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Abstract  

Background 

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of 

complex and multifactorial psychiatric diseases such as anxiety and mood disorders. 

About 50-60% of patients with major depression show HPA axis dysfunction, i.e. 

hyperactivity and impaired negative feedback regulation. The neuropeptide 

corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key 

regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-

dependent gene expression data obtained from the pituitary corticotrope cell line AtT-

20, a well-established in vitro model for CRHR1-mediated signal transduction. To 

extract significantly regulated genes from a genome-wide microarray data set and to 

deduce underlying CRHR1-dependent signaling networks, we combined supervised 

and unsupervised algorithms. 

Results 

We present an efficient variable selection strategy by consecutively applying 

univariate as well as multivariate methods followed by graphical models. First, feature 

preselection was used to exclude genes not differentially regulated over time from the 

dataset. For multivariate variable selection a maximum likelihood (MLHD) 

discriminant function within GALGO, an R package based on a genetic algorithm 

(GA), was chosen. The topmost genes representing major nodes in the expression 

network were ranked to find highly separating candidate genes. By using groups of 

five genes (chromosome size) in the discriminant function and repeating the genetic 

algorithm separately four times we found eleven genes occurring at least in three of 

the top ranked result lists of the four repetitions. In addition, we compared the results 

of GA/MLHD with the alternative optimization algorithms greedy selection and 
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simulated annealing as well as with the state-of-the-art method random forest. In 

every case we obtained a clear overlap of the selected genes independently confirming 

the results of MLHD in combination with a genetic algorithm. 

With two unsupervised algorithms, principal component analysis and graphical 

Gaussian models, putative interactions of the candidate genes were determined and 

reconstructed by literature mining. Differential regulation of six candidate genes was 

validated by qRT-PCR. 

Conclusions 

The combination of supervised and unsupervised algorithms in this study allowed 

extracting a small subset of meaningful candidate genes from the genome-wide 

expression data set. Thereby, variable selection using different optimization 

algorithms based on linear classifiers as well as the nonlinear random forest method 

resulted in congruent candidate genes. The calculated interacting network connecting 

these new target genes was bioinformatically mapped to known CRHR1-dependent 

signaling pathways. Additionally, the differential expression of the identified target 

genes was confirmed experimentally. 

Background  
The neuropeptide corticotropin-releasing hormone (CRH), discovered in 1981, is the 

key regulator of the hypothalamic-pituitary-adrenal (HPA) axis [1] and orchestrates 

the neuroendocrine, autonomic and behavioral responses to stress [2]. Stress and 

disturbances in the CRH system, i.e. hyperactivity and impaired negative feedback 

regulation of the HPA axis, are frequently accompanying psychiatric disorders 

including depression and anxiety [3-5]. The CRH system has been extensively studied 

applying genetically engineered gain- and loss-of-function mouse models 

underscoring its importance for the development of psychiatric disorders [6-8]. 
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The two CRH receptors, CRHR1 and CRHR2, are class B G protein-coupled seven 

transmembrane receptors that are capable of activating different G proteins and 

signaling cascades upon ligand-binding. The dominant CRHR1-activated signaling 

pathway in endogenous and recombinant cell lines is the adenylyl cyclase-protein 

kinase A (PKA) pathway via Gαs [9, 10]. Dependent on species, tissue and cell type, 

both receptors are known to activate Gαq/phospholipase C (PLC)-, AKT/PI3 kinase-, 

NOS/guanylyl cyclase-, caspase pro apoptotic- and NFΚB or NURR1/NUR77 

transcription factor signaling pathways [11]. In AtT-20 cells, a mouse corticotrope 

pituitary tumor cell line expressing CRHR1, PKA activation on the one hand triggers 

Ca
2+

-dependent signaling via CamKII, which increases NUR77 and NURR1 

transcription [12]. On the other hand, PKA activates a mitogen-activated protein 

kinase (MAPK) pathway including RAP1, B-RAF, MEK1 and extracellular signal-

regulated kinase (ERK) 1/2 resulting in NUR77 phosphorylation/transactivation and 

transcription of proopiomelanocortin (POMC). In specific brain areas such as the 

hippocampus CRH activates ERK1/2 via CRHR1, whereas in hypothalamic nuclei 

and the central nucleus of the amygdala CRH triggers other signaling pathways as no 

CRH-dependent ERK1/2 phosphorylation was detected [13]. CRHR1, as key 

regulator of the neuroendocrine and behavioral responses to stress, has attracted major 

interest as a potential novel target for the therapeutic intervention in major depressive 

disorder [14-17]. However, CRH/CRHR1-dependent signal transduction mechanisms 

are only partially understood. Therefore, a more precise understanding of the involved 

intracellular signaling mechanisms is a prerequisite towards the development of 

efficient and less pleiotropic CRHR1-specific antagonists [18].  

The activation of specific signaling pathways will cause changes in gene expression 

signatures. Changes at transcriptional level normally precede changes at protein level 
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and provide an entry point to understand the underlying regulatory networks. 

Expression profiling applying high-throughput microarray technology allows 

monitoring thousands of genes simultaneously and to characterize changes in gene 

expression patterns induced by a defined stimulus on a genome-wide scale. In order to 

dissect signaling mechanisms of the CRHR1 in depth we used AtT-20 cells, which are 

a well established in vitro system to study CRHR1 signaling [12, 19, 20]. To gain 

insight into the dynamics of CRH-/CRHR1-dependent signaling pathways we 

investigated the alterations in expression patterns after CRH treatment at five different 

time points between 1 and 24 h on the Max Planck Institute of Psychiatry (MPIP) 24 k 

cDNA microarray platform [21]. 

For the analysis of expression profiling data a plethora of methods has been developed 

in order to rank genes by t-statistics [22-24]. Applying these univariate feature 

selection methods the most significantly regulated genes can be determined, but 

variables (genes) are always considered in isolation. Our aim was to predict gene-gene 

interactions between candidate genes that are significantly regulated within the time 

course by sequentially using univariate as well as multivariate variable selection 

methods and afterwards graphical models. Multivariate variable selection was 

considered of importance because variables (genes) contribute only in combination 

with other variables to the discrimination of the input data rather than in isolation. For 

variable selection we used a maximum likelihood discriminant method (MLHD), 

which is equivalent to linear discriminant analysis (LDA) combined with a genetic 

algorithm (GA) [25]. The method combines a small number of five variables (genes) 

into subsets (chromosomes) mimicking biological crossover and mutation for 

computation of the discriminant function. Due to computational limitations to 

determine all possible chromosomes out of the complete set of variables a stochastic 
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search strategy for feature selection is necessary. GA procedures in combination with 

classification methods have been successfully used in the analysis of microarray data 

[26, 27]. Other optimization procedures implementing classification methods such as 

the greedy algorithm and simulated annealing were also investigated here and in the 

past [28-30]. To oppose MLHD embedded in GA to selection procedures which are in 

principle not affected by the dimensionally problem (small sample size compared to 

large variable number) also random forest was used. Subsequently, graphical 

Gaussian models (GGMs) have been applied to a small subset of genes in order to 

derive genetic interactions [31]. The resulting putative gene-gene interactions from 

the graphical model were assigned to signaling pathways activated by CRH/CRHR1 

via text mining methods. 

Results and Discussion 

Identification of candidate genes 

AtT-20 cells are a widely used and best studied in vitro model to investigate CRHR1-

dependent signal transduction. As pituitary-derived corticotrope cell line, AtT-20 cells 

express CRHR1 but not CRHR2 [20] which permits specific analyses of CRHR1 

signaling. A plethora of molecules regulated downstream of CRHR1 have been 

identified and studied in this cell line [12, 19, 20], however, the complex system of 

CRHR1-regulated signaling cascades is not fully understood. To further elucidate 

genes involved in CRH-activated signaling pathways we treated the cells with 100 nM 

CRH at five different time points (1, 3, 6, 12, 24 h). The dose of 100 nM CRH was 

chosen as 100 nM CRH evokes a response in AtT-20 cells but is still below the 

concentration of maximal stimulation observed in transactivation assays [20]. Within 

the first 3 h CRH is known to activate immediate early genes such as c-Fos [20]. With 

the first two time points this immediate early effect of CRH was investigated whereas 
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at 6 and 12 h the late CRH response was analysed. Furthermore, we were interested in 

the long-term effects of 24 h of continuous CRH treatment.  

The gene expression data obtained by microarray analysis of CRH-treated vs 

untreated AtT-20 cells at different time points have been deposited in NCBI's Gene 

Expression Omnibus (GEO) [32] and are accessible by the GEO Series accession 

numbers GSE13156 and GPL7467. 

Candidate genes were selected following (i) data normalization and preprocessing, (ii) 

a preselection process and (iii) supervised variable selection (Fig. 1). By statistical 

tests it has been verified that prerequisites for the two-way ANOVA like normal 

distributed expression ratios and equal variances across samples are fulfilled. 

Furthermore, a balanced design was chosen in the present microarray study meaning 

equal group size of six technical replicates for each time point. As the technical 

replicates were performed on six different arrays, the data sets are independent.    

