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Hypertension is the most prevalent modifiable risk factor 
for cardiovascular morbidity and mortality, with the World 

Health Organization estimating that the current 1 billion people 

with high blood pressure (BP) worldwide will rise to 1.5 billion by 
20201. More importantly, 54% of stroke and 47% of ischemic heart 
disease are directly attributable to hypertension, thus primarily 
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responsible for one quarter of the 52.8 million deaths recorded 
globally in 20102. The causation of hypertension is multifactorial 
and is related to perturbations in the pathways that regulate BP 
through renal, renin–angiotensin–aldosterone and autonomic sys-
tems. Despite the availability of numerous drugs for the treatment 
of hypertension, only one third of treated patients achieve target 
and this can be partially explained by the complexity of BP regula-
tory mechanisms that are different in each individual.3 New drug 
development for hypertension has essentially stalled during the 
past 10 years and there is a need to discover novel biological path-
ways for hypertension that will help identify novel drug targets or 
enable effective targeting of therapy.4 The hypothesis generating 
approach using genome-wide association studies while successful 
at identifying common variants associated with blood pressure5,6 
have resulted in few tractable loci and novel pathways.7,8 Recent 
advances in metabolomics enable the capture of a snap-shot of 
the metabolic profile of the individual, allowing for the potential 
identification of novel pathogenic pathways.9–11

In this study, we performed nontargeted metabolomic 
screening to discover metabolites associated with BP integrat-
ing data from dietary intake and mortality outcomes in a large 
female twin cohort from the United Kingdom and replicated 
our findings in 2 independent populations from Germany and 
England. Finally, we use animal models to establish causality.

Methods

Discovery Population
Metabolomic data were analyzed for 3980 female participants from 
TwinsUK12 without renal impairment (estimated glomerular filtration 
rate >60 mL/min per 1.73 m2) and not on any BP-lowering medi-
cations. The study was approved by St. Thomas Hospital Research 
Ethics Committee. All participants provided informed written con-
sent. Further details are available in the online-only Data Supplement. 
TwinsUK metabolomics, and phenotypic data are publicly available 
on request on the department website (http://www.twinsuk.ac.uk/
data-access/accessmanagement/).

Metabolomic Profiling
Nontargeted detection and quantification of 280 structurally named 
biochemicals was conducted by Metabolon, Inc (Durham, NC) on 
1052 serum and 5003 plasma fasting samples from TwinsUK partici-
pants as previously described.9

Replication Cohorts for Hexadecanedioate

KORA
We included 1494 individuals comprising nearly equal numbers of 
males and females, with BP, metabolomics data and without renal 
impairment (estimated glomerular filtration rate >60 mL/min per 1.73 
m2) from the population-based KORA S4 study (Cooperative Health 
Research in the Region of Augsburg).13

Hertfordshire Cohort
One thousand five hundred fifteen comprising nearly equal numbers 
of males and females from the Hertfordshire Cohort in whom BP and 
plasma hexadecanedioate levels had been measured were included 
in analyses. This is a unique population-based cohort of older indi-
viduals born in Hertfordshire in the 1930s and still living there now.14 
Plasma hexadecanedioate levels were measured with mass spectrom-
eter at the Seibersdorf Labor GmbH.

Thirty-five percent of both KORA and Hertfordshire individu-
als were on antihypertensive medication treatment. Therefore, 10/5 
mm Hg was added to the on treatment BP in the analysis15 to adjust 
for treatment effect.

Animal Studies
All animal procedures performed were approved by the UK Home 
Office. Male spontaneously hypertensive stroke-prone (SHRSP) 
rats16 and Wistar–Kyoto (WKY) rats (Harlan, Wyton, United 
Kingdom) were used. Eleven-week-old male WKY rats were treated 
with hexadecanedioic acid (250 mg/kg per day; n=6) or vehicle con-
trol (n=6) for 4 weeks. Twelve-week-old male SHRSP rats received 
1% NaCl in drinking water for 3 weeks (n=6). SBP was measured by 
tail plethysmography in conscious, restrained animals.17,18 BP record-
ings were carried out before salt challenge or hexadecanedioic acid 
treatment and during the final week of treatment. An average of 6 
to 8 pressure readings were taken for each rat per sitting. Statistical 
comparisons were made using Student t test. In addition, telemetry 
probes (TA11PAC40, Dataquest IV Data Sciences International) 
were implanted at 10 weeks of age with 1 week of recovery before 
administration of hexadecanedioic acid (250 mg/kg per day; n=5) or 
vehicle control (n=5) for 3 weeks in WKY rats. Statistical analysis of 
the radiotelemetry data was carried out using appropriate summary 
measures followed by Student t test.19

Mesenteric resistance artery function was assessed by wire myog-
raphy. Resistance arteries were dissected from connective tissue and 
segments (≈2 mm in length) were mounted as ring preparations on 2 
stainless steel wires in a 4-channel small vessel myograph (Danish 
MyoTechnology, Aarhus, Denmark). One wire was attached to a 
force transducer and the other to a micrometer. After a 30-minute 
rest period, vessels were set to normalized internal diameter (L

1
) to 

achieve optimal contraction. Internal diameter was calculated using 
the following equation: L

1
=0.0×L

100
 (L

100
 was determined using the 

LaPlace equation, P=T/r, where P is the effective pressure; T, the wall 
tension; and r, the internal radius). After further 60 minutes, contrac-
tile responses to 10 μmol/L KCl were examined, followed by wash-
out. A cumulative concentration–response curve to noradrenaline, 
10 nmol/L to 30 μmol/L was performed. In addition, vessels were 
preconstricted to the effective concentration (EC

50
) of noradrenaline 

and a concentration–response curve for carbachol (10 nmol/L–10 
μmol/L) was obtained. Area under the curve data were calculated 
from the mesenteric artery response curves (n=10 hexadecanedioate 
treated and n=9 control) and statistical comparisons were made using 
Student t test.

Plasma hexadecanedioate levels were measured with mass spec-
trometer at the Seibersdorf Labor GmbH.

Statistical Analysis
Statistical analysis was carried out using Stata version 11 and R. 
Quality control of metabolomics data was carried out as previously 
described.9 We inverse normalized the data as the metabolite con-
centrations were not normally distributed. To avoid spurious false-
positive associations because of small sample size, we excluded 
metabolic traits with >20% missing values. We imputed the missing 
values using the minimum run day measures.

