Original Article

Novel Calmodulin Mutations Associated With Congenital Arrhythmia Susceptibility

Naomasa Makita, MD, PhD*; Nobue Yagihara, MD*; Lia Crotti, MD, PhD*; Christopher N. Johnson, PhD*; Britt-Maria Beckmann, MD; Michelle S. Roh; Daichi Shigemizu, PhD; Peter Lichtner, PhD; Taisuke Ishikawa, DVM, PhD; Takeshi Aiba, MD, PhD; Tessa Homfray, MBBS; Elijah R. Behr, MBBS, MD; Didier Klug, MD; Isabelle Denjoy, MD; Elisa Mastantuono, MD; Daniel Theisen, MD; Tatsuhiko Tsunoda, PhD; Wataru Satake, MD, PhD; Tatsushi Toda, MD, PhD; Hidewaki Nakagawa, MD, PhD; Yukiomi Tsuji, MD, PhD; Takeshi Tsuchiya, MD; Hirokazu Yamamoto, MD; Yoshihiro Miyamoto, MD, PhD; Naoto Endo, MD, PhD; Akinori Kimura, MD, PhD; Kouichi Ozaki, PhD; Hideki Motomura, MD; Kenji Suda, MD, PhD; Toshihiro Tanaka, MD, PhD; Peter J. Schwartz, MD; Thomas Meitinger, MD; Stefan Kääb, MD, PhD; Pascale Guicheney, PhD; Wataru Shimizu, MD, PhD; Zahurul A. Bhuiyan, MD, PhD; Hiroshi Watanabe, MD, PhD; Walter J. Chazin, PhD; Alfred L. George, Jr, MD

Background—Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (*CALM1*, *CALM2*) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations.

Methods and Results—We used conventional and next-generation sequencing approaches, including exome analysis, in genotypenegative LQTS probands. We identified 5 novel de novo missense mutations in *CALM2* in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for *CALM1* and *CALM2* associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca²⁺-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca²⁺-binding affinity.

Conclusions—*CALM2* mutations can be associated with LQTS and with overlapping features of LQTS and CPVT. (*Circ Cardiovasc Genet.* 2014;7:466-474.)

Key Words: calmodulin ■ long QT syndrome

Congenital long-QT syndrome (LQTS) is a recognizable and treatable genetic predisposition to sudden cardiac death in children and young adults.¹ Considerable genetic heterogeneity underlies this syndrome, although a large fraction of successfully genotyped LQTS subjects belong to 3 major subtypes (LQT1, LQT2, and LQT3) associated with mutations in 3 genes encoding plasma membrane ion channels (*KCNQ1*, *KCNH2*, and *SCN5A*, respectively). Distinct genotype-specific patterns of T-wave morphology.^{2,3} triggers for cardiac events,⁴ clinical

outcomes,⁵ and response to the epinephrine provocation test^{6,7} have been observed. Importantly, genotype can also influence the response to specific drug therapy.⁸⁻¹¹ Genetic testing for known arrhythmia susceptibility genes has become standard of care for some disorders including LQTS, but despite the rapid progress in understanding the genetic basis, the cause remains unknown in many cases.¹² Additional studies are needed to reveal the

Clinical Perspective on p 474

Received November 27, 2013; accepted May 8, 2014.

The Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGENETICS.113.000459/-/DC1.

Correspondence to Naomasa Makita, MD, PhD, Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. E-mail makitan@nagasaki-u.ac.jp or Alfred L. George, Jr, MD, Department of Pharmacology, Northwestern University, Feinberg School of Medicine, 320 E Superior St, Chicago, IL 60611. E-mail al.george@northwestern.edu © 2014 American Heart Association, Inc.

Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org

DOI: 10.1161/CIRCGENETICS.113.000459

^{*}Drs Makita, Yagihara, Crotti, and Johnson contributed equally to this work.

missing heritable factors and to elucidate genotype-phenotype correlations.

Recently, mutations in 2 of 3 genes encoding identical peptide sequences for the essential Ca2+-signaling protein calmodulin were associated with life-threatening arrhythmia predisposition, including malignant forms of LQTS, catecholaminergic polymorphic ventricular tachycardia (CPVT), and idiopathic ventricular tachycardia. 13-15 Nyegaard et al 13 identified 2 distinct missense CALM1 (p.N54I, p.N98S) mutations in association with CPVT. Crotti et al14 used exome sequencing and targeted resequencing to discover novel CALM1 (p.D130G, p.F142L) and CALM2 (p.D96V) missense mutations in subjects with infantile or perinatal presentations of severe LQTS associated with recurrent cardiac arrest. Most recently, Marsman et al¹⁵ identified a novel CALM1 mutation (F90L) segregating with idiopathic ventricular tachycardia and sudden death in a Moroccan family. Although this limited number of calmodulin mutations suggests preliminary genotype-phenotype correlations, additional mutations are needed to establish the spectrum of clinical features and severity of arrhythmia phenotypes associated with calmodulin mutations.

Here we report the discovery of 5 novel de novo missense CALM2 mutations associated with congenital arrhythmia susceptibility in probands of varying ancestry. The mutations alter conserved residues that directly coordinate Ca2+ ions in the carboxyl-terminal domain of calmodulin and cause significant reductions in Ca2+-binding affinity. Clinical and electrophysiological findings in these subjects suggested that CALM2 mutations can be associated with less severe forms of LQTS compared with our previous report¹⁴ as well as with overlapping clinical features of LQTS and CPVT.

Methods

Study Subjects

The QT interval was corrected for heart rate using Bazett formula (QTc=QT/√RR), and the diagnosis of LQTS was made by the Schwartz criteria.¹ All individuals who participated in the study gave written informed consent before genetic and clinical investigations in accordance with the standards of the Declaration of Helsinki and the local ethics committees at each participating institution. We studied 2 Japanese cohorts, 1 consisting of 12 unrelated LQTS subjects who were without a genetic diagnosis after sequencing genes previously associated with life-threatening arrhythmias (KCNQ1, KCNH2, SCN5A, SCN1B, SCN2B, SCN3B, SCN4B, KCNE1, KCNE2, KCNJ2, and CAV3)13,14,16 and another cohort consisting of 190 unrelated patients with LQTS in whom whole exome sequencing was performed. Exome sequencing was performed on a parent/child trio in which the proband was a child who suffered cardiac arrest at age of 17 months. A German mutation-negative LQTS proband and a Moroccan girl with sudden cardiac death were also screened for mutations in CALM1, CALM2, and CALM3.

Candidate Gene and Exome Sequencing

Targeted exon capture was performed for 240 candidate arrhythmia susceptibility genes (Table I in the Data Supplement) using the SureSelect Target Enrichment System according to the manufacturer's suggestions (Agilent Technologies, Inc., Santa Clara, CA). The captured DNA was sequenced on the Genome Analyzer IIx platform (Illumina Inc., San Diego, CA) with paired-end reads of 101 bp for insert libraries consisting of 150 to 200 bp fragments. On average for targeted capture sequencing, 1.1 Gbp of short-read sequence data were generated and 98.9% were mapped to the reference human genome. Whole exome capture was performed using Agilent SureSelect Human All Exon V4 reagent, and captured DNA was sequenced on Illumina HiSeq2000 (performed at RIKEN) or HiSeq2500 (performed at Vanderbilt University) platforms. For data obtained on the HiSeq2000, an average of 6.4 Gbp of short-read sequence data were generated, with 98.6% mapped successfully to the reference human genome and 66-fold average coverage for all captured exons. For data obtained on the HiSeq2500, an average of 5.8 Gbp was generated per subject with 99.8% mapped and 50-fold average coverage.