Normalization and Dye-swap correction 

MA-plots of the spot signals from 48 pins (encoded by different colors) before and 

after the normalization procedure are shown in Additional File 1 (exemplified by time 

point 12 h after CRH treatment). The normalization procedure was successful as the 

loess fit curves in the MA-plots of the transformed array data (i.e. the difference 

between measured and predicted M-ratios) show nearly horizontal lines meaning that 

most of the genes do not show much change in their intensity ratios as expected [33]. 

After normalization, signals of 12593 spots measured at each time point were tested 

applying a linear model to exclude genes showing significant dye-dependent effects in 

their expression profile over time. A microarray design based on fixed effects 

parameters which was applied here was originally described by Kerr and Churchill 

[34]. According to this fixed effects model differential expression values of 946 genes 
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(p < 0.01 and false discovery rate FDR < 0.13) with a significant interaction of the 

factors time and dye-swap were excluded from the dataset. 

Preselection 2-way ANOVA 

It is important to further restrict microarray data before multivariate analysis since 

most of the genes do not show dynamic differential expression over time following 

CRH stimulation and thus do not contribute to the discrimination between classes. By 

applying a two-way linear model without interaction of the factors time and dye-swap, 

genes were preselected for supervised clustering and variable selection with 

GA/MLHD. Because one of the main assumptions of the ANOVA is equal variances 

across groups we applied Levene’s test for homogeneity of variance. For the 

predominant part of the gene expression ratios it has been verified by Levene’s test 

that there is no shift in variation resulting in 450 of 11647 tests with p < 0.1 % and a 

maximum FDR of 2.5 %. By the two-way ANOVA utilized in the preselection 

process, 387 genes (p < 0.01 and false discovery rate FDR < 0.3) were identified as 

significantly regulated over time. This reduction of the feature space was proposed by 

many authors [35, 36] to improve the predictive power of the classifier. In principle, 

due to the small number of genes in a subset (chromosome) considered as training 

data for classification, a reduction of the initial data set is not necessary. However, 

stochastic searches such as genetic algorithms are able to detect only a small part of 

the total solution space. To reduce the solution space and to generate more stable 

results, we used the preselected set of 387 genes as input for the GALGO program. 

Before, Shapiro-Wilk’s tests (also applied by Karlovich et al. [37]) were performed to 

demonstrate that the expression ratios were log2-normally distributed for the 

preselected genes as well as for the genes used as input for the ANOVA. Considering 

the corresponding preselected gene expression ratios 3 of 387 tests showed p < 0.1 % 
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with a maximum FDR of 10 % while regarding the whole data set used in the two-

way ANOVA for feature preselection 175 of 11647 tests resulted in p < 0.1 % and a 

maximum FDR of 6.6 %. 

GA/MLHD 

The general application of the maximum likelihood (MLHD) classifier implemented 

in a genetic algorithm to microarray datasets was demonstrated by Trevino and Ooi 

[25, 26]. In addition it was shown that for a chromosome size of five variables as used 

in the present study the classification error resulting from MLHD is similar compared 

to other classifiers (e.g. KNN, SVM, NC) (see Table three (Appendix) of [25]). 

Additional File 2 shows the complete list of 110 transcripts derived from four 

independent GALGO analyses based on the preselected genes including all genes 

occurring at least once within the top 50 ranks. The frequency rank of each gene was 

determined by counting the chromosomes with the respective gene reaching a 

classification accuracy of 100% (goal fitness). In total, there are 15 genes that occur in 

all four runs among the topmost 50 ranked genes. Excluding those genes that were not 

fully annotated, a total of 10 genes remained in four runs among the topmost ranked 

genes. One exception is the addition of Hmgcs1 because it was detected twice (Spot 

ID 6705 and 16977) in at least three GALGO analysis results. Hence, 11 unique 

candidate genes, which contributed strongly to the discrimination between groups 

(time points) were selected for further validation by qRT-PCR. 

With multivariate selection procedures variables (i.e. gene expression ratios) are 

tested in combination to identify interactions between them. Detailed inspection of the 

chromosomes (subsets of 5 genes) revealed that often combinations of candidate 

genes with complete discrimination occurred in the GALGO analysis results (e.g. 4 

candidates out of 11 in 224 unique chromosomes of analysis 1). Therefore, the 
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selected genes are expected to be highly correlated with each other in terms of gene 

interaction networks. The dependency of top ranked GA (GALGO) selected feature 

components with each other (i.e. interaction networks) was also investigated by 

metabolic profiling studies with help of mass spectrometry [38]. The authors conclude 

that preliminary hypothesis can be generated based on GA selected features (genes) 

however it is also important to consider more complete knowledge of biological 

pathways from e.g. public databases or text mining tools. 

Reliability of candidate genes 

Feature selection is critical when LDA is applied to microarray datasets where the 

number of genes (p) is distinctly larger than the number of samples (n) because 

overfitting can easily occur. To solve this problem we investigated several 

optimization algorithms for feature selection based on MLHD or LDA considering 

subsets of variables in which the number of genes is smaller than the sample size (p < 

n). The minimum sample size suggested is five observations per independent variable 

([39] p. 258). Each chromosome of the GA/MLHD and SANN/LDA approach has a 

6:1 ratio of observations to predictor variables, which meets the 5:1 ratio 

recommended. Furthermore, generalization curves based on the preselected 

expression ratios showed that a chromosome size of five is far away from a situation 

of overfitting because for a number of variables greater than 20 the test error (red 

curve) increases while the training error (black curve) do not change much 

(Additional file 3).    

We also took random forest classification into account, which is suited for datasets 

where the number of variables is larger than the number of samples (p >> n).  
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Greedy/LDA 

We performed the greedy feature selection and applied LDA to the selected gene 

expression ratios. Each leave-one-out training set consisted of 5 to 10 genes and was 

achieved by repeating the F-test as long as the difference between two statistical 

models was significantly low. The LOOCV classification error was 23 %, which is in 

the same range as shown by Wang et al. [30] using greedy - LDA selection methods. 

A ranked list was generated based on the frequency of each gene in the training sets of 

the samples. The selected genes were compared to the extracted features from the 

GA/MLHD procedure , and an overlap of 59 % (10/17) was determined (Table 1). In 

case of the 11 candidates 7 genes of the greedy feature selection procedure coincide 

and in case of the top 6 validated candidates 5 genes overlapped, only Acsl4 is 

missing. In summary, both feature selection methods resulted in a clear overlap of the 

selected genes. The advantage of a greedy algorithm is the requirement of much less 

computational resources and that it is faster to execute. On the other hand, the greedy 

algorithm does not reach always a global optimal solution [40]. To address this 

limitation we tested also simulated annealing, another optimization search algorithm, 

for the validation of the GA/MLHD results. 

SANN/LDA 

In contrast to a greedy algorithm which often leads to a local optimum, simulated 

annealing (SA) derived from statistical mechanics converges to global optimum 

solution. In this SA approach a fitness function (generalized energy) was applied 

evaluating the classification error by using LOOCV and LDA instead of the physical 

energy. SA operates as a probabilistic hill-climbing procedure searching for the global 

optimum of the fitness (target) function. Simulated annealing has previously been 

demonstrated to be suitable for classification of gene expression data from 

microarrays by training of an artificial neural network [41]. To select gene expression 
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ratios for the calculation of fitness values in the optimization process and to constrain 

the search space we developed an algorithm for input selection of subsets of variables 

(INSEL). A similar approach with the purpose of aggregating an ideally minimal 

subset of inputs with strong discriminative capability was described by Filippone et al. 

[28, 29]. Details about our R-code for input selection can be found in the Additional 

File 4. Altogether 65 transcripts resulted from four separate SANN/LDA analyses 

including all genes occurring at least once within the top 50 genes ranked by their 

frequency in chromosomes, which reached a classification accuracy of 100%. 52 out 

of these 65 transcripts were in accordance with the 110 transcripts from four GALGO 

runs representing an overlap of 80 %. Further comparison of the results of both 

feature selection methods SANN/LDA and GA/MLHD revealed identical selected 

genes (17/17) including all candidates (11/11) as well as the validated candidate genes 

(6/6) (Table 1). With SANN/LDA we reached a better overlap than in case of 

greedy/LDA and GA/MLHD. We ascribe this higher accordance of selected features 

by SANN/LDA and GA/MLHD to a more extensive variable combination caused by a 

similar evolutionary algorithm of both methods compared to greedy/LDA. For 

SANN/LDA we chose the same input parameters i.e. chromosome size, amount of 

solution chromosomes and fitness score just as for GA/MLHD. One of the main 

differences of simulated annealing compared to genetic algorithm is the use of only 

mutations in chromosomes whereas the genetic algorithm in addition takes the 

combination of two parent chromosomes (crossover) into account. In summary, 

despite of the more sophisticated search procedure in the genetic algorithm we 

obtained a high overlap between the respective top 50 selected genes of SANN/LDA 

as well as GA/MLHD and therefore validated the GALGO results. A further 

SANN/LDA analysis using a chromosome size of three instead of five revealed also a 
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high agreement of selected genes (15/17, LOOCV < 15 %) with GA/MLHD 

confirming the stability of the results (data not shown). 

Similar to the discriminant vector in classical LDA a supported vector machine 

(SVM)-based approach performs gene selection using a weight vector. One approach 

for gene selection using SVM is the Recursive Feature Elimination (RFE) introduced 

by Guyon et al. [42]. Filippone et al. implemented the classification method SVM in 

their input selection algorithm [28, 29]. We also tested SVM in our feature selection 

algorithm but the SANN/SVM method showed distinctly more chromosomes used for 

classification with a higher LOOCV error rate than SANN/LDA (data not shown). 