Metabolites Associated With SBP and DBP
Metabolites associated with SBP and diastolic BP (DBP) were identi-
fied by linear regression adjusting for age,2 body mass index, metabo-
lite batch, and family relatedness. Individual metabolites significantly 
associated with SBP and DBP (Bonferroni P<8.9×10−5 for 280 
metabolites×2 traits) were included in a backward regression model 
reducing the number of predictors for SBP and DBP.

As dietary factors (fruit and vegetable intake and alcohol intake) 
and genotype risk scores are known to affect BP to varying levels,20 
we tested their effect on the association between the metabolites 
represented independent variables using random intercept linear 
regressions.

In KORA and Hertfordshire, the covariates in the regression model 
included age,2 sex, and body mass index.

Association With Mortality
Kaplan–Meier survival analysis (univariate) and Cox proportional 
hazards modeling (adjusted for age, body mass index, and stratified 
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for batch effects) were used to study association of tertiles of metabo-
lites on all-cause mortality in TwinsUK.

Results
The overall analysis pipeline is presented in Figure S1 in the 
online-only Data Supplement.

Discovery Study in TwinsUK
A total of 3080 adult females not on BP-lowering therapy 
were included in the analysis of 280 blood metabolites. The 
demographic characteristics of the study population are pre-
sented in Table 1. SBP and DBP were found to correlate 
with 69 and 63 metabolites, respectively (each P<8.9×10−5 
after multivariate adjustment; Table S1 in the online-only 
Data Supplement). Backward linear regressions identified 15 
metabolites independently associated with SBP or DBP—14 
metabolites for SBP (R2=32%), 7 for DBP (R2=21%) with 
6 in common (Table 2). Figure S2 in the online-only Data 
Supplement shows the bivariate correlation between the 15 
identified metabolites. Adjustment for dietary and genome-
wide association study risk score showed the metabolite-BP 
associations to be independent of these covariates (Table S2 in 
the online-only Data Supplement).

We then studied the association between each metabolite 
and all-cause mortality by performing survival analysis in the 
overall group of 4894 individuals in the TwinsUK cohort with 
available follow-up and metabolomics data. The total time at 
risk was 36 447 person-years with a median survival time of 
6.3 years and 186 all-cause deaths. Univariate association with 
all-cause mortality for the 3 metabolites, such as hexadecane-
dioate, dihomo-linoleate (20:2n6), and caffeine are shown in 
the Kaplan–Meier plots (Figure S3 in the online-only Data 
Supplement). Multivariate-adjusted Cox proportional hazard 
models showed hexadecanedioate (model 1: hazard ratio, 1.49 
[95% confidence interval, 1.08–2.05]; model 2: 1.71 [1.09–
2.68]), dihomo-linoleate (20:2n6; model 1: 0.66 [0.48–0.89]; 
model 2: 0·63 [0.41–0.96]), and caffeine (model 1: 0.93 [0.72–
0.97]; model 2: 0.82 [0.67–1.01]) significantly associated with 
all-cause mortality (Table 2; Table S3 in the online-only Data 
Supplement). Only hexadecanedioate showed concordant 

direction of effect for both BP and mortality, while in con-
trast, the direct association between dihomo-linoleate(20:2n6) 
or caffeine and blood pressure did not translate into increased 
mortality risk.

Replication Analysis of top two metabolites 
Hexadecanedioate BP Association in KORA and 
Hertfordshire
The replication KORA S4 cohort included 1494 individuals 
(males=776 and females=718), whereas the Hertfordshire 
cohort included 1515 individuals (males=765 and 
females=750). Hexadecanedioate (SBP: β [95% confidence 
interval], 1.42 [0.37–2.47], P=0.01; DBP: 0.64 [0.09–1.19], 
P=0.02) was significantly associated with both SBP and DBP 
in the KORA S4 population after adjusting for covariates. 
Hexadecanedioate was also significantly associated with both 
SBP and DBP in the Hertfordshire cohort (SBP: 1.58 [0.56–
2.60], P=0.002; DBP: 0.56 [0.02–1.1], P=0.04; Table S4 in 
the online-only Data Supplement).

Causal Role for Hexadecanedioate in Increasing BP
Circulating levels of hexadecanedioate were significantly 
increased in WKY rats after treatment with oral hexadec-
anedioic acid for 4 weeks compared with untreated controls 
(P=0.014; Figure 1A). Hexadecanedioate-treated WKY rats 
also demonstrated a small but significant increase in SBP 
(ΔSBP, 8.38±2.75 mm Hg; P=0.019) compared with untreated 
controls when measured by tail-cuff plethysmography 
(Figure 1B). The hexadecanedioic acid induced increase in BP 
in WKY rats was further confirmed by radiotelemetry, which 
demonstrated a delayed separation of SBP and mean arterial 
pressure between control and hexadecanedioate-treated ani-
mals occurring after day 15 of treatment, which did not attain 
statistical significance (P=0.084, SBP hexadecanedioate ver-
sus control; P=0.057, mean arterial pressure hexadecanedio-
ate versus control), but did not show any separation with DBP 
or heart rate (Figure 1F and 1H). Three weeks of 1% NaCl 
administration in drinking water significantly elevated SBP in 
SHRSP rats (ΔSBP, 21.33±5·80 mm Hg; P=0.014; Figure 1D), 
however, plasma hexadecanedioate levels were not modified 
by salt challenge (Figure 1C). Baseline circulating hexadec-
anedioate levels were significantly higher in SHRSP rats 
compared with untreated age-matched WKY rats (P=0.0001). 
Vascular reactivity to noradrenaline was significantly increased 
in mesenteric resistance arteries from hexadecanedioate-
treated rats compared with controls, indicated by the shift to 
the left of the concentration response curve (hexadecanedioate 
area under the curve 100.8±9.3 versus control area under the 
curve 81.7±8.8; P=0.013; Figure 2A). Relaxation to carbachol 
was not different in mesenteric resistance arteries from control 
and hexadecanedioate-treated WKY rats (Figure 2B).

