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Inactivating Mutations in NPCIL1
and Protection from Coronary Heart Disease

The Myocardial Infarction Genetics Consortium Investigators

ABSTRACT

BACKGROUND

Ezetimibe lowers plasma levels of low-density lipoprotein (LDL) cholesterol by in-
hibiting the activity of the Niemann-Pick Cl-like 1 (NPC1L1) protein. However,
whether such inhibition reduces the risk of coronary heart disease is not known.
Human mutations that inactivate a gene encoding a drug target can mimic the ac-
tion of an inhibitory drug and thus can be used to infer potential effects of that
drug.

METHODS

We sequenced the exons of NPCILI in 7364 patients with coronary heart disease
and in 14,728 controls without such disease who were of European, African, or
South Asian ancestry. We identified carriers of inactivating mutations (nonsense,
splice-site, or frameshift mutations). In addition, we genotyped a specific inactivat-
ing mutation (p.Arg406X) in 22,590 patients with coronary heart disease and in
68,412 controls. We tested the association between the presence of an inactivating
mutation and both plasma lipid levels and the risk of coronary heart disease.

RESULTS

With sequencing, we identified 15 distinct NPC1L1 inactivating mutations; approxi-
mately 1 in every 650 persons was a heterozygous carrier for 1 of these mutations.
Heterozygous carriers of NPCIL1 inactivating mutations had a mean LDL choles-
terol level that was 12 mg per deciliter (0.31 mmol per liter) lower than that in
noncarriers (P=0.04). Carrier status was associated with a relative reduction of 53%
in the risk of coronary heart disease (odds ratio for carriers, 0.47; 95% confidence
interval, 0.25 to 0.87; P=0.008). In total, only 11 of 29,954 patients with coronary
heart disease had an inactivating mutation (carrier frequency, 0.04%) in contrast to
71 of 83,140 controls (carrier frequency, 0.09%).

CONCLUSIONS
Naturally occurring mutations that disrupt NPC1L1 function were found to be as-
sociated with reduced plasma LDL cholesterol levels and a reduced risk of coronary
heart disease. (Funded by the National Institutes of Health and others.)
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ZETIMIBE, A DRUG THAT IS COMMONLY

prescribed to reduce plasma levels of low-

density lipoprotein (LDL) cholesterol, inhib-
its the function of the protein encoded by the
Niemann-Pick C1-like 1 gene (NPC1L1).* NPC1L1
protein, which is expressed in the small intestine
and liver, functions as a transporter of dietary
cholesterol from the gut lumen into intestinal en-
terocytes.>3 Because of its ability to block sterol
absorption by about 50%,* ezetimibe lowers plas-
ma LDL cholesterol levels by 15 to 20%.> How-
ever, it is uncertain whether inhibiting NPC1L1 —
either through ezetimibe treatment or by other
means — reduces the risk of clinical coronary
heart disease.®

Naturally occurring DNA sequence variants in
humans that affect the activity of one or more
protein targets can be used to estimate the po-
tential efficacy and toxicity of a drug targeting
such proteins.”® Genomewide association studies
have identified common DNA sequence variants
in NPCIL1 associated with modest alterations in
plasma LDL cholesterol levels.® However, it is dif-
ficult to discern precisely how variants that are
discovered through genomewide association stud-
ies affect the activity of a gene.

In contrast, some DNA mutations that arise
in the protein-coding sequence can completely in-
activate a gene. Inactivating mutations can be sin-
gle-base changes that introduce a stop codon and
that lead to premature truncation of a protein
(nonsense mutations), insertions or deletions (in-
dels) of DNA that scramble the protein translation
beyond the variant site (frameshift mutations),
or point mutations at modification sites of the
nascent pre—-messenger RNA transcript that alter
the splicing process®® (splice-site mutations). Be-
cause such mutations — which are variously
termed protein-disruptive, protein-inactivating,
loss-of-function, or null — profoundly affect pro-
tein function, they are typically very rare in the
population as a consequence of natural selection.

