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Genetic architecture of circulating lipid levels
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Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides
(TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association
studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits
remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers
into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on
serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-Il (RS-11). We
additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach
was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared
with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci
influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the
polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score
for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the
genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing
GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.
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INTRODUCTION genome-wide association studies (GWASs) successfully identified
Serum concentrations of low-density lipoprotein cholesterol (LDL-C), multiple genes influencing circulating lipid levels.>™'? There are
high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and  currently over 100 established loci that include both common variants
total cholesterol (TC) are highly heritable phenotypes associated with ~ with relatively small effects as well as a considerable number of rare
the risk of cardiovascular morbidity and mortality.' A number of variants with large effects.!*> Despite these successes, a substantial
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proportion of the heritability of each trait remains unexplained,
suggesting that many determinants have yet to be identified.'*

Several plausible explanations may underlie the unexplained herit-
ability of lipid traits, including the presence of both unknown
common variants with small effects and novel rare variants with larger
effects. The ENGAGE GWAS® was one of the first large population-
based studies designed to find variants associated with circulating lipid
levels. The study, based on 16 European cohorts including up to
22562 individuals, identified 6 novel loci, in addition to replicating 16
previously known loci. However, as demonstrated by the recent GWAS
from the Global Lipid Genetics Consortium (GLGC), numerous
additional variants passed the genome-wide significance threshold as
a result of increased sample size.1> The GLGC GWAS, which included
over 100000 individuals of European ancestry, reported 95 loci, with
59 reaching genome-wide significance for the first time. These results
raise an interesting question: if common variants remain to be
discovered, how many should we expect? Are there still a limited
number of loci or can we expect a polygenic mechanism that involves
a very large number of variants with very small effects? In the latter
case, these variants would contribute to a continuous spectrum of
alleles spanning the genome and single genes involved in this complex
polygenic model might not be detectable by GWAS, regardless of
sample size.!® Evidence for this type of genetic architecture can be
shown using a genome-wide scoring approach, as was recently
demonstrated for a number of psychiatric outcomes.!’~1° Additionally,
these polygenic scores may provide extra information useful in
determining P-value thresholds for pathway analysis.

The current study aimed to explore the extent to which common
variation accounts for the unexplained heritability of circulating lipid
levels using the genome-wide scoring method. We also evaluated the
evidence for a common polygenic effect underlying different lipid
traits, using the same risk scoring approach. Finally, we examined the
utility of genome-wide polygenic scores for identifying pathways
beyond those identified using a classical GWAS approach.

MATERIALS AND METHODS

The polygenic risk score approach involves using results from a discovery set to
explore the genetic architecture of an independent target sample. Our discovery
set consisted of the meta-analysis of 16 European populations from the
ENGAGE Lipid Consortium (N=17798-22562) (Table 1). A detailed descri-
ption of this study, including populations, genotyping information and
statistical analysis, was previously published.?

The target sample consisted of RS-II, an extension of the Rotterdam Study
(RS), a prospective cohort study started in 1990 in the Ommoord district of the
city of Rotterdam. RS-II, which was not a part of the ENGAGE discovery set,
consists of 3011 participants (out of 4472 invitees) who were 55 years or older
during the recruitment period (2000-2001).2° Of the 3011, 2540 persons were
successfully genotyped with an Illumina 610K array. Fasting HDL-C, TG and
TC were measured with enzymatic colorimetric tests on a Roche/Hitachi 911

Table 1 Descriptive data of discovery and replication samples

ENGAGE RS-11
Men Women Men Women
Number of subjects 8403 14159 1061 1253
HDL-C (mmol/l) 1.3(0.3) 1.6 (0.4) 1.2(0.3) 1.5(0.4)
LDL-C (mmol/l) 3.4 (0.9) 2.3(0.9) 3.6 (0.9) 1.5(0.8)
TG (mmol/l) 1.6 (1.1) 1.1 (0.7) 1.6 (0.9) 1.5(0.8)
TC (mmol/) 5.6 (0.9) 5.9 (0.9) 5.6 (1.1) 5.7 (1.1)
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analyzer (Roche Diagnostics, Meylan, France). LDL-C was estimated using the
Friedewald formula.?!

