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The gut microbiome is suggested to play a role in the
pathogenesis of autoimmune disorders such as type 1
diabetes. Evidence of anti-islet cell autoimmunity in type 1
diabetes appears in the first years of life; however,
little is known regarding the establishment of the gut
microbiome in early infancy. Here, we sought to de-
termine whether differences were present in early
composition of the gut microbiome in children in whom
anti-islet cell autoimmunity developed. We investigated
the microbiome of 298 stool samples prospectively
taken up to age 3 years from 22 case children in whom
anti-islet cell autoantibodies developed, and 22 matched
control children who remained islet cell autoantibody–
negative in follow-up. The microbiome changed mark-
edly during the first year of life, and was further
affected by breast-feeding, food introduction, and birth
delivery mode. No differences between anti-islet cell
autoantibody–positive and –negative children were found
in bacterial diversity, microbial composition, or single-
genus abundances. However, substantial alterations in
microbial interaction networks were observed at age
0.5 and 2 years in the children in whom anti-islet cell
autoantibodies developed. The findings underscore a role
of the microbiome in the pathogenesis of anti-islet cell
autoimmunity and type 1 diabetes.

Type 1 diabetes is the result of a complex interplay of
genetic susceptibility (1) and environmental determinants
leading to anti-islet cell autoimmunity against pancreatic

islet b-cells and autoimmune b-cell destruction (2). Anti-
islet cell autoimmunity precedes the clinical onset of type 1
diabetes and often develops within the first years of life
(3). This suggests that early shaping of the immune sys-
tem in children is critical for the initiation of autoimmu-
nity (3). There is increasing evidence that the immune
response is shaped by factors that include how the host
establishes a stable ecosystem with a large cohort of ac-
companying bacteria (4–7). With this, the role of micro-
biota in type 1 diabetes pathogenesis has become an
important subject of investigation (8–12). The largest
community of bacteria is established in the gastrointesti-
nal tract (13,14) where beneficial host-bacteria interac-
tions have been demonstrated for food degradation or
pathogen defense (14–16).

Relatively few studies of the human gut microbiome
have been performed in children ,5 years old. These
studies suggest that the phylogenetic composition of the
bacterial communities evolves toward an adult-like con-
figuration within the 3-year period after birth (14,17–19).
Hence, it is conceivable that the evolution of the micro-
biome in infancy could influence the risk of anti-islet cell
autoimmunity in susceptible children. Indeed, studies
from Finland have provided evidence for this hypothesis
(10,20). The aim of our study was to investigate gut bac-
terial community structures during the early period from
birth to the age of 3 years from the perspective of complex
interaction networks. We estimated interaction on the
basis of covariation of bacterial abundances to compare
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children in whom anti-islet cell autoantibodies developed
with children in whom such autoantibodies did not de-
velop. We took advantage of the prospective BABYDIET
study (21), where infants at increased risk of type 1 di-
abetes were monitored from birth for the development
of anti-islet cell autoantibodies and type 1 diabetes. The
gut microbiome composition was estimated based on
measurements of 16S rRNA gene sequences from fecal
samples that were obtained at 3-month intervals up to
the age of 3 years. Analyses were focused on bacterial
diversity, community composition, individual bacterial
species, and microbial interaction networks. Results
show that complex bacterial interaction networks, rather
than single genera, appear to be relevant to early preclin-
ical type 1 diabetes.

RESEARCH DESIGN AND METHODS

BABYDIET Study Material
Analysis of microbiota was performed on 298 stool
samples from 44 children participating in the BABYDIET
study (21). The BABYDIET study randomized 150 infants
with a first-degree relative with type 1 diabetes and with
the type 1 diabetes risk HLA genotypes DR3/4-DQ8 or
DR4/4-DQ8, or DR3/3 to gluten exposure at 6 or 12
months of age. The intervention had no effect on anti-
islet cell autoimmunity outcome. Blood and stool samples
were collected at 3-month intervals from age 3 to 36
months and subsequently at 6-month intervals. Anti-islet
cell autoantibodies (i.e., autoantibodies to insulin, gluta-
mic acid decarboxylase, insulinoma-associated antigen-2,
and zinc transporter 8) were measured at each study
visit. Written informed consent was obtained from the
parents. The study was approved by the ethics commit-
tee of the Ludwig-Maximilians-University, Munich, Germany
(Ethikkommission der Medizinischen Fakultät der Ludwig-
Maximilians-Universität no. 329/00).