Discussion
In the largest investigation to date on metabolomic profiling 
for BP, we have identified a putative novel pathway for BP 
regulation involving a dicarboxylic acid (hexadecanedioate) 
with a causal role supported by in vivo studies in rats. After 
screening 280 metabolites in the discovery TwinsUK cohort, 
we identified 77 metabolites significantly associated with SBP 

Table 1. Descriptive Characteristics of the TwinsUK, KORA, 
and Hertfordshire Populations

Phenotype TwinsUK KORA Hertfordshire

n 3980 1494 1515

Females, n (%) 3980 (100%) 718 (48.1%) 750 (49.5%)

MZ:DZ:Singletons 1720:1584:680 0:0:1494 0:0:1595

Age, y 51.52 (13.49) 63.89 (5.51) 66.31 (2.82)

BMI, kg/m2 25.49 (4.63) 28.49 (4.34) 27.28 (4.45)

SBP, mm Hg 122.70 (15.51) 136.41 (20.53) 132.71 (19.04)

DBP, mm Hg 76.47 (9.82) 80.59 (10.55) 70.07 (10.86)

eGFR, mL/min per 1·73 m2 82.34 (14.36) 86.80 (16.15) …

Hypertension treatment, n(%) 0 526(35%) 529 (35%)

T2 Diabetes mellitus, n(%) 49 (1.2%) … …

BMI indicates body mass index; DBP, diastolic blood pressure; DZ, dizygotic 
twin; eGFR, estimated glomerular filtration rate; MZ, monozygotic twin; and 
SBP, systolic blood pressure.
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or DBP. To limit the number of metabolites to take forward 
for replication, we narrowed the list down to 15 independent 
metabolites through a series of sequential analytic steps to 
address the observed correlations between metabolite levels. 
These 15 metabolite signals were also independent of fruit/
vegetable or alcohol intake and BP genome-wide association 
study risk score all of which affect BP to varying levels.20 To 
minimize the risk of reverse causation as an explanation for 
our findings, we tested the association between these metabo-
lites with all-cause mortality in the discovery cohort. Although 
incident hypertension or cardiovascular mortality would have 
been ideal longitudinal phenotypes to analyze, these were 
unavailable in the discovery cohort. As high BP does increase 
the risk of both all-cause and cardiovascular mortality, we 
used all-cause mortality to filter metabolites for replication.

Only 3 metabolites (dihomo-linoleate (20:2n6), hexadec-
anedioate, and caffeine) showed significant associations with 

mortality in TwinsUK. More importantly, only 1 metabolite 
(hexadecanedioate) of the 3 showed directionally consistent 
and significant associations with both BP and mortality sug-
gesting a possible sustained detrimental effect of higher levels 
of the metabolite through increased BP. This is in contrast to 
the other 2 metabolites, dihomo-linoleate (20:2n6) and caf-
feine, which did not increase mortality, despite showing posi-
tive associations with BP. In addition, we performed survival 
analysis on other dicarboxylic acids (tetradecanedioate, octa-
decanedioate, and dodecanedioate) and none of them showed 
significant concordant association with mortality. Although 
our discovery analysis included only women who were not 
on any BP-lowering medications, we are able to demonstrate 
generalizability of our results for hexadecanedioate through 
replication in the KORA and Hertfordshire study, both of 
which included male and female subjects and hypertensive 
subjects on treatment. Our discovery results are maintained 

Table 2. Results From Single Metabolite Analysis of the Metabolites Significant in Backward Regression and Metabolite Levels and 
Risk of All-Cause Mortality in TwinsUK

Metabolite Super-p Sub-p

SBP DBP
Cox-Model

All-Cause Deaths=184

β (95% CI) P Value β (95% CI) P Value HR (95% CI) P Value

Phenylacetylglutamine a-a Phenylalanine 
and tyrosine 
metabolism

−1.04 (−1.53 to 
−0.55)

3.64×10−5 −0.66 (−0.97 to 
−0.34)

5.62×10−5 1.06 (0.91–1.24) 0.43

Lactate ch Glycolysis, 
gluconeogenesis, 

pyruvate 
metabolism

1.51 (0.99–2.02) 1.24×10−8 0.94 (0.61–1.27) 2.54×10−8 1.06 (0.85–1.32) 0.59

Octanoylcarnitine l Carnitine 
metabolism

1.37 (0.91–1.83) 4.98×10−9 0.78 (0.48–1.08) 5.30×10−7 0.97 (0.8–1.17) 0.73

Stearoylcarnitine l Carnitine 
metabolism

0.98 (0.52–1.44) 3.29×10−5 0.67 (0.36–0.97) 1.66×10−5 1.02 (0.88–1.18) 0.82

Hexadecanedioate l Fatty acid, 
dicarboxylate

1.31 (0.83–1.78) 6.81×10−8 0.81 (0.5–1.11) 2.96×10−7 1.49 (1.08–2.05) 0.02

Tetradecanedioate l Fatty acid, 
dicarboxylate

1.57 (1.07–2.07) 8.45×10−10 0.88 (0.56–1.21) 1.18×10−7 0.76 (0.56–1.03) 0.08

10-Heptadecenoate 
(17:1n7)

l Long chain fatty 
acid

1.3 (0.83–1.77) 6.45×10−8 0.9 (0.59–1.22) 2.40×10−8 1.06 (0.75–1.52) 0.73

Dihomo-linoleate (20:2n6) l Long chain fatty 
acid

1.94 (1.5–2.38) 1.40×10−17 1.13 (0.82–1.44) 5.55×10−13 0.66 (0.48–0.89) 0.01

Nonadecanoate (19:0) l Long chain fatty 
acid

0.91 (0.47–1.36) 6.86×10−5 0.61 (0.31–0.92) 9.08×10−5 1.1 (0.85–1.43) 0.46

Palmitate (16:0) l Long chain fatty 
acid

1.85 (1.4–2.3) 7.76×10−16 1.09 (0.78–1.4) 1.03×10−11 1.13 (0.78–1.63) 0.51

5-Dodecenoate (12:1n7) l Medium chain 
fatty acid

1.76 (1.3–2.23) 1.97×10−13 0.94 (0.63–1.25) 2.75×10−9 1.15 (0.88–1.5) 0.31

4-Androsten-3β,17β-diol 
disulfate 1*

l Sterol/Steroid 1.82 (1.25–2.38) 3.95×10−10 1.25 (0.87–1.63) 1.40×10−10 0.94 (0.81–1.08) 0.38

Cortisol l Sterol/Steroid 1.66 (1.21–2.11) 6.68×10−13 0.89 (0.58–1.2) 1.63×10−8 0.97 (0.82–1.14) 0.71

HWESASXX* p Polypeptide 0.94 (0.48–1.4) 5.87×10−5 0.72 (0.42–1.03) 3.64×10−6 1.02 (0.89–1.18) 0.73