We tested the hypothesis that protein-inacti-
vating mutations in NPCIL1 reduce both the LDL
cholesterol level and the risk of coronary heart
disease. We sequenced the coding regions of
NPC1L1 in a large number of persons, identified
carriers of mutations that inactivate this gene,
and determined whether persons who carry a het-
erozygous inactivating mutation had a lower LDL
cholesterol level and a lower risk of coronary heart
disease than noncarriers of these mutations.

METHODS

STUDY DESIGN

We conducted this study using data and DNA sam-
ples from 16 case—control studies and cohort
studies. All study participants provided written in-
formed consent for genetic studies. The first and
last authors designed the study. The institutional
review boards at the Broad Institute and each
participating site approved the study protocols.
The first and last authors vouch for the accuracy
and completeness of the data and all analyses.

STUDY PARTICIPANTS

During the first phase of the study, we sequenced
the 20 protein-coding exons in NPCILI in sam-
ples obtained from 22,092 participants from seven
case—control studies and two prospective cohort
studies (see Table S1 in the Supplementary Ap-
pendix, available with the full text of this article
at NEJM.org). The case—control studies included
the Exome Sequencing Project Early-Onset Myo-
cardial Infarction (ESP-EOMI) study conducted by
the National Heart, Lung, and Blood Institute,**
the Italian Atherosclerosis Thrombosis and Vas-
cular Biology (ATVB) study,'? the Ottawa Heart
Study (OHS),*3 the Precocious Coronary Artery
Disease (PROCARDIS) study,'* the Pakistan Risk
of Myocardial Infarction Study (PROMIS),*> the
Registre Gironi del COR (Gerona Heart Registry
or REGICOR) study,'® and the Munich Myocardial
Infarction (Munich-MI) study.'” The prospective
cohort studies included the Atherosclerosis Risk
in Communities (ARIC) study'® and the Jackson
Heart Study (JHS).»

During the second phase of the study, we geno-
typed the most common inactivating mutation in
NPCIL1 on the basis of data obtained during the
sequencing phase (p.Arg406X) in nine independent
sample sets from a total of 91,002 participants
(Table S2 in the Supplementary Appendix). These
nine sample sets were from participants in the
ARIC study (participants who did not undergo se-
quencing), the Vanderbilt University Medical Center
Biorepository (BioVU),2° the Genetics of Diabetes
Audit and Research Tayside (GoDARTS) study,?* the
German North and German South Coronary
Artery Disease studies,?? the Mayo Vascular Dis-
eases Biorepository (Mayo),2? PROCARDIS (par-
ticipants who did not undergo sequencing), the
Women’s Genome Health Study (WGHS),?* and
the Women’s Health Initiative (WHI).25
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CLINICAL DATA

Data obtained for all the participants from both
the sequencing and genotyping phases of the study
included a medical history and laboratory assess-
ment for cardiovascular risk factors, as described
previously for each study. The participants were
of African ancestry (28306 participants from ARIC,
2251 from JHS, and 455 from ESP-EOMI), South
Asian ancestry (1951 participants from PROMIS),
or European ancestry (all the other participants).

For each study cohort, available clinical data
were used to define coronary heart disease. The
definitions, which therefore varied from cohort to
cohort, are provided in Tables S1 and S2 in the
Supplementary Appendix.

SEQUENCING AND GENOTYPING
Sequence data for NPCIL1 were extracted from
exome sequences generated at the Broad Institute,
the Human Genome Sequencing Center at Baylor
College of Medicine, or the University of Wash-
ington with the use of protocols that are described
in the Supplementary Appendix. Briefly, sequence
reads were aligned to the human reference ge-
nome (build HG19), and the basic alignment files
for sequenced samples were combined for the
purpose of identifying variant positions. Single-
nucleotide variants (SNVs) and indels were iden-
tified, and quality control procedures were applied
to remove outlier samples and outlier variants, as
described in the Supplementary Appendix.

For the purposes of this study, we defined
inactivating mutations as any one of the following:
SNVs leading to a stop codon substitution (non-
sense mutations), SNVs occurring within two base
pairs of an exon-intron boundary (splice-site mu-
tations), or DNA insertions or deletions leading
to a change in the reading frame and the intro-
duction of a premature stop codon (frameshift
mutations). The positions of nonsense, splice-site,
and frameshift mutations were based on the com-
plementary DNA reference sequence for NPCIL1
(NM_013389.2) with the ATG initiation codon,
encoding methionine, numbered as residue 1 or
p.Metl.

