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Pawel K. Mazur1, Barbara M. Grüner1, Hassan Nakhai2, Bence Sipos3, Ursula Zimber-Strobl4, Lothar J.

Strobl4, Freddy Radtke5, Roland M. Schmid1, Jens T. Siveke1*

1 2nd Department of Internal Medicine, Klinikum Rechts der Isar University Hospital, Technical University of Munich, Munich, Germany, 2 Department of Biological

Sciences, University of Warwick, Coventry, United Kingdom, 3 Institute of Pathology, University Hospital, University of Tübingen, Tübingen, Germany, 4 Department of
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Abstract

Background: The Ras and Notch signaling pathways are frequently activated during development to control many diverse
cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras
signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with
ablation of Notch1 and/or Notch2.

Methodology/Principal Findings: Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed
skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin.
Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers
of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent
expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing.
Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include
distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and b-
catenin signaling inhibition capabilities.

Conclusions/Significance: Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified
function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study
confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful
dissection of the contribution of individual Notch receptors.
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Introduction

Conditional tissue-specific modulation of genes using Cre/loxP

recombination in genetically engineered mice provides an

enormous leap forward to study gene function in detail yet

requires detailed knowledge of gene regulation and expression

patterns. For pancreatic targeting of genes, Pdx1-Cre mice are

commonly used [1–3], in which Cre-recombinase is expressed

under a 4.5 to 5.5 kb fragment of the Pdx1 promoter. The

transcription factor Pdx1 (pancreas and duodenum homeobox

gene 1) directs pancreatic cell formation, maintenance and

function. Pdx1 is expressed in the region of the endoderm that

ultimately gives rise to stomach, pancreas and duodenum and its

function is critical for posterior foregut development [4].

Postnatally, Pdx1 is mainly expressed in insulin-producing

endocrine cells of the pancreas. Ablation of Pdx1 results in defects

of different cell types including malformations of the pylorus and

duodenum, absence of Brunner’s glands and reduced numbers of

specific enteroendocrine cell types in the stomach and intestine.

Loss of Pdx1 function results in pancreatic agenesis, while

heterozygous expression leads to defects in glucose homeostasis.

Pdx1-deficient mice survive up to 6.5 days after birth, are severely

dehydrated, have no fur and a delicate, cracking skin. [5–8]. Here,

we report epidermal PDX1 expression observed due to an

unexpected skin tumor formation in Pdx1-Cre mice with activation

of oncogenic KrasG12D and loss of Notch1 but not Notch2.

Notch proteins are evolutionarily conserved large transmem-

brane receptors, which upon ligand binding undergo proteolytic

cleavage mediated by the c-secretase-presenilin complex releasing

the intracellular fragment (NIC). NIC is translocated to the

nucleus where it binds and activates the mammalian repressor

RBP-Jk thereby regulating fetal and postnatal cell fate decisions
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and differentiation processes [9]. Notch receptors are expressed in

the skin, although their precise functions remain uncertain

(reviewed in [10,11]). Gain- and loss-of-function studies have

suggested various functions for Notch including proliferation

control, differentiation switch of developing epidermis and

formation of hair follicles [12–17]. Mice with epidermal loss of

Notch1 as well as Presenilin-deficient mice develop epidermal

hyperplasia and skin cancers [14,18]. Of note, most studies have

focused on Notch1 and downstream signaling members such as

Rbpj or Hes1 [19,20]. Very little is known about the function of

Notch2 and other receptors in skin physiology and carcinogenesis.

Here, we investigate the role of Notch1 and Notch2 using two

different Cre expression systems. Our results provide evidence for

different roles of Notch1 and Notch2 in skin development and

carcinogenesis.

Results

Notch1 but not Notch2 deletion increases susceptibility
to KrasG12D induced skin carcinogenesis in Pdx1-Cre mice

To analyze the effect of Notch1 and Notch2 deficiency during pancreas

carcinogenesis, we crossed previously described Pdx1-Cre [2], Notch1fl/fl

[21], Notch2fl/fl [22] and Kras+/LSL-G12D [3] mice for generation of

Pdx1-Cre;Kras+/LSL-G12D, Pdx1-Cre;Kras+/LSL-G12D;Notch1fl/fl and Pdx1-

Cre;Kras+/LSL-G12D;Notch2fl/fl mice (referred to as Pdx1-Cre;Kras, Pdx1-

Cre;Kras;N1ko and Pdx1-Cre;Kras;N2ko, respectively). These mice were

born at the expected Mendelian ratio and successful recombination of

the floxed loci in the pancreas was confirmed by PCR (Fig. 1C).

Surprisingly, Pdx1-Cre;Kras;N1ko mice developed focal skin hyperplasia

at 10–15 days of age and as early as 4 weeks of age developed massive

skin papillomas (Fig. 1D). These lesions and tumors showed

recombination of the floxed loci (Fig. 1C) pointing to epidermal Cre

expression, which was further corroborated using Pdx1-Cre;Kras;N1-

ko;ROSA26R-LacZ reporter mice (Fig. 1F) [23]. The penetrance of the

skin papilloma development was 78%. In contrast, Pdx1-Cre;Kras;N2ko

mice rarely developed any skin phenotype. However, double Notch1

and Notch2 knockout mice (Pdx1-Cre;Kras;N1ko;N2ko) featured an

accelerated skin tumor formation (Fig. 1A and B) suggesting an

essential role of Notch1 ablation in epidermal lesion development and

a promoting role of Notch2 deletion. Pdx1-Cre;Kras mice manifested a

skin phenotype with low penetrance, which has been observed

previously [3,24]. Most tumors encountered in Pdx1-Cre;Kras;N1ko mice

were benign papillomas but often grew large and ulcerating, requiring

euthanasia of animals for ethical reasons. Hence, the intended

pancreatic carcinogenesis study was inconclusive (data not shown).