Caffeine x Xanthine 
metabolism

1.46 (1–1.92) 6.88×10−10 0.96 (0.65–1.27) 1.08×10−9 0.83 (0.71–0.96) 0.01

Analyses adjusted for age,2 body mass index, metabolite batch, and family relatedness. Metabolites are inversed normalize to have mean=0 and SD=1. Blood 
pressure association analyses performed in 3980 female subjects with both BP and metabolomic data available; survival analysis performed on 4894 individuals with 
metabolomic data available. a-a indicates amino-acid; ch, carbohydrate; CI, confidence interval; DBP, diastolic blood pressure; HR, hazard ratio; l, lipid; p, peptide; SBP, 
systolic blood pressure; and x, xenobiotic. The biochemical identities of the metabolites in the Metabolon panel are determined using pure substances. * indicates cases 
where  metabolite identities were inferred based on their fragmentation spectrum and other biochemical evidence.
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even after inclusion of individuals from the TwinsUK 
cohort who were on BP-lowering medications (Table S5 in 
the online-only Data Supplement). We recognize that the 

lack of concordant mortality effect with BP association for 
dihomo-linoleate (20:2n6) and caffeine does not conclusively 
exclude a pathological effect, but we think further analyses of 

Figure 1. A, Plasma hexadecanedioate levels (ng/mL) and (B) systolic blood pressure (SBP; mm Hg) in Wistar–Kyoto (WKY) rats treated 
with 250 mg/kg per day hexadecanedioate or vehicle for 4 weeks (n=6). C, Plasma hexadecanedioate levels (ng/mL) and (D) SBP (mm Hg) 
in spontaneously hypertensive stroke prone (SHRSP) rats (n=6) pre- and postadministration of 1% NaCl in drinking water for 3 weeks. 
*P<0.05 vs respective untreated group. Radiotelemetry measurement (24-h averages) of (E) systolic blood pressure, (F) mean arterial 
pressure, (G) diastolic pressure, and (H) heart rate in WKY rats treated with hexadecanedioic acid (250 mg/kg per day, n=5) or vehicle 
(n=5) for 3 weeks.
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dihomo-linoleate (20:2n6) in larger cohorts with more events 
is warranted before further functional studies are conducted. 
The lack of a detrimental effect on survival for caffeine levels 
reflects the acute effect of caffeine on blood pressure, which 
varies with intake. We had a priori excluded individuals with 
renal impairment in our analysis and adjusting for estimated 
glomerular filtration rate did not alter the BP hexadecanedioate 
association. There is evidence that long-chain fatty acids, such 
as docosahexaenoic acid influence BP potentially through an 
effect on large-conductance Ca(2+)- and voltage-activated K+ 
(BK) channels,21 but this was not evident in our study.

We performed 3 in vivo experiments to establish causality 
of hexadecanedioate on BP regulation. In the first, after oral 
intake of hexadecanedioate, normotensive WKY rats showed 
an increase in circulating hexadecanedioate levels along with 
an increase in BP, both of which were statistically significant. 
In the second experiment, we measured hexadecanedioate lev-
els in the SHRSP rat before and after administration of salt, 
which resulted in a further increase in BP but no change in cir-
culating hexadecanedioate levels. Interestingly hexadecane-
dioate levels in the SHRSP rats were higher than that of WKY 
rats at baseline, and levels were similar between SHRSP and 
posthexadecanedioate WKY rats. We used radio-telemetry to 
provide confirmation of our tail-cuff plethysmography data 
and to determine the time course of the hexadecanedioate-
induced rise in blood pressure. From the radio-telemetry 
data, the increase in SBP and mean arterial pressure is not 
immediate after hexadecanedioate administration, with sepa-
ration of SBP and mean arterial pressure between control and 

hexadecanedioate-treated animals occurring after day 15 of 
treatment. This suggests that the mechanism by which hexa-
decanedioate affects BP is probably through secondary down-
stream pathways activated by higher hexadecanedioate levels. 
The increased vascular reactivity to noradrenaline shown by 
mesenteric arteries of hexadecanedioate-treated rats point to 
a vascular mechanism underlying the association of hexadec-
anedioate and blood pressure. Although these are preliminary 
data, overall they provide strong corroborative evidence of a 
causal role for hexadecanedioate in modulating blood pres-
sure and support further research in validating and elucidating 
the mechanisms.

Hexadecanedioic acid is a long-chain dicarboxylic acid, 
which is generated during fatty acid ω-oxidation and thence 
metabolized by β-oxidation in peroxisomes. ω-oxidation is 
a minor metabolic pathway that occurs in the endoplasmic 
reticulum and also contributes to 5% to 10% of total fatty acid 
metabolism in the liver. ω-Oxidation is increased in condi-
tions that are characterized by increased levels of mono-car-
boxylic free fatty acid (obesity, starvation, diabetes mellitus, 
and chronic alcohol consumption), as well as disturbances 
in β-oxidation.22,23 A lack of carnitine can lead to increased 
ω-oxidation.24 In our data, we find that levels of hexadec-
anedioate are indeed negatively correlated with carnitine 
(β=−0.05; 95% confidence interval, [−0.08 to −0.01]; P=0.01].

Multiple strands of evidence from related pathways point 
to potential mechanisms that can inform future studies to dis-
sect the hexadecanedioate BP association. Nonesterified fatty 
acids reduce Na+K+-ATPase activity in vascular smooth mus-
cle cells through increase in intracellular Na+ and decrease of 
passive Na+/Ca2+ exchange or through partial depolarization of 
cell membrane and activation of voltage-dependent Ca2+ chan-
nels resulting in increased intracellular Ca2+ concentration and 
a relative elevation of vascular tone, thus promoting the devel-
opment of hypertension.25,26

Interestingly, a recent report showed multiple dicarboxylic 
acids, including hexadecanedioate, to be significantly accumu-
lated in pulmonary arterial hypertension tissues indicating a 
disruption of β-oxidation and an increase of ω-oxidation in this 
condition and pointing to a putative role in elevating pressure 
in both the systemic and the pulmonary circulations.27 Indeed 
metabolic dysfunction and acquired mitochondrial abnormali-
ties leading to abnormal glycolytic and fatty acid metabolism 
are now recognized as a potential biological mechanism lead-
ing to both pulmonary vascular remodeling with aberrant cel-
lular proliferation and apoptosis, and in the development of 
right ventricular failure.28,29 Fatty acid metabolism could offer a 
novel therapeutic pathway, which would potentially target both 
pulmonary vasculature and the right ventricle.