SNPs included in the construction of the polygenic scores were based on the
results from the ENGAGE study. We selected different clusters of SNPs for the
calculation of the scores using several P-value thresholds (Pgiscovery) ranging
from 5x 1078 to 0.5. We calculated genetic scores for those various clusters of
SNPs in the target sample by multiplying the number of risk alleles for each
SNP (0, 1 or 2) by the effect sizes from the discovery set, and summing them up
across all the SNPs in that cluster. For this analysis, we used the PLINK ‘profile
scoring’ option. SNPs that had a call rate <90% or HWE P-value <1x107%
were excluded from these computations. A/T and G/C polymorphisms were
also excluded to avoid potential strand inconsistencies. SNPs in linkage
disequilibrium (LD) were pruned over 200 SNP sliding windows using a pair
wise 12 threshold of 0.25 in PLINK.??2 LD pruning was performed per SNP
cluster. (See Supplementary Table 2 for the number of SNPs remaining in each
cluster and used for analysis.)

The associations between these scores and serum lipid levels were tested in
SPSS for Windows version 15 (SPSS, Chicago, IL, USA) using linear regression
models, with sex, age and age2 as covariates (the same covariates as included in
the discovery GWAS). The proportion of total variance explained by the genetic
score, here referred to as the percentage of explained variance (PEV), was
determined by comparing models with/without the risk score.

To evaluate whether the PEV results were driven by the GWAS hits, we also
constructed a variable comprising only the significant GWAS variants and
included it as a covariate in our original models. When calculating the
polygenic scores for these analyses, we also removed SNPs within 2Mb
windows surrounding the GWAS hits. We employed exactly the same pruning
approach for this analysis.

To search for evidence for a shared genetic background between various lipid
traits, we tested additional models in which we used the polygenic score for a
particular lipid and tried to predict the others, for instance, utilizing the
HDL-C polygenic score to predict TG and vice versa.

The score which yielded the highest PEV for a given lipid trait ostensibly
includes the most valuable genetic information; therefore, we selected these
thresholds to utilize in pathway analysis (in contrast to using only genome-wide
significant loci). For these analyses, we used the PANTHER tools (http://
www.pantherdb.org).2®> We first tested the genome-wide significant SNPs
(Pdiscovery <5% 10~%) from the ENGAGE GWAS in the pathway analysis. These
results were then compared with those obtained using alternative Pgiscovery
thresholds selected on the predictive ability of the polygenic scores. After
SNP selection, SNPs within gene regions were converted to gene symbols using
the ‘SCAN SNP and CNV annotation database’ (http://www.scandb.org). Gene
lists were tested for enrichment in three PANTHER categories: (1) pathways,
(2) biological processes and (3) molecular functions. Testing for enrichment
basically involves comparing one gene list to the reference list to statistically
determine over- or under- representation of PANTHER classification
categories. Based on the reference list, an expected value is computed (the
number of genes one would expect in the list for a particular PANTHER
category) and it is assumed that, under the null hypothesis, genes in the tested
list are sampled from the same distribution as genes from the reference set. The
Homo sapiens gene list from National Centre for Biotechnology Information
was used as the reference gene list. To avoid bias caused by multiple testing,
PANTHER’s Bonferroni correction option was implemented. (See Supplemen-
tary Figure 1 for the overall flowchart of the study.)

RESULTS

Table 1 shows summary statistics for the discovery and target samples.
The female/male ratio in the discovery set was significantly higher
compared with the target set (1.6 vs 1.2, P<0.001). Genome-wide
significant SNPs from the ENGAGE GWAS were checked for their
associations in the target sample using linear regression. Generally,
evidence of association between those SNPs and lipid levels were
marginally significant or non-significant (Supplementary Table 1).
The GWAS of circulating lipids in RS-II did not show any genome-
wide significant findings except the CETP gene region SNPs, which
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Figure 1 Graphs a-d show the PEV of circulating lipids with risk scores by different Pyiscovery thresholds. Adjusted for age, sex and age?. *P<5x1078;

*5x10~8< P<0.05.
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Figure 2 Graphs a-d show the PEV of circulating lipids when the top regions are excluded. Adjusted for age, sex age? and risk score computed from genome-
wide significant findings. The lack of association in the first cluster of SNPs are due to the exclusion of SNPs within 2 Mb window region surrounding the top
findings, as there were only a few SNPs to be included in the analysis after excluding the top regions. *P<0.05.

were associated with HDL-C (rs7499892, P=3.4x10~13). Manhattan
plots for the GWAS of the HLD-C, LDL-C, TG and TC can be found
in Supplementary Figure 2.

