞. Eq. (2.5) forms the basis for the stochastic simulation algorithm (SSA)
where Monte Carlo techniques can be used to generate random pairs (τ, j). Although
Eq. (2.5) gives realizations of the process X(t) that are consistent with the CME, it does
not solve the equation numerically.

The SSA can be transformed to a stochastic differential equation, depending on its propen-
sity functions and its state-change vector. This transformation gives a continuous version
of the SSA and can be achieved using the tau leaping algorithm.

Tau-leaping: from the CME to stochastic differential equations

Tau-leaping was introduced as a algorithm for fast simulation of the CME. It can also be
used to transform the SSA into a stochastic differential equation (SDE), as demonstrated
by D. Gillespie [19, 18]. His findings are summarized here.

Assuming the system to be in state X(t) = xt, and Kj(xt, τ), τ > 0 to be the number of
reactions of type Rj, that occur in the time interval [t, t+ τ ]. Then the molecule number
at the end of that interval is

Xi(t+ τ) = xt,i +
M∑
j=1

Kj(xt, τ)νij i = 1, ...N. (2.6)

9



2 Methods and Materials

If the propensities satisfy the so called leap condition (2.7), Kj(xt, τ) is a Poisson random
variable with mean aj(x)τ .

τ must be small enough, such that in the time interval [t, t+ τ ]

the propensity functions aj(x), j = 1, ...,M, are not likely to change

their value by a significant amount [18].

(2.7)

Hence, Eq. (2.6) can be rewritten as

X(t+ τ) = x +
M∑
j=1

Pj(aj(x)τ)νj, (2.8)

where Pj denotes the Poisson distribution with mean and variance aj(x)τ . The Poisson
distribution can be approximated with a normal distribution with same mean and variance
under the assumption that

aj(x)τ � 1 ∀1 < j < M. (2.9)

Using this approximation together with the fact that N (µ, σ2) equals µ + σN (0, 1),
Eq. (2.8) can be written as

X(t+ τ) = x +
M∑
j=1

(
aj(x)τ + (aj(x)τ)

1
2Nj(0, 1)

)
νj

= x +
M∑
j=1

aj(x)τνj +
M∑
j=1

(aj(x)τ)
1
2Nj(0, 1)νj.

This representation is also known as the chemical Langevin equation. Replacing τ by dt,
it can be written in the white noise form

dX(t)

dt
=

M∑
j=1

aj(X(t))νj +
M∑
j=1

νj(aj(X(t)))
1
2 Γj(t), (2.10)

where Γj(t) = lim
dt→0
Nj(0, dt−1) are statistically independent white noise processes. Eq. (2.10)

corresponds to a system of stochastic differential equations describing the same dynamics
as the SSA.

Remark: The leap condition (2.7) and the Eq. (2.9) set opposite boundaries to the inter-
val length τ . There are cases, in which the two conditions exclude each other. For these
cases, the tau-leaping scheme becomes inaccurate. Nevertheless, since the propensity in
Eq. (2.9) is proportional to the molecule numbers, large amounts of molecules can com-
pensate for small τ values.
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Figure 2.1: Schematic representation of (A) two-stage gene expression and (B) three-stage gene
expression. Figure adapted from V. Shahrezaei and P. Swain [51].

Stochastic simulation of protein networks

The CME introduced in the previous section can be used to describe molecular processes
during gene expression. For the modeling of this gene expression, very sophisticated dy-
namics that involve a large number of factors can be considered. In this work, we follow V.
Shahrezaei and P. Swain [51] and use two simple models that comprise three components:
DNA, mRNA and proteins.

The first model is denoted as the two-stage model (see Fig.2.1A): DNA is always in an
activated state and gets transcribed with a certain transcription rate v0 into mRNA, and
mRNA gets translated into protein with rate v1. mRNA and protein decay with rates
d0 and d1, respectively. The second model is denoted as the three-stage model (see Fig.
2.1B). In addition to the two stage model, the DNA is not always in an activated state,
but gets activated and deactivated with rates k1, k0, respectively.

These two models can be combined in order to allow for simulation of gene expression with
the CME. When we assume that protein A has an inducing effect onto protein B, this
means that A binds to the promotor region of the gene coding for B and thereby activates
the DNA. This activation allows for the transcription of the gene, resulting in expression
of protein B (see Fig. 2.2A). Fig. 2.2B displays a time series that was generated with the
SSA, when assuming this regulatory dynamic.

These dynamics can be simulated with the SSA, resulting in protein time series that
correspond to an exact simulation of the CME. This is a very detailed representation
of the interactions taking place during gene expression. This model can be simplified,
e.g. by using ODEs for the protein dynamics and additional noise terms to account for
stochasticity in the system. This was done by Dunlop et al. in [15, 16]. For the inclusion
of noise, they added Ornstein Uhlenbeck processes, which are a certain type of SDEs.
For particular parameter choices, these processes coincide with the SDE-representation
of the SSA found by tau-leaping. This fact allows for a transition from the discrete SSA
to the continuous SDE-representation of the SSA and hence to the Ornstein Uhlenbeck
processes.
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Figure 2.2: SSA for simulation of protein data. (A) Molecular dynamics for the generation the
regulatory dynamic

’
A induces production of B‘ with the SSA. (B) Example of

time series generated with SSA for dynamics in (A).

2.1.2 Ornstein Uhlenbeck processes

The Ornstein Uhlenbeck (OU) Ut is described via the following SDE [7]:

dUt = (−θUt + µ)dt+ σdWt, (2.11)

where θ sets the time scale, µ is the drift coefficient, σ is the diffusion term, Wt is a
Wiener process and t corresponds to the time. When using OU processes for simulation
of the gene expression noise, this noise process should not have a drift to a certain state.
For this reason, we set µ = 0, leading to the following equation

dUt = −θUtdt+ σdWt, (2.12)

with analytical solution

Ut = U0e
−θt + σe−θt

∫ t

0

e−θ(s−t)dWs. (2.13)
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Figure 2.3: Wiener process and white noise limits of the OU process. (A) Limit distribution
of the OU process in the Wiener process limit (θ → 0). (B) Limit distribution
of the OU process in the white noise limit (θ � 1). (C) Simulation of the OU:
blue lines correspond to OU trajectories in the Wiener process limit (θ → 0), i.e.
the deterministic part vanishes. Yellow lines correspond to OU trajectories with
θ � 1, resulting in the white noise limit. For both processes, σ is set to 1. Figure
adapted from Bibbona et al. [7].

Properties of the OU process

A special feature of the OU process is that its limit distribution can be represented in
closed form. This allows for the analysis of the behavior of the process for different
settings of the parameters θ and σ. This analysis shows that the behavior of the OU
process depends strongly on the chosen parameters. For different settings the OU gets
driven into different limit cases, that are presented in the following.

Limit distribution The OU process has a fixed limit distribution for large times t→∞.
It corresponds to a Gaussian distribution with moments depending on the model
parameters:

Ut ∼ N
(
U0e

−θt,
σ2

2θ
(1− e−2κt)

)
⇒ Ut

dist−−→ N
(

0,
σ2

2θ

)
. (2.14)

Deterministic limit When σ → 0 in Eq. (2.12), the SDE turns into an ODE with the
solution corresponding to the first term of the right hand side of Eq. (2.13). This
ODE describes the exponential decay of Ut with parameter θ.

Wiener process limit For θ → 0, the deterministic part of the SDE vanishes, the vari-
ance in Eq. (2.14) increases and the OU reduces to a Wiener process. This case is
illustrated with the blue lines in Fig. 2.3C and the distribution in Fig. 2.3A.

White noise limit For θ � 0, the exponential decay is very fast and the process decreases
to zero between two measurements. So in each step, the OU process starts at zero
and reduces therefore to a white noise. This is also reflected in a reduced variance
of the trajectories, see distribution and yellow lines in Figs. 2.3B and 2.3C.
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2 Methods and Materials

2.2 Measures for time series analysis

In this section, we present two different methods that allow for the inference of pairwise
interactions among two processes, namely transfer entropy, which is the core method of
this thesis, and cross correlation.

2.2.1 Transfer entropy

Transfer entropy was introduced by Schreiber [45] as a measure of information transfer
from one process to another by analyzing the processes’ time series. This means, trans-
fer entropy quantifies the the amount of information one random variable passes on to
another. Therefore, it gives an insight into causal relations from which we can infer reg-
ulatory dynamics. A short and illustrative introduction to transfer entropy can be found
in [31], whose notation will be followed here. As transfer entropy is based on information
theoretic concepts, a short overview of the most important notions is given first.

Information theoretic functionals

Transfer entropy is based on the concept of entropy, a measure for information content in
a random variable. There exist many different definitions for entropy (see, e.g., [27] for
an overview). Here we will use Shannon’s entropy [53].

For a discrete random variable X, taking values x1, x2, ..., xn with probability p(xi), i =
1, ..., n, the Shannon entropy is given by

H(X) = −
n∑
i=1

p(xi)log p(xi). (2.15)

Shannon entropy gives the average number of bits needed to encode independent draws
of the discrete random variable X with probability distribution p. More intuitively, it can
be interpreted as a measure of uncertainty in a given random variable X. This implies
that it reaches its maximum for random variables with uniform distributions.

Example:
Assume X to be the random variable

’
coin toss‘, where the event x1 =

’
heads‘ occurs with

probability p, and x1 =
’
tails‘ occurs with probability 1−p. Then the Shannon entropy of

X can be computed according to formula (2.15) as H(X) = −p log(p)− (1−p) log(1−p).
The Shannon entropy is a function of p that has a maximum at p = 0.5, i.e. it is maximal
when X has a uniform distribution (see Fig. 2.4). Intuitively this means that we gain the
most information from from tossing the coin, when both events are equally likely.

From the general entropy formula in Eq. (2.15) we can derive the joint entropy H(X, Y )
of two discrete random variables X and Y with realizations x1, ..., xnX and y1, ..., ynY

H(X, Y ) = −
nX∑
i=1

nY∑
j=1

p(xi, yj)log p(xi, yj), (2.16)
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Figure 2.4: Shannon Entropy for the random variable X:
’
coin toss‘. The maximum is reached

for p = 0.5 (dashed blue line).

where p(xi, yj) is the joint probability of X being in state xi and Y being in state yj, and
the conditional entropy

H(X|Y ) = −
nX∑
i=1

nY∑
j=1

p(xi, yj)log p(xi|yj). (2.17)

The joint entropy (2.16) corresponds to the uncertainty in the two random variables X and
Y , while the conditional entropy (2.17) measures the uncertainty in X when Y is known.
From these formulas, one can derive the following equation (see Lem. 1 in supplementary
notes for proof):

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).

It holds thatH(X, Y ) = H(X)+H(Y ) if and only ifX and Y are statistically independent.

Derivation of transfer entropy

Given two time series A = (a1, ..., aN) and B = (b1, ..., bN), the transfer entropy (TE)
from A to B (TEA→B) can be computed as

TEA→B = H(bi|b(l)
i−t)−H(bi|b(l)

i−t, a
(k)
i−τ ), (2.18)

where ai, bi correspond to measurements of A and B at given time point i, and τ
and t are time lags in the time series of A and B, respectively. k and l are the block
lengths of past values in A and B: a

(k)
i−τ = (ai−τ−k+1, ai−τ−k+2, ..., ai−τ ) and b

(l)
i−t =

(bi−t−l+1, bi−t−l+2, ..., bi−t) (see Fig. 2.5). The representation (2.18) of TE can be inter-
preted in the following way: we measure the uncertainty in bi given past measurements of
B. When this uncertainty in bi can be reduced by additionally considering past measure-
ments of another time series A, then A must contain information about bi. The higher
the reduction in uncertainty, the higher the amount of information A transfers onto B.
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Figure 2.5: Elements used in TE. The time lags are set to τ = 6 and t = 5. The past values
used for the computation of the TE are organized in blocks with lengths k = 5 and
l = 4.