Some of the specific functional effects of hexadecanedio-
ate have been studied using β,β′-tetramethylhexadecanedioic 
acid (MEDICA 16), which is not metabolized and hence the 
effects of downstream metabolic products that may mask the 
effects of hexadecanedioate are minimized. MEDICA 16 has 
been shown to be effective as a hypolipidemic and antiobe-
sity/anti-insulin resistance agent in experimental models,30,31 
and has a liver-specific calorigenic-thyromimetic action char-
acterized by a decrease in liver phosphate potential and liver 
redox potential with an increase in oxygen consumption, but 

Figure 2. Mesenteric resistance artery contractile response to 
noradrenaline (A) and relaxation to carbachol (B) in control (n=9) 
and hexadecanedioate treated (n=10) WKY rats. AUC indicates 
area under the curve.

 at Helmholtz Zentrum Muenchen on June 12, 2015http://hyper.ahajournals.org/Downloaded from 

http://hyper.ahajournals.org/


Menni et al  Hexadecanedioate and Blood Pressure  7

its effect on BP has not been studied thus far.32,33 Endogenous 
hexadecanedioate may be a putative marker either for the per-
turbations in immunologic processes or lipid β-oxidation that 
lead to high blood pressure, and further studies are needed 
to clarify the mechanism. Human metabolomic studies are 
potentially confounded by diet or drug effects, as well as 
other comorbidities.34 In our discovery study, we tested for 
the effect of diet and alcohol intake, excluded individuals who 
were on antihypertensive therapy and looked for corroborative 
evidence of increased mortality.

We note some limitations to our study. All the human 
metabolomics analysis is cross-sectional so we cannot dissect 
causality from it alone. We used all-cause mortality rather than 
incident hypertension or cardiovascular mortality because of 
lack of data. Our 2-stage approach was designed to take forward 
a limited number of metabolites for replication to attenuate the 
multiple testing burden and the high false-positive rates seen in 
high-throughput discovery studies. We recognize that hexadec-
anedioate may be a low-hanging fruit and that there will exist 
other valid metabolites that are associated with BP. Although 
our in vivo studies support a role for hexadecanedioate in BP 
regulation, the exact causal pathway is not established. The 
increased vascular reactivity to noradrenaline in hexadecane-
dioate-treated rats may be either a consequence of hypertension 
or a cause, and this needs to be elucidated in future experiments.

Perspectives
Using a multilayered approach comprising metabolomic pro-
filing in twins followed by replication studies and in vivo 
experiments, we have uncovered a putative novel pathway 
of BP regulation involving a dicarboxylic acid, hexadecane-
dioate. Preliminary studies from pulmonary hypertension 
suggesting an accumulation of dicarboxylic acids in this con-
dition supports a possible vascular role for dicarboxylic acids 
in increasing pressure in both the systemic and pulmonary cir-
culation. Studies on fatty acid metabolism could offer a novel 
therapeutic pathway, which would potentially target both pul-
monary and systemic hypertension. Our finding may indeed 
be a low-hanging fruit but as it points to a previously unknown 
pathway for blood pressure regulation these results should 
stimulate further studies specifically along 2 strands—(1) con-
firm and elucidate the mechanistic underpinnings of the role 
of fatty acid ω-oxidation in blood pressure regulation and (2) 
identify other true causal metabolite associations.
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What Is New?
•	 From a pool of 77 metabolites, which showed significant associations 

with SBP or DBP, we narrowed the list down to three metabolites (diho-
mo-linoleate (20:2n6), hexadecanedioate, and caffeine) that were also 
significantly associated with mortality in the same cohort and replicated 
in the KORA and Hertfordshire populations.

•	Only hexadecanedioate showed concordant directionality of effect for 
both BP and mortality.

•	We showed that hexadecanedioate is causally related to BP change 
 using an animal model.

What Is Relevant?
•	The results presented contribute to advance our understanding of the 

causation of hypertension by finding a new potential pathway of BP regu-
lation.

Summary

Circulating levels of the dicarboxylic acid hexadecanedioate points 
to a novel pathway for BP regulation that merits further study.

Novelty and Significance
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Methods 

A. TwinsUK – phenotype assessment and modelling. 
Blood pressure measurement 

Clinic BP was measured by a trained nurse using either the Marshall mb02, the Omron Mx3 

or the Omron HEM713C Digital Blood Pressure Monitors performed with the patient in the 

sitting position for at least 3 minutes. At each visit, the cuff was placed on the subject's arm 

so that it was approximately 2-3 cm above the elbow joint of the inner arm, with the air tube 

lying over the brachial artery. The subject’s arm was placed on the table or supported with 

the palm facing upwards, so that the tab of the cuff was placed at the same level of the heart. 

Three measurements were taken with an interval of approximately 1 minute between each 

reading. The second and third measures were subsequently recorded. BP measures were 

normally distributed. 

Dietary and other data 

Each subject completed a 131-item Food Frequency Questionnaire (FFQ) which was 

developed for the EPIC (European Prospective Investigation into Cancer and Nutrition) 

Norfolk study
1
. Macro and micro nutrient intakes were calculated from an established 

nutrient database
2
. For each food group, the frequency of intake (serving/wk) was adjusted 

for the total energy intake using the residual method. The energy-adjusted intakes were 

standardized and used in the principal components analysis (PCA) as previously described
3
. 

The dietary analysis was performed on five principal components which account for 22% of 

the total variance: fruit and vegetable, high alcohol, traditional English diet, hypo-caloric 

dieting and low meat.  

TwinsUK data are publicly available upon request on the department website 

(http://www.twinsuk.ac.uk/data-access/accessmanagement/). 

  

http://www.twinsuk.ac.uk/data-access/accessmanagement/
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Table S1. List of significant metabolites in one or more comparison in the TwinsUK cohort. All analyses are adjusted for age, 

age
2
, BMI, batch effect and family relatedness. 

      SBP DBP 

Metabolite Super-p Sub-p Beta[95%CI] P Beta[95%CI] P 

alanine a-a Alanine and aspartate metabolism 1.09[0.58;1.59] 2.85E-05 0.46[0.14;0.78] 4.65E-03 