Prediction

Figure 1 shows the PEV obtained for each lipid trait using the
polygenic scores generated for a number of P-value thresholds in
the target sample (RS-II). For HDL-C, the polygenic score computed
using 19 genome-wide significant SNPs from 8 gene regions
(Pdiscovery<5><1078) resulted in the maximum PEV compared with
the null model (4.75%, P=3.6x10"%% Figure la). For LDL-C
(Figure 1b), the maximum PEV was observed with the polygenic
score that included 21 SNPs with a Pdisco\,ery<l><10*6 (2.6%,
P=5.1x10719), Figure lc shows PEVs for TG levels; the score that
included 12 SNPs from 8 regions with Pdisco\,ery<1><10’7 (3.8%,
P=2.8x10"21) was the best predictor. For these traits, the variance
explained decreased with the inclusion of additional SNPs in the

polygenic score selected using more liberal Pgiscovery thresholds (Figures
la—c). Finally, for TC, the highest PEV was obtained using 46 SNPs from
24 regions with Pjscovery < 107> (2.7%, P=1.4x10'6). This was higher
than the PEV obtained using only the genome-wide significant SNPs
(PEV=2.1%, P=8.2x 10713, n=20 SNPs from 11 regions; Figure 1d). As
with HDL-C, LDL-C and TG, the explained variance for TC dropped
when more liberal Pgiscovery thresholds were used to construct the
polygenic score. For LDL-C, HDL-C and TC, all scores were significant
(up to a threshold of Pyjscovery <0.5). We observed similar patterns when
we used unpruned data (Supplementary Figure 3).

Figure 2 shows the results from the second approach, in which
models were adjusted for genome-wide significant variants. For HDL-
C (Figure 2a), the PEV increased as SNPs were added, up to 0.5%
with Pgiscovery <0.1 (P=1.0x 107%) and remained significant until
Piiscovery <0.5 (P=2.3x10"%). A similar pattern was observed with
LDL-C (Figure 2b, explained variance was up to 0.4% (P=0.002))
with Pgiscovery threshold of 0.2. In contrast, the polygenic score for TG,
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Table 2 Correlation matrix of circulating lipids and genetic risk scores in RS-II

HDL-C LDL-C G C
Correlation between the phenotypes HDL-C 5x10°8 0.01 —0.20** 0.02 Correlation between the genetic risk scores

1x1077 0.01 —0.17** 0.03

1x10°6 -0.01 —0.09** 0.07**

1x107° 0.02 —0.04* 0.05*
LDL-C 5x10°8 —0.1** 0.01 0.76**

1x10-7 0.02 0.75**

1x10°® 0.05* 0.81**

1x10°5 0.03 0.71**
TG 5x10-8 —0.5%* 0.1%* 0.13**

1x1077 0.13**

1x10°6 0.12**

1x107° 0.08**
TC 5x10°8 0.1** 0.9** 0.3**

1x1077

1x10-6

1x107°

Lower-left side of the matrix shows the phenotypic correlation between circulating lipid levels, adjusted by age, age? and sex. Upper-right side of the matrix shows the correlation between the
genetic risk scores of four circulating lipids, for the first four risk scores with Pyiscovery < 5x 1078, Piiscovery < 1 x 1077, Phiscovery < 1 x 10-° and Piscovery < 1 x 1075, *Correlation significant at

P<0.05. **Correlation significant at P<0.001.

when the effects of known variants were excluded, was not associated
with TG levels in the target population (Figure 2c). For
TC (Figure 2d), the maximum PEV was observed with
Pgiscovery <1x 1072, (0.6%, P=1.8x10"%).