Sequence Data Analysis

Makita et al

Sequence reads were mapped to the human reference genome (GRCh37) using the Burrows-Wheeler Aligner (version 0.6.1).¹⁷ Possible duplicate reads were removed using SAMtools¹⁸ and custom software, leaving an average of 0.8 and 5.5 Gb for targeted capture and exome sequencing, respectively. More than 93% of targeted regions were covered by ≤10 reads. After filtering by pair mapping distance, mapping uniqueness, and orientation between paired reads, the mapping result files were converted into the pileup format using SAMtools.¹⁸ Variant calling was conducted in part on the basis of published methods. 19-21 We further used the following quality control filters: (1) alignments near putative indels were refined using GATK,22 and (2) a strand bias filter excluded variants whose alternative allele was preferentially found on 1 of the 2 available read orientations at the site. Variants found in dbSNP Build 137, 1000 Genomes,²³ or Exome Variant Server (EVS)²⁴ databases were excluded from further analyses. Synonymous and intronic (other than canonical splice sites) variants were also excluded. Three other exome databases (RIKEN database of 731 noncardiac disease Japanese exomes, Human Genetic Variation Browser database including exome data obtained from 1208 Japanese subjects [http://www.genome.med.kyoto-u.ac.jp/ SnpDB], and the Institute of Human Genetics Helmholtz Zentrum München database of >3000 exomes of European ancestry) were also queried for candidate mutations.

Additional Mutation Detection

Targeted PCR-Sanger sequencing was performed as described previously14 on DNA from a German woman with clinical features of LQTS and CPVT, as well as in a Moroccan girl with sudden cardiac death and a presumptive diagnosis of CPVT to search for variants in the coding exons of CALM1, CALM2, and CALM3. Variants discovered by exome sequencing were also confirmed by Sanger sequencing using an automated capillary electrophoresis DNA sequencing platform (Applied Biosystems, Foster City, CA), then further annotated based on evolutionary amino acid conservation (Mutation Taster),²⁵ and predicted impact on protein function (Polyphen2, SIFT). 26,27 Mutation position in calmodulin was based on RefSeq NP_001734 counting the predicted translational start codon (Met) as position 1.

Expression of Recombinant Calmodulins and Measurement of Ca²⁺ Affinity

Biochemical studies of recombinant calmodulin proteins were performed as previously described.14 Briefly, recombinant wild-type and mutant calmodulins were expressed in Escherichia coli and purified by standard chromatographic approaches. Macroscopic affinity constants for Ca2+ binding in the amino-terminal and carboxy-terminal domains were determined by measuring changes in intrinsic fluorescence as reported by Shea et al.^{28,29} The data were analyzed by plotting the normalized fluorescence signal versus free Ca2+ concentration and fitting to a 2-site Adair function for each domain. 30,31

Results

Case Presentations

Case 1

A 6-year-old Japanese girl was admitted to the hospital for evaluation of syncope and a markedly prolonged QT interval. She had a history of fetal bradycardia but had an uneventful birth. She had her first episode of syncope at the age of 19

months. An ECG at that time showed marked QT prolongation (QTc=579 ms) with atypical notched, late-peaking T waves (Figure 1A). Atrial pacing at 100 bpm prolonged QTc from 596 to 619 ms, whereas mexiletine shortened QTc from 596 to 550 ms (Figure 1B). Subsequently, she experienced multiple episodes of cardiac arrest during exertion when she failed to take mexiletine, prompting placement of an implantable cardioverter defibrillator (ICD) at the age of 14 years. Medical therapy with mexiletine and a β-adrenergic receptor blocker atenolol was generally effective in preventing ventricular arrhythmias, although there was an episode of appropriate ICD discharge that occurred during exertion. The patient had no history of seizures or developmental delay. Genetic testing for mutations in KCNQ1, KCNH2, SCN5A, SCN1B, SCN2B, SCN3B, SCN4B, KCNE1, KCNE2, KCNJ2, and CAV3 was negative. There was no family history of LQTS or sudden death, and both parents had normal QTc intervals (father 369 ms, mother 394 ms) as did her 2 brothers (368, 388 ms).

Case 2

A 5-year-old Japanese boy had an episode of syncope with seizure while running. Two months later, he had a similar episode and was evaluated in an emergency room. An ECG exhibited QTc prolongation (478 ms; Figure 2A), whereas echocardiogram, electroencephalogram, and brain MRI were normal. He showed no developmental delay. There was no family history of arrhythmias or sudden death, and both parents (father 364 ms, mother 396 ms) and his brother (340 ms) had normal QTc intervals. Epinephrine infusion test did not induce ectopic beats but caused marked QTc prolongation (baseline heart rate/QT/QTc, 56 bpm/484 ms/466 ms; peak heart rate/QT/QTc, 94 bpm/446 ms/558 ms; steady-state heart rate/QT/QTc, 73 bpm/484 ms/535 ms; Figure 2B). This subject did not tolerate exercise testing because of dizziness. Genetic testing for mutations in KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, and AKAP9 was negative. Treatment with propranolol alone or in combination with mexiletine shortened the QTc interval to 471 to 473 ms (Figure 2C), but he continued to experience syncope and dizziness while running. The drugs were replaced with

metoprolol at the age of 11 years. Subsequently, he had no further episodes of syncope, and there was normalization of the QTc (449 ms) with elimination of the notch in the descending limb of the T wave (Figure 2C).

Case 3

A 29-year-old German woman, who was previously diagnosed with perinatal bradycardia and neonatal LQTS, had been treated with pindolol. Her family history was negative for cardiac arrest and sudden death. On β-blocker therapy, she remained asymptomatic until the age of 9 years when she suffered syncope while swimming after an interruption of therapy. At that time, there was evidence of exercise-induced polymorphic ventricular ectopy. She became asymptomatic for several years after resumption of treatment with various β-blockers (pindolol, propranolol, atenolol). Her resting ECG exhibited QT prolongation (465–578 ms) with persistent biphasic T waves in leads III, aVF, aVL, V3, and negative T waves in V4 to V6 (Figure 3A). The patient never suffered seizures, and she had normal physical and mental development. At the age of 22 years, exerciseinduced polymorphic ventricular ectopy and one 3-beat run of polymorphic ventricular tachycardia was documented (Figure 3B; Figure I in the Data Supplement). Echocardiographic evaluation was normal, but MRI revealed features consistent with noncompaction of the left ventricle myocardium. Both parents had normal QTc intervals (father 407 ms, mother 377 ms) with no signs of polymorphic ventricular arrhythmias. Directed screening of genes involved with LQTS and CPVT (KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2, KCNJ2, ANK2, CAV3, KCNE3, SNTA1, RYR2, CASQ2) was negative for mutations.

Case 4

A Moroccan girl from a family with no history of cardiac arrhythmia was hospitalized at the age of 8 years after an episode of syncope associated with prolonged period of unconsciousness. At that time, she had a prolonged QTc interval (500 ms) with ventricular bigeminy. A Holter recording demonstrated prolonged QTc interval (ECG images were not available). Echocardiographic evaluation was normal. Both parents and 4 female siblings were asymptomatic. The subject was

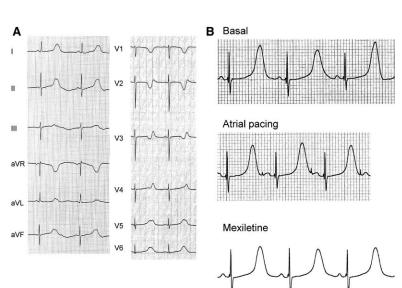


Figure 1. Electrocardiographic abnormalities in case 1. A, Standard 12-lead ECG recorded at age 6 y showing marked QTc prolongation (579 ms) with atypical T-wave morphology (late-peaking with notch on the descending limb). B, Atrial pacing at 100 bpm prolonged QTc from 596 to 610 ms. By contrast, mexiletine treatment shortened QT interval from 596 to 550 ms.