2-hydroxybutyrate (AHB) a-a 

Cysteine, methionine, SAM, 

taurine metabolism 1.67[1.16;2.17] 1.01E-10 1.09[0.76;1.42] 9.41E-11 

cysteine a-a 

Cysteine, methionine, SAM, 

taurine metabolism 1[0.49;1.52] 1.49E-04 0.69[0.36;1.03] 4.20E-05 

3-(4-hydroxyphenyl)lactate a-a 

Phenylalanine & tyrosine 

metabolism 1.04[0.54;1.54] 5.19E-05 0.78[0.45;1.12] 4.63E-06 

p-cresol sulfate a-a 

Phenylalanine & tyrosine 

metabolism -1.03[-1.5;-0.56] 1.62E-05 -0.71[-1.01;-0.4] 6.51E-06 

phenylacetylglutamine a-a 

Phenylalanine & tyrosine 

metabolism -1.04[-1.53;-0.55] 3.64E-05 -0.66[-0.97;-0.34] 5.62E-05 

phenyllactate (PLA) a-a 

Phenylalanine & tyrosine 

metabolism 0.9[0.44;1.36] 1.44E-04 0.69[0.38;1] 1.59E-05 

3-indoxyl sulfate a-a Tryptophan metabolism -1.24[-1.71;-0.78] 1.98E-07 -0.55[-0.86;-0.24] 4.47E-04 

dimethylarginine (SDMA + ADMA) a-a 

Urea cycle; arginine-, proline-, 

metabolism -1.26[-1.76;-0.77] 6.70E-07 -0.65[-0.97;-0.32] 9.44E-05 

3-methyl-2-oxobutyrate a-a 

Valine, leucine and isoleucine 

metabolism 0.84[0.38;1.3] 3.30E-04 0.67[0.36;0.99] 2.95E-05 

3-methyl-2-oxovalerate a-a 

Valine, leucine and isoleucine 

metabolism 1[0.54;1.46] 1.93E-05 0.57[0.26;0.89] 3.71E-04 

alpha-hydroxyisovalerate a-a 

Valine, leucine and isoleucine 

metabolism 1.31[0.83;1.78] 7.63E-08 0.93[0.61;1.24] 1.04E-08 

levulinate (4-oxovalerate) a-a 

Valine, leucine and isoleucine 

metabolism 1.13[0.66;1.61] 2.85E-06 0.44[0.13;0.75] 5.98E-03 

erythronate* ch Aminosugars metabolism 1.2[0.65;1.75] 1.79E-05 0.65[0.31;1] 2.25E-04 

mannose ch 

Fructose, mannose, galactose, 

starch, and sucrose metabolism 1.09[0.58;1.6] 2.81E-05 0.39[0.06;0.72] 2.10E-02 

glucose ch 

Glycolysis, gluconeogenesis, 

pyruvate metabolism 1.34[0.8;1.87] 8.96E-07 0.68[0.34;1.02] 7.93E-05 
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lactate ch 

Glycolysis, gluconeogenesis, 

pyruvate metabolism 1.51[0.99;2.02] 1.24E-08 0.94[0.61;1.27] 2.54E-08 

bilirubin (E,E)* c&v 

Hemoglobin and porphyrin 

metabolism 0.91[0.44;1.38] 1.55E-04 0.66[0.35;0.97] 3.27E-05 

alpha-ketoglutarate e Krebs cycle 0.76[0.26;1.27] 3.04E-03 0.7[0.38;1.01] 1.62E-05 

citrate e Krebs cycle 1.11[0.57;1.66] 6.85E-05 0.71[0.37;1.05] 5.58E-05 

malate e Krebs cycle 1.58[1.07;2.09] 1.27E-09 0.99[0.66;1.32] 6.28E-09 

acetylphosphate e Oxidative phosphorylation 1.07[0.53;1.61] 1.04E-04 0.73[0.39;1.07] 2.54E-05 

2-tetradecenoyl carnitine l Carnitine metabolism 0.93[0.47;1.39] 6.97E-05 0.73[0.43;1.04] 1.94E-06 

acetylcarnitine l Carnitine metabolism 1.4[0.93;1.87] 5.79E-09 0.98[0.67;1.29] 6.60E-10 

decanoylcarnitine l Carnitine metabolism 1.13[0.69;1.57] 6.18E-07 0.65[0.36;0.95] 1.67E-05 

hexanoylcarnitine l Carnitine metabolism 1.48[1.01;1.96] 1.27E-09 0.85[0.53;1.16] 2.05E-07 

octanoylcarnitine l Carnitine metabolism 1.37[0.91;1.83] 4.98E-09 0.78[0.48;1.08] 5.30E-07 

oleoylcarnitine l Carnitine metabolism 1.06[0.6;1.53] 7.69E-06 0.69[0.39;1] 9.96E-06 

palmitoylcarnitine l Carnitine metabolism 1.45[0.98;1.91] 1.72E-09 0.98[0.67;1.28] 6.25E-10 

stearoylcarnitine l Carnitine metabolism 0.98[0.52;1.44] 3.29E-05 0.67[0.36;0.97] 1.66E-05 

dihomo-linolenate (20:3n3 or n6) l Essential fatty acid 1.35[0.9;1.8] 4.45E-09 0.73[0.42;1.04] 3.19E-06 

docosapentaenoate (n3 DPA; 22:5n3) l Essential fatty acid 1.5[1.03;1.97] 4.46E-10 0.99[0.67;1.31] 1.13E-09 

linoleate (18:2n6) l Essential fatty acid 1.61[1.15;2.06] 4.15E-12 0.87[0.56;1.18] 3.17E-08 

linolenate [alpha or gamma; (18:3n3 or 6)] l Essential fatty acid 1.47[1.03;1.91] 5.88E-11 0.89[0.59;1.19] 4.99E-09 

dodecanedioate l Fatty acid, dicarboxylate 1.47[0.96;1.99] 2.04E-08 0.81[0.47;1.14] 2.30E-06 

hexadecanedioate l Fatty acid, dicarboxylate 1.31[0.83;1.78] 6.81E-08 0.81[0.5;1.11] 2.96E-07 

octadecanedioate l Fatty acid, dicarboxylate 1.17[0.7;1.63] 8.90E-07 0.65[0.35;0.95] 2.29E-05 

tetradecanedioate l Fatty acid, dicarboxylate 1.57[1.07;2.07] 8.45E-10 0.88[0.56;1.21] 1.18E-07 

glycerol l Glycerol metabolism 2.04[1.5;2.58] 1.90E-13 1.17[0.83;1.51] 1.98E-11 

myo-inositol l Inositol metabolism 1.11[0.59;1.63] 3.00E-05 0.75[0.42;1.08] 8.60E-06 

3-hydroxybutyrate (BHBA) l Ketone bodies 1.01[0.54;1.48] 2.39E-05 0.7[0.4;1] 4.78E-06 

10-heptadecenoate (17:1n7) l Long chain fatty acid 1.3[0.83;1.77] 6.45E-08 0.9[0.59;1.22] 2.40E-08 