Another advantage of LDA compared to SVM implemented in the SA based gene 

selection method (INSEL) is that it requires much less computational resources and it 

is faster. 

Random forest 

To contrast the outcome of the GA/MLHD feature selection procedure with 

classification methods proposed to be not affected by the dimensional problem (p >> 

n), which is the case for microarray data analysis we applied also tree classifiers. 

Random forest (RF) represents an algorithm for classification which uses an ensemble 

of classification trees [43]. Each classification tree is generated by selecting a 

bootstrap sample of the data, and at each split predictor variables are randomly 

selected. Therefore, random forest includes bagging [43, 44], i.e. bootstrap 

aggregating, as well as random variable selection for tree building. Gene selection and 

classification of microarray data via RF has been successfully applied by Díaz-Uriarte 

and Alvarez de Andrés [45]. In RF feature selection procedures both the permutation 

and the Gini importance can be used to determine the relevance of each variable [46]. 

The mean decrease in Gini criterion was computed for each variable (gene) obtained 
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by RF analysis using the 387 expression ratios of the preselected genes. The resulting 

list was sorted according to the Gini index in descending order and the top most 50 

genes were compared to the selected genes by GA/MLHD. A considerable overlap of 

the top ranked genes of the RF analysis with the selected genes by GALGO of up to 

71 % (12/17) was determined (Table 1) and a similar overlap of up to 65 % (11/17) by 

utilization of the permutation importance (data not shown). Furthermore, we found 8 

of the 11 candidate and 5 of the 6 validated candidate genes (Pex13 is missing) by the 

Gini importance ranked lists with an out of bag (OOB) classification error of 13.3 %. 

We conclude from the good agreement of the selected genes in both feature selection 

methods that classical LDA or MLHD in combination with genetic search algorithms 

delivers comparable results with algorithms using tree classifiers like RF. In this 

context, it is important to mention that the training data sets used for the evaluation of 

the linear discriminant coefficients were always based on small subsets of gene 

expression ratios (in chromosomes). In other words, the number of genes considered 

for LDA or MLHD classification (p = 5) was set to be smaller than the smallest group 

size (n = 6) technical replicates per time point) [39, 47, 48] which is a strong criterion 

to reduce overfitting [30]. 

The candidate genes identified with GA/MLHD are reliable because we were able to 

confirm the resulting list of the most discriminative features by two other optimization 

algorithms greedy as well as SA and by the tree classifier method random forest. We 

performed data preprocessing (including preselection) which is important for further 

analysis and took care of parameter optimization which is essential to avoid the 

tendency of overfitting in a multivariate approach. 
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Prediction of gene-gene interactions 

PCA 

In order to test whether a separation of the expression profiles of the candidate genes 

into time points (after CRH treatment) can be achieved using unsupervised clustering 

methods, a principal component analysis (PCA) was performed. The underlying data 

matrix consisted of 11 rows for the genes and 30 columns for 5 time points including 

6 technical replicates. The resulting scores and loadings from PCA for the objects (i.e. 

genes in terms of expression ratios) and variables (i.e. time points), respectively, were 

visualized by a biplot (Fig. 2A) allowing for interpretation of relationships between 

them. Similar negative gene scores on the x-axis (PC1) of Pex13, Cd3e and Nf2, 

which are in the same region as the 24 h time point vectors, are well correlated with 

each other. Fosl2 and Crem, which show positive scores on PC1 and are located in the 

vicinity of the 1 h vectors, are also correlated. If the vectors point at the same region 

as the data points of the objects the gene expression is increased, otherwise it is 

decreased. Time points close to each other in Fig. 2A have similar gene expression 

patterns. This is supported by the heatmap in Fig. 2B, showing e.g. Fosl2 and Crem 

(with positive scores on the y-axis; PC2, Fig. 2A) upregulated after 1 h and 

downregulated after 24 h of CRH treatment, whereas Pex13, Cd3e and Nf2 were 

downregulated after 1 h and upregulated after 24 h. Examples for poor correlation in 

their differential expression according to Fig. 2A are Pex13 and Fosl2 as well as Nf2 

and Acsl4 which have negative and positive scores on PC1, respectively. 

Furthermore, Fig. 2A and 2B show that the expression patterns of the 11 candidate 

genes are able to clearly discriminate the time point groups 1 and 3 h, 6 and 12 h as 

well as the time point 24h. Within the first 3 h CRH is known to regulate immediate 

early genes such as c-Fos [20]. Therefore, the PCA analysis reflects common 

transcriptional changes within the first 3 h of treatment including signaling molecules. 
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Moreover, the correlation of the time points 6 and 12 h mirror similar processes on 

transcriptional level regulated by a late CRH response represented by genes involved 

in metabolic processes. Long-term effects of CRH were clearly discriminated at 24 h 

where the regulation of primary signaling molecules is no longer needed but specific 

downstream cellular processes are activated. 

GeneNet 

The subset of 11 candidate genes with high frequency ranks derived from the 

supervised variable selection procedure and investigated by PCA was further analyzed 

by constructing a gene association network with help of the R package GeneNet [49], 

another unsupervised correlation method. Primarily, GeneNet was developed for 

analyzing gene expression (time series) data with focus on the interference of gene 

networks [31, 50]. The resulting undirected graph from the GeneNet program is 

shown in Fig. 3. We considered gene pairs with |pcor|>0.35 and corresponding p-

values < 0.05 at their edges and additionally unconnected nodes. The association 

network of putatively co-regulated genes consists of four main subnetworks with the 

gene clusters Fosl2-Crem, Cd3e-Pex13-Nf2, Acsl4-Hmgcs1 and Loxl3-Malat1 (Fig. 

3, where Hmgcs1 and Loxl3 are negatively partially correlated). These findings are in 

agreement with the above mentioned results of the PCA - an independent 

unsupervised clustering method – where most of the gene clusters were found to be 

correlated, in particular Fosl2-Crem, Pex13-Cd3e-Nf2 and Acsl4-Hmgcs1 (Fig. 2A 

and 2B). 

A complete discrimination (LOOCV=1) into time points was achieved with sets of 

five genes (chromosomes) in the case of Pebp1, Mat2a, Crem, Hmgcs1 and Malat1 as 

well as in case of Mat2a, Crem, Cd3e, Fols2 and Malat1. The concordance of genes 

from these two chromosomes with genes in every subnetwork derived from GeneNet 
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indicates that all four clusters including the two unconnected nodes (Fig. 3) play an 

important role for the description of the overall time response. 

Reconstruction of CRH signaling pathways by text mining 

To validate candidate interactions revealed in PCA and GeneNet analyses the 

literature mining software Pathway Studio was used. Direct and indirect protein-

protein interactions, expression and promoter binding as well as regulation such as 

common regulators or targets were taken into account. Every connection found by 

Pathway Studio was confirmed manually and incorrectly associated interactions were 

excluded. No literature-based interaction was found for the GeneNet-built connection 

of Malat1 and Loxl3 (Fig. 3), which is consistent with the weak correlation in the 

PCA results. In addition, for the negative partial correlation between Hmgcs1 and 

Loxl3 no relation was found using the Pathway Studio software, as was confirmed by 

PCA (Fig. 2). Nf2, Pex13 and Cd3e clustered together in the GeneNet algorithm 

because of their regulation 24 hours following CRH stimulation. Therefore, these 

molecules should not be involved in acute signal transduction but in the modulation of 

CRH-dependent cellular processes such as proliferation or immune response [51-53]. 

Along these lines, all three genes have divergent functions. Nf2, a tumor suppressor, 

plays a critical role in cell proliferation by blocking growth factor receptor-dependent 

pathways [54]. Interestingly, a single nucleotide polymorphism in the Cd3e genes is 

associated with antidepressant treatment response [55]. The peroxisomal biogenesis 

factor Pex13 functions as protein transporter in peroxisomes and is related to fatty 

acid oxidation. The verification of the interactions predicted by GeneNet with the 

Pathway Studio software resulted in an indirect protein-protein interaction via SH3 

domains. Pex13 contains an SH3 domain itself, whereas Nf2 and Cd3e can bind 

proteins, which in turn are capable of binding SH3 domains [56-59]. Moreover, a 
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putative linkage of these three candidate genes to CRHR1-cAMP-mediated signal 

transduction was found for Nf2 (Fig. 4). PKA phosphorylates Nf2, which triggers the 

dimerization with ezrin and causes cell growth [60]. As CRH is known to regulate cell 

proliferation Nf2 could be one of the responsible molecules mediating the CRH effect 

on cell growth [51, 52]. Additionally, Nf2 is able to block MAP kinase signaling 

pathways [54] and thereby possibly affects CRHR1-regulated transcription.  