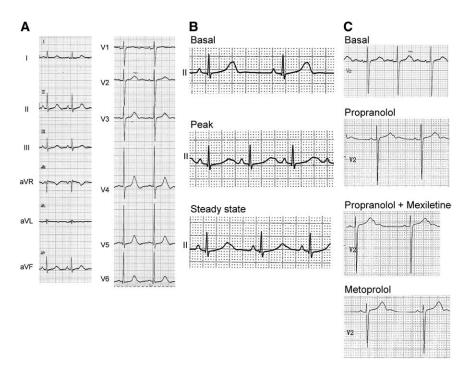
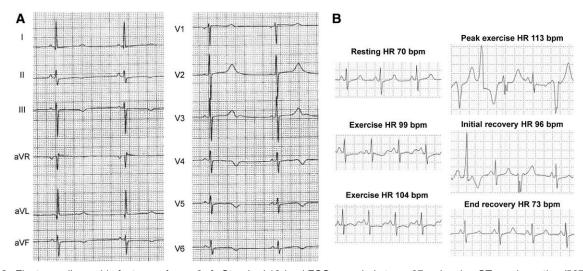


Figure 2. Electrocardiographic abnormalities in case 2. A, Standard 12-lead ECG recorded at age 5 y showing QTc prolongation (478 ms). B, Epinephrine challenge test prolonged QTc at peak (466 to 558 ms) and at steady state (535 ms). C, Propranolol or propranolol with mexieltine caused QTc shortening from 517 to 471 and 473 ms, respectively. Metoprolol normalized QTc to 449 ms.

treated with nadolol (40 mg per day) and she remained asymptomatic with QTc intervals ranging from 420 to 450 ms without ventricular ectopy. Unfortunately, she died suddenly at the age of 11 years while dancing at a wedding in Morocco. The initial diagnosis was LQTS, and later a diagnosis of CPVT was considered because of clinical circumstances and ventricular ectopy. No exercise stress test was performed. No neurological dysfunction was reported and a head computed tomographic scan was normal. Genetic testing was negative for *KCNQ1*, *KCNH2*, *SCN5A*, *KCNE1*, *RYR2*, *CASQ2*, and *TRDN*.

Case 5


A previously healthy white boy from England suffered cardiac arrest secondary to ventricular fibrillation at the age of 17 months,

and he was promptly resuscitated. ECG showed bradycardia and a prolonged QTc interval (555 ms; Figure 4). There was no family history of cardiac arrhythmia, and both parents were healthy with normal QTc interval duration. There were no siblings. An ICD was placed soon after the cardiac arrest, and no discharges were documented over the ensuing 13 months. The subject was also treated with β -blockers. Genetic testing for mutations KCNQI, KCNH2, SCN5A, KCNEI, and KCNE2 was negative.

A summary of clinical features observed in the 5 cases is presented in Table.

Discovery of Novel CALM2 Mutations

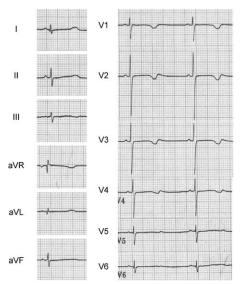

To identify mutations in candidate arrhythmia susceptibility genes, a custom targeted exon capture probe panel

Figure 3. Electrocardiographic features of case 3. **A**, Standard 12-lead ECG recorded at age 27 y showing QTc prolongation (567 ms). **B**, Polymorphic ventricular ectopy recorded (lead III) during exercise (step test) at age 28 y. During exercise, a progressive increase of heart rate was observed with no arrhythmias until 110 bpm was reached. A 3-beat episode of polymorphic ventricular tachycardia was recorded at 113 bpm. A representative 12-lead ECG during exercise is provided as Figure I in the Data Supplement.

interrogating 240 genes (Table I in the Data Supplement) was used to screen 12 unrelated mutation-negative Japanese LQTS probands using a next-generation sequencing platform resulting in an average 187-fold coverage of targeted regions (additional details of the method will be reported elsewhere). A heterozygous nonsynonymous single-nucleotide variant (c.400G>C; Figure 5A) in exon 5 of CALM2 was identified in a 6-year-old girl (described above as case 1). The nucleotide change predicts the substitution of a conserved aspartic acid residue with histidine (p.D134H) within the fourth EF-hand Ca2+-binding motif in the C-terminal domain of the encoded calmodulin protein. The location of this variant within the protein was 4 residues away from a mutation (p.D130G) previously associated with a very severe form of infantile LQTS (Figure 5B and 5C).14 This variant was not found in her parents nor her 2 brothers and is absent in dbSNP, 1000 Genomes, EVS, RIKEN, and Human Genetic Variation Browser exome databases consistent with a novel de novo mutation.

Motivated by this finding, we searched for other calmodulin gene (CALM1, CALM2, CALM3) mutations in exome sequence data (coverage was 35X, 92X, and 59X for the 3 calmodulin genes, respectively) obtained from 190 unrelated mutation-negative Japanese LQTS probands. A second heterozygous nonsynonymous variant (c.293A>G; Figure 5A) was found in CALM2 exon 5 in a 5-year-old boy (described above as case 2) diagnosed with LQTS. This variant is predicted to replace a conserved asparagine at position 98 with serine (p.N98S) within the third EF-hand Ca²⁺-binding motif in calmodulin (Figure 5B and 5C). Interestingly, de novo p.N98S mutation in a different calmodulin gene (CALMI) was previously associated with CPVT in an Iraqi female child without QT prolongation.¹³ This variant was not found in her parents or brother and was absent in exome data of the other 189 LQTS probands as well as in databases of genetic variation (dbSNP, 1000 Genomes, EVS, RIKEN, and Human

Figure 4. Electrocardiographic features of case 5. Standard 12-lead ECG recorded at age 2 y showing QTc prolongation (555 ms) and bradycardia (heart rate [HR]=55 bpm) during β -blocker treatment. Because of bradycardia, only 1 beat was recorded in the limb leads.

Genetic Variation Browser exome databases) consistent with a de novo missense mutation. The probability that 2 private nonsynonymous mutations occurred in *CALM2* among 190 Japanese samples by chance was estimated as 0.0258 (see the Data Supplement).

Exome sequencing was also performed on a 17-month-old English boy who suffered cardiac arrest in the context of LQTS (case 5) and his healthy parents (coverage averaged 30X for the 3 calmodulin genes). After excluding all variants shared with at least 1 parent, synonymous variants and common variants, the proband was found to have de novo nonsynonymous variants in 4 protein-coding genes (CALM2, OBSCN, DLG1, GOLGA3). However, only the variant identified in CALM2 (c.A293>T; Figure 5A) predicting substitution of asparagine at position 98 in calmodulin with isoleucine (p.N98I; Figure 5B and 5C) was predicted to be deleterious by SIFT and probably damaging by PolyPhen-2. This variant occurs at the same position as the CALM2 mutation discovered in case 2 (LQTS) and a previously reported *CALM1* mutation (N98S) found in a child with CPVT.¹³ CALM2-p.N98I was absent in the previously mentioned databases.

By candidate gene screening of CALM1, CALM2, and CALM3, we identified 2 other heterozygous missense CALM2 variants. One variant was discovered in a 29-year-old German woman who was diagnosed initially with neonatal LQTS and later exhibited exercise-induced polymorphic ventricular ectopy (case 3). The variant (c.396T>G; Figure 5A) predicted the replacement of a conserved aspartic acid residue at position 132 with glutamate (p.D132E) within the fourth EF-hand Ca²⁺-binding motif in calmodulin (Figure 5B and 5C). The location of the variant is 2 amino acids N-terminal of p.D134H (case 1) and 2 residues C-terminal of the previously identified p.D130G.14 This variant was predicted to be damaging by SIFT and Mutation Taster, whereas it was predicted to be benign by Polyphen2. The mutation was not found in the aforementioned databases of genetic variants (dbSNP, 1000 Genomes, EVS) and was also absent in the Helmholtz exome database in which mean coverage of CALM2 was greater than 95-fold. 14 The variant was not found in her parents and, therefore, D132E was considered a likely novel de novo missense CALM2 mutation.

The second *CALM2* variant discovered by targeted sequencing was found in an 8-year-old Moroccan girl (case 4) with presumptive diagnoses of LQTS and CPVT who died suddenly during exertion despite ongoing treatment with β-blockers. The variant (c.A407>C; Figure 5A) predicted the replacement of glutamine at position 136 with proline (p.Q136P) in the fourth EF-hand Ca²⁺-binding motif (Figure 5B and 5C). The mutation was not found in the aforementioned databases of genetic variants (dbSNP, 1000 Genomes, EVS) and was absent in the parents and 4 siblings consistent with a de novo mutation.