Cross-prediction

Table 2 shows the phenotypic correlations for the four outcomes
studied, and additionally shows the correlations between the polygenic
scores for different Pgjscovery thresholds. Correlations between the traits
were modest, with the exceptions of TC and LDL-C, (r=0.9) and TG
and HDL-C (r=—0.5). The correlations between the polygenic scores
were weaker than the phenotypic correlations (0.8 for TC/LDL-C and
—0.2 for TG/HDL for Pgiscovery <5x107%)

To evaluate the evidence for common polygenetic effects underlying
lipid levels, we performed cross-prediction analyses (Figure 3). The
highest PEV was based on the TC score at Pgiscovery (1) <1x1073,
which explained up to 2.7% of the variance in circulating LDL-C
(P=2.0x10"2; Figure 3k). Similarly, LDL-C risk profiles explained
up to 1.8% of the variance in TC when we selected all SNPs
with a Pgiscovery (LDL-C)<107¢ (P=1.4x10"'Y; Figure 3f). These
findings are in line with the high phenotypic correlations between
those variables. Figures 3g—i shows the predictions based on a TG
score which explained up to 0.8% of the variance in other lipids.
HDL-C scores explained up to 0.3% of the variance in other lipids
(Figures 3a—c).

Pathway analysis

Pathways analyses using only genome-wide significant SNPs was
compared with the analogous analyses using SNPs from the polygenic
scores, which yielded the highest PEV for each trait (Figure 1). These
scores used thresholds of P<1x107¢ for LDL-C, P<1x 10~ for TC,
P<5x1078 for HDL-C and P<1x10~7 for TG. Table 3 shows the
findings from the pathway analysis, based on alternatives to a P-value
threshold of 5.0x1073. None of the pathways among categories
defined by the PANTHER tool were significant after strict adjustment
for multiple testing (Bonferroni correction). With respect to biological
processes the lipid and fatty acid transport and lipid, fatty acid and
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steroid metabolism pathways were two biological processes enriched in
the HDL-C and LDL-C GWAS findings. At the level of molecular
function, genes with an apolipoprotein and transfer/carrier function
were enriched in LDL-C, while genes with a lipase function were
observed to be significantly enriched among the top GWAS results for
HDL-C. For HDL-C and TG, we were not able to select alternative
P-value thresholds as the highest PEVs were observed with
P<5x1078. With respect to LDL-C, the pathway analysis utilizing
two different P-value thresholds (P<1x107° and P<5x107%)
resulted in the same findings. No additional pathways were identified
by using extra information from the risk profiles for LDL-C, TG and
HDL-C. For TC, on the other hand, the lipid, fatty acid and steroid
metabolism, lipid and fatty acid transport and transport terms addi-
tionally emerged among biological processes tested using the
alternative threshold (Table 3).

DISCUSSION

Using prediction modelling, we could explain up to 4.8% of the
variance in HDL-C, 2.6% in LDL-C, 3.8% in TG and 2.7% in TC.
These PEVs are very similar to those from similar studies>® and much
higher than the single SNP analysis of genome-wide significant SNPs
from the ENGAGE GWAS (Supplementary Table 1).

However, these proportions are much lower than those identified by
GLGC, which were estimated to explain 12.4% (TC), 12.2% (LDL-C),
12.1% (HDL-C) and 9.6% (TG) of the variance in the Framingham
Heart Study sample, as mentioned by Teslovich et al?* This is
expected as increases in sample size lead to better estimation of
the effect sizes of the SNPs and GLGC had a sample size 5 times
larger than the ENGAGE sample, which we used as a discovery set in
our study.