Applying the notions presented in the previous section, Eq. (2.18) can be computed ac-
cording to the following formula (see Lem. 2 in supplementary notes for proof):

TEA→B(τ) =
∑

bi,b
(l)
i−t,a

(k)
i−τ

p(bi, b
(l)
i−t, a

(k)
i−τ ) log

p(bi|b(l)
i−t, a

(k)
i−τ )

p(bi|b(l)
i−t)

. (2.19)

Eq. (2.19) and (2.18) are the most general definition of TE. In this work, k and l will both

be set to 1, since for the computation of TE, the probability distribution p(yi, y
(l)
i−t, x

(k)
i−τ ) of

dimension (k+l+1) has to be estimated. For large k and l values, this probability becomes
high dimensional. Especially for biological data, where often only low amounts of data
are available, this estimation yields sparse matrices, with many zero-entries. These zero-
entries eventually occur in the marginal probabilities p(bi|b(l)

i−t, a
(k)
i−τ ) and p(bi|b(l)

i−t), causing
problems for the computation of TE, since we would divide by zero in the logarithm term
of Eq. (2.19). Furthermore, we set t = τ , since the dynamics of the time series take
place on the same time scale for gene expression. These simplifications give the following
formula for the computation of TE:

TEA→B(τ) = H(bi|bi−τ )−H(bi|bi−τ , ai−τ )

=
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log
p(bi|bi−τ , ai−τ )
p(bi|bi−τ )

.
(2.20)

Properties of transfer entropy

Characteristic properties of TE are its positivity and the non-symmetric behavior allowing
for detection of directional coupling:

• Positivity: TE cannot take on negative values. In Eq. (2.18), the Shannon entropy
is always positive and conditioning on a second variable cannot increase uncertainty
[31]. In Eq. (2.19) the same argumentation can be used, therefore the logarithm is
always greater than 1, leading to a positive sign.
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• Non-symmetry: TE is explicitly non-symmetric since it measures the degree of
dependence of B on A. This non-symmetrical behavior allows for the detection
of causality among the two processes A and B. When A has an effect on B, this
implies that the behavior of B is influenced by the behavior of A. This influence
can be interpreted as a regulation of B by A.

There is a variety of causality measures based on information theoretical measures that
are well-known and widely used (see [27] for an overview). In the next part, we link TE
to two of them, namely to the Kulback-Leibler divergence and to the conditional mutual
information.

Transfer entropy as a Kullback Leibler divergence

TE can be interpreted as a Kullback Leibler divergence. The Kullback Leibler divergence
(KLD) was introduced by Kullback and Leibler in 1951 [30] and is defined as

K(p, q) =
n∑
i=1

p(xi) log

(
p(xi)

q(xi)

)
, (2.21)

where p(x) and q(x) are two discrete probability density functions (with respective prob-
ability distributions P and Q) and X is a random variable with realizations xi, i = 1, ..., n.

The KLD (2.21) can be interpreted as follows: Consider the two hypothesis
’
H1: X comes

from a population with probability distribution P ‘ and
’
H2: X comes from a population

with probability distribution Q‘. Kullback and Leibler [30] defined log (p(xi)/q(xi)) as the
information in X for discrimination of the two hypothesis. With this definition, K(q, p)
is the expectation of the gained information with respect to the probability distribution
P . In other words, Eq. (2.21) measures the gain in information, when P is assumed as
distribution for X instead of Q.

TE measures the transfer of information between two processes over time using certain
transition probabilities. As an alternative to the Shannon entropy approach presented
in Eq. (2.18), a KLD can be used: The KLD gives a measure for deviation from the
generalized Markov property, which says that for two statistically independent processes
A and B

p(bi|b(k)
i−1) = p(bi|b(k)

i−1, a
(k)
i−1)

holds, where b
(k)
i−1 = bi−1, ..., bi−k, a

(k)
i−1 = ai−1, ..., ai−k and ai, bi are realizations of A and

B. Hence, the deviation from this independence with respect to the distribution P on the
sample space is given by

n∑
i=2

p(bi, b
(k)
i−1, a

(k)
i−1) log

(
p(bi|b(k)

i−1, a
(k)
i−1)

p(bi|b(k)
i−1)

)
. (2.22)

This corresponds to the general representation of TE, Eq. (2.19), with t = τ = 1, k = l.
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2 Methods and Materials

Transfer entropy as conditional mutual information

Another information theoretic measure which can be used for causality detection between
two random variables A and B is mutual information I. It is defined as

I(A,B) = H(A) +H(B)−H(A,B)

= H(A)−H(A|B)

= H(B)−H(B|A),

where H is the Shannon entropy as in Eq. (2.15). Mutual information measures the un-
certainty in one variable when knowing the other one. One should notice that due to
Eq. (2.16), I(A,B) = 0, if and only if A and B are statistically independent.

The conditional mutual information between random variables A, B and C is defined as

I(A,B|C) = H(A|C) +H(B|C)−H(A,B|C). (2.23)

I(A.B|C) reduces to I(A,B) whenever A and B are statistically independent of C.

By reformulating equations (2.23) and (2.22) equivalence can be shown. This implies,
that the conditional mutual information I(Ai−1;Bi|Bi) and TEA→B, Eq. (2.22), coincide.
(see [27] for derivation of equality)

Kernel density estimation

Up to now, we did not consider how TE is computed in practice. Eq. (2.19) shows, that
TE is a sum over joint and marginal probabilities. The main effort during the computa-
tion of TE is the estimation of this joint probability. Lee et al. [31] compared different
approaches for this estimation. Since they found that kernel density estimation is appro-
priate for this task, we will use this method here.

Kernel density estimation (KDE) is a method for the approximation of the underlying
probability distribution of a given sample. The basic idea will be explained for a one
dimensional distribution and can be transferred to the higher dimensional case. This
overview follows a lecture of W. Castell at the Technical University Munich [10].

Let X = (x1, ..., xN) be a sample of an unknown distribution to be estimated. Consider
the function

K(u) =

{
1, |u| < 0.5

0, else.

Then the variable

H =
N∑
i=1

K

(
x− xi
h

)
(2.24)
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2.2 Measures for time series analysis

counts how often a sample falls within the interval of length h, called the bandwidth, cen-
tered at x. The probability distribution of the sample X can be estimated by normalizing
Eq. (2.24) in the following way:

p̂(x) =
1

N

N∑
i=1

1

h
K

(
x− xi
h

)
,

where K is called the kernel. K must satisfy the following conditions:

1. K(x) ≥ 0

2.

∫
R
K(x)dx = 1.

The most common choice is the Gaussian kernel

K(u) =
1√

2p(xi)
e−0.5u2 ,

leading to a Gaussian shaped distribution with specified bandwidth h centered at each
data point. For TE, the three-dimensional probability p(yi, yi−τ , xi−τ ) can be estimated
at an arbitrary point (ỹi, ỹi−τ , x̃i−τ ) by

p(ỹi, ỹi−τ , x̃i−τ ) ≈
1

P

P∑
j=1

1

hyihyi−τhxi−τ
K

(
ỹi − yi,j
hyi

)
K

(
ỹi−τ − yi−τ,j

hyi−τ

)
K

(
x̃i−τ − xi−τ,j

hxi−τ

) (2.25)

where j is the index for the data points and h(·) is the bandwidth for the respective
dimension. We chose the bandwidth parameter analogously to Lee et al. [31] as

h(·) = 1.06ασ̂P−1.5,

with a multiplier for scaling α, which will be set to one here, and the sample standard
deviation σ̂.

2.2.2 Cross correlation

Dunlop et al. [15, 16] proposed to use cross correlation for the inference of regulatory
dynamics among two process.

Derivation of cross correlation

Given two time series A = (a1, ..., aN) and B = (b1, ..., bN) measured at N equidistant
time points, The cross covariance between A and B is then defined as

SA,B(τ) =
1

N − τ

N−|τ |−1∑
i=0

[ai+τ − E[ai]] [bi − E[bi]] , τ ≥ 0. (2.26)
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2 Methods and Materials

By approximation of the expectation with its unbiased estimator, the sample mean,
Eq. (2.26) can be rewritten as

SA,B(τ) =
1

N − τ

N−|τ |−1∑
i=0

āi+τ b̄i, τ ≥ 0, (2.27)

where

ā = a− 1

N

N∑
i=1

ai. (2.28)

Now Eq. (2.27) can be normalized using the variance of each signal, such that all covariance
values lie in the interval [−1, 1]:

Ra,b(τ) =
sa,b(τ)√

Sa,a(0), Sb,b(0)
. (2.29)

Eq. (2.29) is called cross correlation (CC) between the processes A and B. It is a function
of the time lag τ that computes the correlation between a signal and a τ -shifted version
of a second signal.

2.3 Time-lapse fluorescence microscopy

Cell imaging with time-lapse fluorescent microscopy

In order to observe long-term dynamics of proteins in cells, minimal-invasive methods
that guarantee long-term proliferation of the cells are required [48]. Imaging techniques
that lead to cell stress, e.g. due to phototoxicity or changes in culture medium, are likely
to change cell behavior or kill the cells. Long-term in-vitro imaging of cells has proven to
be such a minimal-invasive method, that allows for taking long-term microscopy movies
of the cells and their protein concentrations with minimal lethality for the cells [34, 47].

Prior to imaging, the proteins to be observed in the cell have to be marked. This can
be done by a procedure called knock-in [32]: the coding sequence of a fluorescent marker
protein [52] is genetically fused to the gene coding for the protein of interest, such that the
protein gets expressed together with a fluorescent marker. In procaryotes, this knock-in
technique can be applied for the chomosomal DNA, or the plasmid [15].

In fluorescence microscopy, a laser emits light at wavelengths corresponding to the used
fluorescent markers, in order to stimulate them. At the same time, the cell gets imaged
under a microscope, giving microscopy images of its fluorescence levels. The cells are
imaged that way every few minutes over several days, resulting in long-term time-lapse
fluorescence microscopy movies [47].

In this thesis, we use two different biological data sets that were acquired with time-lapse
fluorescence microscopy.
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2.3 Time-lapse fluorescence microscopy

YFP

CFP RFP

Figure 2.6: Schematic representation of the synthetic gene circuit established in E.coli by Dun-
lop et al. [15, 16]. Three different components are being observed, yellow fluorescent
protein (YFP), red fluorescent protein (RFP) and cyan fluorescent protein(CFP).
YFP is fused to a transription factor inhibiting the production of RFP, CFP levels
are measured for control purposes.

Synthetic gene circuit in E.coli

Dunlop et al., [15, 16] established a synthetic gene circuit in E.coli that comprises three
different components: A transcription factor, that is fused with yellow fluorescent pro-
tein (YFP) and represses the production of red fluorescent protein (RFP). For control
purposes, cyan fluorescent protein (CFP) is measured at the same time. So the three-
component system illustrated in Fig. 2.6 is being observed. Two different versions of the
circuit were constructed: a chromosomally integrated, and a plasmid version (see [15] for
further details).