CALM2 Mutations Confer Impaired Ca²⁺ Affinity

We previously demonstrated that calmodulin mutations associated with early-onset LQTS confer reduced affinity for Ca²⁺. Similarly, Nyegaard et al¹³ examined Ca²⁺ affinity for *CALM1* p.N98S, which they observed in a de novo case of CPVT and found a slight depression in C-domain Ca²⁺ binding affinity. To determine the biochemical consequences

	-					
Subject	Sex	Age at Diagnosis (Current Age)	CA	QTc, ms	Treatment	Mutation
Case 1	F	1 y (16 y)	Yes	579	MEX, BB, ICD	<i>CALM2</i> -p.D134H
Case 2	M	5 y (12 y)	No	478	MEX, BB	CALM2-p.N98S
Case 3	F	Perinatal (29 y)	No	578	BB	CALM2-p.D132E
Case 4	F	8 y (died at age 11 y)	SCD	500	BB	CALM2-p.Q136P
Case 5	M	17 mo (30 mo)	Yes	555	BB, ICD	CALM2-p.N98I

Table. Summary of Clinical Characteristics and the CALM2 Mutations of the Probands

BB indicates β -blocker; Abbreviations: CA, cardiac arrest; F, female; ICD, implantable cardioverter defibrillator; M, male; MEX, mexiletine; PVC, premature ventricular contractions; PVT, polymorphic ventricular tachycardia; and SCD, sudden cardiac death.

of the 4 novel *CALM2* mutations we identified, recombinant calmodulin proteins were generated and purified, and in vitro Ca^{2+} binding affinities were measured. None of the 4 mutations significantly affected Ca^{2+} affinity in the N-domain, but substantial effects on affinity in the C-domain were observed (Figure 6). Dissociation constants for Ca^{2+} (K_d) of 2.1 ± 0.1 , 15 ± 1 , 48 ± 10 , 27 ± 5 , and 19 ± 2 µmol/L were determined for wild-type, N98I, D132E, D134H, and Q136P, respectively, corresponding to a 7- to 23-fold reduction in Ca^{2+} -binding affinity to the C-domain. These data demonstrate a significant functional impairment caused by the novel calmodulin variants consistent with disease-causing mutations that will likely disrupt the ability to transduce intracellular Ca^{2+} signals leading to cardiac arrhythmia susceptibility.

Discussion

The identification of new arrhythmia susceptibility genes and mutations will facilitate the prevention of sudden cardiac death

through the rapid identification of at-risk populations and may illuminate new molecular targets for therapy. Here we expand the spectrum of mutations in calmodulin, a recently demonstrated cause of life-threatening heart rhythm disorders.

Calmodulin functions as a Ca²⁺ sensor in a wide range of intracellular Ca²⁺-signaling pathways. The protein sequence is completely conserved among all vertebrates, and in humans, 3 unique genes (*CALM1*, *CALM2*, *CALM3*) encode for identical calmodulin protein.³² In the recent reports of human calmodulin gene mutations, there was only 1 *CALM2* allele identified compared with 5 *CALM1* mutations.¹³⁻¹⁵ The previously identified calmodulin mutations associated with LQTS phenotypes along with those we report here affect conserved residues within the 2 EF-hand motifs of the C-domain and cause substantially impaired Ca²⁺ affinity. The mutations with the greatest impact on Ca²⁺ affinity involve substitutions of conserved aspartic acid residues (D130G, D132E, D134H) known to be directly involved in coordinating Ca²⁺ ions in Ca²⁺-binding

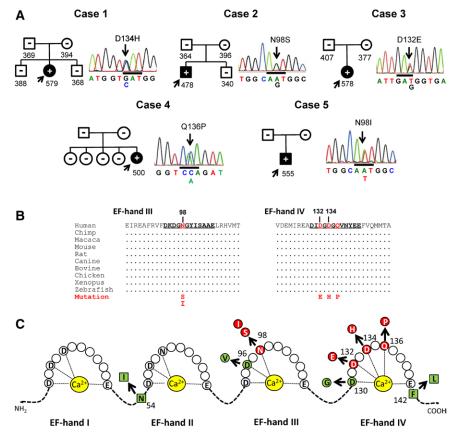
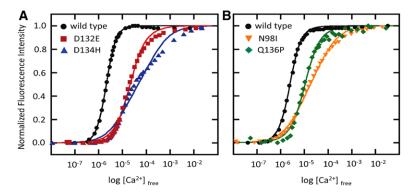


Figure 5. Novel de novo CALM2 mutations. A, Pedigrees and Sanger sequence electropherograms of each proband (marked by arrow). QTc values for each individual are shown underneath the corresponding pedigree symbol. B, Amino acid sequence alignments for calmodulins from different species with location of the 5 missense mutations. Amino acid sequence of EF-hands III and IV are underlined. C, Schematic model of Ca2 binding loops in the N-terminal (I and II) and C-terminal (III and IV) domains of calmodulin showing the locations of mutations. Red circles represent the CALM2 mutations (p.N98S, p.N98I, p.D132E, p.D134H, p.Q136P) identified in our present study; green symbols represent previously reported mutations.

Downloaded from http://circgenetics.ahajournals.org/ at Helmholtz Zentrum Muenchen on June 17, 2015

loop IV.^{33,34} Notably, even substitution with the highly similar glutamic acid side chain in D132E has an influence on Ca²⁺ affinity. Similar effects of this subtle Asp to Glu mutation on the Ca²⁺ affinity of calmodulin have been reported.³⁵ Although a functional effect was not predicted in silico by PolyPhen2, it is well established that each residue in the Ca²⁺- binding loops of calmodulin and other EF-hand proteins contribute to the biochemical functions of the protein.³⁶

The cellular mechanisms responsible for arrhythmia susceptibility in the setting of calmodulin mutations are likely to be complex given the multitude of molecular interactions possible for this critically important signaling molecule. As previously speculated for LQTS,14 dysfunctional calmodulin may disrupt Ca2+-dependent inactivation of L-type Ca2+ channels leading to increased depolarizing current during the plateau phase of the cardiac action potential. Impaired regulation of voltage-gated sodium channels may also be evoked by certain LQTS-associated calmodulin mutations. For calmodulin mutations associated with CPVT, aberrant regulation of the sarcoplasmic reticulum ryanodine receptor/Ca2+ release channel (RYR2) is a plausible mechanism based on previous studies.37 Interestingly, the CPVT mutations do not impair Ca2+ affinity to the same extent as those associated with LQTS.13 The molecular and cellular pathophysiology of arrhythmia susceptibility in the setting of calmodulin mutations is currently under intense investigation.³⁸⁻⁴⁰


Our findings further expand the phenotypic spectrum of cardiac arrhythmias associated with calmodulin mutations. Three of the probands (cases 1, 2, 5) had a later onset of LQTS compared with what was described in the study by Crotti et al,14 in which calmodulin mutation-positive subjects had highly malignant ventricular arrhythmias beginning very early in life. Furthermore, none of the CALM2 mutation-positive subjects we report here had significant neurological findings, other than syncope-associated seizures (case 1), in contrast to the original report in which most subjects had seizures or developmental delays. The previously observed neurological impairments were speculated to be the result of brain injury secondary to hypoxia in the setting of recurrent cardiac arrest. The minimal or absent neurological symptoms in the probands we describe here may reflect fewer episodes of cardiac arrest or more rapid resuscitation. These new observations further imply that neurological symptoms may not be an intrinsic manifestation of calmodulin mutations.

Genotype-phenotype correlations among the calmodulin mutation-positive subjects we described may provide clues to the pathophysiological mechanisms. In particular, *CALM2*-p. D132E was identified in an adult with a history of neonatal LQTS who later developed exercise-induced polymorphic ventricular arrhythmia consistent with CPVT. Similarly, *CALM2*-p.Q136P was identified in a child with LQTS and ventricular ectopy somewhat suggestive of CPVT. We speculate that the combined clinical features of LQTS and CPVT reflect the impact of p.D132E and possibly p.Q136P on 2 principal molecular targets. Abnormal calmodulin regulation of L-type Ca²⁺ channels would account for impaired myocardial repolarization similar to Timothy syndrome,⁴¹ whereas dysregulation of *RYR2* would lead to altered regulation of intracellular Ca²⁺ homeostasis as expected in CPVT.^{42,43}

Our study also revealed that an identical amino acid substitution in 2 distinct calmodulin genes can present with different clinical phenotypes. Whereas *CALM1*-p.N98S was originally found in an Iraqi female with CPVT,¹³ we identified *CALM2*-p. N98S in a Japanese male with an unambiguous LQTS phenotype (case 2). The physiological basis for this genotype—phenotype disparity is unknown, but may involve differences in the corresponding proteomes of different probands because of sex or ethnicity, or differences in regional or cell type—specific expression of *CALM1* and *CALM2*.