To obtain additional data for a particular non-
sense mutation (p.Arg406X) observed from se-
quencing NPC1L1, we genotyped the variant site in
additional samples using the HumanExome Bead-
Chip Kit (Illumina), according to the manufactur-
er’s recommended protocol. (See the Methods sec-
tion in the Supplementary Appendix for details.)

TECHNICAL VALIDATION OF SEQUENCING
AND GENOTYPING

To assess the accuracy of next-generation sequenc-
ing methods, we performed Sanger sequencing on
samples obtained from all participants who carried
inactivating mutations in the ATVB study. To assess
the accuracy of the genotyping of NPCI1L1 p.Arg406X
with the HumanExome BeadChip kit, we com-
pared these genotypes with those derived from
next-generation sequencing for a subset of samples.

STATISTICAL ANALYSIS
We first tested the association between NPCIL1
protein-inactivating mutations and plasma lipid
levels. For participants who were receiving lipid-
lowering therapy, we accounted for an average
reduction in total cholesterol and LDL cholesterol
levels of 20% and 30%, respectively,2® by adjust-
ing the measured values accordingly. We did not
adjust levels of high-density lipoprotein (HDL)
cholesterol or triglycerides in these participants.
Status with respect to the use of lipid-lowering
medication was available for participants in ARIC,
JHS, Munich-MI, PROCARDIS, REGICOR, and
WGHS. When possible, we combined primary
data for studies that included only one partici-
pant with an inactivating mutation with data for
other studies involving participants of the same
ancestry in order to create a larger data set. We
performed regression analysis with a linear mod-
el that was adjusted for age and sex, along with
an indicator variable for the study if applicable,
to test for an association between the presence of
inactivating mutations in NPCILI and levels of
total cholesterol, LDL cholesterol, HDL choles-
terol, and log-transformed triglyceride levels in
each sample set. We combined results first with-
in ancestry groups and then across ancestry
groups, using fixed-effects meta-analyses.

We next tested for an association between
protein-inactivating mutations in NPCIL1 and
the risk of coronary heart disease. In each study,
we estimated the odds ratio for disease among
carriers of any NPC1L1 inactivating mutation, as
compared with noncarriers. We then calculated
the summary odds ratios and 95% confidence
intervals for coronary heart disease among car-
riers, using a Mantel-Haenszel fixed-effects
meta-analysis without continuity correction, a
method that is robust with low (and even zero)
counts and resultant odds ratios. A P value of
less than 0.05 was considered to indicate statis-
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tical significance. The R software program
(R Project for Statistical Computing) was used
for all analyses.

RESULTS

RARE INACTIVATING MUTATIONS IN NPC1L1
After sequencing NPCIL1 in 7364 patients with
coronary heart disease and in 14,728 controls with-
out such disease, we identified 15 mutations that
were expected to inactivate NPC1L1 (Table 1). These
mutations included 10 nonsense single-nucleo-
tide substitutions, 3 single-nucleotide substitutions
that were predicted to disrupt splicing, and 2 frame-
shift indels (Fig. 1). In aggregate, these 15 muta-
tions were seen in a total of 34 participants with
heterozygous mutations; no homozygotes or com-
pound heterozygotes were identified. NPCIL1 in-
activating mutations were rare, with such variants
found in approximately 1 in 650 participants.

The most frequently observed individual mu-
tation was p.Arg406X, which had a minor allele
frequency of 0.02% among participants of Euro-
pean ancestry (seven alleles observed in 29,198
chromosomes) and was not observed in partici-
pants of African or South Asian ancestry. We
genotyped this single variant in an additional
22,590 participants with coronary heart disease
and in 68,412 controls. Among these 91,002 par-
ticipants, we identified 48 additional heterozy-
gous carriers (Table 1). The baseline characteris-
tics of participants carrying NPCIL1 inactivating
mutations and those without such mutations
were similar across all 16 studies (Table S3 in
the Supplementary Appendix).