In order to measure fluorescence intensities of the three proteins, cells were grown and
imaged every 10min using automated time-lapse fluorescence microscopy. (see [15, 16] for
filmstrips of the fluorescence microscopy analysis).

Hematopoietic stem cell data

The HSC data set used in this thesis captures dynamics of PU.1 and GATA-1 during the
differentiation of HSC. The data stems from experiments that were conducted in the lab
of Dr. Timm Schroeder. The following part describing the experimental setup and the
data acquisition is adapted from F. Buggenthin [8].

In order to observe the dynamics of PU.1 and GATA-1, sequences of fluorescent markers
were knocked-in into the coding regions of PU.1 and GATA-1 in murines, a mice strain
with no phenotypical difference to wildtype mice. Hence, the fluorescent markers get
expressed together with PU.1 and GATA-1. Therefore, it is possible to infer the protein
concentration in a cell by measuring the fluorescence intensity of the PU.1 and GATA-1
markers.

After 12 to 16 weeks, femur and tibia of the mice were removed and the bone marrow was
extracted. Since the bone marrow was still contaminated with non-HSCs, the cells had
to be sorted into HSCs and non-HSCs. Exploiting the fact that HSCs and their progeny
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2 Methods and Materials

A B

Figure 2.7: Example of microscopy images: Region of a brightfield image (A) and the corre-
sponding fluorescence image (B) showing several cells.

possess the CD150 surface marker that binds to specific antigenes in a medium, this step
can be conducted with flow cytometry [25, 54].

After isolation, the HSCs were observed during their growth with the inverse fluorescence
microscope AxioVert 200 (Zeiss) and imaged with the AxioCAM HRM (Zeiss). Every
90 seconds, brightfield images were taken where the cells were illuminated by white light
from behind. Fluorescence images were taken in longer time intervals of 22.5min to assure
cell health (see. Fig. 2.7 for example of images). The cells were imaged that way for 6
days.

Since we want to analyze the regulatory dynamics among PU.1 and GATA-1, we use the
fluorescence data here. In order to use the movies for statistical analysis, single cell track-
ing of each HSC and its progeny had to be conducted using TTT (Timm’s tracking tool,
developed by Dr. Timm Schroeder) [17]. The tracking being manual allows researches
to label features, such as the time point of cell division, apoptosis or cell motility. The
result of this tracking are trees that contain all information about the different features
of each cell.
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3 Results

We start this chapter by explaining the generation of artificial gene expression data with
OU models. Then we present results found for the analysis of artificial data with cross
correlation. In the third part, we apply TE to data that was artificially generated with OU
models, and analyze important characteristics of the method. We identify requirements
data should fulfill for TE to work properly and test TE for different regulatory dynamics.
In the fourth part, we introduce an extension of TE for tree structured data. The last
part is dedicated to the application of this newly established form of TE to two different
real data sets: a synthetic gene circuit in E. coli and measurements of protein expression
levels in hematopoietic stem cells.

3.1 Generation of artificial data with Ornstein Uhlenbeck
models

The simulation of the deterministic interactions between two proteins A and B can be
conducted with the following ODE model proposed by Dunlop et al. [15, 16]:

Ȧ(t) = αA − βA(t)

Ḃ(t) =
αB

1 + (A/K)n
− βb(t). (3.1)

In this model, proteins get produced at rates αi and decay at rate β. We will refer to this
model as the non-linear OU model.

The sign of αB determines the regulation type, i.e. induction or inhibition. The expression
of protein B is regulated by protein A via a Hill-type kinetic that depends on parameters
K and n [37].The decay rates of both proteins are assumed to be the same, following
Dunlop. et a. [15]. In order to account for stochasticity of gene expression, we add noise
to the model (3.1):

Ȧ(t) = αA − βA(t) + Ia,t

Ḃ(t) =
αB

1 + (A/K)n
− βb(t) + Ib,t,

(3.2)

where Ia,t and Ib,t correspond to independent, intrinsic noise terms of the proteins A and
B, respectively. These noise sources are modeled using OU processes as follows:

dIa,t = −κIa,tdt+ λadWa,t

dIb,t = −κIb,tdt+ λbdWb,t.
(3.3)
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Figure 3.1: Time series generated with non-linear OU models: both figures show the regulatory
dynamics among the proteins and an example of their time series generated with
model (3.2). (A) Protein A induces production of protein B. (B) Protein A inhibits
production of protein B.

with κ being the time scale parameter of the noise and λa and λb the diffusion terms of the
intrinsic noise of protein A and B, respectively. Those noise terms can be characterized
via E[Ii,t] = 0 and Var(Ii,t) = λi/2κ (from Eq. (2.14)). The simulation of this model
results in time series as those depicted in Fig. 3.1. All parameters used for simulation
can be found in supplementary Tab. S2.

Linear Ornstein Uhlenbeck models

The non-linear OU model (3.2) can be linearized around its equilibrium (see supplemen-
tary notes, [15] for derivation). This linear OU model still reflects the protein dynamics
and has the advantage of a decreased number of parameters :

ȧ(t) = −βa(t) + Ia,t

ḃ(t) = −βb(t) + ga(t) + Ib,t
(3.4)

The linearized model (3.4) comprises species-specific intrinsic noise sources modeled with
OU processes Ia,t, Ib,t (see Eq. (3.3)), a decay parameter β and a coupling parameter
g. The decay parameter β is closely related to the average protein lifetime, which cor-
responds to the reciprocal of β, 1/β. Therefore, β sets the time scale of the systems’
dynamics: large β values imply short protein lifetimes and therefore fast dynamics of the
whole system, while small β values lead to the opposite behavior. The coupling param-
eter g determines on one hand, how strong the dynamics of protein B are influenced by
the dynamics of A, and on the other hand, whether this influence is of a inhibiting or a
inducing nature.

We generate artificial gene expression data with the linear OU model (3.4) by first sim-
ulating the OU processes Ia,t and Ib,t with the Euler-Mayurama scheme [29]. The pure
ODE-parts in (3.4) are simulated with an explicit Euler scheme, where we include the
OU process by adding one noise term from the OU simulation in every step. For both
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3.2 Cross correlation for artificial Ornstein Uhlenbeck data

A

time lag = [min]
300 200 100 0 100 200 300

co
rr

el
at

io
n 

va
lu

e

-1

-0.5

0

0.5

1
  mean CC
  analytical CC

B

time lag = [min]
300 200 100 0 100 200 300

co
rr

el
at

io
n 

va
lu

e

-1

-0.5

0

0.5

1
  mean CC
  analytical CC

Figure 3.2: CC analysis of the non-linear OU model (3.2) for different regulation types: (A) in-
duction, (B) inhibition. For both scenarios, we generate multiple time series using
model (3.2). For each data set, we compute CC (grey lines) and take the mean of
all CCs as the final outcome (blue solid line). The yellow solid line corresponds
to the analytical CC. The dashed blue and yellow lines mark the dip of the mean
and analytical CC respectively. These minima/maxima indicate the time shift, for
which correlation is maximal, i.e. the regulation time τreg (blue dashed line) and
τanreg (yellow dashed line).

simulations, we use a time-step of 0.01min. This gives us time series of proteins A and B
with 0.01min in between two measurements.

3.2 Cross correlation for artificial Ornstein Uhlenbeck
data

Dunlop et al. [15, 16] applied cross correlation (CC) to protein time series in order to find
directed pairwise interactions among them. They determined the time delay of the regu-
lation (the so called regulation time τreg), the direction of interaction, and the underlying
regulation type, i.e. inducing or inhibitory dynamics. When analyzing time series data
with CC, we observe typical features of the CC function (see Fig. 3.2): It has a dip at τreg,
i.e. the time lag at which correlation is maximal. The nature of the dip, i.e. maximum
or minimum, indicates the regulation type (induction or inhibition, respectively). The
direction of the regulation can be determined with the position of the dip with respect to
zero, due to the non-symmetric behavior of the CC. The height M of the dip correlates
with the strength of the signal. An example of a CC analysis for the data set in Fig. 3.1
generated with model (3.2) is illustrated in Fig. 3.2. We computed CC for multiple data
sets and took the mean over all CC functions.

For the linearized OU model (3.4), the CC function can be computed analytically (see [15,
16] for derivation). It is defined by the parameter values of the model. When conducting
CC analysis of time series generated with the non-linear OU model (3.2), good agreement
to the analytical CC function can be found (yellow solid line in Fig. 3.2).
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Figure 3.3: Characteristics of the analytical CC: (A) Height M and (B) position τanreg of the dip
of the analytical CC depending on the parameters β and g. The plane corresponds
to the β value proposed by Dunlop et al. in [15, 16], see supplementary Tab. S2.

Parameter sensitivity

As displayed in Fig. 3.2, the dip of the CC can be characterized by two main features,
which are its height M (strength of correlation) and its position τreg (time point at which
regulation is maximal). In order to identify parameters that determine these two features,
Dunlop et al. [15, 16] conducted sensitivity analysis of the analytical CC function with
respect to all model parameters of the linear model (3.4).

They found, that M is mainly sensitive to the coupling parameter g such that increasing
|g| leads to a higher dip, while for |g| → 0, the dip vanishes. Nevertheless, increasing β
values can dampen this effect, such that for high β, M is nearly linear in g (see Fig. 3.3A).
The position of the dip, τreg, hardly depends on g but is very sensitive towards the pa-
rameter β (see Fig. 3.3B). So, high β values, that correspond to low protein lifetimes and
therefore faster system dynamics, lead to interaction at earlier time points, while for low
β values, it works the other way around.

We denote the analytically computed regulation time in Fig. 3.3B by τanreg. Fig. 3.3B in-
dicates, that τanreg is be proportional to the inverse of β, 1/β, which corresponds to the
average protein lifetime in model (3.4). So we can approximate τanreg by τanreg(β) = c/β for
some proportionality constant c ∈ R. Whenever we want to emphasize this dependence
of the regulation time on the protein lifetime 1/β, we write τanreg(β) instead of τanreg.

3.3 Analysis of transfer entropy for artificial Ornstein
Uhlenbeck data

In this section we analyze TE applied to OU models. We start by giving a short overview
of the practical use of TE. In the following parts, we address the questions how TE can
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Figure 3.4: TE analysis for mean-subtracted time series generated with the non-linear OU
model: (A) Example of time series generated with the non-linear OU model (3.2)
where A induces production of B. (B) Outcome of the TE analysis of the time
series in (A). (C) Four time series generated with the non-linear OU model (3.2)
where A induces production of B. (D) Outcome of the av. TE analysis of the four
time series in (C). The grey lines correspond the TEs for each pair of time series,
the error-bars indicate their standard deviation.

be interpreted and how it is influenced by certain data properties. Furthermore, we test
the method for varying protein networks with altered amounts of proteins.

Practical use of transfer entropy

There are two different possibilities, how we can approach the analysis of protein time
series with TE. It can be conducted on a single pair of time series, referred to as single
branch TE, or we can use an average version of TE for more than one pair of time series,
referred to as the average TE.

An example for a single branch TE analysis is illustrated in Fig. 3.4B, where TE is com-
puted in both directions (A → B and B → A) for the pair of time series in Fig. 3.4B.
This time series was generated with model (3.4), where protein A induces the produc-
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3 Results

tion of protein B. Fig. 3.4D displays an example for an average TE analysis for the four
pairs of time series in Fig. 3.4C. For this analysis, the single branch TE gets computed
for all four pairs of time series, giving four single branch TEs (grey lines in Fig. 3.4D)
in both directions. The average TE corresponds to the mean over these single branch TEs.