10-nonadecenoate (19:1n9) l Long chain fatty acid 1.34[0.89;1.8] 6.76E-09 0.97[0.66;1.28] 9.65E-10 

dihomo-linoleate (20:2n6) l Long chain fatty acid 1.94[1.5;2.38] 1.40E-17 1.13[0.82;1.44] 5.55E-13 
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eicosenoate (20:1n9 or 11) l Long chain fatty acid 1.45[0.99;1.91] 8.03E-10 0.94[0.63;1.24] 2.54E-09 

margarate (17:0) l Long chain fatty acid 1.42[0.95;1.89] 2.85E-09 0.87[0.56;1.19] 6.92E-08 

myristate (14:0) l Long chain fatty acid 1.77[1.3;2.24] 1.99E-13 1.05[0.73;1.36] 1.79E-10 

myristoleate (14:1n5) l Long chain fatty acid 1.46[1;1.93] 7.06E-10 0.86[0.54;1.18] 1.40E-07 

nonadecanoate (19:0) l Long chain fatty acid 0.91[0.47;1.36] 6.86E-05 0.61[0.31;0.92] 9.08E-05 

oleate (18:1n9) l Long chain fatty acid 1.43[0.99;1.87] 2.81E-10 0.88[0.57;1.19] 1.99E-08 

palmitate (16:0) l Long chain fatty acid 1.85[1.4;2.3] 7.76E-16 1.09[0.78;1.4] 1.03E-11 

palmitoleate (16:1n7) l Long chain fatty acid 1.66[1.19;2.12] 2.60E-12 0.99[0.68;1.31] 8.70E-10 

pentadecanoate (15:0) l Long chain fatty acid 0.91[0.41;1.42] 4.10E-04 0.66[0.34;0.98] 6.44E-05 

stearate (18:0) l Long chain fatty acid 1.51[1.07;1.95] 2.83E-11 0.94[0.63;1.25] 2.20E-09 

stearidonate (18:4n3) l Long chain fatty acid 1.04[0.59;1.5] 6.18E-06 0.66[0.35;0.97] 2.86E-05 

1-arachidonoylglycerophosphoethanolamine* l Lysol 1.01[0.57;1.46] 9.28E-06 0.43[0.13;0.73] 5.14E-03 

1-myristoylglycerophosphocholine l Lysol 1.05[0.6;1.5] 4.40E-06 0.58[0.29;0.88] 1.12E-04 

1-palmitoleoylglycerophosphocholine* l Lysol 0.97[0.51;1.44] 4.68E-05 0.54[0.23;0.85] 7.36E-04 

10-undecenoate (11:1n1) l Medium chain fatty acid 0.96[0.51;1.41] 3.27E-05 0.62[0.33;0.92] 3.46E-05 

5-dodecenoate (12:1n7) l Medium chain fatty acid 1.76[1.3;2.23] 1.97E-13 0.94[0.63;1.25] 2.75E-09 

caprate (10:0) l Medium chain fatty acid 1.41[0.95;1.87] 2.20E-09 0.6[0.3;0.9] 9.20E-05 

laurate (12:0) l Medium chain fatty acid 1.52[1.04;2] 6.91E-10 0.68[0.36;1] 3.66E-05 

1-palmitoylglycerol (1-monopalmitin) l Monoacylglycerol 1.58[1.09;2.07] 2.97E-10 0.79[0.48;1.1] 5.60E-07 

1-stearoylglycerol (1-monostearin) l Monoacylglycerol 1.31[0.82;1.79] 1.36E-07 0.62[0.31;0.93] 7.81E-05 

4-androsten-3beta,17beta-diol disulfate 1* l Sterol/Steroid 1.82[1.25;2.38] 3.95E-10 1.25[0.87;1.63] 1.40E-10 

cholesterol l Sterol/Steroid 1.41[0.85;1.98] 9.03E-07 0.93[0.57;1.28] 3.49E-07 

cortisol l Sterol/Steroid 1.66[1.21;2.11] 6.68E-13 0.89[0.58;1.2] 1.63E-08 

cortisone l Sterol/Steroid 1.35[0.88;1.81] 1.35E-08 0.86[0.55;1.16] 3.75E-08 

urate n 

Purine metabolism, urate 

metabolism 1.09[0.57;1.6] 3.36E-05 0.68[0.34;1.02] 8.43E-05 

gamma-glutamylglutamine p gamma-glutamyl -1.01[-1.49;-0.53] 3.87E-05 -0.6[-0.91;-0.29] 1.68E-04 

HWESASXX* p Polypeptide 0.94[0.48;1.4] 5.87E-05 0.72[0.42;1.03] 3.64E-06 

erythritol x Sugar, sugar substitute, starch 1.19[0.63;1.75] 2.97E-05 0.74[0.38;1.09] 4.23E-05 

1,7-dimethylurate x Xanthine metabolism 0.95[0.46;1.43] 1.34E-04 0.67[0.35;0.98] 3.95E-05 
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caffeine x Xanthine metabolism 1.46[1;1.92] 6.88E-10 0.96[0.65;1.27] 1.08E-09 

paraxanthine x Xanthine metabolism 1.2[0.74;1.66] 3.63E-07 0.76[0.47;1.06] 5.14E-07 

theobromine x Xanthine metabolism 0.91[0.45;1.36] 8.87E-05 0.42[0.12;0.71] 5.54E-03 

theophylline x Xanthine metabolism 1.3[0.86;1.75] 1.14E-08 0.83[0.54;1.13] 3.84E-08 

a-a = amino acid, ch = carbohydrate, c&v=cofactor and vitamins, e=energy, l= lipid, n-=nucleotide, p=peptide, x=xenobiotic.  
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Table S2. Multivariate analysis between metabolites and SBP, DBP after adjustment for dietary variables and genotype score. 

  SBP DBP 

 

adjusting for dietary 

variables 

adjusting for dietary 

variables and genotype  

score 

adjusting for dietary 

variables 

adjusting for dietary 

variables and genotype  score 

Metabolite Beta[95%CI] P Beta[95%CI] P Beta[95%CI] P Beta[95%CI] P 

phenylacetylglutamine 

-1.1[-1.68;-

0.53] 1.88x10
-4

 

-1.02[-1.76;-

0.29] 6.32x10
-3

 -0.6[-0.96;-0.24] 1.20x10
-3

 -0.54[-0.98;-0.1] 1.75x10
-2

 

lactate 1.51[0.92;2.1] 5.38x10
-7

 1.72[0.96;2.48] 1.07x10
-5

 0.82[0.45;1.19] 1.72x10
-5

 0.85[0.38;1.32] 3.90x10
-4

 

octanoylcarnitine 1.45[0.91;1.99] 1.58x10
-7

 1.66[0.98;2.33] 1.88x10
-6

 0.66[0.3;1.01] 2.61x10
-4

 0.78[0.34;1.22] 5.77x10
-4

 

stearoylcarnitine 1.22[0.68;1.77] 1.06x10
-5

 1.38[0.7;2.06] 6.80x10
-5

 0.78[0.43;1.14] 1.80x10
-5

 0.84[0.4;1.28] 1.91x10
-4

 

hexadecanedioate 1.43[0.88;1.99] 4.32x10
-7

 1.69[1;2.39] 2.18x10
-6

 0.81[0.46;1.16] 6.72x10
-6

 0.94[0.5;1.38] 2.86x10
-5

 

tetradecanedioate 1.77[1.19;2.35] 2.94x10
-9

 2[1.25;2.76] 2.25x10
-7

 0.86[0.49;1.23] 5.18x10
-6

 1.06[0.59;1.53] 1.02x10
-5

 