Except during periods of medication noncompliance, all CALM2 mutation-positive probands described in this report were responsive to β-blockers administered alone or in combination with mexiletine. However, because of recurrent cardiac arrests during treatment lapses, cases 1 and 5 had implantation of an ICD. In our prior report of calmodulin mutations in severe LQTS, probands with de novo CALM1 or CALM2 mutations experienced arrhythmia recurrence on pharmacological therapy and were eventually treated with ICD implantation to reduce the risk for sudden cardiac death.¹⁴ Similarly, symptomatic mutation-positive subjects with idiopathic ventricular tachycardia reported by Marsman et al¹⁵ had ICD implantation. By contrast, the Swedish family segregating CPVT with mutation CALM1-N54I described by Nyegaard et al¹³ exhibited variable responses to β-blockers alone, and only 1 of 10 living mutation-positive subjects received an ICD. None of the cases we report here underwent left cardiac sympathetic denervation.

In conclusion, we report discovery of 5 novel de novo *CALM2* mutations in association with LQTS and exertion-induced arrhythmias. The encoded mutant calmodulin proteins have impaired C-domain Ca²⁺-binding affinity that will presumably cause dysfunction in Ca²⁺ signaling with resulting

Figure 6. Impaired Ca²+ binding by mutant calmodulin C-domains. **A**, Representative Ca²+ titrations monitored by intrinsic fluorescence for recombinant wild-type (WT; black circles) and mutant calmodulins (D132E, blue triangles; D134H, red squares). K_d values derived by fitting data from 3 replicates to a 2-site model were (mean±SEM) 2.1±0.1, 48±10, and 27±5 μmol/L for WT, D132E, and D134H, respectively. **B**, Representative Ca²+ titrations for WT (black circles) and mutant (N98I, inverted orange triangles; Q136P, green diamonds) calmodulins. K_d values derived by fitting data from 3 replicates to a 2-site model were (mean±SEM) 2.3±0.1, 19±2, and 15±1 μmol/L for WT, N98I, and Q136P, respectively.

Makita et al

adverse effects on plasma membrane ion channels, intracellular membrane ion channels, or possibly both. Therapy with β-blockers was successful in preventing life-threatening exertion-triggered arrhythmias. Our study provides new evidence of congenital arrhythmia susceptibility caused by calmodulin mutations, provides further information regarding genotype—phenotype correlation, and expands the allelic diversity within *CALM2*. Calmodulin gene mutations should be sought in pediatric cases of LQTS and CPVT for whom other genetic candidates have been excluded. Because of the predominance of de novo mutations, calmodulin genes could be considered especially when both parents are unaffected.

Acknowledgments

We thank Professor Tohru Minamino for helpful suggestions; Christian Shaffer for assistance with exome data analysis; and Ryo Yamaguchi, Eriko Kojima, Saori Nakano, Atsuko Iida, Caroline Jan, and Jennifer Kunic for technical assistance. *CALM2* mutation data were submitted to ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/).

Sources of Funding

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (HD Physiology; 22136007 to Dr Makita), a Grant-in-Aid for Scientific Research B (24390199 to Dr Makita), a Grant-in-Aid for Project in Sado for Total Health (to Dr Watanabe) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, the Joint Usage/Research Program of Medical Research Institute Tokyo Medical and Dental University (to Drs Makita and Kimura), Research Grant for the Cardiovascular Diseases (H24-033) from the Japanese Ministry of Health, Labour, and Welfare (to Drs Makita, Aiba, Miyamoto, Tanaka, Shimizu, and Watanabe), the Italian Ministry of Education, University and Research (FIRB RBFR12I3KA to Dr Crotti, and PRIN 2010BWY8E9 to Drs Schwartz and Crotti), the Italian Ministry of Health (GR-2010-2305717 to Dr Crotti), the Fondation Suisse de Cardiologie (number 12341 to Dr Bhuiyan), National Institutes of Health (HL083374 to Dr George and AI101171 to Dr Chazin), and fellowship support from the National Institutes of Health (T32 NS007491 to Dr Johnson) and the American Heart Association (POST 14380036 to Dr Johnson).

Disclosures

None.

Appendix

From the Departments of Molecular Physiology (N.M., T.I., Y.T.) and Pediatrics (H.Y., H.M.), Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Cardiovascular Biology and Medicine (N.Y., H,W,) and Division of Orthopedic Surgery (N.E.), Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Section of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C., P.L., E.M., T.M.); Department of Biochemistry, Center for Structural Biology (C.N.J., M.S.R., W.J.C.), and Division of Genetic Medicine, Department of Medicine (A.L.G.), Vanderbilt University, Nashville, TN; Department of Medicine I (B.-M.B., S.K.) and Institute for Clinical Radiology (D.T.), Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany; Laboratory for Medical Science Mathematics (D.S., T. Tsunoda) and Laboratory for Cardiovascular Diseases (K.O., T. Tanaka), RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Departments of Cardiovascular Medicine (T.A., W.Shimizu) and Preventive Cardiology (Y.M.), National Cerebral and Cardiovascular Center, Suita, Japan; Department of Genetics (T.H.) and Cardiovascular Sciences Research Centre (E.R.B.), St. George's University of London, London, United Kingdom; Hôpital Cardiologique de Lille, Service de Cardiologie, Lille, France (D.K.); Inserm, UMR_S1166, Institute of Cardiometabolism and Nutrition, Paris, France (I.D., P.G.); AP-HP, Service de Cardiologie, Hôpital Bichat, and Centre de Référence sur les Maladies Cardiaques Héréditaires, Paris, France (I.D.); Department of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan (W.Satake, T.Toda); Laboratory for Genome Sequencing Analysis (H.N.) and EP Expert Doctors-Team Tsuchiya (T. Tsuchiya), Kumamoto, Japan; Department of Molecular Pathogenesis, Medical Research Institute (A.K.), and Department of Human Genetics and Disease Diversity (T. Tanaka), Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics and Child Health, Cardiovascular Research Institute, Kurume University School of Medicine, Kurume, Japan (K.S.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Deutsches Zentrum für Herz-Kreislauf-Forschung, Munich Heart Alliance, Munich, Germany (T.M., S.K.); Institute of Human Genetics, Technische Universität München, Munich, Germany (T.M.); Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institut de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition, Paris, France (P.G.); Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (W.Shimizu); and Laboratoire de Génétique Moléculaire, Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland (Z.A.B.).