Pdx1-Cre;Kras;N1ko mice developed the following skin patholo-

gies: squamous papillomas involving the ear, neck, lips, anal and

vulvo-vaginal skin, epidermal cysts, and sebaceous gland hyper-

plasia and cutaneous horns to lesser extend (Fig. 1D and E).

Moreover, 32% of the animals developed squamous cell

carcinomas (SCC), (Fig. 1E), supporting the previous observations

that papillomas progressing to SCC are a common manifestation

of activated Ras signaling [25–27]. Mice without oncogenic

KrasG12D but ablation of Notch1 and Notch2 (Pdx1-Cre;N1ko, Pdx1-

Cre;N2ko) only very rarely developed skin abnormalities (not

shown).

Evidence of Pdx1 expression in vivo and in vitro
The observation that Pdx1-Cre;Kras;N1ko mice develop skin

neoplastic lesions with high penetrance and undergo Cre-mediated

recombination are evidence of Cre expression in the epidermis

possibly due to Pdx1-Cre transgene misexpression or physiological

PDX1 expression in the skin. To test both hypotheses, immuno-

histochemical expression analysis was performed in the skin of

wildtype and Pdx1-Cre mice, which showed a small subset of

PDX1+ cells (Fig. 2A). Thus, the observed phenotype is due to

physiological PDX1 expression in the skin rather than transgenic

misexpression of Cre recombinase.

Immunofluorescent staining of PDX1 shows that the intensity of

staining was comparable to that in the duodenum and much lower

than in pancreatic islet cells (Fig. 2Bi and ii). Double immuno-

fluorescent staining revealed that PDX1 co-localizes with Kera-

tin10 (K10) in the spinous layer of the epidermis (Fig. 2Biii;

arrowheads). Noteworthy, a very small fraction of PDX1+ cells was

located in the basal layer of the epidermis suggesting that PDX1

expression may be initiated also in this layer (Fig. 2Bi and iii;

arrows).

Above-mentioned experiments demonstrate that PDX1 is

predominantly present in differentiated keratinocytes of the skin.

To test whether PDX1 expression is regulated during keratinocyte

differentiation we induced terminal differentiation in cultured

wildtype keratinocytes by calcium as described [28]. As early as

12 hours after calcium addition growth arrest and a switch in

keratin expression occurred. As expected, treated keratinocytes

showed a three-fold induction of the differentiation markers

Keratin10 and Loricrin and a five fold reduction of p63 associated

with amplifying keratinocytes in the basal layer of the epidermis.

In addition, we found a robust 10-fold induction of Pdx1 transcript

expression in treated keratinocytes (Fig. 2C). These findings

strongly support the hypothesis that Pdx1 is predominantly

expressed in suprabasal layers of the epidermis (Fig. 2D).

Mosaic epidermal Cre expression in Pdx1-Cre mice
Physiological PDX1 expression in the epidermis does not

explain the stochastic character of papilloma formation in the

Pdx1-Cre;Kras,N1ko mice. Hence, we speculated that Cre expression

has a mosaic character or alternatively may be induced by

mechanical skin irritation. To address the first hypothesis we

examined X-Gal expression in Pdx1-Cre;ROSA26R-LacZ reporter

mice [23]. Consistent with previous studies, we found that Pdx1-

Cre mice showed a mosaic recombination pattern in the pancreas

[1] (Fig. 3Ai). Interestingly, similar mosaic staining was observed in

the skin (Fig. 3Aii). Microscopic evaluation of X-Gal positive areas

indicated that suprabasal keratinocytes underwent recombination

(Fig. 3Aiii; arrowheads), supporting the hypothesis that PDX1 is

mainly expressed in differentiated keratinocytes. However, we

found sporadically X-Gal+ keratinocytes residing in the basal layer

(Fig. 3Aiii; arrow). All examined skin hyperplasia had X-Gal+

basal layer cells suggesting that neoplastic structures originate from

the basal keratinocytes of the skin (Fig. 3Aiv; arrow).

To further asses the scale of recombination in the basal layer

(K14+) and the spinous layer (K10+) of the epidermis we tested

freshly isolated keratinocytes from Pdx1-Cre;N1ko mice. Cells were

fractioned for K14 and K10 expression respectively using

fluorescent activated cell sorting (FACS). Cre-mediated recombi-

nation was measured using quantitative PCR amplifying the

recombined allele of floxed Notch1 that was normalized to input

and then compared to fully recombined DNA. We found that only

5% of DNA isolated from total keratinocytes underwent

recombination in Pdx-Cre;N1ko mice and most of them were found

in the suprabasal layer. We sporadically (below 0.5%) found K14+

cells with recombined Notch1 loci hypothesizing that these cells

could be the cell-of-origin for papilloma development (Fig. 3B).