Since the average version represents the mean behavior of the regulatory dynamics, it is
more stable than its single cell counterpart. Nevertheless, as an average, heterogeneities in
single time series might be overlooked when taking the average. For this reason, evaluating
both, the single branch TE and the average TE, is crucial.

3.3.1 Transfer entropy characteristics

The single branch TE and the average TE displayed in Fig. 3.4 show three important
features:

1. The TE from time series A to time series B is higher than the TE in the opposite
direction for most time lags τ ,

2. The TE from time series A to time series B has a clear maximum.

3. The difference between the two TEs approximates zero for larger time lags.

The first feature indicates that A transfers information onto B for most time lags, i.e.
that A has a causal effect on B. This implies the regulation

’
A regulates B‘. The second

feature states that there is a time lag, where this information transfer is maximal. This
indicates the time, B needs to fully react to changes in A (regulation time τreg). Would
the third feature not be satisfied, this would imply, that every past state of A has the
same influence on one state of B, which is not meaningful. Nevertheless, we observe that
although the difference is decreasing, it does not approximate zero perfectly. This is due
to noise in the data and cannot be avoided.

With the application of TE, we want to find the direction of the interaction (who regulates
whom) and the time delay until the signal from A affects B (regulation time τreg). For
this purpose, we suggest two different options for the interpretation of the TE outcome:

1. The maximal difference between the TEs, giving the maximal difference criterion
(MDC),

2. The area in between the TEs, giving the integral criterion (IC).

While the MDC is capable of detecting the regulatory dynamics and the regulation time,
with the IC, the regulation time cannot be determined. The following part describes the
two criteria in further detail.

Maximal difference criterion (MDC)

We compute the difference of the two directions DA→B(τ) := TEA→B(τ) − TEB→A(τ),
called differential TE, for time lags τ . This functional corresponds to the net information
transferred per time lag τ . The higher this difference is, the more information is passed,
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Figure 3.5: Criteria for the evaluation of TE. (A) Computation and representation of the
maximum difference criterion for TEA→B and TEB→A in Fig. 3.4B. (B) Differential
representation of the maximum difference criterion, DA→B = TEA→B − TEB→A.
τreg corresponds to the maximum of DA→B. (C) Integral criterion: the area F
under DA→B(τ) is proportional to the amount of net information passed on between
A and B during the observation of the system.

i.e. the causal effects are stronger. Hence, the time lag τ at which the difference reaches
its maximum, gives the regulation time τreg.

The direction of the coupling can be determined by the sign of the maximal difference.
Fig. 3.5 shows the MDC, which can be displayed in two different ways: either by looking
at the two different directions TEA→B and TEB→A as in Fig. 3.5A, or by directly looking
at the difference DA→B(τ), (see 3.5B).

For the remainder of this work, we exclusively use the differential TE DA→B. For simplic-
ity, we will omit the term

’
differential ‘, and refer to DA→B as transfer entropy TE.

Integral criterion (IC)

Another way to interpret TE is by computing the area F under DA→B(τ). This area gives
the net information that is passed on between A and B during the observation time (see
Fig. 3.5C). This outcome is influenced by the observation time of the system: observing
a certain experiment for five minutes gives a time series that contains less information
than one that results from the observation of the same experiment for five days. In short
term experiments, not all underlying dynamics are necessarily reflected in the time series,
and therefore neither in the TE. For those experiments, less information can be inferred,
while time series from long experiments contain more information. In order to have a
measure for information transfer that does not depend on the length of the experiment,
we normalize the resulting area F with the complete observation time of the experiment
tobs [min]:

Fnorm =
F

tobs

[
bit

min

]
. (3.5)
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Figure 3.6: Performance of TE for varying technical parameters D and ∆τ . TE is evaluated
with the maximum difference criterion. The color-bar codes the number of ∆τ steps
needed to reach the analytically computed regulation time of 45min. Settings for
which TE detected the wrong direction of regulation are blacked out. (A) shows
simulation study for a broad range of settings, (B) is a zoom into the red marked
region in (A). The ellipse indicates the measurement parameters of the synthetic
gene circuit data set used later.

3.3.2 Data requirements

The last section described inherent features of the method TE. In this section, we focus
on different data properties and evaluate the performance of TE for different settings of
these properties.

Technical parameters

Many biological data sets are characterized by two main parameters, denoted here as
technical parameters: the number of measurements taken (denoted by D) and the time
interval between two such measurements (denoted by ∆τ [min]). In this section we ana-
lyze how these technical parameters influence the performance of TE. The importance of
this analysis is twofold: on one hand we can estimate whether a already existing data set
characterized by certain parameters can successfully be evaluated with TE. On the other
hand, it can help to design an experiment, when its outcome is to be analyzed with TE.

For this analysis, we work with artificial gene expression data of two proteins, A and
B. We gain this artificial data by simulating the linearized OU model (3.4). To mimic
real gene expression data, where observations are usually made every 10-25 min [48], we
down-sample the artificial data accordingly.

To test the performance of TE for varying settings of the technical parameters D and
∆τ , we conduct a simulation study (see Alg. (2)) as follows: We simulate multiple pairs
of time series and perform down-sampling with parameters D and ∆τ . For each pair of
the down-sampled time series, we compute the TE DA→B. From these we calculate the
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3.3 Analysis of transfer entropy for artificial Ornstein Uhlenbeck data

average TE D̂A→B and evaluate it with both, the MDC and the IC (see supplementary
Fig. S1) to find the regulation time τreg and the regulatory dynamics.

In section 3.2 we mentioned that Dunlop et al. [15, 16] derived an analytical formula for
the computation of the regulation time of the linearized model (3.4). We aim at evalu-
ating the performance of TE, when it is applied to a data set characterized by a certain
setting of D and ∆τ . We do this by comparing the regulation time found with TE, τreg,
with the analytical one, τanreg.

We find that TE cannot detect the regulation time, whenever ∆τ × D becomes small
(∆τ ×D < 250min, approximately), i.e. when the total measurement time of the experi-
ment is short and therefore contains only few information about the regulatory dynamics.
This is the case, if one, or both, parameters are small. Taking a very low interval time ∆τ
would require a very high amount of measurements to observe all dynamics. We observe
that increasing D while keeping ∆τ constant, improves the TE performance as well as
increasing ∆τ while keeping D constant. So a main factor for the performance of TE
seems to be the length of the experiment.

For the simulation study in Fig. 3.6, we use artificial data with an analytical regulation
time τanreg of 45min. The time lags, at which TE is computed, are multiples of ∆τ , thus
the regulation time τreg is also a multiple of ∆τ . For example, if ∆τ = 10, the regulation
time closest to τanreg that we can find with TE is 40 or 50min. Whenever increasing or
decreasing τreg does not converge to τanreg, as in the example, we set the ∆τ -difference to
τanreg in Fig. 3.6 to one.

Heuristic for ∆τ

In the context of experimental design, it is beneficial to have a rule of thumb that de-
scribes, how the parameter ∆τ should be chosen. In this part, we propose such a heuristic.

The total measurement time D × ∆τ has shown to be a crucial factor for the detection
of the regulation time with TE. Thus, very small ∆τ values require a high amount of
data points D to observe the regulatory dynamics sufficiently long, which would result in
high experimental effort. On the other hand, when the measurement intervals are chosen
very large, TE returns inaccurate results, as in the example above: when ∆τ = 10min,
TE cannot detect the true regulation time τanreg = 45 min, but will find τreg = 40 min
or τreg = 50 min. When setting the parameter ∆τ , a trade-off between accuracy and
experimental costs has to be made.

When ∆τ > τanreg, a detection of the regulation time with TE is not possible, as the reg-
ulatory dynamics take place before the first measurement, and are thus not captured in
the data. Since we want TE to have its maximum at the analytical regulation time τanreg,
the best choice would be to chose the parameter ∆τ as a fraction of τanreg.

In section 3.2 we explained that the analytical regulation time τanreg is mainly determined by
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the protein lifetime 1/β, such that τreg ≈ τanreg(β) = c/β for some proportionality constant
c ∈ R. Together with this finding and the results from the analysis of the technical
parameters, we propose the following heuristic for ∆τ :

∆τ =
τanreg(β)

5
. (3.6)

For the setting in the simulation study, Fig. 3.6, the data was generated with the model
(3.4) and with the parameters from supplementary Tab. S2. Applying the heuristic (3.6)
for that data would result in a measurement interval of ∆τ = 9min. For this choice of
∆τ , we obtained very good agreement between the regulation time τreg found with TE,
and the analytical regulation time τanreg(β) (see Fig. 3.6).

Protein parameters

Up to now, we only considered the performance of TE in dependence of the technical
parameters that describe how the data is measured. Apart from these parameters, TE
is also affected by the properties of the proteins, i.e. how long they proliferate and how
they influence each other. We can analyze the performance of TE applied to data with
varying protein properties by conducting a simulation study as before.

For this purpose, we generate artificial gene expression data for protein properties with
the linearized OU model (3.4). The proliferation time of a protein is set by 1/β and the
strength of the regulation by the parameter g. After the simulation, we perform down-
sampling of the resulting time series. Therefore, we chose the time interval between two
measurements ∆τ according to the heuristic (3.6) and keep the length D of the time series
constant for all settings of g and β. It is noticeable that since the heuristic (3.6) depends
on the parameter β, this parameter changes whenever β is altered.

In summary, the parameter study is conducted as follows: For every setting of β and g,
multiple time series are generated, these time series are down-sampled with parameter D
and ∆τ as described above. For each of these down-sampled time series, the DA→B was
computed. From these we calculate the average TE D̂A→B, which could then be evaluated
with the MDC and the IC (see suppl. Fig S2) to find the regulation time τreg and the
regulatory dynamics.

The analysis reveals that the performance of TE strongly depends on the protein pa-
rameters g and β. The regulation strength g determines to what extend the signal from
one time series affects the other. As expected, when the regulation among the proteins
is weak, the regulation time τanreg(β) cannot be detected with TE. The limit case g = 0
corresponds to no regulation at all, giving an intuitive example why TE is unlikely to find
regulations for very low coupling.

The parameter β is closely connected to the protein life times: their expectation corre-
sponds to 1/β. Hence, very low values of β imply long protein lifetimes and therefore high
regulation times (see Fig. 3.3). This means that the system dynamics take place on very
slow time scales, such that the regulations can be detected with TE. On the other hand,
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Figure 3.7: Performance of TE for varying protein parameters β and g. TE is evaluated with
the maximum difference criterion. The color-bar codes the number of ∆τ steps
needed to reach the analytically computed regulation time τanreg(β). Settings for
which TE detected the wrong direction of regulation are blacked out.

with larger values of β, protein lifetimes and the regulation time decrease, dynamics are
taking place very fast. These fast dynamics complicate the detection of the regulation
time with TE. The higher β is, the higher the regulation strength has to be to compensate
for increased speed of the systems dynamics, in order to find the regulation time with TE.

3.3.3 Inference of regulation patterns for Ornstein Uhlenbeck models

The analysis up to now considered the simple regulation model with two proteins, where
protein A induces production of protein B: In the following section, more sophisticated
models are examined, involving different network architectures and more species.