References

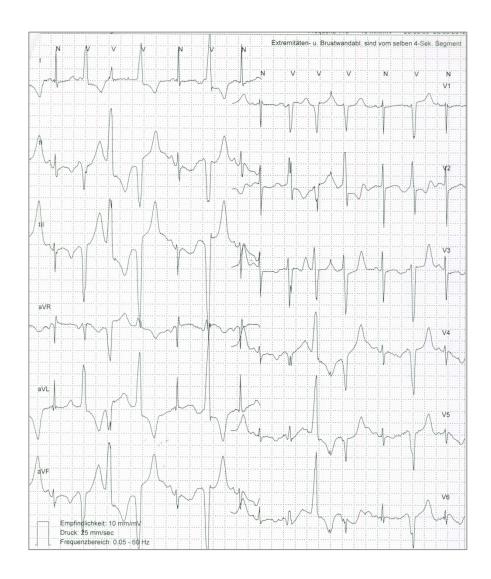
- Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5:868–877.
- Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL, et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. *Circulation*. 1995;92:2929–2934.
- Zhang L, Timothy KW, Vincent GM, Lehmann MH, Fox J, Giuli LC, et al. Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. *Circulation*. 2000;102:2849–2855.
- Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. *Circulation*. 2001:103:89–95.
- Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med. 1998;339:960–965.
- Shimizu W, Noda T, Takaki H, Kurita T, Nagaya N, Satomi K, et al. Epinephrine unmasks latent mutation carriers with LQT1 form of congenital long-QT syndrome. *J Am Coll Cardiol*. 2003;41:633–642.
- Shimizu W, Noda T, Takaki H, Nagaya N, Satomi K, Kurita T, et al. Diagnostic value of epinephrine test for genotyping LQT1, LQT2, and LQT3 forms of congenital long QT syndrome. Heart Rhythm. 2004;1:276–283.
- Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantù F, Towbin JA, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. *Circulation*. 1995:92:3381–3386.
- Vincent GM, Schwartz PJ, Denjoy I, Swan H, Bithell C, Spazzolini C, et al. High efficacy of beta-blockers in long-QT syndrome type 1: contribution of noncompliance and QT-prolonging drugs to the occurrence of betablocker treatment "failures". Circulation. 2009;119:215–221.
- Shimizu W, Aiba T, Antzelevitch C. Specific therapy based on the genotype and cellular mechanism in inherited cardiac arrhythmias. Long QT syndrome and Brugada syndrome. Curr Pharm Des. 2005;11:1561–1572.
- Schwartz PJ, Ackerman MJ. The long QT syndrome: a transatlantic clinical approach to diagnosis and therapy. Eur Heart J. 2013;34:3109–3116.
- Schwartz PJ, Ackerman MJ, George AL Jr, Wilde AA. Impact of genetics on the clinical management of channelopathies. *J Am Coll Cardiol*. 2013;62:169–180.
- Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91:703–712.

474

- Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, et al. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation. 2013:127:1009–1017.
- Marsman RF, Barc J, Beekman L, Alders M, Dooijes D, van den Wijngaard A, et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence. *J Am Coll Cardiol*. 2014:63:259–266.
- George AL Jr. Molecular and genetic basis of sudden cardiac death. J Clin Invest. 2013;123:75–83.
- Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. 2009;25:1754–1760.
- Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/ Map format and SAMtools. *Bioinformatics*. 2009;25:2078–2079.
- Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, Boroevich KA, et al. Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat Genet. 2010;42:931–936.
- Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. *Nat Genet*. 2012;44:760–764.
- Shigemizu D, Fujimoto A, Akiyama S, Abe T, Nakano K, Boroevich KA, et al. A practical method to detect SNVs and indels from whole genome and exome sequencing data. Sci Rep. 2013;3:2161.
- McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 2010;20:1297–1303.
- Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. *Nature*. 2012;491:56–65.
- Fu W, O'Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, et al; NHLBI Exome Sequencing Project. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. *Nature*. 2013;493:216–220.
- Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. *Nat Methods*. 2010;7:575–576.
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. *Nat Methods*. 2010;7:248–249.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat Protoc*. 2009;4:1073–1081.
- Shea MA, Verhoeven AS, Pedigo S. Calcium-induced interactions of calmodulin domains revealed by quantitative thrombin footprinting of Arg37 and Arg106. *Biochemistry*. 1996;35:2943–2957.
- VanScyoc WS, Sorensen BR, Rusinova E, Laws WR, Ross JB, Shea MA. Calcium binding to calmodulin mutants monitored by

- domain-specific intrinsic phenylalanine and tyrosine fluorescence. *Bio-phys J.* 2002;83:2767–2780.
- Sorensen BR, Shea MA. Interactions between domains of apo calmodulin alter calcium binding and stability. *Biochemistry*. 1998;37:4244–4253.
- VanScyoc WS, Shea MA. Phenylalanine fluorescence studies of calcium binding to N-domain fragments of Paramecium calmodulin mutants show increased calcium affinity correlates with increased disorder. *Protein Sci.* 2001;10:1758–1768.
- Fischer R, Koller M, Flura M, Mathews S, Strehler-Page MA, Krebs J, et al. Multiple divergent mRNAs code for a single human calmodulin. *J Biol Chem.* 1988;263:17055–17062.
- Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. Calmodulin structure refined at 1.7 A resolution. J Mol Biol. 1992;228:1177–1192.
- Bunick CG, Nelson MR, Mangahas S, Hunter MJ, Sheehan JH, Mizoue LS, et al. Designing sequence to control protein function in an EF-hand protein. J Am Chem Soc. 2004;126:5990–5998.
- Wu X, Reid RE. Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation. *Biochemistry*. 1997;36:3608–3616.
- Strynadka NC, James MN. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998.
- Yamaguchi N, Xu L, Pasek DA, Evans KE, Meissner G. Molecular basis of calmodulin binding to cardiac muscle Ca²⁺ release channel (ryanodine receptor). *J Biol Chem.* 2003;278:23480–23486.
- Limpitikul W, Dick IE, Joshi-Mukherjee R, Overgaard MT, George AL, Jr, Yue DT. Calmodulin mutants associated with long QT syndrome prevent inactivation of cardiac L-type Ca²⁺ channels and promote proarrhythmic behavior in ventricular myocytes. *J Molec Cell Cardiol*. 2014;74:115–124.
- Yin G, Hassan F, Haroun A, Murphy LL, Crotti L, Schwartz PJ, et al. Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca²⁺ regulation by distinct mechanisms. *J Am Heart Assoc*. 2014;23:e000996.
- Hwang HS, Nitu FR, Yang Y, Walweel K, Pereira L, Johnson CN, et al. Divergent regulation of ryanodine receptor 2 calcium release channels by arrhythmogenic human calmodulin missense mutants. Circ Res. 2014;114:1114–1124
- Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca₂1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. *Cell*. 2004;119:19–31.
- 42. Fernández-Velasco M, Rueda A, Rizzi N, Benitah JP, Colombi B, Napolitano C, et al. Increased Ca²⁺ sensitivity of the ryanodine receptor mutant RyR2R4496C underlies catecholaminergic polymorphic ventricular tachycardia. *Circ Res.* 2009;104:201–209, 12p following 209.
- 43. Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K, et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca²⁺ release, and catecholaminergic polymorphic ventricular tachycardia. *J Clin Invest*. 2006;116:2510–2520.

CLINICAL PERSPECTIVE


Calmodulin is an essential Ca²+-binding protein that transduces intracellular Ca²+ signals to influence activity of ion channels, kinases, and other target proteins necessary for cardiac function. The essential nature of calmodulin is emphasized by its conservation and redundancy among vertebrates and in the recent discovery of calmodulin mutations in life-threatening genetic arrhythmia syndromes. In humans, 3 unique genes (*CALM1*, *CALM2*, *CALM3*) encode for identical calmodulin proteins, and mutations have been described in 2 of these genes (*CALM1*, *CALM2*) associated with either congenital long-QT syndrome or catecholaminergic polymorphic ventricular tachycardia. Previously, only 1 mutation was identified in *CALM2* and here we contribute additional genotype–phenotype correlation with discovery of 5 novel mutations in this gene. All mutations were de novo, altered highly conserved amino acid residues within Ca²+-binding domains located in the carboxylterminal half of calmodulin and caused significant impairment of ion binding. Phenotypes of the mutation-positive subjects shared prolonged QTc intervals and a tendency for cardiac events (eg, syncope, cardiac arrest) to occur during physical exertion. Two of the 5 novel *CALM2* mutation-positive subjects also exhibited features consistent with catecholaminergic polymorphic ventricular tachycardia. Importantly, all subjects with *CALM2* mutations received β-adrenergic receptor blockers, and this therapy was successful in preventing life-threatening exertion-triggered arrhythmias. Calmodulin gene mutations should be sought in pediatric cases of long-QT syndrome and catecholaminergic polymorphic ventricular tachycardia for whom other genetic candidates have been excluded.

SUPPLEMENTAL MATERIAL

Estimation of false discovery rate

To estimate the false discovery rate, we first estimated the rate of private non-synonymous mutations in all exons of all other genes, disregarding variants archived in public and in-house databases. On the basis of this background mutation rate, we estimated the expected number of mutations found within a length equal to that of the *CALM2* exons in 190 samples. By assuming a random Poisson distribution for the expected number of mutations, we calculated the expected value of observing two private non-synonymous mutations occurring in *CALM2* among 190 samples by chance. As we observed one event of the two private non-synonymous mutations occurring in *CALM2* among 190 samples, the false discovery rate, estimated from the number of false positives, was 0.0258.