As papilloma development in Pdx1-Cre mice usually occurred in

regions susceptible to grooming, scratching and wounding, we

speculated that PDX1 expression may be induced in wounded skin

triggering Cre-mediated KrasG12D activation and Notch1 ablation.

Pdx1 Is Expressed in the Skin
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Figure 1. Pdx1-Cre;Kras;N1ko mice develop skin tumors. A: Kaplan-Meier tumor-free survival analysis of Pdx1-Cre mice. B: Table summarizing
survival and skin tumor incidence observed in Pdx1-Cre mice. C: PCR results confirm Notch1 deletion and KrasG12D activation in pancreas and skin
papilloma while non-recombined status in unaffected skin, liver and in WT control DNA. D: Examples of skin neoplasia observed: papillomas of neck-
head and ear (i), sebaceous gland tumor (ii), cutaneous horns (iii, black arrowhead) and SCC (iii, white arrow). E: Hematoxilin and eosin staining (HE) of
WT skin (i) and characteristic cutaneous histopathologies found in Pdx1-Cre;Kras;N1ko mice: hyperplasia (ii), skin papilloma (iii) and SCC (iv). F: X-Gal
staining indicates Cre-mediated recombination in skin hyperplasia (left) and papillomas (right) of Pdx1-Cre;Kras;N1ko;ROSA26R-LacZ reporter mice. The
scale bars represent 50 mm.
doi:10.1371/journal.pone.0013578.g001

Pdx1 Is Expressed in the Skin
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To test this hypothesis, wounds were induced on the back skin of

wild type mice. Six days after wound formation mice were

sacrificed and sections of scared skin were dissected and analyzed.

Increased PDX1 expression was found in the scar tissue and in the

transition zone between normal and wounded epidermis (Fig. 3C).

PDX1 staining pattern was nuclear and partially cytoplasmic as

previously described [29–32]. Quantitative RT-PCR indicated a

three-fold induction of Pdx1 and highly increased Keratin6

transcript levels in wounded compared to normal epidermis

(Fig. 3D) supporting PDX1 expression in wounded skin. In

summary these results denote (i) physiological Pdx1 expression in

the skin, (ii) restricted to differentiated keratinocytes but sporad-

ically present in K14+ basal cells, (iii) mosaic Pdx1-Cre epidermal

expression, and (iv) Pdx1 induction in wounded skin.

Histopathology of skin tumors developing in Pdx1-
Cre;Kras;N1ko mice

Histological investigations revealed that the papillomas and

hyperplastic epithelium cover thin expansions of a fibroblastic

stroma often with mild chronic inflammatory infiltrates. Local

hyperplasia and squamous papillomas were well differentiated,

rarely demonstrating focal dysplasia (Fig. 1E). Sections of typical

papillomas were analyzed by immunofluorescence for differentiation

markers including Keratin 14, 10 and Loricrin. In the papillomas all

three keratins were expressed in a manner similar to normal skin,

except that there was a delay in the onset of K10 expression

consistent with an expansion of the proliferative compartment

expressing K14 and CyclinD1 (Fig. 4). In line with the hyperplastic

character was the expression of K6, a keratin usually expressed in

hair follicles or in pathological conditions resulting in hyperplasia

(Fig. 4). The observed keratin expression pattern is characteristic of

well-differentiated squamous papillomas. Older mice developed

hyperproliferative lesions that exhibited cellular atypia, increased

mitosis and an invasive growth pattern with characteristic keratin

‘pearls’ formation and a high degree of keratinization that are

diagnostic of well-differentiated SCC. Of note, no basal cell

carcinomas (BCC) were observed in Pdx1-Cre;Kras;N1ko mice and

no signs of a metastatic disease were observed.

Immunohistochemical characterization of papillomas revealed

strong activation of Ras-dependent phospho-ERK consistent with

previous studies [33] as well as robust MYC expression associated with

skin neoplastic transformation [34]. Interestingly, robust p63 expres-

sion throughout the papilloma tissue was noted. Normally, the

presence of p63 is restricted to the thin layer of basal keratinocytes due

to inhibition by Notch1. Expression of p63 is characteristic for

progenitor and multiplying cells of the epidermis. Expanded and strong

CyclinD1 staining supports this conclusion (Fig. 4). This expression

pattern is common and characteristic for cutaneous neoplasia.

Notch1 but not Notch2 is a tumor suppressor in the skin
Although the role of Notch receptors in the skin has already

been intensively studied [12–17], we aimed to characterize

epidermal Notch1 and Notch2 deficiency in our model. To do so,

Notch1fl/fl [21] and Notch2fl/fl [22] mice were crossed with basal

keratinocyte-specific Keratin5-Cre mice [35] (named K5;N1ko and

K5;N2ko respectively). These mice were born at the expected

Mendelian ratio (Fig. 5B) and successful recombination of the

floxed loci was confirmed in isolated primary keratinocytes by

immunoblot (Fig. 6A).