For all of the traits, the PEV reached a maximum and then
decreased with the use of more liberal Pyiscovery thresholds to calculate
the polygenic scores (Figure 1). This is most likely explained by the
inclusion of more and more biologically non-relevant SNPs, so that
the effects of true positive findings are diluted and this is reflected by
the decreases in PEV. For all of the studied traits, we found the highest
PEV when the polygenic score was based on SNPs with a low Pgiscovery
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value (5x10~8 for HDL-C, 1x10~7 for TG, 1x10~° for LDL-C and
1x107> for TC). Including the top regions from the ENGAGE GWAS
data set as a separate predictor in the models (Figure 2) uncovered a
residual polygenic component which does not explain >1% of
HDL-C, LDL-C and TC levels. These findings suggest that there are
unknown genes with much smaller effects involved in determining
these outcomes. However, the PEVs for these additional variants were
small when compared with those for the top findings. For TG, on the
contrary, excluding the top regions from the polygenic score resulted
in non-significant findings. For TC, which is highly heterogeneous
compared with the other traits, it seems that some variants remain to
be discovered (Pdiscovery<1><1075)- It is of note that among newly
discovered loci for HDL-C by GLGC, leading SNPs from 10 loci had
P-values >0.05 in the ENGAGE HDL-C analysis. Similar findings
were observed for 10 loci for LDL-C, 3 loci for TG and for 9 loci in
TC.2* 1t is already known that monogenic disorders?® and rare variants
also account for variation in circulating lipid levels.?®~32 This may help
to explain why the explained variance is small compared with the high
heritability of the traits, especially as many rarer variants are popula-
tion specific, and might not have been well represented in our
European data set, or not well tagged by the common SNPs under
study. For instance, APOE gene variations are tagged by the

CEACAM16-TOMMA40 region among the ENGAGE GWAS top find-
ings, and SNPs from this region were not associated to LDL-C levels in
RS-1I, however, APOE &2 carrier status explains 2.6% of the pheno-
typic variation in LDL-C levels in RS-II. Additionally, the gender ratio
difference between the discovery and target samples may have been a
limitation to the current study, as some loci show different effect sizes
for males and females.> Our findings have implications for gene
discovery and suggest that GWAS of much larger samples may be
needed to discover additional variants with small effects for HDL-C
and LDL-C. However, at the same time, this study suggests that many
of the unknown SNPs have relatively large effects and that is
confirmed by the GLGC data. Our findings suggest that GWAS on
serum lipids in the future will still be successful as sample sizes
increase.!* Our cross-prediction results are interesting from a biolo-
gical perspective. These findings showed very little overlap between the
polygenic scores for different circulating lipids. A strong inverse
relationship exists between low HDL-C and elevated plasma TG
(r=—0.5 in RS-II). Low HDL-C levels are strongly associated with
hypertriglyceridemia as high levels of plasma TGs drive an exchange
reaction for HDL-C cholesteryl esters mediated by CETP3? In addi-
tion, the TG and phospholipids in HDL-C are hydrolysed by
LIPC.!33 However, using our genetic evaluation it was not possible
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Table 3 Pathway analysis

NCBI Observed Expected Over/under P P*
Pathways n.s.
Biological process
HDL-C Lipid, fatty acid and steroid metabolism 770 5 0.42 + 4.05%x10°° 1.26x10°3
Lipid and fatty acid transport 131 3 0.07 + 4.77x1075 6.91x10°3
LDL-C Lipid, fatty acid and steroid metabolism 770 4 0.51 + 1.46x10°3 4.52%10°2
Lipid and fatty acid transport 131 3 0.09 + 8.81x10°° 1.28x10°2
TG n.s.
TC Lipid, fatty acid and steroid metabolism 770 6 1.21 + 1.22%x10°3 3.78x10°2
Lipid and fatty acid transport 131 4 0.21 + 5.55x105 8.05x103
Transport 1306 8 2.05 + 8.47x1074 2.63x1072
Molecular function
HDL-C Lipase 75 3 0.04 + 9.11x10°6 1.47x10°3
LDL-C Apolipoprotein 23 2 0.02 + 1.10x1074 1.77x10°2
Transfer/carrier protein 327 3 0.22 + 1.26x10°3 3.66x10°2
TG n.s.
TC n.s.