The next group of interacting candidate genes containing Hmgcs1 and Acsl4 (Fig. 4) 

is involved in lipid metabolism. Both genes were found to be connected via the 

peroxisomal proliferator-activated receptor α (PPARA) which maintains fatty acid 

homeostasis by induction of fatty acid oxidation and plays a role in controlling 

peroxisomal proliferation. Hmgcs1 was also found to be regulated on protein level 

after 100 nM CRH treatment of AtT-20 cells [19]. The Hmgcs1 gene contains a 

peroxisome proliferator response element (PPRE) in its promoter that binds 

PPARA/RXR heterodimers [61] and long-chain acyl-CoA synthetases (LC-ACS), like 

Acsl4, inhibit PPARA-mediated transcription [62]. Acsl4 transcription is activated by 

cAMP [63] and PPARA is phosphorylated by this second messenger [64] linking 

these genes with Gαs protein-coupled receptor signaling pathways.  

The CRH/CRHR1-dependent regulation of genes involved in lipid metabolism 

strengthens a potential role of CRH as a modulator of metabolic function. Many 

psychiatric and neurological disorders share changes in metabolism [65, 66]. Hmgcs1, 

e.g., together with other genes linked to fatty acid metabolism is upregulated by 

antipsychotics in human glioma cells [67]. 

The putatively connected candidate genes Crem and Fosl2 are both transcription 

factors. Crem is a modulator of cAMP responsive element (CRE)-dependent 

transcription [68] and is known to be regulated by CRH [20]. The expression of 



 - 19 - 

numerous genes such as CRH or tyrosine hydroxylase involved in psychiatric and 

neurodegenerative disorders, respectively, is regulated by Crem [69]. Fosl2 is a 

transcription factor of the Fos family, of which the immediate-early gene c-Fos is the 

most prominent member. Becquet and colleagues (2001) showed that upon CRH 

treatment transcription factors of the Fos- and Jun-family bind to the Pomc promoter 

and regulate its transcription [70]. Literature mining revealed cAMP as the connecting 

molecule for both transcription factors (Fig. 4). cAMP-mediated induction of Crem 

leads to transcription of its inducible form Icer which is driven by an alternative 

intronic promoter [68]. In the case of Fosl2, cAMP leads to Fosl2-dependent 

transcriptional regulation of genes containing an AP1-binding site in their promoter 

[71, 72]. As it is well known that CRH induces cAMP, and its downstream signaling 

cascades via a GαS protein the GeneNet algorithm not only elucidated an interaction 

between Crem and Fosl2, but the result can be linked to CRHR1-dependent signaling 

pathways, especially since the Pomc promoter contains a cAMP-responsive element 

as well as an AP-1 binding site [73-75]. Crem and Fosl2 both showed an up-

regulation within the first hour of CRH stimulation. Early regulated transcription 

factors Crem and Fosl2 may play an important role in the regulation of CRHR1-

dependent signal transduction, probably by triggering or coordinating the transcription 

of secondary regulated genes.  

Nf2, Acsl4, Crem and Fosl2 are known to be regulated by cAMP and thus targets of 

GαS-protein-dependent signaling mechanisms. As CRH/CRHR1 promotes the 

synthesis of the second messenger cAMP the regulation of these four candidate genes 

by cAMP is likely to depend on direct CRH stimulation. As cAMP activates different 

signaling cascades via PKA such as CREB, L-type Ca
2+

channels and MAP kinase 

pathways, the distinct time-dependent differential regulation of candidate genes is 
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likely to be stimulated by those different downstream pathways. Additionally, 

secondary effects of CRH-activated signaling such as expression and transactivation 

of transcription factors, e.g. of the AP1 family, lead to time-delayed changes in gene 

expression. 

In summary, according to present knowledge, the inter-gene connections identified by 

the GeneNet algorithm were validated and additionally integrated into known CRHR1 

signaling pathways.  

Validation of CRH-regulated genes over time via qRT-PCR 

To strengthen the biological relevance of the theoretical findings based on 

multivariate GALGO and unsupervised GeneNet algorithms the microarray data were 

partly confirmed by quantitative real-time PCR on all candidate genes that were 

analyzed by PCA and GeneNet, respectively, and subsequently verified by applying 

the Pathway Studio software. Total RNA isolated from two independent biological 

replicates at different time points was reverse transcribed and cDNA was analyzed in 

technical duplicates by qRT-PCR. As an internal standard the housekeeping genes 

Hprt and Gapdh were used. Both genes were not differentially regulated in AtT-20 

cells by CRH stimulation. 

We confirmed that after CRH stimulation the transcription of Crem was increased in 

the first 12 hours. The differential expression of Fosl2 was increased at the time points 

1, 6, 12 and 24 h in the microarray as well as in the qRT-PCR. Acsl4 and Hmgcs1 

showed increased mRNA levels in both analysis at 6 and 12 hours whereas Nf2 and 

Pex13 were upregulated by CRH after 12 and 24 hours (Fig. 5). The expression level 

of Cd3e was out of the linear detection range of the Lightcycler instrument and thus 

not validated. With both internal references, Hprt and Gapdh, similar results were 

obtained. The microarray and qRT-PCR regulation values correlated well confirming 
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the validity of the expression kinetics. Genes were defined as validated when the 

direction of regulation as determined by qRT-PCR was at least at one time point in 

agreement with the microarray result. To reveal the significance of the qRT-PCR in 

comparison to the microarray results ANOVA was performed. For Crem, Fosl2 and 

Nf2 the CRH- and time-dependent changes in expression are significant in microarray 

and qRT-PCR data and for Acsl4 the p-value shows a trend showing the 

reproducibility of the microarray results in independent material (Fig. 5). For Hmgcs1 

and Pex13 no significance in the ANOVA was obtained although the expression 

changes over time are similar in the qRT-PCR and in the microarray data. In the case 

of Hmgcs1 the variance between the samples is high, thus the analysis of more 

samples would help to get the results statistically significant. In the case of Pex13 the 

differential expression in the microarray analysis is very low and therefore difficult to 

validate with qRT-PCR although the regulation at 24 h was measured in both 

experiments. 

The validation of the expression dynamics supported the clustering results of the 

GeneNet algorithm. Genes similarly regulated over time were considered as putative 

interaction partners. As the validated six candidate genes showed differential 

expression over time in an independent experiment, the co-regulated genes Crem and 

Fosl2, Acsl4 and Hmgcs1, Nf2 and Pex13 can be regarded as important mediators of 

CRH/CRHR1-dependent signaling pathway. 

Conclusions  
To dissect CRHR1-dependent signaling pathways in detail, genome-wide expression 

profiling of CRH-stimulated AtT-20 cells was performed at five different time points. 

A combination of univariate preselection, multivariate discriminant analyses followed 

by unsupervised graphical models was employed to find genes significantly regulated 
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by CRH/CRHR1-dependent mechanisms. Starting with more than 12000 expressed 

genes, we isolated a small subset of genes connected to CRHR1 signaling 

mechanisms. We focused on genes that occurred multiple times in GALGO analyses 

and contributed significantly to the discrimination of different time points following 

CRH treatment. Additional analyses using the state-of-the-art algorithm random forest 

as well as further optimization methods such as SANN and greedy, revealed similar 

results which strengthened the reliability of the GALGO results. Consequently, 

possible correlations between these genes were determined by PCA and GeneNet. 

Moreover, the differential expression of a subset of candidates was validated 

independently and determined interactions were confirmed via Pathway Studio 

software. This approach was able to condense the enormous dataset to a manageable 

subset of discriminative genes, which can now be subjected to detailed functional 

studies. 

Methods 

Cell culture 

AtT-20 cells were obtained from the American Type Culture Collection (Manassas, 

VA) and cultured under standard conditions in Dulbecco’s modified eagle medium 

(DMEM; Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal calf serum 

(FCS; Invitrogen) and antibiotics (Invitrogen). The cells were maintained in a 

humidified 5% CO2 atmosphere at 37°C. After FCS deprivation for 18 hours cells in 

each experiment were treated with human/rat CRH (100 nM) (Bachem, Heidelberg, 

Germany) for 1, 3, 6, 12 and 24 h, respectively. In addition, untreated control cells 

were harvested at the same time points. 
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RNA isolation and microarray hybridization 

AtT-20 cells were harvested and total RNA was isolated with TRIzol
®
 reagent 

(Invitrogen) according to the manufacturer’s protocol. RNA integrity was tested by 

gel electrophoresis. Amplified RNA (aRNA) synthesis and aRNA labeling were 

performed with the Amino Allyl MessageAmp™ aRNA Kit (Ambion, Austin, Texas) 

following the manufacturer’s protocol. To exclude dye bias a dye-swap approach was 

chosen, i.e. one half of control AtT-20 aRNA and treated AtT-20 aRNA, respectively, 

was coupled to mono-reactive Cy3 and the other half to Cy5 N-hydroxysuccinimid 

(NHS) esters (Amersham). The labeled control and treated aRNA samples were 

mixed (Cy3-labeled control with Cy5-labeled treated samples and vice versa) and 

hybridized onto MPIP 24 k mouse cDNA arrays (Max Planck Institute of Psychiatry, 

Munich, Germany) [21]. In total, six technical replicates (three for each dye-coupling 

combination) were performed and scanned on a PerkinElmer Life Sciences ScanArray 

4000 laser scanner (Rodgau-Jügesheim, Germany). 