Consistent with previous studies, K5;N1ko mice did not develop

proper hair follicles showing a ‘naked’ phenotype. Additionally,

the epidermis was thinner, easily cracking and prone to injury

(Fig. 5B, D and E). Such a phenotype has been attributed to a role

of Notch1 in the stimulation of keratinocyte differentiation

[19,36,37]. Before the age of 9 months, K5;N1ko mice developed

extensive hyperplasia and keratinization of the corneal epithelium,

which resulted in opaque plague formation and blindness (Fig. 5B

and C) [14]. All analyzed mice (n = 4) developed skin neoplasia at

9 to 12 months of age and additionally BCC, SCC and papillomas

were noticed (Fig. 5B and C). By contrast, K5;N2ko mice featured a

non-pathological skin and hair follicle formation (Fig. 5B and D)

with normal growth cycles. However, impairment of hair growth

direction that manifested in more upwards-ruffle appearance of fur

was observed (Fig. 5B). Mice followed up to 12 months of age

(n = 4) did not show any sign of tumorigenesis. Taken together, our

findings confer that Notch1, but not Notch2 is a tumor suppressor

and plays a crucial role in proper skin development and

differentiation.

Since expression in different compartments may explain distinct

Notch1 and Notch2 functions, we analyzed the expression pattern

of these receptors using immunohistochemical staining as well as

transgenic Notch1-GFP [38] and Notch2lacZ knockin [39] reporter

mice. We found Notch2 and X-Gal as a surrogate for Notch2

expression in spinous and granular layers of the epidermis

(Fig. 5A). Notch1 and GFP expression in Notch1-GFP mice was

found throughout the epidermal layers as previously described

[37], including the basal layer of keratinocytes formed by stem

cells and highly proliferative transit amplifying cells (Fig. 5A).

Besides these differences in expression, different and context-

specific functions of Notch1 and Notch2 have been described. We

thus isolated and cultured primary keratinocytes from K5;N1ko and

K5;N2ko mice, which showed no protein expression of the

respective Notch receptor (Fig. 6A) and significantly downregu-

lated levels of Hes1 transcripts (Fig. 6B)

Notch1 signaling is essential for proper skin differentiation

through induction of p21 (WAF1/Cip1) [37,40]. We speculated

that Notch2 signaling might not be required for this process since

it is expressed mainly by differentiated keratinocytes. p21 is a

cyclin-dependent kinase inhibitor that induces cell cycle arrest

[41], predictably its loss is commonly associated with skin

malignancies, particularly in an active Ras context [34]. We

found that p21 expression was highly reduced in Notch1 ablated

cells whereas no significant differences were noted in Notch2

deficient keratinocytes both on mRNA and protein level (Fig. 6A,

Figure 2. Pdx1 is physiologically expressed in the adult mouse epidermis. A: Immunohistochemical PDX1 staining of normal wildtype
epidermis (i, ii) reveals that PDX1 is expressed in suprabasal keratinocytes (black arrowheads) and only rarely in basal cells (black arrows). Pdx1-
Cre;Kras;N1ko papilloma (iii) is strongly positive for PDX1. Inclusion (iii) shows positive staining of pancreatic islet cells. Nuclei were contrastained with
methyl green (i, ii) or hematoxilin (iii). B: Immunofluorescent PDX1 staining (i) indicates positive keratinocytes in the suprabasal (white arrowheads)
and the basal (arrow) layer of the skin. Signal strength is comparable to that in duodenum cells (ii, arrowheads) and weaker than in pancreatic islet
cells (ii, inclusion). Double immunofluorescence (iii) demonstrates that the majority of PDX1+ cells co-localize with a suprabasal marker Keratin10
(arrowheads) however, a small subset of PDX1+ cells can be found in the basal layer of the epidermis (arrow). Asterisks indicate unspecific staining of
stratum corneum. C: Pdx1 expression in cultured keratinocytes is increased during Ca++-induced differentiation. Quantitative RT-PCR of Pdx1,
Keratin10, Loricrin and p63 transcripts in induced primary keratinocytes in vitro. D: Schematic representation of PDX1 expression in the epidermal
layers: (SC) Stratum Corneum, (GL) Granular Layer, (SL) Spinous Layer, (BL) Basal Layer, (BM) Basement Membrane, (D) Dermis and their markers:
Loricrin, K1/10, K5/14. The scale bars represent 50 mm.
doi:10.1371/journal.pone.0013578.g002

Pdx1 Is Expressed in the Skin
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B). These results support the hypothesis that p21 is mainly

regulated by Notch1 but not by Notch2 potentially due to cell- and

context-specific differences.

Notch1 but not Notch2 is a suppressor of b-catenin in
the skin

As an increased level of active b-catenin is commonly associated

with skin malignancies [18,42,43], we investigated the regulation

of this pathway in Notch1 and Notch2 ablated epidermis.

Immunohistochemical analysis revealed increased levels of nuclear

localized b-catenin (active b-catenin) in K5;N1ko mice in

agreement with previous studies [14]. Remarkably, neither

wildtype nor K5;N2ko mice showed strong epidermal active b-

catenin staining (Fig. 5D). Furthermore, immunoblot analysis of

primary keratinocytes isolated from K5;N1ko and K5;N2ko mice

exhibited a similar pattern (Fig. 6A).