As a quality-control measure to assess the
accuracy of next-generation sequencing, we per-
formed Sanger sequencing and independently con-
firmed the presence of inactivating mutations in
all carriers who were identified in the ATVB study.
(See the Supplementary Appendix for details.) In
a similar effort to assess the quality of genotyp-
ing, we compared genotype calls for p.Arg406X
across 4092 samples that had undergone both
genotyping and sequencing. On the basis of
these data, we observed 100% specificity and
sensitivity in identifying p.Arg406X carriers with
the use of genotyping.

NPC1L1 MUTATIONS AND PLASMA LIPID LEVELS
Plasma lipid measurements were available for
13,626 participants in the ARIC study, 2082 in

the JHS, and 22,515 in the WGHS. In addition,
plasma lipid levels were available for 5405 con-
trols without coronary heart disease from the
ATVB, ESP-EOMI, Munich-MI, OHS, PROCARDIS,
and REGICOR studies. LDL cholesterol levels
were available for 42,813 of these 43,628 study
participants. To minimize the effect of ascertain-
ment bias, we excluded patients with coronary
heart disease from case—control studies in the
lipids analysis. As compared with noncarriers,
carriers of inactivating NPCIL1 mutations had
significantly lower levels of total cholesterol
(mean adjusted difference, —13 mg per deciliter
[0.34 mmol per liter]; P=0.03) (Table 2) and LDL
cholesterol (mean adjusted difference, —12 mg
per deciliter [0.31 mmol per liter]; P=0.04) (Table
2 and Fig. 2). Triglyceride levels were also re-
duced among carriers, although the difference
was not significant (mean change, —12%; P=0.11).
We did not observe any significant difference in
HDL cholesterol levels between carriers and non-
carriers, with an increase of 2 mg per deciliter
(0.05 mmol per liter) among carriers (P=0.29).
Participants of European and African ancestry
had a similar magnitude of LDL reduction (<13 mg
per deciliter and —10 mg per deciliter [0.26 mmol
per liter], respectively) (Fig. 2).

ASSOCIATION BETWEEN NPC1L1 MUTATIONS
AND CORONARY RISK

Carriers of the 15 inactivating mutations that we
identified in NPCIL1 were underrepresented
among patients with coronary heart disease, as
compared with controls (Table 3). In total, only
11 participants among 29,954 patients with coro-
nary heart disease had an inactivating mutation
(carrier frequency, 0.04%) in contrast to 71 of
83,140 controls (carrier frequency, 0.09%). This
represented a 53% reduction in the risk of coro-
nary heart disease among carriers of inactivating
NPC1L1 mutations (odds ratio for disease among
carriers, 0.47; 95% confidence interval [CI], 0.25
to 0.87; P=0.008) (Table 3, and Table S4 in the
Supplementary Appendix).

We observed a reduced risk of coronary
heart disease among both participants of Afri-
can descent and those of European descent. In
the African ancestry subgroup, only 2 of 887 pa-
tients with coronary heart disease carried an
NPCIL1 inactivating mutation (carrier frequency,
0.23%), as compared with 13 of 4655 controls
(carrier frequency, 0.28%), representing a 17%
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Table 1. Inactivating Mutations in NPCILI in Participants from 16 Studies. *

Cohort and Mutation

Sequencing and genotyping
cohorts

Sequencing cohort

All participants

p.L71RfsX50
p.Q167X
p.A296VFsX57
p.R406X

p.Y483X
c.1681+1G-A
p.-W592X
p.R601X
p.Q604X
p.R738X
p.E803X
€.2637+2T-G
p.C967X
p.A1201V
p.R1325X

Genotyping cohort
All participantsi:

p.R406X

Type of
Mutation

Frameshift
Nonsense
Frameshift

Nonsense

Nonsense
Splice-site
Nonsense
Nonsense
Nonsense
Nonsense
Nonsense
Splice-site
Nonsense
Splice-site

Nonsense

Nonsense

Study (No. of Participants/
No. of Carriers)

All studies (113,094/82)

All studies in sequencing cohort
(22,092/34)

ARIC (2836/1), JHS (2251/1)
OHS (1953/1)
ATVB (3539/3)

ATVB (3539/4), PROCARDIS (1902/1),
ARIC (5718/2)