Quantitative real-time PCR 

The identity of selected candidate genes was verified by sequencing of the 

corresponding array clones (Sequiserve, Vaterstetten, Germany). 

cDNA of independently treated AtT-20 cells was synthesized with SuperScript II-

reverse transcriptase (Invitrogen) primed with oligo(dT) primers using 1 µg of total 

RNA according to the manufacturer’s instructions. cDNA of untreated and 100 nM 

CRH-treated AtT-20 cells was analyzed by quantitative real-time PCR (qRT-PCR) 

using the LightCycler® FastStart DNA MasterPLUS SYBR Green I reagent (Roche 

Diagnostics GmbH, Mannheim, Germany) according to manufacturer’s instructions 

and different oligonucleotide primers (see Table 2). The experiments were performed 

in duplicates in the LightCycler®2.0 instrument (Roche Diagnostics, Mannheim, 

Germany) with the following PCR settings: initial denaturation at 95°C for 10 min; 40 
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cycles of denaturation (95°C for tD =10 sec), annealing (TA =56-65°C for tA =4-5 sec) 

and elongation (72°C, tE =7-13 sec). At the end of every run a melting curve (50-95°C 

with 0.1°C/sec) was measured to ensure the quality of PCR products. Crossing points 

(Cp) were calculated by the LightCycler®Software 4.0 (Roche Diagnostics, 

Mannheim, Germany) using the absolute quantification fit points method. Threshold 

and noise band were set manually in all compared runs at the same level. Relative 

gene expression was determined by the 2
-∆∆CT

 method [76] using the real PCR 

efficiency calculated from an external standard curve, normalized to the housekeeping 

genes Hprt and Gapdh, respectively, and related to the data of untreated AtT-20 cells. 

For validation we compared the expression ratios of six selected genes measured via 

qRT-PCR at each time point after CRH stimulation with the corresponding expression 

profiles from the microarray using statistical tests. One-way ANOVA on the log2-

transformed expression ratios (treated versus control) with the factor time was applied 

using the aov function in the statistical software R utilizing partitioned error for 

replicates. Altogether four measurements of qRT-PCR normalized to Hprt, i.e. two 

biological and two technical replicates were considered in the ANOVA for each time 

point to determine statistical significance. In the case of the microarray data a two-

way ANOVA with the factors time and dye-swap for six technical replicates was 

performed as described for the preselection process in preparation for supervised 

variable selection. In addition to the ANOVAs calculated separately for the qRT-PCR 

and microarray expression ratios the overall time response was considered if up- or 

down-regulation of the corresponding gene was measured equally in both analyses by 

visual inspection of the plots of the expression ratios against time points. 
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Data normalization and preprocessing 

Intensity extraction from the microarray scan images was accomplished by the fixed 

circle quantification method using QuantArray (PerkinElmer Life Sciences). The 

bottom 10% of the scan intensity values were defined as background and erased. Raw 

data were normalized using a lowess-based MA-smoother with print-tip correction 

implemented after Yang et al. [33] where M denotes the intensity ratio log2I(Cy3) ─ 

log2I(Cy5) or log2I(Cy5) ─ log2I(Cy3) and A the average intensity (log2I(Cy3) + 

log2I(Cy5))/2 or (log2I(Cy5) + log2I(Cy3))/2 of a spot signal. MA-plots are helpful to 

identify spot artifacts and to detect intensity-dependent patterns in the log ratios M. 

For the within-array normalization we used the robust scatter plot smoother loess 

(with the parameter span = 0.75) implemented in R statistical software [77] to 

perform a fit with a polynomial surface to the MA-plots of the raw data. The fitting 

procedure was done locally. The normalized intensity ratio were computed by the 

difference between the measured M-ratio and the predicted ratio from the loess 

regression. To reduce dye-biased effects on gene expression data a linear model (two-

way ANOVA) considering the factors time and dye-swap was applied. The dye-swap 

is represented by the two levels [CRH-treated(Cy3)]/[control(Cy5)] and [CRH-

treated(Cy5)]/[control(Cy3)]. A different effect of the dye combinations on the 

expression ratios of the six technical replicates will result in a significant interaction 

term of the ANOVA. Thus, by excluding gene expression ratios corresponding to a 

significant interaction between both factors the bias introduced by the different 

properties of the dyes was removed. Only spot signals which were detected at each 

point in time for a total of 30 two-colour arrays were taken into consideration. 

Factorial ANOVA was performed on log2-transformed data using the lm function in 

the statistical software R. The p-values from the ANOVA were adjusted for multiple 
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testing using the false discovery rate (FDR) correction of Benjamini and Hochberg 

[78] implemented in the R-function p.adjust.  

Supervised variable selection 

Before applying multivariate analysis a feature preselection was performed to 

eliminate not differentially expressed genes over time. We used a two-way linear 

model without interaction of the factors time and dye-swap. Genes were ranked 

according to their p-value after FDR-adjustment for multiple testing. To check if the 

expression ratios used in the two-way ANOVA are log2-normal distributed as well as 

if equal variances across groups exist, we performed Shapiro-Wilk’s tests (with the R-

function shapiro.test) and Levene’s tests (using the R-function levene.test), 

respectively. In case of the Levene’s test the factor variable group was set to five time 

points having six replicates each and the parameters option = trim.mean as well as 

trim.alpha = 0.25 were utilized. 

A prerequisite for correct application of linear discriminant analysis (LDA) is the 

normality in the variables. Therefore, it was tested how many of the gene expression 

ratios used within the covariance matrix are log2-normal distributed (with the R-

function shapiro.test). For verification which numbers of variables are suitable to 

avoid overfitting the classification error specifically the training error by 

resubstitution and test error by leave-one out cross-validation was plotted against the 

number of variables used in the LDA. Sets of variables (i.e. expression ratios) in the 

range of 2 to 30 were randomly drawn one thousand times each from the preselected 

data set and the averaged classification errors were calculated. Numbers of variables 

in the LDA should be avoided if the test error increases while the training error 

steadily decreases or don’t change because then overfitting may have occurred.  
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GA/MLHD 

Genetic algorithm (GA) is a heuristic search procedure based on natural selection 

according to the following stages (for details see [26, 79]): 

1. Creation of chromosomes that are subsets of variables 

2. A fitness function is used to evaluate the ability to predict the group membership of 

each sample for each chromosome 

3. Selection of chromosomes with a fitness higher than a predefined value and stop of 

the procedure otherwise continuation with stage 4 

4. Reproduction of chromosomes relatively to its fitness; crossover between two 

randomly selected parent chromosomes; random insertion of mutations (new genes) in 

chromosomes; repetition from stage 2 until an accurate chromosome is determined. 

 

GALGO, an R package based on genetic algorithm search procedure was applied for 

supervised multivariate variable selection [25]. Starting point of the GA is the random 

creation of chromosomes with a size of five features (stage 1). For the fitness function 

the leave-one out cross-validation (LOOCV) procedure in combination with the 

classifier from discriminant analysis was chosen to evaluate the fitness value, which is 

defined as the classification accuracy of a selected chromosome. The fitness function 

controls chromosome selection in the genetic algorithm (stage 2). We utilized the 

maximum likelihood (MLHD) method for classification which is equivalent to linear 

discriminant analysis (LDA) [26, 79]. To minimize overfitting the maximum 

likelihood method implemented in GALGO was restricted to subsets of five variables 

(chromosome size). 

In addition, a gene ranking was based on the frequency of each feature in 

chromosomes satisfying the goal fitness (stage 3). The search parameters in the 

genetic algorithm included up to 2500 iterations (maximum solutions) to collect a 
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large number of variable combinations and an estimated classification accuracy with 

optimizing criteria of 100% (goal fitness). The maximum number of generations 

(stage 4) was set to 200 because thousands of generations would end up in overfitting. 

Finally, the topmost 50 genes were selected. In order to validate gene rank stability 

and to isolate genes occurring in several analyses, the feature selection algorithm was 

repeated separately four times with the same input data and parameter settings. 

Greedy algorithm 

We applied the greedy.wilks function from the klaR package in R to the preselected 

microarray dataset and used LOOCV in conjunction with LDA to obtain the most 

frequently identified genes for setting up a predictive model. Based on a small part of 

the data the greedy algorithm iteratively adds one locally optimal component after 

another to extend the data structure until an optimal solution is reached. The 

greedy.wilks method performs a stepwise forward variable selection using the Wilk’s 

Lambda criterion [80]. Starting point is the choice of the gene with the lowest p-value 

from the overall F-Statistic. 

Leaving out one sample (technical replicate) at a time, we applied the greedy.wilks 

method to select genes showing p-values from F-statistic of the partial Wilk’s Lambda 

(p.value.diff) smaller than a predefined significance level (niveau = 0.001). Partial 

Wilk’s Lambda is defined by the difference between two statistical models in which 

the one model contains the new variable while the other does not. A LDA classifier 

was trained with the selected gene expression ratios and the group membership was 

predicted for the excluded test dataset. By repeating the described procedure for all 

samples and counting the number of times a gene was picked out, we generated a 

ranked list with the most frequently identified genes and evaluated the classification 

error. 
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Simulated annealing 

We developed an algorithm for input selection of subsets of variables (INSEL) which 

uses simulated annealing (SA), LDA as well as LOOCV, and produces a ranked list of 

variables (genes) with high discriminative power. In our input selection algorithm we 

implemented the optim function with method = SANN of the stats package in R. 