Stool samples chosen for the study included 147
samples from the 22 BABYDIET cohort children in
whom persistent anti-islet cell autoantibodies developed
at a median age of 1.54 years (interquartile range 0.90
years; maximum age 2.45 years) and 151 samples from
22 children who remained anti-islet cell autoantibody–
negative, and were matched for date of birth. Of the 22
children with persistent islet cell autoantibodies, persis-
tent multiple islet autoantibodies had developed in 15
children, and diabetes had developed in 10 children after
a median follow-up time of 5.3 years. For the 44 children,
stool samples were taken from age 0.24 to 3.2 years with
an average of 6.8 probes per child (Supplementary Table 1).

Sample Processing and Deep Sequencing
Stool samples were collected at home and shipped by
express courier overnight to the clinical study center,
where they were processed and immediately frozen at
280°C. DNA was extracted from the stool samples as
described previously (10). Bacterial 16S rRNA genes pres-
ent within fecal samples were amplified using the primers

515F and 806R (22) modified with a sample-specific bar-
code sequence and Illumina adapter sequences.

PCR was performed at an initial denaturation temper-
ature of 94°C for 3 min, followed by 20 cycles of 94°C for
45 s, 50°C for 30 s, and 65°C for 90 s. A final elongation
step at 65°C was run for 10 min. PCR products were
purified using the Qiagen PCR purification kit following
the protocol of the manufacturer. Illumina high-throughput
sequencing of 16S rRNA genes was conducted as described
(23). Illumina sequencing was performed with 101 cycles
each. Sequences were trimmed based on quality scores us-
ing a modified version of Trim2 (24), and the first 11 bases
of each paired read were removed to eliminate degenerate
bases derived from primer sequences. The prokaryotic da-
tabase (25) used for 16S rRNA gene analysis was formatted
using TaxCollector (26). Sequences were compared with the
TaxCollector-modified RDP database using CLC Assembly
Cell version 3.11 using the paired reads and global align-
ment parameters. Two parameters were used in this step:
a 98% length fraction and similarity values dependent on
the desired taxonomic level (i.e., 80% at domain/phylum,
90% to class/order/family, 95% to genus levels) (27). Pairs
that matched different references at the species level were
classified at the lowest common taxonomic level. Unre-
solved pairs were discarded. Henceforth, successfully paired
reads are referred to as reads.

Confounding Variables
Data on breast-feeding (yes, no), the duration of breast-
feeding (weeks), and the introduction of solid food
(gluten-free and gluten-containing cereals, vegetables,
fruits) were analyzed from daily food records as pre-
viously described (21). Data on caesarean section (yes, no)
were obtained from obstetric records.

Statistical Analysis
Shannon evenness and Chao richness indices were es-
timated at genus level, as previously described (28,29). To
correct bacterial diversity for the influence of confound-
ing factors, stepwise multiple regression was performed
with diversity as a dependent variable. Age, breast-feeding
at sampling time, introduction of solid food, first gluten
exposure, and delivery by caesarean section were used as
confounding variables. Akaike information criterion (30)
was used in the stepwise regression procedure to select
confounding factors associated with diversity. To avoid
bias due to violations of normality, rank regression (31)
was used to estimate P values of the regression coeffi-
cients corresponding to confounding factors associated
with diversity. The R Package fields (32) was used for
cubic spline regression of age versus Shannon evenness.
Chao richness was corrected for the influence of caesar-
ean section by using the residuals of a regression model
with richness as a dependent variable and caesarean
section as an independent variable. Diversity analyses
were performed on the entire age range, and after
grouping reads into three age classes of 0.5 6 0.25,
1.0 6 0.25, and 2.0 6 0.5 years. At most, one single
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probe closest to 0.5, 1, and 2 years was used, respec-
tively, for each child.