Differences in expression of Notch1 and Notch2 in the epidermal

layers as well as receptor-specific regulatory mechanisms may

contribute to distinct and potentially tumorigenic alterations of b-

Figure 3. Mosaic Cre-mediated recombination in Pdx1-Cre mice. A: Pdx1-Cre;ROSA26R-LacZ reporter mice reveal patchy X-Gal staining as
surrogate for the Pdx1 cell lineage in the pancreas (i) and in whole mount skin (ii). Analysis of X-Gal+ areas of the epidermis indicates that recombined
keratinocytes are localized primarily in suprabasal layers of the skin (iii). Early cutaneous hyperplasia sections demonstrate that X-Gal+ cells are also
located in the basal layer of the epidermis (iv). Asterisks indicate non-recombined areas of pancreatic tissue; arrowheads point to recombined X-Gal+

cells and regions; arrows show positive basal layer keratinocytes. B: Cre-mediated recombination of the Notch1 locus occurs predominantly in
suprabasal keratinocytes (K10+) with a small fraction of recombined basal cells (K14+). Schematic depiction of areas of possible Pdx1-Cre driven
recombination in the epidermis (right): (SC) Stratum Corneum, (GL) Granular Layer, (SL) Spinous Layer, (BL) Basal Layer, (BM) Basement Membrane, (D)
Dermis, (KC) Keratinocytes. C: Immunohistochemical staining of healing wound epidermis indicates increased expression of PDX1 in keratinocytes
comparing to normal skin. D: Expression of Pdx1 along with Keratin6 is induced in wounded skin as revealed by qRT-PCR. The scale bars represent
50 mm.
doi:10.1371/journal.pone.0013578.g003

Pdx1 Is Expressed in the Skin
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catenin activity. Therefore, we examined the capabilities of active

Notch1 (N1IC) and Notch2 (N2IC) to inhibit b-catenin signaling

activity in primary keratinocytes using a luciferase reporter assay.

Both Notch receptors were able to inhibit b-catenin activity but

N1IC was a significantly stronger inhibitor. Forced expression of

N1IC represses b-catenin signaling by over 90% whereas N2IC

overexpression leads only to a modest reduction of 30% (Fig. 6C). At

the same time both Notch receptors showed a similar induction of

Hes1 promoter activity, serving as a read-out for similar activation of

canonical Notch signaling (Fig.6 C).

Taken together, these results support a context- and cell-specific

function in addition to a distinct expression pattern of Notch and

Notch2 in keratinocytes.

Discussion

Neoplasms originating from cutaneous epithelial cells are the

most common cancer-type in the United States with an annual

incidence of over 1 million cases [44]. Developmental signaling

pathways play a key role in the induction and progression of

cancer. Our study reports a previously unrecognized epidermal

expression of PDX1 and adds further evidence for a pivotal role of

Notch1 but not Notch2 as a tumor suppressor in the skin, which

may be particularly interesting in the light of new therapeutic

approaches targeting single Notch receptors [45,46].

Epidermal PDX1 expression
As PDX1 is mainly expressed in the pancreas and duodenum, the

Pdx1 promoter is commonly utilized for pancreas-specific transgenic

mouse lines. Surprisingly, we found conditional gene deletion in the

skin using a Pdx1-Cre strain [2]. Further research provided strong

evidence that PDX1 is physiologically expressed in the suprabasal

layers of the skin (Fig. 2A and B; arrowheads) and rarely in basal

keratinocytes (Fig. 2A and B; arrows). A similar pattern of Pdx1

expression was observed in differentiation induced cultured

keratinocytes (Fig. 2C). This hypothesis is supported by reports

indicating a skin phenotype of Pdx1 knockout mice, which survive

6.5 days postpartum and have, among other characteristic features,

thin and cracking skin with little or no fur [7]. While these skin

abnormalities may be due to indirect effects, they suggest a role of

PDX1 during skin development, which should be addressed in

further studies, e.g. by analyzing keratinocyte-specific Pdx1

knockout mice, which however is beyond the scope of this report.

In contrast to the ubiquitous expression of Pdx1 in the suprabasal

layers of the skin, Pdx1-Cre;Kras,N1ko mice developed skin

papillomas and other cutaneous lesions only in preferred sites

suggesting that Cre-mediated recombination may be mosaic and/or

occurs in the cells resistant to neoplastic transformation. Notably,

Cre expression in Pdx1-Cre mice is mosaic such that Cre-mediated

recombination occurs far less frequently as would be suggested by

the observed PDX1 expression. In addition, papillomas and most

other skin tumors typically originate from the basal layer; in fact

development from the suprabasal layer is a rather unlikely scenario

(Fig. 7). Although PDX1 is mainly expressed in the suprabasal

keratinocytes, we occasionally found PDX1 expression and Cre-

mediated recombination in K14+ cells (Fig. 3A, B and 7). These

observations may be the reason for the relatively few tumors

developing per animal. Interestingly, tumors of Pdx1-Cre;Kras,N1ko

mice usually develop around exposed areas of the skin (Fig. 1D),

possibly due to Pdx1 activation in wound and scar associated basal

layer keratinocytes (Fig. 3C). We speculate that cutaneous

aggravation or micro-wounds due to grooming and scratching

may trigger an inflammatory reaction and wound healing processes

with upregulated Pdx1 and Notch expression [47], thus forming a

tumor-prone environment in Pdx1-Cre;Kras;N1ko mice.