SANN is a variant of simulated annealing given by Belisle [81] and uses the 

Metropolis function for acceptance of probability. The method SANN requires an 

initial set of variables (sq) to be optimized over, a target function to be minimized (fn) 

and a function that generates a new candidate combination (gr) as well as control 

parameters such as the maximum number of iterations (maxit) and the starting 

temperature for the cooling schedule (temp). In our case sq represents the complete 

preselected gene set from the microarray by random selection of a small subset of 

genes (chromosome size = 5). The fitness function fn evaluates the classification error 

using LDA and LOOCV based on the gene expression ratios in the subset whereas the 

gr function introduces a mutation in the subset. A mutation is defined as an exchange 

of one gene in a chromosome against a randomly selected new gene from the dataset. 

The control parameter maxit gives the total number of function evaluations and was 

set to 1000. Following Press et al. [82] we calculated the mean variation of the 

classification error (representing a generalized energy) over 10000 randomly selected 

chromosomes from the dataset in order to evaluate the starting temperature temp. The 

temperature acts as a control parameter for the search area and is gradually lowered 

until no further improvement of the fitness function is detected. 

We applied the described procedure by collecting up to 2500 solution chromosomes. 

Based on all solutions we filtered the list for chromosomes that show an estimated 

classification accuracy of 100% and ranked the genes according to their frequency. 
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Finally, the topmost 50 genes were selected. Altogether four runs were performed 

with the same parameter settings. 

Random forest 

We applied the R-function randomForest according to Breiman [83] to the whole 

preselected microarray data using standard parameter settings, i.e. ntree = 500, mtry = 

  number of genes , and nodesize = 1. The arguments ntree, mtry and nodesize are 

defined by the number of trees, the number of input variables tried at each split and 

the minimum size of the terminal nodes, respectively. It was reported that the default 

value for mtry is often a good choice [84]. To produce a ranked list of the variables 

(genes) according to the mean decrease in Gini criterion the parameter importance 

was set to TRUE. The analysis described was repeated several times in order to 

examine the stability of the results. 

 

Modelling of gene-gene interactions 

PCA 

To reveal groups of genes that act together we first used an unsupervised method – 

principal component analysis – to describe the correlation structure of the selected 

genes. Correlations between genes were derived from PCA of gene expression 

patterns using the prcomp function with default settings in the R package stats. The 

gene (row) by time point (column) matrix of expression ratios was analyzed by PCA 

to determine the scores for the objects (gene expression ratios) and the loadings for 

the variables (time points). After mean centering of the gene expression ratios the 

ratios as well as time points were simultaneously plotted with help of a biplot [85, 86]. 

The PCR was applied on a small subset of candidate genes derived from the 

multivariate analysis by GA/MLHD. 



 - 31 - 

GeneNet 

Additionally, a search for correlations, which cannot be explained by other variables, 

was performed. These partial correlations are used as a measure of conditional 

independence and are the basis for graphical Gaussian models (GGMs). For 

construction of a gene association network – GGMs that represent multivariate 

dependencies - the R package GeneNet (version 1.1.0) [49] was used. GeneNet 

contains functions for calculating shrinkage estimators (ggm.estimate.pcor) and for 

assigning statistical significance for the edges in a network (ggm.test.edges). The 

undirected graph for a small subset of genes from the feature selection procedure with 

GA/MLHD was calculated with the parameter method = dynamic in the function 

ggm.estimate.pcor by foregoing mean centering of the expression ratios. 

Text mining 

To verify the predicted network from GeneNet the corresponding gene-gene 

interactions were searched for in all PubMed abstracts with the help of a text mining 

program (Pathway Studio 5.0, Ariadne Genomics) based on the Natural Language 

Processing (NLP) Technology. 
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releasing hormone; CRHR, corticotropin-releasing hormone receptor; ERK 1/2, 

extracellular signal-regulated kinase; GA, genetic algorithm; GGMs, graphical 
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LDA, linear discriminant analysis; MAPK, mitogen-activated protein kinase; MLHD, 

maximum likelihood; NC, nearest centroid; PCA, principal component analysis; PKA, 

protein kinase A; POMC, proopiomelanocortin; qRT-PCR, quantitative real-time 

polymerase chain reaction, SA, simulated annealing; SVM, support vector machines. 



 - 32 - 

Authors' contributions 
DT designed and performed the bioinformatic data analyses including univariate 

preselection, multivariate GALGO analysis as well as principal component and 

GeneNet analyses followed by literature mining. CG designed and carried out the 

biological experiments including cell culture treatments, RNA preparation, microarray 

hybridization and scanning and qRT-PCR analyses. DT and CG wrote the manuscript. 

BP performed the normalization of the raw microarray data. CK, MP and PW assisted 

in the microarray performance and analyses. FH and WW directed the work. GW 

wrote the manuscript and together with JD supervised the project and revised the 

manuscript. All authors read and approved the final manuscript. 

Acknowledgements  
This work was partially supported by the Bundesministerium für Bildung und 

Forschung within the framework of NGFN-Plus (Förderkennzeichen 01GS0481, 

01GS08151 and 01GS08155). The project underlying this report `Helmholtz Alliance 

for Mental Health in an Ageing Society´ (HelMA, HA-215) was supported in the 

frame of the `Helmholtz Impuls- und Vernetzungsfonds´ funded by the German 

`Bundesministerium für Bildung und Forschung´ (BMBF). The authors are 

responsible for the content of this publication. 



 - 33 - 

References 

1. Vale W, Rivier C, Brown MR, Spiess J, Koob G, Swanson L, Bilezikjian L, 

Bloom F, Rivier J: Chemical and biological characterization of corticotropin 

releasing factor. Recent Prog Horm Res 1983, 39:245-270. 

2. De Souza EB: Corticotropin-releasing factor receptors: Physiology, 

pharmacology, biochemistry and role in central nervous system and immune 

disorders. Psychoneuroendocrinology 1995, 20(8):789-819. 

3. Holsboer F: The rationale for corticotropin-releasing hormone receptor 

(CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999, 

33(3):181-214. 

4. Holsboer F: The corticosteroid receptor hypothesis of depression. 

Neuropsychopharmacology 2000, 23(5):477-501. 

5. de Kloet ER, Joels M, Holsboer F: Stress and the brain: from adaptation to 

disease. Nat Rev Neurosci 2005, 6(6):463-475. 

6. Deussing JM, Wurst W: Dissecting the genetic effect of the CRH system on 

anxiety and stress-related behaviour. C R Biol 2005, 328(2):199-212. 

7. Lu A, Steiner MA, Whittle N, Vogl AM, Walser SM, Ableitner M, Refojo D, 

Ekker M, Rubenstein JL, Stalla GK et al: Conditional mouse mutants highlight 

mechanisms of corticotropin-releasing hormone effects on stress-coping 

behavior. Mol Psychiatry 2008, 13(11):1028-1042. 

8. Müller MB, Holsboer F: Mice with mutations in the HPA-system as models 

for symptoms of depression. Biol Psychiatry 2006, 59(12):1104-1115. 



 - 34 - 

9. Olianas MC, Lampis G, Onali P: Coupling of corticotropin-releasing 

hormone receptors to adenylyl cyclase in human Y-79 retinoblastoma cells. J 

Neurochem 1995, 64(1):394-401. 

10. Aguilera G, Harwood JP, Wilson JX, Morell J, Brown JH, Catt KJ: 

Mechanisms of action of corticotropin-releasing factor and other regulators of 

corticotropin release in rat pituitary cells. J Biol Chem 1983, 258(13):8039-8045. 

11. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM: Corticotropin 

releasing factor (CRF) receptor signaling in the central nervous system: new 

molecular targets. CNS Neurol Disord Drug Targets 2006, 5(4):453-479. 

12. Kovalovsky D, Refojo D, Liberman AC, Hochbaum D, Pereda MP, Coso OA, 

Stalla GK, Holsboer F, Arzt E: Activation and Induction of NUR77/NURR1 in 

Corticotrophs by CRH/cAMP: Involvement of Calcium, Protein Kinase A, and 

MAPK Pathways. Mol Endocrinol 2002, 16(7):1638-1651. 

13. Refojo D, Echenique C, Müller MB, Reul JM, Deussing JM, Wurst W, 

Sillaber I, Paez-Pereda M, Holsboer F, Arzt E: Corticotropin-releasing hormone 

activates ERK1/2 MAPK in specific brain areas. Proc Natl Acad Sci U S A 2005, 

102(17):6183-6188. 

14. Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F: 

Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist 

R121919 in major depression: the first 20 patients treated. J Psychiatr Res 2000, 

34(3):171-181. 

15. Ising M, Holsboer F: Genetics of stress response and stress-related 

disorders. Dialogues Clin Neurosci 2006, 8(4):433-444. 



 - 35 - 

16. Holsboer F, Ising M: Central CRH system in depression and anxiety -- 

Evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 

2008, 583(2-3):350-357. 

17. Ising M, Zimmermann US, Künzel HE, Uhr M, Foster AC, Learned-Coughlin 

SM, Holsboer F, Grigoriadis DE: High-Affinity CRF1 Receptor Antagonist NBI-

34041: Preclinical and Clinical Data Suggest Safety and Efficacy in Attenuating 

Elevated Stress Response. Neuropsychopharmacology 2007, 32(9):1941-1949. 