<u>Supplemental Fig. S1</u> – Twelve lead ECG tracing from Case 3 illustrating exercise-induced polymorphic ventricular ectopy and arrhythmia (HR = 126 bpm).

<u>Supplemental Table S1</u> - Candidate arrhythmia susceptibility genes interrogated by custom DNA capture and next-generation sequencing.

Gene	Protein		
ABCC8	SUR1 (Co-assembles with Kir 6.2 to form K _{ATP})		
ABCC9	SUR2A (Co-assembles with Kir 6.2)		
ACADVL	very long-chain acyl CoA dehydrogenase		
ACE	angiotensinogen-1 converting enzyme		
ACOT7	acyl-CoA thioesterase 7		
ACTC1	actin, alpha, cardiac muscle 1		
ACTN2	actinin, alpha 2		
ADRA1A	adrenergic, alpha-1A, receptor		
ADRA1B	adrenergic, alpha-1B, receptor		
ADRA2A	adrenergic, alpha-2A, receptor		
ADRA2B	adrenergic, alpha-2B, receptor		
ADRA2C	adrenergic, alpha-2C, receptor		
ADRB1	adrenergic, beta-1, receptor		
ADRB2	adrenergic, beta-2, receptor, surface		
ADRB3	adrenergic, beta-3, receptor		
ADRBK1	adrenergic, beta, receptor kinase 1		
AGT	angiotensinogen (serpin peptidase inhibitor, clade A, member 8)		
AGTR1	angiotensin II receptor, type 1		
AKAP6	A-kinase protein anchor 6		
AKAP7	A-kinase protein anchor 7		
AKAP9	A-kinase protein anchor 9 (yotiao)		
AMPD1	adenosine monophosphate deaminase 1		
ANK1	ankyrin 1		
ANK2	ankyrin 2		
ANKRD1	cardiac ankyrin repeat domain 1		
ANKRD46	ankyrin repeat domain 46		
ARHGAP24	Rho-GTPase-activating protein 24		
ASF1A	ASF1 anti-silencing function 1 homolog A		
ASPH	cardiac junctin/junctate/aspartate beta-hydroxylase (alternative splice variants)		
ASTN2	astrotactin 2		
ATP1A1	ATPase, Na ⁺ /K ⁺ transporting, alpha 1 polypeptide		
ATP1A2	ATPase, Na ⁺ /K ⁺ transporting, alpha 2 polypeptide		
ATP1A3	ATPase, Na ⁺ /K ⁺ transporting, alpha 3 polypeptide		
ATP1B1	ATPase, Na ⁺ /K ⁺ transporting, beta 1 polypeptide		
ATP2A2	SERCA2; ATPase, Ca ²⁺ transporting, cardiac muscle, slow twitch 2		
ATP2A3	SERCA3; ATPase, Ca ²⁺ transporting, ubiquitous		
ATP2B1	PMCA1; ATPase, Ca ²⁺ transporting, plasma membrane 1		
ATP2B2	PMCA2; ATPase, Ca ²⁺ transporting, plasma membrane 2		
ATP2B4	PMCA4; ATPase, Ca ²⁺ transporting, plasma membrane 4		
BMP2	bone morphogenetic protein 2		
C18orf20	chromosome 18 open reading frame 20		

C6orf204 chromosome 6 open reading frame 204

CACNA1C calcium channel, voltage-dependent, L type, alpha 1C subunit ($Ca_V1.2$) calcium channel, voltage-dependent, L type, alpha 1D subunit; $Ca_V1.3$ calcium channel, voltage-dependent, T type, alpha 1G subunit, $Ca_V3.1$ calcium channel, voltage-dependent, T type, alpha 1H subunit; $Ca_V3.2$

CACNB1 calcium channel, voltage-dependent, beta 1 subunit calcium channel, voltage-dependent, beta 2 subunit calcium channel, voltage-dependent, beta 3 subunit calcium channel, voltage-dependent, beta 4 subunit

CALM1 calmodulin 1 (phosphorylase kinase, delta)
CALM2 calmodulin 2 (phosphorylase kinase, delta)
CALM3 calmodulin 3 (phosphorylase kinase, delta)

CALR calreticulin

CAMK2B calcium/calmodulin-dependent protein kinase II beta calcium/calmodulin-dependent protein kinase II beta cullin-associated and neddylation-dissociated 1

CAND2 cullin-associated and neddylation-dissociated 2 (putative)

CANX calnexin

CASQ1 calsequestrin 1 (fast-twitch, skeletal muscle)

CASQ2 calsequestrin 2 (cardiac muscle)
CAV1 caveolin 1, caveolae protein, 22kDa

CAV3 caveolin 3

CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)

CH25H cholesterol 25-hydroxylase

CHRM2 cholinergic receptor, muscarinic 2 CHRM3 cholinergic receptor, muscarinic 3 CHRM4 cholinergic receptor, muscarinic 4

CLEC16A C-type lectin domain family 16, member A
CMYA5 cardiomyopathy-associated protein 5
CNOT1 CCR-NOT transcription complex, subunit 1

CNOT3 CCR4-NOT transcription complex, subunit 3

CRYAB crystallin, alpha B

CSRP3 cysteine and glycine-rich protein 3 (cardiac LIM protein)

DBC1 deleted in bladder cancer 1

DES desmin

DKK1 dickkopf homolog 1
DPP6 dipeptidyl-peptidase 6

DSC2 desmocollin-2
DSG2 desmoglein-2
DSP desmoplakin
DTNA dystrobrevin

EPAS1 endothelial PAS domain protein 1

EPB41 erythrocyte membrane protein band 4.1 (elliptocytosis 1, RH-linked)

ET1 endothelin

EYA4 eyes absent homolog 4 (Drosophila)

FAS Fas (TNF receptor superfamily, member 6)

FHL2 four and a half LIM domains 2 FKBP1A FK506 binding protein 1A, 12kDa

FKBP1B FK506 binding protein 1B, 12.6 kDa (calstabin-2)

FKTN fukutin

GATA4 GATA binding protein 4
GINS3 GINS complex subunit 3

GJA1 gap junction protein, alpha 1, 43kDa GJA4 gap junction protein, alpha 4, 37kDa GJA5 gap junction protein, alpha 5, 40kDa GJC1 gap junction protein, gamma 1, 45kDa

GOT2 glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2)

GPD1L glyerol-3-phosphate dehydrogenase 1-like protein

GPR133 G protein-coupled receptor 133 GSK3B glycogen synthase kinase 3 beta

HCN1 hyperpolarization activated cyclic nucleotide-gated potassium channel 1
HCN2 hyperpolarization activated cyclic nucleotide-gated potassium channel 2
HCN3 hyperpolarization activated cyclic nucleotide-gated potassium channel 3
HCN4 hyperpolarization activated cyclic nucleotide-gated potassium channel 4

HIP1 huntingtin interacting protein 1

HTR4 5-hydroxytryptamine (serotonin) receptor 4
ITPR1 inositol 1,4,5-triphosphate receptor, type 1
ITPR2 inositol 1,4,5-triphosphate receptor, type2
ITPR3 inositol 1,4,5-triphosphate receptor, type 3

JPH2 junctophilin 2

JUP junction plakoglobin

KCNA5 potassium voltage-gated channel, shaker-related subfamily, member 5 KCNAB1 potassium voltage-gated channel, shaker-related subfamily, beta member 1 potassium voltage-gated channel, shaker-related subfamily, beta member 2 KCNB1 potassium voltage-gated channel, Shab-related subfamily, member 1; $K_{V}2.1$ KCNB2 potassium voltage-gated channel, Shab-related subfamily, member 2; $K_{V}2.2$ KCND3 potassium voltage-gated channel, Shal-related subfamily, member 3; $K_{V}4.3$ KCNE1 potassium voltage-gated channel, Isk-related family, member 1; minK peptide

KCNE2 potassium voltage-gated channel, Isk-related family, member 2; MiRP1 kCNE3 potassium voltage-gated channel, Isk-related family, member 3; MiRP2 kCNE4 potassium voltage-gated channel, Isk-related family, member 4; MiRP3