PROMIS (1951/1)
ARIC (2836/2), JHS (2251/1)
ARIC (5718/1)

ARIC (2836/1)
ESP-EOMI (455/1), ARIC (2836/2)
REGICOR (783/2)

ARIC (5718/1)

ARIC (5718/1), Munich-MI (704/1)
ARIC (2836/1)

JHS (2251/2)

ARIC (2836 of African ancestry/1), JHS
(2251 of African ancestry/2), ARIC
(5718 of European ancestry/1)

All studies in genotyping cohort
(91,002/48)

ARIC (5237/4), BioVU (21,143/12),
German North (7350/1), German
South (8176/3), GoDARTS
(3765/4), Mayo (2669/2),
PROCARDIS (2227/1), WGHS
(22,617/11), WHI (17,818/10)

Ancestry

African
European
European

European

South Asian
African
European
African
African
European
European
European
African
African

African and
European

European

* ARIC denotes Atherosclerosis Risk in Communities, ATVB Atherosclerosis Thrombosis and Vascular Biology, BioVU
Vanderbilt University Medical Center Biorepository, ESP-EOMI Exome Sequencing Project Early-Onset Myocardial
Infarction, German North German North Coronary Artery Disease Study, German South German South Coronary Artery
Disease Study, GoDARTS Genetics of Diabetes Audit and Research Tayside, JHS Jackson Heart Study, Mayo Mayo
Vascular Diseases Biorepository, Munich-MI Munich Myocardial Infarction, OHS Ottawa Heart Study, PROCARDIS
Precocious Coronary Artery Disease, PROMIS Pakistan Risk of Myocardial Infarction Study, REGICOR Registre Gironi
del COR, WGHS Women's Genome Health Study, and WHI Women'’s Health Initiative.

T The number of participants in the sequencing cohort includes 7364 patients with coronary heart disease and 14,728

controls without such disease.

I The number of participants in the genotyping cohort includes 22,590 patients with coronary heart disease and 68,412

controls without such disease.

reduction in the risk of coronary heart disease
among carriers (cohort-based meta-analysis odds
ratio, 0.83). In participants of European ances-
try, 9 of 28,223 patients with coronary heart

disease carried the mutation (carrier frequency, ratio, 0.43).
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among carriers (cohort-based meta-analysis odds
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Figure 1. Inactivating Mutations in NPC1L1 Identified in the Study.

Black circles indicate individual mutations along with the effect expected to lead to NPC1L1 inactivation. Mutations
p.L71RfsX50 and p.A296VfsX57 (red shading) are indels that shift the open reading frame and induce a premature
termination codon after an additional 50 and 57 amino acids, respectively. Mutations c.1681+1G—-A, ¢.2637+2T-G,
and p.A1201V (c.3602C-T) (blue shading) alter the splicing process at sites of modification of the nascent pre-mes-
senger RNA transcript (splice-site mutations). All other mutations (yellow shading) are single-nucleotide variants
that introduce a termination codon. The locations of the three main extracellular domains, 13 transmembrane do-

mains, and intracellular domains are based on data from Betters and Yu.?” NH, denotes the N-terminal at which
protein translation is initiated, and COOH the C-terminal at which translation terminates.

DISCUSSION

We sequenced the protein-coding regions of NPC1L1
in 22,092 participants and identified 15 rare muta-
tions that were expected to disrupt the protein. We
also genotyped the most frequently observed of
these inactivating mutations (p.Arg406X) in an
additional 91,002 participants. Carriers of any
NPCILI1 inactivating mutation had a mean LDL
cholesterol level that was 12 mg per deciliter low-
er than the level in noncarriers, along with a 53%
lower risk of coronary heart disease. These results
show that lifelong inactivation of one copy of
NPC1L1 is protective against coronary heart disease.