Enrichment of a particular ‘pathway’, ‘biological process’ or ‘molecular function’” PANTHER categories were tested by pathway analysis. SNPs that are included in the pathway analysis are selected
based on their Pyiscovery Values, which were 1076 for LDL-C, 10~ for total cholesterol, 5x10~8 for HDL-C and 10~ for triglycerides. NCBI, number of genes that belong to the particular category.
Observed: number of genes that belong to the given particular category among GWAS results. Expected, expected value for number of genes that belong to the particular pathway among GWAS
results. Over/under, stands for ‘over-represented/under-represented’. n.s., no significant findings. *P-value corrected for multiple testing.

to predict a large proportion of the variance in TG levels using HDL-C
risk profiles despite the correlation between the two lipids. The
polygenic score for TG was slightly better in predicting HDL-C than
when we used the top SNPs, however, the PEV did not exceed 0.6%
and was lower than the variance explained by HDL-C SNPs and also
lower than the variance explained in circulating TG by TG SNPs.
Thus, our data implies that common genetic variants involved
in determining both TG and HDL-C levels do not explain the
phenotypic correlation between these traits, suggesting that the
correlation may be influenced strongly by environmental factors,
and/or restricted to a few genes. An alternative explanation may be
that we tested the polygenic effects of common variants weighted by
their effect size from the initial GWAS. When there are strong causal
variants among the top hits that are specific to HDL-C but not to TG,
this may dilute the effect of genes with small effect sizes on both
outcomes. Also, the current analyses do not account other forms of
genetic variation, such as rare variants or copy number variations
(CNVs). As expected, we also found evidence for a number of genes
that regulate both HDL-C and LDL-C (Figure 3a) and a similar
overlap between TG and LDL-C (Figure 3h). TC SNPs were able to
explain up to 2.7% of the variation in LDL-C, suggesting that the
genes determining LDL-C and TC are for a large part overlapping.
This result is in line with the high phenotypic correlation between the
two measures. Genome-wide significant findings from the ENGAGE
GWAS harboured two loci (apolipoprotein B and LPL) influencing
both HDL-C and TG, 2 loci influencing both TG and TC (DOCK7
and CEACAMI16-TOMM40 regions) and 7 loci influencing both
LDL-C and TC (CELSR2, APOB, ABCG5, HMGCR, FADS2/3,
LDLR and CEACAM16-TOMMA40). A limitation here is that LDL-C
was not directly measured but calculated with the Friedewald formula
in the RS-II sample and so, by definition, depends directly on TC,
HDL-C and TG. This may cause a potential bias in findings for LDL-C
and may inflate the association between lipids in cross-prediction
findings with this phenotype. We investigated whether the polygenic
score approach can be used as a tool for selecting SNPs of interest in
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order to further evaluate them in a pathway analysis. First, we
evaluated the genome-wide significant SNPs from an existing GWAS
and compared the results with those obtained using the SNPs from the
polygenic model with the maximum PEV. Neither of the approaches
yielded any novel pathways/biological processes (only those already
known to be involved in lipid metabolism, such as cholesterol
biosynthesis; lipid and fatty acid transport; and lipid, fatty acid and
steroid metabolism). Also, we see that, although the use of the
polygenic score approach did not provide extra information concern-
ing LDL-C, HDL-C or TG, for TC, pathway analysis based on the best
predicting polygenic score (with Pgiscovery <1X 10~°) was more infor-
mative than analysis based solely on the genome-wide significant
findings. Including TC SNPs up to a more liberal threshold of 1x 107>
suggested three processes, which are already biologically known but
were not detectable with the 5x 108 discovery threshold. This finding
shows that for complex traits like TC, the risk scoring approach might
be used to select the SNP cluster which harbours a large number of
true positives that are not significant at the genome-wide level. Taken
together with the polygenic component analysis results, it is likely that
ENGAGE TC-GWAS results harbour undiscovered associated variants
distributed between 1x107°< Pgiscovery<1x107°. Using a gene
scoring approach, we tested the evidence of a polygenic component
for the heritable circulating lipids. We concluded that a polygenic
form of inheritance exists for HDL-C, LDL-C, TG and TC. These
findings may be useful for future gene discovery efforts for lipids. We
also tested for possible genetic overlap between biologically related
lipid traits and compared two different approaches for pathway
analysis. This study gives an example of utilizing the risk scoring
approach to search for the common genetic background of different
quantitative traits; thus, it may also be an example for more sophis-
ticated future studies.
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