18. Arzt E, Holsboer F: CRF signaling: molecular specificity for drug 

targeting in the CNS. Trends Pharmacol Sci 2006, 27(10):531-538. 

19. Kronsbein HC, Jastorff AM, Maccarrone G, Stalla G, Wurst W, Holsboer F, 

Turck CW, Deussing JM: CRHR1-dependent effects on protein expression and 

posttranslational modification in AtT-20 cells. Mol Cell Endocrinol 2008, 292(1-

2):1-10. 

20. Peeters PJ, Gohlmann HW, Van den Wyngaert I, Swagemakers SM, Bijnens 

L, Kass SU, Steckler T: Transcriptional Response to Corticotropin-Releasing 

Factor in AtT-20 Cells. Mol Pharmacol 2004, 66(5):1083-1092. 

21. Deussing JM, Kühne C, Pütz B, Panhuysen M, Breu J, Stenzel-Poore MP, 

Holsboer F, Wurst W: Expression profiling identifies the CRH//CRH-R1 system 

as a modulator of neurovascular gene activity. J Cereb Blood Flow Metab 2007, 

27(8):1476-1495. 

22. Smyth GK: Linear models and empirical bayes methods for assessing 

differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 

3(1, Article 3). 



 - 36 - 

23. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays 

applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001, 

98(9):5116-5121. 

24. Weng L, Dai H, Zhan Y, He Y, Stepaniants SB, Bassett DE: Rosetta error 

model for gene expression analysis. Bioinformatics 2006, 22(9):1111-1121. 

25. Trevino V, Falciani F: GALGO: an R package for multivariate variable 

selection using genetic algorithms. Bioinformatics 2006, 22(9):1154-1156. 

26. Ooi CH, Tan P: Genetic algorithms applied to multi-class prediction for 

the analysis of gene expression data. Bioinformatics 2003, 19(1):37-44. 

27. Li L, Weinberg CR, Darden TA, Pedersen LG: Gene selection for sample 

classification based on gene expression data: study of sensitivity to choice of 

parameters of the GA/KNN method. Bioinformatics 2001, 17(12):1131-1142. 

28. Filippone M, Masulli F, Rovetta S: A wrapper approach to supervised 

input selection using simulated annealing. In: Technical Report DISI-TR-06-10: 

12th June 2006; Department of Computer and Information Science at the University 

of Genova, Italy. 

29. Filippone M, Masulli F, Rovetta S: Supervised classification and gene 

selection using simulated annealing. In: IJCNN: 2006; IEEE; 2006: 3566-3571. 

30. Wang J, Do KA, Wen S, Tsavachidis S, McDonnell TJ, Logothetis CJ, 

Coombes KR: Merging microarray data, robust feature selection, and predicting 

prognosis in prostate cancer. Cancer Informatics 2006, 2:87-97. 



 - 37 - 

31. Schäfer J, Strimmer K: An empirical Bayes approach to inferring large-

scale gene association networks. Bioinformatics 2005a, 21(6):754-764. 

32. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene 

expression and hybridization array data repository. Nucl Acids Res 2002, 

30(1):207-210. 

33. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: 

Normalization for cDNA microarray data: a robust composite method 

addressing single and multiple slide systematic variation. Nucl Acids Res 2002, 

30(4):e15. 

34. Kerr MK, Churchill GA: Experimental design for gene expression 

microarrays. Biostat 2001, 2(2):183-201. 

35. Dettling M, Bühlmann P: Boosting for tumor classification with gene 

expression data. Bioinformatics 2003, 19(9):1061-1069. 

36. Tan Y, Shi L, Hussain SM, Xu J, Tong W, Frazier JM, Wang C: Integrating 

time-course microarray gene expression profiles with cytotoxicity for 

identification of biomarkers in primary rat hepatocytes exposed to cadmium. 

Bioinformatics 2006, 22(1):77-87. 

37. Karlovich C, Duchateau-Nguyen G, Johnson A, McLoughlin P, Navarro M, 

Fleurbaey C, Steiner L, Tessier M, Nguyen T, Wilhelm-Seiler M et al: A 

longitudinal study of gene expression in healthy individuals. BMC Medical 

Genomics 2009, 2:33. 



 - 38 - 

38. Zou W, Tolstikov V: Pattern Recognition and Pathway Analysis with 

Genetic Algorithms in Mass Spectrometry Based Metabolomics. Algorithms 2009, 

2(2):638-666. 

39. Hair J, Tatham AR, Black W: Multivariate data analysis, 5th edn. New 

Jersey: Prentice-Hall International; 1998. 

40. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algorithms: 

MIT Press; 2001. 

41. Albrecht A, Vinterbo SA, Ohno-Machado L: An Epicurean learning 

approach to gene-expression data classification. Artificial Intelligence in Medicine 

2003, 28(1):75-87. 

42. Guyon I, Weston J, Barnhill S, Vapnik V: Gene selection for cancer 

classification using support vector machines. Mach Learn 2002, 46:389 - 422. 

43. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning - 

Data Mining, Inference, and Prediction. Heidelberg: Springer-Verlag; 2001. 

44. Breiman L: Bagging predictors. Machine Learning 1996, 24:123 - 140. 

45. Diaz-Uriarte R, Alvarez de Andres S: Gene selection and classification of 

microarray data using random forest. BMC Bioinformatics 2006, 7(1):3. 

46. Treeratpituk P, Giles, C. L.: Disambiguating Authors in Academic 

Publications using Random Forests. In: Proceedings of the 9th ACM/IEEECS Joint 

Conference on Digital Libraries: 2009; Austin, TX, USA; 2009: 39-48. 



 - 39 - 

47. Leech NL, Barrett KC, Morgan GA: SPSS for intermediate statistics, use 

and interpretation. Mahway, New Jersey: Lawrence Erlbaum Assoc Inc; 2004. 

48. Meyers LS, Gamst G, Guarino AJ: Applied Multivariate Research: Design 

and Interpretation Thousand Oaks, California: Sage Publications Inc 2005. 

49. Schäfer J, Opgen-Rhein R, Strimmer K: Reverse engineering genetic 

networks using the GeneNet package. R News 2006, 6:50-53. 

50. Schäfer J, Strimmer K: A shrinkage approach to large-scale covariance 

matrix estimation and implications for functional genomics. Stat Appl Genet Mol 

Biol 2005b, 4(1):Article:32. 

51. Slominski A, Zbytek B, Pisarchik A, Slominski R, Zmijewski M, Wortsman J: 

CRH functions as a growth factor/cytokine in the skin. J Cell Physiol 2006, 

206(3):780-791. 

52. Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, Navarra P: 

Evidence that corticotropin-releasing hormone inhibits cell growth of human 

breast cancer cells via the activation of CRH-R1 receptor subtype Mol Cell 

Endocrinol 2007, 264(1-2):44-49  

53. Karalis K, Muglia L, Bae D, Hilderbrand H, Majzoub J: CRH and the 

immune system. J Neuroimmunol 1997, 72(2):131-136  

54. Lim JY, Kim H, Jeun S-S, Kang S-G, Lee K-J: Merlin inhibits growth 

hormone-regulated Raf-ERKs pathways by binding to Grb2 protein. Biochemical 

and Biophysical Research Communications 2006, 340(4):1151-1157. 



 - 40 - 

55. Wong ML, Dong C, Maestre-Mesa J, Licinio J: Polymorphisms in 

inflammation-related genes are associated with susceptibility to major 

depression and antidepressant response. Mol Psychiatry 2008, 13(8):800-812. 

56. Delibrias CC, Floettmann JE, Rowe M, Fearon DT: Downregulated 

Expression of SHP-1 in Burkitt Lymphomas and Germinal Center B 

Lymphocytes. J Exp Med 1997, 186(9):1575-1583. 

57. Cuevas B, Lu Y, Watt S, Kumar R, Zhang J, Siminovitch KA, Mills GB: 

SHP-1 Regulates Lck-induced Phosphatidylinositol 3-Kinase Phosphorylation 

and Activity. J Biol Chem 1999, 274(39):27583-27589. 

58. Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T: Merlin, 

the Product of the Nf2 Tumor Suppressor Gene, Is an Inhibitor of the p21-

Activated Kinase, Pak1. Mol Cell 2003, 12(4):841-849. 

59. Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z, Gutmann DH, 

Kyriakis JM: Mixed-lineage kinase 3 regulates B-Raf through maintenance of the 

B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc 

Natl Acad Sci U S A 2006, 103(12):4463-4468. 

60. Alfthan K, Heiska L, Gronholm M, Renkema GH, Carpen O: Cyclic AMP-

dependent Protein Kinase Phosphorylates Merlin at Serine 518 Independently of 

p21-activated Kinase and Promotes Merlin-Ezrin Heterodimerization. J Biol 

Chem 2004, 279(18):18559-18566. 

61. Hsu M-H, Savas U, Griffin KJ, Johnson EF: Identification of Peroxisome 

Proliferator-responsive Human Genes by Elevated Expression of the Peroxisome 



 - 41 - 

Proliferator-activated Receptor alpha in HepG2 Cells. J Biol Chem 2001, 

276(30):27950-27958. 