The observation that genetic inhibition of
NPC1L1 reduces the risk of coronary heart dis-
ease increases the prior probability that pharma-

cologic inhibition of NPC1L1 will also reduce
the risk of disease. In 2002, ezetimibe was initially
approved as a therapeutic agent in the United
States on the basis of the capacity of the drug to
lower LDL cholesterol levels. Although it has been
assumed that any pharmacologic means of low-
ering LDL cholesterol levels will reduce the risk
of coronary heart disease, the findings from the
Ezetimibe and Simvastatin in Hypercholesterolemia
Enhances Atherosclerosis Regression (ENHANCE)
trial have led some observers to question this
assumption.?® In ENHANCE, the addition of
ezetimibe to background statin therapy in pa-
tients with familial hypercholesterolemia did not
reduce the progression of carotid intima—media
thickness, a surrogate measure for atherosclero-
sis.® In the ongoing phase 3, randomized Im-
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Table 2. Association between the Presence of Inactivating
Mutations in NPCI1L1 and Plasma Lipid Levels.*

Mean Difference
between Carriers

Variable and Noncarriers* P Value

Cholesterol (mg/dl)

Total -13 0.03

Low-density lipoprotein -12 0.04

High-density lipoprotein 2 0.29
Triglycerides (% change) -12 0.117

* The mean difference is the summary effect estimate for
carriers of inactivating mutations in NPCIL1, as compared
with noncarriers, after adjustment for age, sex, and study.
Participants from population-based studies (ARIC, JHS,
and WGHS) and controls without coronary heart disease
from case—control studies were included in this analysis.
To convert the values for cholesterol to millimoles per li-
ter, multiply by 0.02586.

T This P value was calculated with the use of natural log
transformation of the values.

proved Reduction of Outcomes: Vytorin Efficacy
International Trial IMPROVE-IT; ClinicalTrials
.gov number, NCT00202878), investigators are
evaluating whether the addition of ezetimibe to

background simvastatin therapy will reduce the
risk of recurrent cardiovascular events in patients
with a recent acute coronary syndrome.2°

Our findings do not predict with certainty
that ezetimibe will be found to reduce cardiovas-
cular risk in the IMPROVE-IT trial or other clinical
studies, for several reasons. First, lifelong genetic
inhibition, as tested in our study, has important
differences from pharmacologic inhibition that is
initiated in adulthood and lasts for several years.
Second, our genetic study focuses on a first cardio-
vascular event, whereas IMPROVE-IT is evaluating
recurrent events. Finally, the net clinical benefit
of a pharmacologic therapy is a complex interplay
among multiple factors, including many that are
specific to the drug (e.g., toxic effects) and that
would not be tested in a genetic model such as the
one used in our study.

The reduction in the risk of coronary heart dis-
ease (53%) that we observed among carriers ex-
ceeds the reduction that would be expected for a
decrease of 12 mg per deciliter in LDL cholesterol
on the basis of results from statin trials.2® Sev-
eral factors may explain this difference. Modest
reductions in plasma lipid levels over a lifetime, as

Estimated Difference
in LDL Cholesterol

T
-45

Subgroup No. of Participants (95% CI) P Value
Total Carriers
European ancestry E
CHD-free controls 4,586 11 -—— -24 (-50 to 2)
ARIC 10,754 10 — -6 (-30to 18)
WGHS 22,515 11 — -11 (-33 to 10)
Subgroup total ’% -13 (-27to 1)
African ancestry ]
CHD-free controls and JHS 2,287 : -22 (-53 to 10)
ARIC 2,671 8 —_—.———————— -2 (-29to 25)
Subgroup total ’: -10 (-31 to 10)
All participants i -12 (-23 to -1) 0.04

Mean Difference in LDL Cholesterol (mg/dl)

According to Genetic Ancestry.

Figure 2. Association between the Presence of Inactivating Mutations in NPCIL1 and LDL Cholesterol Levels,