KCNH2 potassium voltage-gated channel, subfamily H (eag-related), member 2; hERG; K_V11.1

KCNIP1 K_V channel interacting protein 1 KCNIP2 K_V channel interacting protein 2 KCNIP3 K_V channel interacting protein 3 KCNIP4 K_V channel interacting protein 4

KCNJ11 potassium inwardly-rectifying channel, subfamily J, member 11 potassium inwardly-rectifying channel, subfamily J, member 12 KCNJ2 potassium inwardly-rectifying channel, subfamily J, member 2 potassium inwardly-rectifying channel, subfamily J, member 3 KCNJ4 potassium inwardly-rectifying channel, subfamily J, member 4

KCNJ5 potassium inwardly-rectifying channel, subfamily J, member 5 KCNJ8 potassium inwardly-rectifying channel, subfamily J, member 8

potassium intermediate/small conductance calcium-activated channel, subfamily N,

member 2

potassium intermediate/small conductance calcium-activated channel, subfamily N,

member 3

KCNQ1 potassium voltage-gated channel, KQT-like subfamily, member 1; K_V7.1

KCNV1 potassium channel, subfamily V, member 1; $K_V8.1$ V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

LAMP2 lysosome-associated membrane glycoprotein 2

LDB3 LIM domain binding 3

LIG3 ligase III, DNA, ATP-dependent

LITAF DNA-binding protein

LMNA lamin A/C

KCNN3

MAML2 mastermind-like 2 MEIS1 Meis homeobox 1

MTMR2 myotubularin related protein 2

MTTG transfer RNA Glycine
MTTI transfer RNA Isoleucine

MYBPC3 myosin binding protein C, cardiac

MYH16 myosin, heavy chain 16 pseudogene (MYH5)
MYH6 myosin, heavy chain 6, cardiac muscle, alpha
MYH7 myosin, heavy chain 7, cardiac muscle, beta
MYL2 myosin, light chain 2, regulatory, cardiac, slow

MYL3 myosin, light chain 3, alkali; ventricular, skeletal, slow

MYLK2 myosin light chain kinase 2

MYOZ2 myozenin 2 MYPN myopalladin

NDRG4 NDRG family member 4

NEURL neuralized homolog (Drosophila)

NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

NKX2-5 NK2 transcription factor related, locus 5 (Drosophila) NOS1AP nitric oxide synthase 1 (neuronal) adaptor protein

NOTCH1 Notch homolog 1, translocation-associated (Drosophila)

NPHP4 nephronophthisis 4

NPPA natriuretic peptide precursor A NPPB natriuretic peptide precursor B

ORAI1 ORAI calcium release-activated calcium modulator 1

PITX2 paired-like homeodomain 2

PKP2 plakophilin-2

PLEKHG5 pleckstrin homology domain containing, family G (with RhoGef domain) member 5

PLN phospholamban

PMVK phosphomevalonate kinase

POU1F1 POU domain, class 1, transcription factor 1

PPP2R3A protein phosphatase 2 (formerly 2A), regulatory subunit B, alpha

PPP3CC protein phosphatase 3, catalytic subunit, gamma isozyme

PPP3R1 protein phosphatase 3 (formerly 2B), regulatory subunit B, alpha isoform

PRKAG2 protein kinase, AMP-activated, gamma 2 non-catalytic subunit

PRKCE protein kinase C, epsilon

PSEN1 presenilin 1 PSEN2 presenilin 2

PTPN11 protein tyrosine phosphatase, non-receptor type 11

PTRF polymerase I and transcript release factor

RAF1 V-RAF-1 murine leukemia viral oncogene homolog 1

RBM20 RNA binding motif protein 20

RETN resistin

RFFL ring finger and FYVE-like domain containing 1

RNF19A ring finger protein 19A RNF207 ring finger protein 207

RYR1 ryanodine receptor 1 (skeletal)
RYR2 ryanodine receptor 2 (cardiac)
S100A1 S100 calcium binding protein A1

SCN10A Na_V1.8, sodium channel, voltage-gated, type X, alpha subunit

SCN1B sodium channel, voltage-gated, type 1, beta sodium channel, voltage-gated, type II, beta sodium channel, voltage-gated, type III, beta

SCN4A Na_V1.4 sodium channel, voltage-gated, type IV, alpha subunit

SCN4B sodium channel, voltage-gated, type IV, beta

SCN5A Na_V1.5, sodium channel, voltage-gated, type V, alpha subunit

SCN7A sodium channel, voltage-gated, type VII, alpha

SDHA succinate dehydrogenase complex, subunit A, flavoprotein SGCD sarcoglycan, delta (35kDa dystrophin-associated glycoprotein)

SLC22A5 OCTN2 carnitine trasnporter

SLC25A4 solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4

SLC30A1 solute carrier family 30 (zinc transporter), member 1

SLC35F1 solute carrier family 35, member F1 SLC38A7 solute carrier family 38, member 7

SLC6A2 solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2

SLC8A1 solute carrier family 8 (sodium/calcium exchanger), member 1

SLN sarcolipin SNN stannin

SNTA1 syntrophin, alpha 1

SOS1 son of sevenless homolog 1

SOX5 SRY (sex determining region Y)-box 5

STIM1 stromal interaction molecule 1

SYNE2 spectrin repeat containing, nuclear envelope 2

TAZ tafazzin
TBX20 T-box 20
TBX5 T-box 5

TCAP titin-cap (telethonin)

TGFB3 transforming growth factor, beta 3

TMEM38A transmembran protein 38A/ trimeric intracellular cation channel type A TMEM38B transmembrane protein 38B/trimeric intracellular cation channel type B

TMEM43 transmembrane protein 43

TMOD1 tropomodulin 1 TMPO thymopoietin

TNFRSF17 tumor necrosis factor receptor superfamily, member 17

TNNC1 troponin C type 1 (slow)

TNNI1 troponin I type 1 (skeletal, slow)

TNNI3 troponin I type 3 (cardiac)
TNNT2 troponin T type 2 (cardiac)
TPM1 tropomyosin 1 (alpha)

TRDN triadin

TRPM4 transient receptor potential cation channel, subfamily M, member 4

TTN titin

TTR transthyretin

USP25 ubiquitin specific peptidase 25

VCL vinculin

WNT11 wingless-type MMTV integration site family, member 11

ZC3H7A zinc finger CCCH-type containing 7A

ZFHX3 zinc finger homeobox 3

Novel Calmodulin Mutations Associated With Congenital Arrhythmia Susceptibility
Naomasa Makita, Nobue Yagihara, Lia Crotti, Christopher N. Johnson, Britt-Maria Beckmann,
Michelle S. Roh, Daichi Shigemizu, Peter Lichtner, Taisuke Ishikawa, Takeshi Aiba, Tessa
Homfray, Elijah R. Behr, Didier Klug, Isabelle Denjoy, Elisa Mastantuono, Daniel Theisen,
Tatsuhiko Tsunoda, Wataru Satake, Tatsushi Toda, Hidewaki Nakagawa, Yukiomi Tsuji,
Takeshi Tsuchiya, Hirokazu Yamamoto, Yoshihiro Miyamoto, Naoto Endo, Akinori Kimura,
Kouichi Ozaki, Hideki Motomura, Kenji Suda, Toshihiro Tanaka, Peter J. Schwartz, Thomas
Meitinger, Stefan Kääb, Pascale Guicheney, Wataru Shimizu, Zahurul A. Bhuiyan, Hiroshi
Watanabe, Walter J. Chazin and Alfred L. George, Jr

Circ Cardiovasc Genet. 2014;7:466-474; originally published online June 10, 2014; doi: 10.1161/CIRCGENETICS.113.000459

Circulation: Cardiovascular Genetics is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 1942-325X. Online ISSN: 1942-3268

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://circgenetics.ahajournals.org/content/7/4/466

Data Supplement (unedited) at:

http://circgenetics.ahajournals.org/content/suppl/2014/06/10/CIRCGENETICS.113.000459.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Cardiovascular Genetics* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Cardiovascular Genetics* is online at: http://circgenetics.ahajournals.org//subscriptions/