62. Hertz R, Berman I, Bar-Tana J: Transcriptional activation by amphipathic 

carboxylic peroxisomal proliferators is induced by the free acid rather than the 

acyl-CoA derivative. Eur J Biochem 1994, 221(1):611-615. 

63. Cornejo Maciel F, Maloberti P, Neuman I, Cano F, Castilla R, Castillo F, Paz 

C, Podesta EJ: An arachidonic acid-preferring acyl-CoA synthetase is a hormone-

dependent and obligatory protein in the signal transduction pathway of 

steroidogenic hormones. J Mol Endocrinol 2005, 34(3):655-666. 

64. Lazennec G, Canaple L, Saugy D, Wahli W: Activation of Peroxisome 

Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase 

A Activators. Mol Endocrinol 2000, 14(12):1962-1975. 

65. Newcomer J: Medical risk in patients with bipolar disorder and 

schizophrenia. J Clin Psychiatry 2006, 67(11):e16. 

66. Taylor V, MacQueen G: Cognitive dysfunction associated with metabolic 

syndrome. Obes Rev 2007, 8(5):409-418. 

67. Ferno J, Raeder MB, Vik-Mo AO, Skrede S, Glambek M, Tronstad KJ, Breilid 

H, Lovlie R, Berge RK, Stansberg C et al: Antipsychotic drugs activate SREBP-

regulated expression of lipid biosynthetic genes in cultured human glioma cells: a 

novel mechanism of action? Pharmacogenomics J 2005, 5(5):298-304. 



 - 42 - 

68. Lamas M, Sassone-Corsi P: The Dynamics of the Transcriptional Response 

to Cyclic Adenosine 3',5'-Monophosphate: Recurrent Inducibility and 

Refractory Phase. Mol Endocrinol 1997, 11(10):1415-1424. 

69. Liu Y, Kalintchenko N, Sassone-Corsi P, Aguilera G: Inhibition of 

corticotrophin-releasing hormone transcription by inducible cAMP-early 

repressor in the hypothalamic cell line, 4B. JNeuroendocrinol 2006, 18(1):42-49. 

70. Becquet D, Guillaumond F, Bosler O, Francois-Bellan AM: Long-term 

variations of AP-1 composition after CRH stimulation: consequence on POMC 

gene regulation. Mol Cell Endocrinol 2001, 175(1-2):93-100. 

71. Spessert R, Rapp M, Jastrow H, Karabul N, Blum F, Vollrath L: A 

differential role of CREB phosphorylation in cAMP-inducible gene expression in 

the rat pineal. Brain Res 2000, 864(2):270-280. 

72. Schwenger GTF, Kok CC, Arthaningtyas E, Thomas MA, Sanderson CJ, 

Mordvinov VA: Specific Activation of Human Interleukin-5 Depends on de Novo 

Synthesis of an AP-1 Complex. J Biol Chem 2002, 277(49):47022-47027. 

73. Therrien M, Drouin J: Pituitary pro-opiomelanocortin gene expression 

requires synergistic interactions of several regulatory elements. Mol Cell Biol 

1991, 11(7):3492-3503. 

74. Boutillier AL, Gaiddon C, Lorang D, Roberts JL, Loeffler JP: 

Transcriptional Activation of the Proopiomelanocortin Gene by Cyclic AMP-

responsive Element Binding Protein. Pituitary 1998, 1(1):33-43. 



 - 43 - 

75. Bousquet C ZM, Melmed S.: Direct regulation of pituitary 

proopiomelanocortin by STAT3 provides a novel mechanism for immuno-

neuroendocrine interfacing. J Clin Invest 2000, 106(11):1417-1425. 

76. Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data 

Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods 

2001, 25(4):402-408. 

77. The R Project for Statistical Computing [http://www.r-project.org/] 

78. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical 

and powerful approach to multiple testing. Journal of the Royal Statistical Society 

1995, Series B, 57(1):289–300. 

79. GALGO: An R Package For Multivariate Variable Selection Using 

Genetic Algorithms         

[http://biptemp.bham.ac.uk/vivo/galgo/AppNotesPaper.htm] 

80. Mardia KV, Kent JT, Bibby JM: Multivariate Analysis. New York, London: 

Academic Press; 1979. 

81. Belisle CJP: Convergence theorems for a class of simulated annealing 

algorithms on R
d
. J Applied Probability 1992, 29: 885–895. 

82. Press WH, Flannery BP, Teukolsky SA, Vetterling WT: Numerical Recipes 

in C - The Art of Scientific Computing, 2nd edn: Cambridge University Press; 

1992. 

83. Breiman L: Random Forests. Machine Learning 2001, 45(1):5-32. 



 - 44 - 

84. Liaw A, Wiener M: Classification and Regression by randomForest. R 

News 2002, 2:18-22. 

85. Gabriel KR: The biplot graphic display of matrices with application to 

principal component analysis. Biometrica 1971, 58:453-467. 

86. Gower JC, Hand DJ: Biplots. London: Chapman and Hall; 1996. 

 



 - 45 - 

Figure Legends 

Fig. 1  - Workflow scheme demonstrating stepwise analysis of the microarray 
data. 

Fig. 2  - Results of PCA analysis 

(A) Biplot of 11 candidate genes (scores) and time points after CRH treatment 

(loadings). The first two principal components (PC1 and PC2) were used to generate 

the biplot. In particular, correlations between the gene data points Pex13, Cd3e and 

Nf2 on the one hand as well as Crem and Fosl2 on the other hand are conspicuous. 

(B) The heat map represents the grouping of genes and time points by PCA. 24 h-

replicates are completely separated whereas 1 h- and 3 h-replicates as well as 6 h- and 

12 h replicates differentiate only partly based on the expression data. Positive and 

negative values of log2 expression ratios are colored in red and green, respectively. 

Black colored expression ratios illustrate no differential expression. 

Fig. 3  - Undirected graph computed by GeneNet for genes revealed by GALGO 
analyses 

GeneNet analysis was based on the expression ratios from the microarray of 11 genes. 

Solid lines in black depict positive partial correlation between genes. For the genes 

Pebp1 and Mat2a relations with other genes were not found by GeneNet whereas the 

dotted line between Hmgcs1 and Loxl3 represents a negative partial correlation. 

Fig. 4  - Result of shortest path searches between all candidate genes 
investigated by GeneNet.  

After manual curation of each interaction the resulting pathways were combined in 

this picture. Experimentally with qRT-PCR validated genes are drawn by rectangles 

and intermediates are indicated by circles. Lines with an arrowhead reflect positive 

regulation, other lines indicate inhibition. 
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Fig. 5  - qRT-PCR validation of the differential expression of six candidate 
genes at different time points.  

Filled circles located on solid lines represent differential expression values from the 

microarray whereas filled squares on dashed lines show qRT-PCR expression values 

of AtT-20 cells independently treated with CRH related to their untreated controls and 

normalized to the house keeping gene Hprt. p-values were evaluated by ANOVA 

analyses. 

Tables 

Table 1  - Comparison of RF, Greedy/LDA and SANN/LDA with GA/MLHD (from 
GALGO) 

 Gene set 
Overlap with 

GA/MLHD
1)

 

Overlap with 11 

candidates 

Overlap with the 

top 6 validated 

candidates 

RF 387 12/17 8/11 5/6
2)

 

Greedy/LDA 5 ─ 10 10/17 7/11 5/6
3)

 

SANN/LDA 5 17/17 11/11 6/6 
1)

 Based on 17 genes from 4 GALGO runs among the top 50 
2)

 Pex13 missing 
3)

 Acsl4 missing 

Table 2  - Primers used for qRT-PCR validation 

gene 5´ � 3´ 

Acsl4 fwd   GGAGCCAAGCCAGAAAAC 

Acsl4 rev GCCTGTCATTCCAGCAATC 

Crem fwd ACATGCCAACTTACCAGATCC 

Crem rev TTTTCAAGCACAGCCACAC 

Fosl2 fwd GGTAGATATGCCTGGCTCGG 

Fosl2 rev TCATCTCTCCTTCTGCGGCC 

Gapdh fwd CCATCACCATCTTCCAGGAGCGAG 

Gapdh rev GATGGCATGGACTGTGGTCATGAG 

Hprt fwd ACCTCTCGAAGTGTTGGATACAGG 

Hprt rev CTTGCGCTCATCTTAGGCTTTG 

Hmgcs1 fwd AATGCCGTGAACTGGGTCG 

Hmgcs1 rev TGAGGTAGCACTGTATGGAGAGC 

Nf2 fwd TTCAAGAGATCACGCAACAC 

Nf2 rev TTCTCTCCTCCCACATTTCC 

Pex13 fwd TCCTGTTCTTTGCTGTTATCC 

Pex13 rev TCATCCTCACCACTTGCC 

Additional files 
Additional file 1 – MA plots 

MA-plots of the spot signals from 48 pins of the raw and normalized microarray data 

including loess fit curves 
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Additional file 2 – Supplementary Table 1 

Genes regulated by CRH in murine corticotrope AtT-20 cells as identified by 

GALGO analyses 

Additional file 3 – Generalization curves 

Training (resubstitution) and test (leave-one out cross-validation) error as a function 

of the number of variables used in the LDA 

Additional file 4 – R code 

Implemented R code of the variable selection algorithm INSEL based on simulated 

annealing and LDA (For download of the R software: http://cran.r-project.org/). 
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