Fork network

The fork network comprises three different proteins, A, B and C. While protein A incudes
production of the other two proteins, B and C do not effect each other (see Fig. 3.8A).
This network can be described with the following linear OU model:

ȧ(t) = −βa(t) + Ia,t

ḃ(t) = −βb(t) + gba(t) + Ib,t

ċ(t) = −βc(t) + gca(t) + Ic,t,

(3.7)

where β describes the protein decay, gb and gc are the species specific coupling parameters
and Ii,t is the intrinsic noise for each species. As before, the intrinsic noise is modeled via
an OU processes:

dIi,t = −κIi,tdt+ λidWi,t, (3.8)

with species specific diffusion terms λi, i ∈ {A,B,C} (see Fig. 3.8A for an example of
the time series). We simulated time series with this model where we used the parameters
in Tab. S3. We conduct down-sampling with parameters ∆τ = 9min and D = 300 and
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Figure 3.8: TE analysis of protein time series following a fork network. (A) Example of mean
subtracted time series generated with model (3.7) and parameters in supplementary
Tab. S3. Down-sampling was conducted with parameters ∆τ = 9min and D = 300.
Ten time series as in (A) were generated and single branch TEs were computed for
all combinations. (B)-(D): Outcome of the average TE analysis. The blue dashed
lines correspond to the respective regulation times τreg. The error-bars indicate
the standard deviation of the TEs.

compute the TE DA→B for each pair of time series. As final outcome, we take the average
TE D̂A→B , see Fig. 3.8.

The average TEs D̂A→B and D̂A→C both show a clear maximum, indicating that A has a
causal effect on B and on C. Both take their maximum at the same time lag, giving a
regulation time τreg of 45min. Since the regulation time is mainly determined by the decay
parameter β and all three proteins have the same decay rate, this is what we expected
to find. Furthermore, D̂A→B has a higher maximum than D̂A→C, i.e. that A has a higher
causal influence on B than it has on C. In addition, both TEs decrease to zero for large
time lags, which we mentioned as an important feature for TE. The TE D̂B→C fluctuates
around zero, thus not showing any causal influence among proteins B and C.

This outcome indicates, that A regulates B and C, where the regulation from A to B is
stronger than the one from A to C. This is in agreement with the underlying model (3.7)
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Figure 3.9: TE analysis of protein time series following a chain network. (A) Example of mean
subtracted time series generated with model (3.7) and parameters in supplementary
Tab. S3. Down-sampling was conducted with parameters ∆τ = 9min and D = 300.
Ten time series as in (A) were generated and single branch TEs were computed for
all combinations. (B)-(D): Outcome of the average TE analysis. The blue dashed
lines correspond to the respective regulation times τreg. The error-bars indicate
the standard deviation of the TEs.

used for the data generation. In summary, the regulatory dynamics in the fork network
can be detected with the application of TE. Although the time series of B and C behave
nearly identical due to the common ancestor, TE does not misinterpret this correlation
with a causal relationship, which is a desirable result.

Chain network

The chain network comprises three different proteins, A, B and C. In this network
architecture, protein A regulates protein B, and protein B regulates protein C (Fig. 3.9).
The chain network can be described by the following linear OU model:

ȧ(t) = −βa(t) + Ia,t

ḃ(t) = −βb(t) + gba(t) + Ib,t

ċ(t) = −βc(t) + gcb(t) + Ic,t

(3.9)
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where β describes the protein decay, gb and gc are the species specific coupling parame-
ters and Ii,t is the intrinsic noise for each species (see Eq. (3.8)). We simulate time series
with this model where we use the parameters in supplementary Tab. S3. We conduct
down-sampling with parameters ∆τ = 9min and D = 300 (see Fig. 3.9A) and compute
the TE for each pair of time series. As final outcome, we take the average TE, see Fig. 3.9.

All three average TEs in Fig. 3.9 show the three features of TE mentioned in the be-
ginning: a clear direction of information transfer, a clear maximum and a decrease in
information transfer for large time lags. The TE D̂A→B between A and B has a maximum
at 45min, indicating the regulation time. Similarly, B causes C with a time lag of 63min.
As expected, A also causes C, where the time delay of 90 min is approximately the sum
of the other two time delays. The heights of the TEs indicate that A regulates B with a
weaker coupling, and B in turn regulates C with a stronger coupling. Since C is affected
by dynamics in A via the intermediate protein B, C indirectly reacts to changes in A. As
the signal has to pass from A to B and afterwards from B to C, this regulation takes place
with a larger regulation time, that is approximately the sum of the other two regulation
times. In summary, the regulatory dynamics of the chain network can be detected with
TE. The analysis shows an useful behavior of TE: even if not all intermediate proteins are
known, it can still be used to detect the regulatory dynamics among the known proteins.

We also investigated whether TE still can be used to rediscover the network structure,
when the sign of the second reaction is turned and B inhibits C. Conducting the same
analysis as before, we find the same results as for the inducing regulatory dynamics (see
supplementary Fig. S3).

3.4 Adaption of transfer entropy to tree structured data

Up to now, TE was computed for simple time series reflecting protein concentrations
without explicit cell divisions. We denote these types of time series as branch time series.
There are biological experiments, such as fluorescence microscopy, that yield gene expres-
sion data structured as trees.

For the tree data, each branch corresponds to one time series. Due to the fact that the
cells divide, measurements in the first generations occur multiple times. This is illustrated
in Fig. 3.10 for a tree with two branches, L and R, where L and R share the measurements
in the first generation. We could treat the two branches L and R as independent time
series and compute the TE for the two of them separately. If we then calculate their
average TE, the measurements in the first generation contribute with twice the weight
compared to those in the second generation. This adds a bias to the TE outcome, and
thus has to be corrected for.

Up to now, we estimate the joint probability of the whole branch time series for a fixed
time lag τ , and use this probability to compute the TE(τ). The correction for multiply
occurring measurements can be incorporated into the computation of TE(τ) by estimat-
ing one joint probability for the whole tree for the time lag τ .
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branch L

branch R

1. generation 2. generation

time 

A	
  
B

Figure 3.10: Tree structured data with two branches L and R and measurements of two pro-
teins, A and B. The arrows indicate the measurement combinations used for the
estimation of the joint probability for the time lag τ = 1. Branches L and R share
measurements in the first generation (pmax = 3). The measurement combinations
marked with the yellow box occur two times, and thus have to be excluded once
for the estimation of the joint probability for the whole tree.

In order to adapt TE to tree structured data, the joint probability has to be adapted
to account for multiply occurring measurements. Fig. 3.10 illustrates a tree with two
branches, L and R, that comprise measurements of proteins A and B. For the com-
putation of TEA→B(τ) for τ = 1, we estimate the joint probability p(bi, bi−τ , ai−τ ) for
branch L using KDE. The arrows in Fig. 3.10 point from measurement j to the past
measurement j − 1 and indicate those measurements used for the estimation of the joint
probabilities. Since L and R share the first three measurements, these measurements
already contributed to the joint probability of branch L. For the computation of the
joint probability of branch R, they have to be excluded from the estimation of the joint
probability. After this exclusion, taking the mean over the two joint probabilities gives
the joint probability for the whole tree. This can be done analogously for all time lags ∆τ .

We conduct the estimation of the joint probability p(bi, bi−τ , ai−τ ) with KDE (see section
2.2.1). The general formula for the computation of this KDE for a branch in a tree is the
following:

p(b̃i, b̃i−τ , ãi−τ ) ≈
1

n− pmax

[
pn(b̃i, b̃i−τ , ãi−τ )− ppmax(b̃i, b̃i−τ , ãi−τ )

]
, (3.10)

where pmax is the index of the last common measurement that has already contributed to
another branch (in Fig. 3.10: index of last measurement in first generation), and

pm(b̃i, b̃i−τ , ãi−τ ) =
m∑
j=1

1

hbihbi−τhai−τ
K

(
b̃i − bi,j
hbi

)

K

(
b̃i−τ − bi−τ,j

hbi−τ

)
K

(
ãi−τ − ai−τ,j

hai−τ

) (3.11)
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Algorithm 1: TE for tree structured data

Data: Tree X, comprising measurements of species A and B;
Ωτ set of time lags for which TE is computed

Result: Transfer entropy TEA→B(τ);
L ∈ R3 empty tree-pdf matrix

begin
Set C as number of branches in tree;
for τ ∈ Ωτ do

for i = 1, ...., C do
Take the i’th branch Xi of the tree X, comprising ni elements;
Compute its pdf Li according to formula (3.11) ;
Set the prefix parameter pmax = 0;
for j = 1, ..., i− 1 do

Take the j’th branch Xj branch of the tree X;
Find the index p of the last measurement Xi and Xj have in
common;
if p > pmax then

pmax = p;
end

end
if Xi and Xj have a common prefix, i.e. pmax > 0 then

Compute the pdf Li,pmax of the prefix according to formula (3.11)
with m = pmax;
Set Li = Li − Li,pmax ;

end
Normalize the pdf Li by dividing each entry by ni − pmax;
Set L = L+ Li;

end
Compute TEA→B(τ) from L according to formula (2.20);

end

end

is the estimation of the joint probability obtained with KDE. Hence, the first term in
Eq. (3.10) corresponds to the joint probability for the whole branch, the second term to
the one for that part of the branch, that has already been accounted for. Alg. 1 explains
the computation of this tree transfer entropy for the whole tree in greater detail.

Application of transfer entropy to artificially generated tree data

To test the tree TE, we use the linearized OU model (3.4) for the simulation of tree-
structured data. We simulate a tree with three generations (see Fig. 3.11) and conduct
down-sampling of the data with parameters ∆τ = 9 min and D = 500. Since the simu-
lation of tree-structured data from the model does not change the regulatory dynamics,
we know from the analysis of this model that the analytical regulation time τanreg(β) cor-
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Figure 3.11: Schematic representation of the tree structure used for the simulation of artificial
data. The tree comprises two cell divisions, yielding 4 branches with a total of 7
cells.

responds to 45min (see section 3.2). The artificially generated tree data is displayed in
Fig, 3.12A-D.

We evaluate this tree data with the tree TE algorithm and analyze the tree TE DA→B.
The outcome shows the typical features of TE: we can observe a clear information transfer
from A to B with a maximum at 36min. Furthermore, DA→B decreases for large time lags
(see Fig. 3.12E). These results indicate that A has a causal effect on B with a regulation
time of 36min. This is in agreement with the model we used for the generation of the
data and implies, that we can detect the underlying regulatory dynamics with the tree TE.

In order to show the necessity of the adaption of TE to the tree structure, we evaluated
the same artificially generated tree with the non-adapted version of TE, i.e. we treat
each branch as a single pair of time series and do not correct for multiply occurring
measurements (see Fig. 3.12F). The outcome of this analysis detects a far lower amount
of information transfer from protein A to B, although we generated data with a strong
coupling between the two proteins. This indicates, that without the adaption of TE to
the tree structure, interactions with lower strengths would probably not be detected.
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Figure 3.12: Artificial tree data and tree TE analysis: (A)-(D): tree data generated with model
(3.4) for a tree structured as in Fig. 3.11. (A) and (C) display the mean subtracted
protein measurements of protein A and B of the tree, respectively. Each grey line
corresponds to one branch, measurements of one branch are highlighted. The
black dashes lines indicate the time points of cell division. (B) and (D) illustrate
the same protein measurements as heatmaps. The branch identifier indicates
the branch of the tree, white lines separate the individual cells and indicate cell
division. The red box marks the branch highlighted in (A) and (C). (E) Outcome
of the tree TE analysis of the tree displayed in (A)-(D) with adaption of TE
to tree structure. (F) Outcome of the tree TE analysis of the tree displayed in
(A)-(D) without adaption of TE to tree structure.
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3.5 Application of transfer entropy to biological data

3.5.1 Synthetic gene circuit in E.coli

The synthetic gene circuit used in the following was established as a chromosomal and
a plasmid version in E.coli by Dunlop et al. [15, 16] (see section 2.3 for experimental
setup and data acquisition). The chromosomal data set comprises five movies with 100-
200 branches per movie, the plasmid data set six movies with 60 - 200 branches per
movie. For both versions, measurements were taken every ∆τ = 10min, with a total of
D = 20−50 measurements per movie. An example of one chromosomal tree is depicted in
Fig. 3.13. Data with technical parameters in these ranges could successfully be analyzed
in the simulation study with TE, see Fig. 3.6B.