In each group of participants, we tested the association between the presence of inactivating mutations in NPCIL1
and plasma levels of low-density lipoprotein (LDL) cholesterol, after adjustment for age, sex, and study. The squares
indicate the estimated adjusted difference in the LDL cholesterol level for carriers, as compared with noncarriers,
in each ancestry group. The sizes of the squares are inversely proportional to the variance of the estimates. The
diamonds indicate the combined results, based on a fixed-effects meta-analysis performed first within and then
across ancestry groups. Participants from population-based studies — the Atherosclerosis Risk in Communities
(ARIC) study, the Jackson Heart Study (JHS), and the Women’s Genome Health Study (WGHS) — and controls
without coronary heart disease (CHD) from case—control studies were included in this analysis. To convert the values
for cholesterol to millimoles per liter, multiply by 0.02586.
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Table 3. Association between the Presence of Inactivating Mutations in NPC1L1 and the Risk of Coronary Heart
Disease (CHD).
Inactivating Mutation Mutation Carriers Total Participants Carrier Frequency
With Without With Without Participants Participants
CHD CHD CHD CHD with CHD without CHD
number percent
All mutations™* 11 71 29,954 83,140 0.04 0.09
p.L71RfsX50 0 2 709 4,378 0 0.05
p.Ql67X 0 1 966 987 0 0.10
p.A296VfsX57 0 3 1,794 1,745 0 0.17
p-R406X 6 49 26,507 75,654 0.02 0.06
p.Y483X 0 1 844 1,107 0 0.09
c.1681+1G->AT 0 3 709 4,378 0 0.07
p.-W592X 1 0 1,157 4,561 0.09 0
p.R601X 1 0 474 2,362 0.21 0
p.Q604X 0 3 652 2,639 0 0.11
p-R738X 0 2 382 401 0 0.50
p.E803X 1 0 1,157 4,561 0.09 0
€.2637+2T-G 1 1 1,525 4,897 0.07 0.02
p.C967X 0 1 474 2,362 0 0.04
p.A1201Vy 0 2 235 2,016 0 0.10
p.R1325X 1 3 1,866 8,939 0.05 0.03

* The overall odds ratio for coronary heart disease in mutation carriers, as compared with noncarriers, was 0.47 (95% confi-
dence interval, 0.25 to 0.87; P=0.008) on the basis of a meta-analysis of independent samples.
T This mutation was predicted to disrupt messenger RNA splicing.

achieved in carriers of an inactivating mutation,
appear to lead to a larger modification of the risk
of coronary heart disease than pharmacologic
treatment that is initiated later in life. Such an
effect has been observed in persons with genetic
loss of function in several lipid genes.° In addition
to affecting LDL cholesterol levels, genetic loss
of NPC1L1 function is associated with reduced
plant sterol absorption.3-32 Levels of plant sterols
are markedly elevated in patients with autosomal
recessive sitosterolemia, a disease that is associ-
ated with accelerated atherosclerotic vascular dis-
ease even among patients without significantly el-
evated plasma LDL cholesterol levels.>® These
observations raise the possibility that genetic in-
hibition of NPC1L1 may also lower the risk of
coronary heart disease by reducing the absorp-
tion of noncholesterol sterols. Also, the effect of
NPC1L1 inhibition on cardiovascular risk in our
study may be overestimated owing to the “win-
ner’s curse”* phenomenon, in which the effects

of newly discovered associations are inflated as
compared with the true effect sizes. Our results
suggest a broad range of plausible risk estimates
associated with these mutations.

Several limitations of the study deserve men-
tion. The combined statistical evidence support-
ing a protective association with coronary heart
disease (P=0.008) is significant for a test of a
single hypothesis but falls short of the exomewide
significance threshold that would be used to ac-
count for multiple hypothesis testing across all
genes (P=1.7x10"° on the basis of a Bonferroni
correction for 21,000 protein-coding and 9000
long noncoding RNA genes).3s This stringent
threshold is used to limit false positive results of
genetic association studies®* involving many hy-
potheses, in which the prior probability of a true
association is low. Here, however, we have evalu-
ated a gene that is known to alter LDL cholesterol
levels, a proven causal factor for coronary heart
disease. Therefore, the prior probability that this
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gene alters the risk of coronary heart disease is
considerably higher than that for a random gene
drawn from the genome.

In addition, we focused only on the classes of
genetic variation — nonsense, splice-site, and
frameshift — that are clearly expected to lead to
a loss in NPC1L1 function and did not include
missense variants. Although some missense mu-
tations in NPCIL1 clearly inhibit function, many

associated with both reduced LDL cholesterol
levels and a reduced risk of coronary heart dis-
ease. Whether pharmacologic therapies that are
focused on inhibiting NPC1L1 function reduce the
risk of coronary heart disease remains to be de-
termined.
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