10-heptadecenoate 

(17:1n7) 1.32[0.78;1.86] 1.92x10
-6

 1.55[0.85;2.25] 1.52x10
-5

 0.84[0.48;1.2] 5.99x10
-6

 1.01[0.56;1.47] 1.50x10
-5

 

dihomo-linoleate (20:2n6) 2.02[1.51;2.53] 1.63x10
-14

 2.14[1.48;2.8] 3.01x10
-10

 1.12[0.78;1.47] 3.05x10
-10

 1.27[0.84;1.71] 9.01x10
-9

 

nonadecanoate (19:0) 1[0.49;1.51] 1.26x10
-4

 1.07[0.42;1.73] 1.33x10
-3

 0.7[0.35;1.05] 8.36x10
-5

 0.77[0.33;1.21] 5.79x10
-4

 

palmitate (16:0) 1.87[1.35;2.39] 3.65x10
-12

 2.03[1.35;2.72] 7.59x10
-9

 1.01[0.65;1.38] 4.60x10
-8

 1.16[0.7;1.61] 7.07x10
-7

 

5-dodecenoate (12:1n7) 1.93[1.38;2.47] 6.23e
-12

 2.2[1.52;2.88] 2.75x10
-10

 1[0.65;1.35] 2.50x10
-8

 1.14[0.71;1.58] 2.97x10
-7

 

4-androsten-3beta,17beta-

diol disulfate 1* 1.79[1.11;2.47] 2.61x10
-7

 1.84[0.98;2.7] 2.75x10
-5

 1.02[0.58;1.47] 7.39x10
-6

 1.03[0.47;1.59] 3.55x10
-4

 

cortisol 1.7[1.17;2.24] 4.99x10
-10

 1.9[1.19;2.61] 2.06x10
-7

 0.83[0.47;1.18] 5.86x10
-6

 1.02[0.56;1.48] 1.41x10
-5

 

HWESASXX* 0.92[0.37;1.47] 1.08x10
-3

 1.29[0.58;1.99] 3.99x10
-4

 0.69[0.33;1.05] 1.72x10
-4

 0.8[0.35;1.26] 6.06x10
-4

 

caffeine 1.35[0.81;1.89] 9.25x10
-7

 1.31[0.6;2.02] 2.97x10
-4

 0.82[0.47;1.17] 5.70x10
-6

 0.78[0.33;1.23] 6.88x10
-4

 

**the genotype score is calculated differently for SBP and DBP.  
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Table S3.  Blood pressure metabolite levels and risk of all-cause mortality in TwinsUK.  

 

Cox-Model 1 Cox-Model 2 Cox-Model 3 

 

Overall sample  

(186 deaths) 

no BP measure 

(102 deaths) 

BP measure 

(84 deaths) 

Metabolite HR[95%CI] P HR[95%CI] P HR[95%CI] P 

palmitate (16:0) 1.13[0.78;1.63] 0.51 0.89[0.54;1.49] 0.66 1.6[0.92;2.8] 0.10 

nonadecanoate (19:0) 1.1[0.85;1.43] 0.46 1.09[0.75;1.56] 0.66 1.19[0.81;1.74] 0.37 

dihomo-linoleate (20:2n6) 0.66[0.48;0.89] 0.01 0.63[0.41;0.96] 0.03 0.67[0.42;1.08] 0.1 

octanoylcarnitine 0.97[0.8;1.17] 0.73 1.08[0.83;1.42] 0.56 0.85[0.64;1.13] 0.27 

5-dodecenoate (12:1n7) 1.15[0.88;1.5] 0.31 1.26[0.87;1.82] 0.22 1.11[0.74;1.67] 0.61 

10-heptadecenoate (17:1n7) 1.06[0.75;1.52] 0.73 0.98[0.6;1.62] 0.95 1.05[0.61;1.8] 0.86 

stearoylcarnitine 1.02[0.88;1.18] 0.82 1.14[0.93;1.38] 0.21 0.89[0.7;1.13] 0.33 

tetradecanedioate 0.76[0.56;1.03] 0.08 0.73[0.48;1.11] 0.14 0.75[0.48;1.17] 0.21 

hexadecanedioate 1.49[1.08;2.05] 0.02 1.71[1.09;2.68] 0.02 1.32[0.82;2.12] 0.26 

lactate 1.06[0.85;1.32] 0.59 1.19[0.89;1.6] 0.24 0.86[0.62;1.19] 0.36 

caffeine 0.83[0.71;0.96] 0.01 0.83[0.68;1.02] 0.07 0.81[0.64;1.02] 0.07 

Analyses adjusted for age, age
2
, BMI.
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Table S4. Replication results for hexadecanedioate in the KORA and 

Hertfordshire cohorts. 

    KORA (N=1494) Hertfordshire (N=1515) 

Phenotype Metabolite Beta[95%CI] P Beta[95%CI] P 

SBP hexadecanedioate 1.42[0.37;2.47] 0.01 1.58[0.56;2.60] 0.02 

DBP hexadecanedioate 0.64[0.09;1.19] 0.02 0.56[0.02;1.1 0.04 

Analyses adjusted for sex, age, age
2
 and BMI.  
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Table S5.  BP - hexadecanedioate association in the TwinsUK cohort including 

those on treatment by adding 10/5mmHg to treated BP. 

  SBP DBP 

Metabolite Beta[95%CI] P Beta[95%CI] P 

hexadecanedioate 1.13[0.66;1.61] 3.40x10
-6

 0.78[0.46;1.10] 1.70x10
-6

 

Analyses adjusted for age, age
2
, metabolite batch, BMI and family relatedness.



12 
 

Figure S1. Flowchart of the study design and analysis pipeline in the TwinsUK 

cohort. 
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Figure S2.Bivariate correlation between the 15 metabolites independently 

associated with BP 
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Figure S3. Kaplan Meier plots of all-cause mortality for hexadecanedioate, 

dihomo-linoleate (20:2n6) and caffeine in TwinsUK. 
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