Intriguingly, other studies have reported skin phenotypes using

Pdx1-Cre mice despite the fact that different transgenic strains were

utilized [3,24]. These reports support our finding that Pdx1 is expressed

in the skin. However, only defined genetic alterations lead to a

cutaneous phenotype. In the most often analyzed Pdx1-Cre;Kras mouse

model, skin lesions were only rarely observed (below 5%, Fig.1B and

[3,24]). In our study, Pdx1-Cre;Kras;N1ko but not Pdx1-Cre;Kras;N2ko or

Pdx1-Cre;Kras developed skin lesions (Fig. 1A and B) which points to the

importance of Notch1 but not Notch2 for skin tumor development.

Figure 4. Characterization of papillomas developing in Pdx1-Cre;Kras;N1ko mice. Keratin14, Keratin10 and Loricrin expression show well-
differentiated stratified squamous neoplasia. Keratin6 expression indicates pathological growth (upper panel). Immunohistochemical analysis of
commonly activated pathways and markers expressed in Pdx1-Cre;Kras;N1ko papillomas (lower panel). The scale bars represent 50 mm.
doi:10.1371/journal.pone.0013578.g004

Pdx1 Is Expressed in the Skin
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Notch1 and Notch2 play different roles in skin
tumorigenesis

Different Notch receptors have often distinct expression

patterns, ligand preferences and discrete downstream signaling.

Although different Notch receptors can compensate each other

e.g. in pancreas development [48], individual Notch receptors

commonly have distinct functions in development [49], tumor-

igenesis [46,50–52] or tissue regeneration [53]. The result of this

study points to differences in expression pattern and distinctive

cellular effectors as main cause of the diverse Notch1 and Notch2

knockout phenotypes. First, we found that Notch1 and Notch2

Figure 5. Phenotype of K5;N1ko and K5;N2ko mice. A: Notch1 is expressed in all layers of the adult skin whereas Notch2 is expressed only in the
suprabasal layer as assessed using immunohistochemical staining and Notch1-GFP and Notch2LacZ reporter mice. B: Gross phenotype of K5;N1ko,
K5;N2ko and WT mice at 4 weeks of age (left). Spontaneous skin tumors (white arrows) and hyperplastic opaque corneas (black arrowhead) start to
develop in 9 months old K5;N1ko mice (middle and right). C: Skin histopathologies of K5;N1ko mice include epidermal cyst (asterisk), hair follicle
malformation (black arrowhead, left), skin tumors (middle), hyperplasia of the cornea (black arrows, right). D: HE stain shows morphology and
thickness (indicated by scale lines) of WT, K5;N1ko, K5;N2ko epidermis (left panel). Immunohistochemical staining reveals ubiquitous expression of
active b-catenin in K5;N1ko (black arrows) comparing to WT and K5;N2ko mice epidermis (right panel). E: The thickness of K5;N1ko epidermis is
significantly reduced compared to K5;N2ko and WT. The scale bars represent 50 mm.
doi:10.1371/journal.pone.0013578.g005
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are present only in partially overlapping layers of the epidermis.

Consistent with previous studies, Notch1 is present throughout all

skin layers including the tumor-prone basal layer of the skin,

whereas Notch2 is expressed exclusively in suprabasal keratino-

cytes [37]. These findings were confirmed using immunohisto-

chemical staining as well as Notch1-GFP and Notch2LacZ reporter

mice (Fig. 5A). This divergent expression pattern is very likely at

least partially responsible for the downregulation of p21 in Notch1-

but not Notch2-deficient keratinocytes and in line with previous

studies [37,40]. p21 is a cyclin-dependent kinase inhibitor that

induces cell cycle arrest [35] and its loss is commonly associated

with skin malignancies, particularly in an active Ras context [36].

In KrasG12D-induced tumorigenesis inhibition of p21 via Myc

activation, observed in Pdx1-Cre;Kras;N1ko papillomas (Fig. 4), is a

critical step for malignant transformation [34]. Thus, the

observed differences in p21 induction by Notch1 and 2

receptors (Fig. 6A and B) could partially explain the observed

phenotypes.

The second notable difference between Notch1 and Notch2 was

their ability to inhibit b-catenin-mediated signaling. b-catenin is

responsible for hair-follicle morphogenesis and epidermal stem cell

maintenance [54], whereas the disruption of the b-catenin

signaling has been associated with several malignancies of the

skin [18,42,43]. Notch1 deficiency leading to accumulation of b-

catenin in the nucleus has been associated with tumorigenesis [14].

Surprisingly, we did not observe a similar effect when the Notch2

Figure 6. Biochemical analysis of K5;N1ko and K5;N2ko keratinocytes. A: Western blot analysis of primary keratinocytes isolated from
different genotypes indicates correct Notch1 and Notch2 ablation and shows distinct modulation of b-catenin signaling and p21 expression. B:
Quantitative RT-PCR show Hes1 and p21 transcripts levels in primary keratinocytes of the indicated genotypes. C: Luciferase reporter assay reveals
that N1IC is a more potent inhibitor of b-catenin-LEF/TCF-sensitive TOP plasmid than N2IC. FOP plasmid is b-catenin-LEF/TCF-insensitive and serves as
a specificity control. Both N1IC and N2IC induce Hes1 in a comparable manner as quantified using a Hes1-luc reporter.
doi:10.1371/journal.pone.0013578.g006

Figure 7. Model of epidermal Pdx1 expression and Cre-mediated epidermal recombination. Recombination rarely occurs in basal layer
keratinocytes but leads to papilloma formation in Pdx1-Cre;Kras;N1ko mice: (SC) Stratum Corneum, (GL) Granular Layer, (SL) Spinous Layer, (BL) Basal
Layer, (BM) Basement Membrane, (D) Dermis.
doi:10.1371/journal.pone.0013578.g007
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receptor was abrogated (Fig. 5D and 6A). Additionally, we provide

in vitro evidence of different inhibition capacities between both

receptors (Fig. 6C) further supporting the postulate of distinct

molecular functions of Notch1 and Notch2.