CC analysis of synthetic gene circuit

Dunlop et al. [15, 16] applied CC to the experimental data to infer the regulatory dy-
namics of the three-component system. For the chromosomal SGC, they found that
YFP inhibits the production of RFP with a regulation time of 100min, while there is no
regulation among YFP and CFP. The analysis of the plasmid SGC returned the same
regulatory dynamics, but with a regulation time of 120min for the regulation between
YFP and RFP. Furthermore, Dunlop et al. state, that the CC of the plasmid SGC was
affected by increased variability. Neither for the chromosomal, nor for the plasmid version
of the synthetic gene circuit, they analyzed the regulation between CFP and RFP.

TE analysis of synthetic gene circuit

For the TE analysis, we first computed the tree TE D for all individual trees in the two
experimental setups (chromosome or plasmid circuit). In a second step, we took the mean
over all single tree TEs per experimental setup, yielding the average tree TE D̂.

The tree TE of the tree in Fig. 3.13 indicates an increased information transfer from YFP
to RFP with a maximum at 110min and decreasing information transfer for large time
lags. There appears to be no significant transfer of information among the other proteins,
suggesting that there is no causal relationship among them. From these facts we conclude,
that YFP regulates the expression of RFP with a regulation time of 110min, whilst there
is no regulation among the other proteins. This agrees with the synthetically engineered
regulatory dynamics (see Fig. 2.6).

We obtain similar results for the average tree TE: we recover the regulation from YFP to
RFP with a regulation time τreg of 100min, while there seems to be no significant regu-
lation among the other proteins (see Fig. 3.14A-C). The error-bars in Fig. 3.14D indicate
the standard deviation of the single tree TEs for all five movies capturing the dynamics
of the chromosomal synthetic gene circuit. We can observe that for high time lags, the
error-bars cross zero, i.e. that for some trees, a regulation from RFP to YFP was detected
for larger time lags.
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Figure 3.13: Tree from chromosomal synthetic gene circuit experiment. The left column dis-
plays the fluorescence levels of (A) YFP, (C) CFP and (E) RFP of one tree. Each
grey line corresponds to a branch in the tree, measurements of one branch are
highlighted. The right column displays the same measurements as heatmaps. The
red box marks the branch highlighted in the left panel.
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Figure 3.14: Outcome of the TE analysis of the synthetic gene circuit experiment. (A)-(C) sin-
gle tree TE analysis of the tree in Fig. 3.13 that comes from the chromosomal
synthetic gene circuit experiment. (D)-(F): average TE for all trees from the
chromosomal synthetic gene circuit experiment. (G)-(H): average TE for all trees
from the plasmid synthetic gene circuit experiment. Error-bars indicate variabil-
ity in the TEs for the used movies.

We conduct the same analysis with the movies from the plasmid synthetic gene circuit
(see Fig. 3.14D-E) and find similar results as in the chromosomal case YFP regulates the
production of RFP with a regulation time of 80min, i.e. it is slightly decreased compared
to the chromosomal setup.
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Table 3.1: Time-lapse movies and trees of HSC used for this project. The second column gives
the total number of trees per movie. The third column gives the fraction of MEP-
trees in the respective movie, and the fourth column the total number of branches
in these MEP trees (e.g. movie 120602PH5 comprises 81 trees, 4 of which are MEP
trees satisfying the conditions in the main text. These four trees comprise a total
of 41 branches). The fifth and sixth column give the same numbers for the GMP
trees.

Name Trees MEP trees MEP branches GMP trees GMP branches
120602PH5 81 4 41 4 25
130218PH8 75 4 26 4 15
140206PH8 71 6 103 2 11

3.5.2 Hematopoietic stem cell data

The hematopoietic stem cell data used here comprises measurements of the two transcrip-
tion factors PU.1 and GATA-1 that are known to play important roles in the cell fate
decision of CMP cells. The measurements come from time-lapse fluorescence microscopy
experiments (see section 2.3 for experimental setup and data acquisiton). We use data
from three different time-lapse fluorescence microscopy movies. They are listed in Tab.
3.1 where each name corresponds to a movie. Each movie starts with few cells, and during
their growth each cell eventually divides. This dividing gives rise to a tree capturing the
progeny of one cell. The number of such trees in each movie is listed in the second column
of Tab. 3.1.

Transfer entropy analysis

We conduct TE analysis to infer the interaction network of the proteins PU.1 and GATA-
1. Since we are interested in the regulatory dynamics of PU.1 and GATA-1 during the
differentiation from CMP to MEP/GMP, we only use trees satisfying the following con-
ditions (see Fig. 3.15 for illustration):

1. The first cell of the tree is not yet assigned as a GMP or a MEP.

2. The majority of the branches differentiate either to GMP or MEP cells.

From the trees satisfying these conditions, we exclude all branches that do not show
marker onset, i.e. where the last cells of the branches are still not annotated. The man-
ually tracked data contains many outliers. These incorrect, but strong signals lead TE
to detect non-existent causal relationships. To avoid this, we automatically detect these
outliers by fitting a polynomial to the time series and marking the measurements with
a far distance to the polynomial (done by F. Buggenthin). Measurements identified as
outliers are then interpolated. Although many outliers can be successfully removed with
this approach, there still remain outliers in the data, since the polynomial approach does
not detect all outliers in the time seres. After the outlier correction, we normalize all
fluorescence data with the cell area to obtain concentration values and remove cell cycle
effects.
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Figure 3.15: Schematic representation of trees used for HSC analysis: the cell in the first
generation does not show GMP or MEP markers (

’
Unknown‘). During time

course, GMP or MEP marker onset is observed for most branches, indicating
differentiation. Branches, that are not annotated are excluded from analysis.

In Fig. 3.16, an example of a tree is shown, where each branch gives rise to GMP cells.
The time series of both proteins are illustrated, together with the fluorescence values of
all cells belonging to that tree. The fluorescence images show that GATA-1 stays at a low
level, while PU.1 expression increases during time course. The opposite behavior can be
observed for the MEP trees (see Fig. 3.17).

We analyze the trees in Fig. 3.16 and 3.17 with the tree TE. For both trees, we find the
typical features of TE: a clear direction of information transfer is visible, both show a
maximum and decrease for large time lags. The analysis of the GMP tree (Fig. 3.18A)
shows that PU.1 transfers information onto GATA-1 with a maximum of 900min, indicat-
ing that PU.1 has a causal effect on GATA-1. The maximum of DP→G is flat, i.e. that the
maximum of 900min is rather an indication than a unique maximum. The analysis of the
MEP tree (Fig. 3.18B) shows the opposite behavior: GATA-1 transfers information onto
PU.1, i.e. GATA-1 causes PU.1. The time lag of maximal information flow is 2610min.

In addition to the tree TE analysis of single trees, we conduct an average tree TE analysis:
for all three movies, we gather the trees that fulfill the two conditions mentioned above.
We pre-process the trees by removing branches without marker onset, detecting and re-
moving outliers and normalizing with the cell area. Afterwards, we visually inspect all
these trees and exclude those from the analysis, that still show high amounts of outliers
(see Tab. 3.1 for numbers). This leaves us with a total of 10 trees belonging to the GMP,
and 14 trees belonging to the MEP lineage, that contribute to the computation of the
average tree TE.

The average tree TE D̂P→G of all 10 GMP trees shows an information transfer from PU.1
to GATA-1 with a maximum at 832.5min (see Fig. 3.18A). This indicates a regulation of
GATA-1 by PU.1 with a regulation time of 832.5min. The evaluation of tree TE for the
single GMP tree in Fig. 3.18A gave very similar results. Nevertheless, the error-bars that
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Figure 3.16: Example of a GMP tree: (A) and (C) depict time series of GATA-1 and PU.1
concentrations, respectively, where one branch line highlighted. (B) and (D) show
the concentrations over time of all branches in the tree as a heatmap, the red box
marks the branch highlighted in the left. White lines separate the individual cells
and indicate cell division.

indicate the standard deviation of all single tree TEs show high variability. Only close to
the found regulation time, the errorbars do not cross zero, thus allowing for a statement
about the regulatory dynamics.

The average tree TE D̂P→G computed for 14 MEP trees suffers from high variability, as
indicated by the error bars. For ever time lag, the error bars cross the zero-line, thus not
allowing for the identification of the regulatory dynamics.

Evaluation of the TE outcome

Another feature of the data is the time until marker onset. This is the time that passes
from the beginning of the movie until the time point, at which the cells of a branch can
be annotated as GMPs or as MEPs (see Fig. 3.15). Since each branch has its individ-
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Figure 3.17: Example of a MEP tree: (A) and (C) depict time series of GATA-1 and PU.1
concentrations, respectively, where one branch is highlighted. (B) and (D) show
the concentrations over time of all branches in the tree as a heatmap, the red box
marks the branch highlighted in the left. White lines separate the individual cells
and indicate cell division.

ual marker onset time, we compute the average time to marker onset for each tree, and
compare it to the outcome of its TE analysis. This means that for every tree, we com-
pare its marker onset time to the amount of transferred information during the movie
(see Fig. 3.19A), and to its regulation time (see Fig. 3.19C). Furthermore, we analyze the
histograms of the transferred information (see Fig. 3.19B) and the regulation times (see
Fig. 3.19D) for the GMP and MEP trees to find cell-type specific clusters. The results of
this analysis are manifold.

The analysis of the marker onset times reveals that trees giving rise to GMP cells all
have similar times to marker onset, while the marker onset times of MEP trees are more
variable.

Furthermore, we rediscover the tendency found in the average TE analysis (Fig. 3.18):
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Figure 3.18: Outcome of the TE analysis of the GMP and MEP trees. Tree TE for the
GMP (A) and MEP tree (B) displayed in Fig. 3.16 and 3.17, respectively. (C) Av-
erage tree TE for all 10 GMP trees. (D) Average tree TE for all 14 MEP trees.
The error-bars represent the standard deviation of the mean over all used trees.

In GMP trees, PU.1 transfers information onto GATA-1. The amount of transferred in-
formation is similar for most GMP trees (see. Fig. 3.19B). While the average tree TE
analysis of the MEP trees did not allow for a statement about the regulatory dynamics
(due to high variability), Fig. 3.19A illustrates that GATA-1 is the driving force in many
MEP trees. It is noticable, that MEP trees with higher marker onset times show regula-
tion of GATA-1 through PU.1.

The evaluation of the regulation time of the individual trees shows, that the GMP trees as
well as the MEP trees built clusters with respect to their regulation time (see Figs. 3.19C
and 3.19D). The regulation times of the GMP trees fall within a small interval without any
exception, explaining the clear peak in Fig. 3.18C. The MEP trees still cluster together,
but show higher variability in the regulation times compared to the GMP trees, explaining
the inconclusive outcome in the average tree TE analysis (see Fig. 3.18D). Furthermore,
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Figure 3.19: Analysis of the tree TE for individual trees. In (A) and (B), each marker corre-
sponds to one tree, the color codes the label and the symbol the movie the tree
belongs to. (A) Average time to marker onset versus the amount of information
transfer from PU.1 to GATA-1. Negative values indicate an information transfer
from GATA-1 to PU.1. (B) Histogram of the amount of transferred information
from PU.1 to GATA-1 of all trees. (C) Average time to marker onset versus the
regulation time. (D) Histogram of the regulation time of all trees.

we could not detect any movie-specific patterns or cluster.

49



4 Discussion and Outlook

4.1 Discussion

The aim of this thesis was the theoretical analysis of TE as well as its application.
Throughout the project, we found important properties and characteristics of TE, and
tested it for different networks. In the last part, TE was applied to real biological data
sets. In the following chapter, we summarize and discuss the results found.

Measuring causality with TE

TE is a measure for causality between two processes based on information theoretical
principles. These processes can be of any nature. In this thesis we focused on gene ex-
pression data and analyzed the causal relationships among different proteins in order to
infer pairwise regulatory dynamics.

This inference of regulatory dynamics is feasible with TE: when applying the method
to find how one process affects the other, the outcome corresponds to the amount of
transferred information among the processes in bits with respect to a time delay τ . This
means, TE measures how much information is passed on from one process to another
and thus, how one process causes the behavior of the other process in τ time steps. We
identified three important features of the TE outcome that indicate causality among two
processes:

1. TE detects an information transfer,

2. this information transfer has a maximum, indicating the regulation time,

3. for increasing time delays, the information transfer decreases to zero.

When the TE outcome shows these features and therefore detects a causal relationship,
it can be used to infer regulatory dynamics. Assuming that a process A causes a process
B, this causal relationship can be interpreted as a regulatory link. Since TE measures if
and to what extend A causes B, this does not allow for the detection of the nature of this
causal relationship, i.e. whether A induces or inhibits B.

The two questions we aim to answer with the TE analysis of gene expression data are
whether a protein regulates another protein, and how long the reacting protein takes to
respond to this regulation (

’
regulation time‘). To address this question, we proposed two

criteria for the evaluation of the TE outcome, the maximum difference criterion (MDC)
and the integral criterion (IC). The MDC allows to assess the regulatory dynamics and
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the regulation time of the dynamics, while the IC measures the net information one pro-
cess passes onto the other during the observation time.

In order to evaluate TE, we generated artificial gene expression with linear and non-linear
OU models. We tested the method for varying protein network structures and numbers
of proteins, finding that we were able to infer the networks and parameters.

Implementation of TE

At the beginning of this project, TE was available as a Matlab implementation. This
implementation is stable and works reliably, but is not appropriate for processing large
amounts of data due to run-time issues. To circumvent this problem, we implemented TE
in C++ , yielding a significant run-time improvement compared to the Matlab function.
This speed enhancement allows for fast processing of the data.

Data dependence of TE

Since TE measures causality on the basis of the protein’s time series, we analyzed to
what extend the performance of TE depends on different properties of these data. For
this purpose we identified two different categories of data parameters, the technical and
the protein parameters, and investigated their influence on the outcome of TE.

The technical parameters comprise the total number of measurements and the time inter-
val in between two measurements. Together, they determine the experimental run-time.
To test the dependence of TE on these technical parameters, we conducted simulation
studies that revealed the experimental run-time as an important factor for the performance
of TE. Long term experiments contain more information concerning the regulatory dy-
namics than short term experiments. The higher the amount of information in these time
series, the more accurate are the causal relationships detected by TE.

We proposed a heuristic how to chose the time interval between two measurements, when
an experiment is being designed and this experiment is to be analyzed with TE. This
heuristic is related to the protein lifetimes, and ensures avoidance of high experimental
costs and missing of important dynamics.

The protein parameters that have shown to be important in the context of TE, are the
decay rates and the regulation strength among them. We can detect regulation times
more accurate with TE, when the regulation among the proteins is strong. The protein
decay rate sets the average lifetime of the proteins, and thus determines the time scale of
the dynamics in the system: very low decay rates result in high protein lifetimes, and thus
in slow dynamics, while it works the other way around for large decay rates. Regulations
taking place in systems with slow dynamics are more likely to be correctly identified with
TE, than in systems with fast dynamics.

51



4 Discussion and Outlook

Extension of TE to tree structured data

A major goal of this thesis was the application of TE to protein time series. There
are biological experiments, such as time-lapse fluorescence microscopy, that observe the
concentration of marked proteins in single cells during their growth and thus also observe
the cell divisions. These experiments yield tree-structured gene expression data. In this
tree data, each branch corresponds to one time series. Due to the cell division, the
measurements in the first generations occur in every branch. The TE implementation
up to that point only considered single time series, but did not consider dividing events
of cells. We incorporated this tree structure in TE giving the tree transfer entropy that
corrects for multiply occurring measurements in a tree, and implemented the method in
Matlab and C++. This approach yielded sound results for a synthetically generated tree
data, and we were able to recover underlying network structures and parameters.

Application of TE to a synthetic gene circuit

We applied TE to infer the regulatory dynamics in a synthetic gene circuit that was es-
tablished in E.coli. as a chromosomal and as a plasmid version.

The application of TE facilitated the detection of the correct regulatory network, together
with a regulation time for both versions of the circuit. For the chromosomal data, we
found the same regulation time with the TE approach as Dunlop et al. did with their CC
approach. While Dunlop et al. find CC affected by increased variability for the plasmid
data set, this is not the case for TE. Nevertheless, the regulation time found with the
TE approaches deviates from the one found with CC for the plasmid version of the gene
circuit.

Application of TE to a hematopoietic stem cell data set

As a second application, we used TE to analyze molecular processes during hematopoiesis.
We aimed to infer regulatory dynamics taking place during the lineage choice of CMP
cells, i.e. the commitment to the GMP or the MEP lineage. The data set used here com-
prises measurements of the two transcribtion factors PU.1 and GATA-1 that are known
to play central roles in this cell fate decision: they antagonize each other, while both re-
inforce their own production via autoregulatory-loops. This dynamical model is referred
to as a toggle-switch (see, e.g. [57]).

On the single tree level, we found that the differentiation from CMP to GMP is domi-
nated by the transcription factor PU.1, while the differentiation to MEP is dominated by
GATA-1, with the two regulations taking place on different time scales. The regulation
form PU.1 to GATA-1 is fast, while GATA-1 reacts to changes in PU.1 with a larger time
delay.

We conducted the analysis for several trees, to find average regulatory behavior. There-
fore we used hand-sorted trees from all three movies available, that showed lower amounts
of outliers. The average tree TE analysis for the GMP trees reflected the results found
on the single tree level, i.e. that PU.1 regulates GATA-1. The standard deviation of
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this average TE indicates that although most GMP trees show a similar behavior as the
average, there exist single trees where this regulatory dynamic can not be detected. The
analysis of the MEP trees did not allow for a statement about the regulatory dynamics,
since taking the average over several MEP trees shows a high variability in the regulatory
dynamics of the transcription factors. We suppose, that this variable behavior is caused
by remaining outliers in the data, that could not be detected with the polynomial ap-
proach described in the main text. Although we hand-sorted the data prior to analysis,
the time series still contained outliers (see Fig. 3.16, 3.17).

To further analyze the data, we tested the relationship between the marker onset and
the TE outcome of each individual tree. With this analysis we found that GMP cells
all show similar marker onset times and similar regulation times. The MEP trees show
a high variability in marker onset times. It is noticeable that TE detected a GMP-like
regulation from PU.1 to GATA-1 for MEP trees with higher marker onset times. This
outcome can either indicate, that the time scales of the signals play an important role for
the detection of causality with TE, or that the trees annotated as MEPs are actually GMP
trees. Analyzing the regulation times of the individual trees indicated, that all GMP trees
have similar regulation times of approximately 10h, and most MEP trees have regulation
times of approximately 40h. This interesting finding might be caused by varying protein
lifetimes of PU.1 and GATA-1 and should be further investigated.

Limitations of TE

TE proved to be an appropriate method for the detection of causal relationships, and
thus for the inference of regulatory dynamics, in gene expression data. Nevertheless, the
method has to be used with caution, since not every data set can be analyzed with TE
without problems. We have seen that the data has to fulfill certain requirements, making
TE a highly data dependent method.

Another peculiarity of TE is, thought it can be used to determine the direction and the
time of regulation, it cannot be used to detect the form of regulation, i.e. whether the
dynamics are of a inducing or inhibiting nature. This is due to the fact that TE measures
causality, i.e. whether or not a process influences another. This causality is independent
of the nature of the relationship among the processes. In order to investigate this nature,
other methods can be applied additionally, e.g. correlation based ones.

Furthermore, TE is very sensitive to outliers in the data. The reason for this sensitivity
is twofold: on one hand, TE will misinterpret outliers as (probably strong) signals, which
is erroneous and leads the method to detect wrong causal relationships. On the other
hand, outliers in the data result in data sets with measurement values, that are wide-
spread. This is problematic for the probability estimation and would require adaption of
the KDE hyper-parameters to the wide-spread data. This adaption can be problematic
for the non-outlier data.
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4.2 Outlook

Advancements in generation of artificial data

In order to evaluate TE, we generated artificial gene expression data with linear and non-
linear OU models. Nevertheless, these OU model are still quite basic, e.g. the protein
decay was always assumed to be identical for all protein species, an assumption that is
found in very few real protein dynamics. Furthermore, we only considered the proteins to
be influenced by intrinsic noise. A possible extension would be to include extrinsic noise
sources into the model as well. However, extrinsic noise sources influence all proteins in
the same way, thus we would expect that the TE outcome is not affected by this additional
component.

Applying TE to more sophisticated artificial models, is of high interest for the evaluation
and the advancement of the method. In a next step, it would be interesting to infer whole
protein networks instead of only looking at pairwise interactions.

Another important advancement is the application of the TE algorithm to gene expres-
sion data generated with the SSA. We introduced the OU model as a generalization of
protein dynamics following the CME. Generating protein time series with the SSA would
give more sophisticated data: The SSA simulates each reaction taking place per time step
in the network separately, giving discrete time series, while the OU model produces a
continuous time series. The unit of its outcome do not correspond to protein numbers,
but rather reflect an overall tendency of the dynamics. Still, the simulation of protein
time series with the SSA as presented in the methods part of this work only includes the
species DNA, mRNA and protein. In reality, gene expression is known to be far more
complicated, thus the SSA is, as the OU model, an approximation of the real dynamics
taking place.

We conducted TE analysis for gene expression data generated with the SSA, but were not
able to recover any causal relationships among the simulated proteins yet. We carried out
multiple simulations to match protein distributions and auto-correlations of the OU and
the SSA data, and conducted intensive parameter studies to test for meaningful parame-
ter ranges in which TE would recover underlying network structures. For bench-marking,
we evaluated the SSA data with cross correlation, but as with TE, we could not detect
any regulation. Since we expect the OU to be an approximation of the SSA dynamics
presented in the methods part, TE should be able to detect causal relationships for the
SSA data as well.

Handling of outliers in gene expression data

Both data sets used in this thesis contained outliers. As mentioned before, these outliers
cause problems in the TE analysis. This implies that in order for TE to work properly,
outliers should be removed prior to the analysis for every data set.