In line with the non-redundant roles of Notch1 and Notch2 in

keratinocytes is the accelerated papilloma formation in double

Notch1/2-deficient mice (Fig. 1A and B), suggesting that Notch2

cannot fully compensate for Notch1 loss. Besides different roles in

regulation of p21 and b-catenin, Notch expression dosage may

play a role as was recently shown [17]. In this study Notch1 loss

promoted skin tumorigenesis in a non-cell autonomous manner by

impairing skin-barrier integrity and creating a wound-like

microenvironment in the epidermis. Of note, Notch2 ablation

alone had no such capabilities unless combined with a Notch3

knockout, suggesting that a certain threshold of Notch signaling is

essential for skin homeostasis.

In conclusion, our results provide strong evidence for epidermal

expression of Pdx1 as of yet not identified function as well as

distinctive roles of Notch1 and Notch2 in skin tumori-

genesis potentially via different p21 and b-catenin pathway

modulation.

Materials and Methods

Mouse strains
Kras+/LSL-G12D, Notch1fl/fl, Notch2fl/fl, Pdx1-Cre and Keratin5-Cre

transgenic mice have been described before [2,21,22,27,35]. Mice

were interbred to obtain Pdx1-Cre;Kras+/LSL-G12D (Pdx1-Cre;Kras),

Pdx1-Cre;Kras+/LSL-G12D;Notch1fl/fl (Pdx1-Cre;Kras;N1ko), Pdx1-Cre;K-

ras+/LSL-G12D;Notch2fl/fl (Pdx1-Cre;Kras;N1ko), Keratin5-Cre;Notch1fl/fl

(K5N1ko) and Keratin5-Cre;Notch2fl/fl (K5N2ko) mice. Previously

described reporter strains LSL-ROSA26R-LacZ, Notch1-GFP and

Notch2lacZ [23,38,39,55], were used as indicated in the text. All

animals were of mixed C57BL/6J;129SV background. Animal care

and experimental protocols were conducted in accordance with

German animal protection laws and approved by the Institutional

Animal Care and Use Committee at the Technical University of

Munich.

Statistical Analyses
Kaplan-Meier curves were calculated using the tumor free

survival time for each mouse from all littermate groups. The log-

rank test was used to test for significant differences between the

four groups. For gene expression analysis the unpaired two-tailed

Student’s t-test was used. For P values the following scale was used:

* p,0.05, ** p,0.01, *** p,0.001.

Histology and Immunohistology
For morphologic, immunohistochemical, and immunofluores-

cence studies specimens were fixed in 4% buffered formalin then

processed as described previously [56] and embedded in paraffin.

Tissues were sectioned 4 mm and stained with hematoxylin and

eosin (HE) or used for immunohistochemical studies with

antibodies: CDK4 (Santa Cruz Biotechnology), K14, K10, K6,

Loricrin (Covance), Notch1 (Abcam), Notch2 (The Developmental

Studies Hybridoma Bank), pERK, (Cell Signaling), p63, CyclinD1

(BD), active-b-catenin (Upstate), PDX1 (gift of C.V. Wright). X-

Gal staining of cryosections (10 mm) was carried out according to

standard protocol, counterstained with nuclear fast red. Immuno-

fluorescence was performed using Alexa 488 and 555 (Invitrogen).

Nuclei were stained with DAPI. Pictures were taken using an

Axiovert 200 M fluorescence inverse microscope equipped with

the Axiovision software (Zeiss).

Histopathological Evaluation
HE stained sections were evaluated by a pathologist (B.S.) with

expertise in human and mouse cancer pathology. The pathologist,

where needed, also reviewed immunohistochemical stainings.

Western Blot Analysis
Protein extracts from freshly isolated primary keratinocyte cells

were obtained using RIPA buffer containing proteinase inhibitors -

Complete (Roche). Lysates were separated on standard SDS-

PAGE electrophoresis, transferred to PDVF membranes as

described previously [56] and incubated with antibodies: b-actin

(Sigma), Notch1 (BD Pharmigen), Notch2 (The Developmental

Studies Hybridoma Bank), p21 (LabVison), active b-catenin

(Upstate). Antibody binding was visualized using horseradish

peroxidase-labeled secondary antibodies and ECL reagent

(Amersham).

Primary Keratinocytes Culture
Keratinocytes were isolated from 3 to 4 week old mice as

described previously [57]. Briefly, mice in anlagen phase were

sacrificed, trunk skin was removed disinfected and enzymatically

treated to allow separation of epidermis from dermis. Detaching

keratinocytes were collected, filtered through Teflon mesh

(100 mm), washed and plated on Petri dish previously coated with

collagen and fibronectin. Cells were maintained in DMEM Spiner

modification media (Sigma) with addition of 8% FCS treated with

Chelex (BioRad), 10 mg/ml Transferrin, 5 mg/ml Insulin, 10 mM

Phosphoethyloamine, 10 mM Ethyloamine, 0.05 nM CaCl2 (Sig-

ma), 10 ng EGF, 0.36 mg/ml Hydrocortisone (Chemicon), 1%

Glutathion, 1% Pen/Strep (Invitrogen).

Keratinocytes were plated and cultured for 3 to 5 days before

use in luciferase and differentiation assays. Growth medium was

changed every day. Induction of keratinocyte differentiation was

achieved by addition of CaCl2 to final concentration of 1.2–2 mM.

Fluorescent Activated Cell Sorting for Cre-mediated
recombination analysis in Keratinocytes

Total isolated keratinocytes were stained with K14 or K10

antibodies (Covance) for 1 h at 4uC. Cells were washed in PBS

+1% BSA and stained with the secondary antibody Alexa 488

(Invitrogen). Keratinocytes were washed and stained with

propidium iodide followed by sorting using a FACS Aria 2 (BD

Bioscience). DNA was isolated from the sorted cells utilizing

DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s

instructions. Recombination of genomic DNA was quantified by

qPCR using the following program: 95uC for 10 min, 35 cycles of

95uC for 10 sec, 62uC for 10 sec and 72uC for 30 sec on a

LightCycler 480 (Roche). All samples were analyzed in triplicate.

b-globin genomic fragment was used for normalization. The

following primers were used:

b-globin-F 59-CCAATCTGCTCACACAGGATAGAGAGG-

GCAGG-39

b-globin-R 59-CCTTGAGGCTGTCCAAGTGATTCAGGC-

CATCG-39

Del Notch1-F 59-TGT GCT TTC ACA CTG GCA CAG-39

Del Notch1-R 59-CCA CTT AGA AGG AAT TCC ACC-39

Luciferase assay
A luciferase reporter assay was performed with a pair of

luciferase reporter constructs TOPFLASH, containing three

copies of the TCF/LEF binding sites and FOP-FLASH,

containing mutated binding sites (Upstate Biotechnology). Primary

keratinocytes were cultured in 6-well plates and transiently
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transfected in triplicates with Fugene 6 (Roche) and TOP/FOP or

Hes1-luc plasmids with addition of forced expressing active

Notch1 (N1IC) or Notch2 (N2IC) pcDNA3 plasmids and pRL-

TK (Promega). Luciferase activity was measured with the Dual-

luciferase reporter assay system (Promega), with the Renilla

luciferase (pRL-TK) activity as an internal control, 48 h after

transfection. The experiment was repeated three times, the mean

of all results was taken and expressed as a percentage of induction

over control ( = 100%).

Wounding and preparation of wound tissue
Skin wound healing analysis was performed as described

previously [58]. Briefly, full-thickness excisional skin wounds

(6 mm in diameter) were made in WT mice. Animals were killed

5 days after wounding (n = 4), and an 8–10 mm area, including the

complete epithelial margins, was collected and used for histopath-

ological analysis. Three small areas (363 mm) of wounded and

unaffected skin from the same animal were used to prepare RNA

for expression analysis. Four mice were analyzed.

Quantitative RT-PCR
RNA was isolated from primary keratinocytes using Qiagen

RNeasy Isolation Kit followed by cDNA synthesis (SuperScript II,

Invitrogen). Real-Time PCR was performed with 800 nM primers

diluted in a final volume of 20 ml in SYBR Green Reaction Mix

(Applied Biosystems). RT-PCRs were performed as follows: 95uC
for 10 min, 45 cycles of 95uC for 10 sec, 60uC for 10 sec and 72uC
for 10 sec. using LightCycler 480 (Roche). All samples were

analyzed in triplicate. Cyclophilin and HPRT were used for

normalization. The following primers were used:

K6a-F 59-GAGCTGGCTTTGGTGGTG-39

K6a-R 59-GTCCTCCACTGTGTCCTG-39

K10-F 59-GCCAGAACGCCGAGTACCAACAAC-39

K10-R 59-GTCACCTCCTCAATAATCGTCCTG-39

Loricrin-F 59-TCACTCACCCTTCCTGGTGC-39

Loricrin-R 59-CACCGCCGCCAGAGGTCTTC-39

Hes1-F 59-AAAATTCCTCCTCCCCGGTG-39

Hes1-R 59-TTTGGTTTGTCCGGTGTCG-39

p21-F 59-CACAGCGATATCCAGACATTCAG-39

p21-R 59-CGGAACAGGTCGGACATCA-39

Pdx1-F 59-TGCCACCATGAACAGTGAGG-39

Pdx1-R 59-GGAATGCGCACGGGTC-39

Cyclophillin-F 59-ATGGTCAACCCCACCGTGT-39

Cyclophillin-R 59-TTCTGCTGTCTTTGGAACTTTGTC-39

Hprt-F 59-GACCGGTCCCGTCATGC-39

Hprt-R 59-CATAACCTGGTTCATCATCGCTAA-39
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