In the HSC data sets, the outliers were detected with a polynomial approach, which is
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not optimal due to the fixed degree of the polynomial. In order to improve the outlier
detection, more flexible approaches should be used, e.g. one could compute the distances
among subsequent data points and identify threshold values, that allow for the classifica-
tion of outliers.

Toggle-switch dynamics of PU.1 and GATA-1

The dynamics between PU.1 and GATA-1 are supposed to follow a toggle-switch like
dynamic during the differentiation from CMP to GMP and MEP. This means, that both
transcription factors antagonize each other, while reinforcing their own production via
auto-regulatory loops.

We were not able to confirm this model with TE yet. An approach to address this issue
would be to artificially generate gene expression data that captures a toggle-switch dy-
namic between two proteins, and to evaluate this artificial data set with TE. This analysis
would indicate, whether TE can be used to detect a toggle-switch and if so, what the TE
outcome looks like. In a final step, we could compare the TE outcome for the artificial
toggle switch data to the TE outcome of the PU.1/GATA-1 data and investigate if they
show similar patterns.

Regulation time scales of PU.1 and GATA-1

We know from the CC analysis that in the OU models the regulation time between two
interacting proteins is mainly determined by the protein’s lifetime 1/β. Since we used
the same lifetime for all proteins in the system, we do not know whether the regulation
time depends on the lifetime of the causing or the responding protein or a combination
of both. Nevertheless, this dependence could be computed analytically for a system with
different protein lifetimes following Dunlop et al. [15].

The result of this analysis could be used, to further investigate the regulatory dynamics
between PU.1 and GATA-1. We observed in the analysis of the regulation times for dif-
ferent GMP and MEP trees, that all GMP trees show similar regulation times of approx.
10h, and most MEP trees show regulation times of approx. 40h. Due to the fact that the
regulation time in the artificial setting is determined by the protein lifetime, this finding
indicates, that the different regulation times of the PU.1 and GATA-1 trees might be
caused by the distinct lifetimes of the two transcription factors. Thus, with the theoret-
ical knowledge about the regulation times from the OU models we could deduce, which
protein is responsible for the time scale of the regulations during the differentiation of
CMP to GMP or MEP.

Application of TE simultaneously to experiments

An interesting application of TE would be, to measure the concentrations of two proteins
in a cell and simultaneously compute the TE of the growing proteins’ time series. This
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means, adding every new measurement to the respective protein time series and integrate
it into the computation of TE. This would result in an altered TE outcome for every
newly added measurement. After a sufficient number of measurements, we would expect
the TE outcome to stabilize and indicate the regulatory dynamics and the regulation times
of the observed interaction. With this approach, regulations and changes in regulatory
dynamics in single cells could be detected live and thus allow for further processing of the
cells during the experiment, e.g. for cell labeling or cell sorting.

4.3 Conclusion

In this thesis, we analyzed transfer entropy, a causality measure based on information
theoretical principles. The method has proven to be a valuable tool for the inference of
regulations among proteins, as well as the time delays of regulatory signals caused by com-
plex molecular processes in single cells. Comprehensive studies using artificial data and
the application of TE to different network structures gave insight into data requirements
that have to be satisfied for sound performance of TE. They facilitated the development of
heuristics for experimental design and allowed for the extension of TE to tree-structured
data.

The application of TE to a synthetic gene circuit in E.coli. illustrated that TE is able to
successfully infer protein regulation and time delays in complex time-lapse fluorescence
microscopy data. Using TE to detect molecular regulation processes taking place during
hematopoiesis showed satisfying results for manually sorted single trees. The analysis also
demonstrated limitations of TE caused by outliers in the data. TE was found to react
highly sensitive to such erroneous data points, stressing the necessity of either revised
data sets, or more sophisticated methods for the detection and removal of outliers.
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5.1 Supplementary Notes

Linearization of the OU Model

The non-linear OU model (5.1) can be linearized around its equilibrium:

Ȧ(t) = αA − βA(t) + Ia,t

Ḃ(t) =
αB

1 + (A/K)n
− βb(t) + Ib,t.

(5.1)

The equilibrium points Aeq and Beq can be calculated as

Aeq =
αA
β

(5.2)

Beq =
αB

β(1 + (αA/(βK))n)
, (5.3)

since the noise sources have zero mean.
The Jacobian matrix J of the model (5.1) evaluated at the equilibrium corresponds to

J
∣∣
(Aeq ,Beq)

=

(
−β 0

−β − αBn(αA/(βK))n−1

K(1+(αA/(βK))n)2

)
. (5.4)

So the linearized model,

(
ȧ(t)

ḃ(t)

)
= J

∣∣
(Aeq ,Beq)

(
a(t)
b(t)

)
+

(
Ia,t
Ib,t

)
can be written as

ȧ(t) = −βa(t) + Ia,t

ḃ(t) = −βb(t) + ga(t) + Ib,t
(5.5)

where g = − αBn(αA/(βK))n−1

K(1+(αA/(βK))n)2
models the strength of the regulation from A to B. This is

the only place where non-linearity enters in the system.
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Entropy equalities

Lemma 1. For a discrete random variable X taking values x1, x2, ..., xn with probabil-
ity p(xi), i = 1, ..., nX and a discrete random variable Y taking values y1, y2, ..., yn with
probability p(yi), i = 1, ..., nY , the following equality holds:

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X).

Proof.

H(X|Y ) +H(Y ) = −
nX∑
i=1

nY∑
j=1

p(xi, yj) log p(xi|yj)−
nY∑
j=1

p(yj) log p(yj)

= −
nX∑
i=1

nY∑
j=1

p(xi, yj) log
p(xi, yj)

p(yj)
−

nY∑
j=1

p(yj) log p(yj)

= −
nX∑
i=1

nY∑
j=1

p(xi, yj) log p(xi, yj) +

nX∑
i=1

nY∑
j=1

p(xi, yj) log p(yj)

−
nY∑
j=1

p(yj) log p(yj)

= −
nX∑
i=1

nY∑
j=1

p(xi, yj) log p(xi, yj) +

nY∑
j=1

log p(yj)

nX∑
i=1

p(xi, yj)

−
nY∑
j=1

p(yj) log p(yj)

= −
nX∑
i=1

nY∑
j=1

p(xi, yj) log p(xi, yj) +

nY∑
j=1

p(yj) log p(yj)

−
nY∑
j=1

p(yj) log p(yj)

= H(X, Y )

Analogously for H(X, Y ) = H(Y |X) +H(X).
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Derivation of the TE formula

Lemma 2. There are two equivalent formulas for the computation of TEA→B:

TEA→B(τ) = H(bi|bi−τ )−H(bi|bi−τ , ai−τ )

=
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log
p(bi|bi−τ , ai−τ )
p(bi|bi−τ )

.

Proof.

TEA→B(τ) = H(bi|bi−τ )−H(bi|bi−τ , ai−τ )

= −
∑
bi,bi−τ

p(bi, bi−τ ) log p(bi|bi−τ )

+
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log p(bi|bi−τ , ai−τ )

= −
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log p(bi|bi−τ )

+
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log p(bi|bi−τ , ai−τ )

=
∑

bi,bi−τ ,ai−τ

p(bi, bi−τ , ai−τ ) log
p(bi|bi−τ , ai−τ )
p(bi|bi−τ )

.
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5.2 Supplementary Figures and Tables

Supplementary Tables

Table S1: Simulation parameter for SSA, taken from [51]. All parameters are in arbitrary units.

Parameter Protein A Protein B
v0 0.01 0.02
v1 0.0125 0.01
d0 0.005 0.005
d1 0.0005 0.0005
k0 - 0.003
k1 - 0.0001

Table S2: Simulation parameter for non-linear OU model. The parameter αB determines the
strength of the regulation among the proteins. When stronger regulation is required,
we multiply αB with 10, giving α̂B = 10× αB.

Parameter Value Notes Taken from
αA 1.39 molecules/cell/min chosen such that αA/β = K [15]
αB 4.5 molecules/cell/min arbitrary [15]
β 0.0116 1/min log(2)/Tcc, decay due to dilution [15]
K 120 nM [15, 43]
n 1.7 [15, 43]
κ 0.139 1/min log(2)/Tint [15]
λA 0.621( molecules/cell)−0.5/min [15]
λB 1.12( molecules/cell)−0.5/min [15]
Tcc 60min measured from experiments [15]
Tint 5min measured from experiments [15, 43]

Table S3: Simulation parameter for OU networks. The sign of gc determines the nature of the
regulation.

Parameter Value
β 0.0116 1/min
gb 0.159 1/min
gc ±0.113 1/min
κ 0.139 1/min
λA 0.621( molecules/cell)−0.5/min
λB 1.12( molecules/cell)−0.5/min
λC 0.821( molecules/cell)−0.5/min
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Technical Parameters

Algorithm 2: Simulation of technical parameters D and ∆τ

Data: Set of measurement lengths ΩD;
Set of observation interval lengths Ω∆τ ;
Fixed model parameters θ (see suppl. Tab. S2);

Result: TE for given parameter setting (D,∆τ): D̂A→C(D,∆τ);
begin

Simulate K time series ak, bk according to model (3.4) for given parameters θ;
for D ∈ ΩD do

for ∆τ ∈ Ω∆τ do
for k = 1, ..., K do

Down-sampling of the time series with ∆τ , D, giving a∆τ,k, b∆τ,k ;
Compute the single branch TE DA→B;

end

Compute the average TE D̂A→B and evaluate it with the MDC or the
IC;

end

end

end
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Figure S1: Integral criterion for technical parameters D and ∆τ . The color bar codes the
transferred information from A to B. Black regions correspond to parameter settings
with negative transfer, i.e. the regulatory dynamic A → B could not be detected.
(A) results of the parameter study for broad ranges of D and ∆τ . (B) ’zoom’ into
the red marked region of (A).The ellipse indicates the measurement parameters of
the synthetic gene circuit data set.
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Protein Parameters

Algorithm 3: Simulation of protein parameters g and β

Data: Set of decay parameters Ωβ;
Set of coupling parameters Ωg;
Fixed noise parameters θ (see suppl. Tab. S2);
Fixed number of measurements D

Result: TE for given parameter setting (g, β): D̂A→B(g, β);
begin

for g ∈ Ωg do
for β ∈ Ωβ do

Compute the time between two measurements ∆τ according to
heuristic (3.6);
for k = 1, ..., K do

Simulate K time series ak, bk according to model (3.4) for given
parameters g, β, θ;
Down-sampling of the time series with ∆τ , D, giving a∆τ,k, b∆τ,k ;
Compute the single branch TE DA→B;

end

Compute the average TE D̂A→B and evaluate it with the MDC or the
IC;

end

end

end
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Figure S2: Integral criterion for the protein parameters g and β. The color bar codes the
transferred information from A to B. Black regions correspond to parameter settings
with negative transfer, i.e. the regulatory dynamic A → B could not be detected.
As expected, with an increase of regulation strength, a higher amount of information
is transferred among the proteins.
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Inference of regulation patterns for Ornstein Uhlenbeck models
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Figure S3: TE analysis of protein time series following a chain network with one inhibitory
link. (A) Example of mean subtracted time series generated with model (3.7) and
parameters in supplementary Tab. S3. Down-sampling was conducted with param-
eters ∆τ = 9min and D = 300. Ten time series as in (A) were generated and single
branch TEs were computed for all combinations. (B)-(D): Outcome of the average
TE analysis. The blue dashed lines corresponds to the respective regulation times
τreg determined with the MDC. The error-bars indicate the standard deviationof
the TEs.
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