For further analyses, phyla and genera with ,0.01%
abundance within the total number of reads were
neglected. This reduced the number of genera from 452
to 75, and the number of phyla from 21 to 8. For the
analysis of bacterial community compositions, Bray-Curtis
distances (33) were estimated on Hellinger transformed
data (34). Differences in community compositions were
tested with the nonparametric MANOVA (npMANOVA)
(35) method. To visualize the results, Principal Coordinate
Analysis (PCoA) was performed. Relative abundances of
individual phyla and genera were compared by Wilcoxon-
Mann-Whitney tests. To account for heterogeneity in var-
iances, Brunner-Munzel tests (36) were used for bacteria
where a Bartlett test (37) showed evidence for unequal
variances (P , 0.05). Second, we adjusted for confound-
ing factors by using the residuals of stepwise Akaike in-
formation criterion models with bacterial abundance as
the dependent variable and the confounding variables as
independent variables. For all independent variables with
a P value ,0.1, the model was again estimated and the
resulting residuals were used as adjusted abundance val-
ues. P values were corrected for multiple testing with the
Benjamini and Hochberg method (38).

Correlation-based networks reflecting covariations of
bacterial abundances were used as a surrogate for
bacterial interaction networks. To construct interaction
networks, we computed the Spearman rank correlation
(r) for all possible pairs of genera. We used 1,000 random
permutations and set an edge, if P , 0.05 and r . 0.3,
considering positively correlated genera. Networks were
plotted with the Fruchterman and Reingold (39) algo-
rithm. Eigenvector centrality (EC) was estimated as de-
scribed (40), and Kolmogorov-Smirnov tests were used to
test for differences in distributions (41,42). Differences in
the number of isolated nodes were analyzed by comparing
the number of nodes of degree #1. To test whether the
observed differences were due to lower sample size in
children who became anti-islet cell autoantibody–positive,
networks were estimated with all combinations of N au-
toantibody-negative samples, where N denotes the num-
ber of autoantibody-positive samples. All statistical
analyses were performed with the statistical software R,
version 2.15.2.

RESULTS

Anti-Islet Cell Autoantibodies and Diversity of the Gut
Microbiome
Bacterial diversity was analyzed for 452 bacterial genera.
Diversity can be described by its evenness and richness.
Evenness measures the similarity of proportions of taxa
within a community, while richness represents the
number of taxa in the community. We first analyzed
covariates for Shannon evenness and Chao richness via
stepwise regression models for all 298 stool probes. We
observed an association of evenness with age (P = 0.025),

caesarean section (P = 0.0026), gluten exposure (P =
0.0095), and an association of richness with caesarean sec-
tion (P = 0.0025). Cubic spline regression of evenness with
age showed that evenness increased until 2 years of age
and saturated for older children (Fig. 1A). In contrast, rich-
ness remained constant over time (Fig. 1B). We found no
association of anti-islet cell autoantibody–positive/negative

Figure 1—Association of bacterial diversity with age and the de-
velopment of anti-islet cell autoantibodies. A: Association of age
with Shannon evenness calculated for all 452 genera. Each dot in
the scatterplot represents one stool probe, and the red line was
estimated by a cubic spline regression. B: Association of age with
Chao richness calculated for all 452 genera. The red line was esti-
mated by a cubic spline regression. C: Comparison between 147
stool samples of children who became anti-islet cell autoantibody–
positive (anti-islet aAb+) and 151 stool samples of children who
remained anti-islet cell autoantibody–negative (anti-islet aAb2) for
Shannon evenness. D: Comparison between 147 stool samples of
children who became anti-islet cell autoantibody–positive and 151
stool samples of children who remained anti-islet cell autoantibody–
negative for Chao richness. P values in (C) and (D) were obtained by
two-sided Wilcoxon-Mann-Whitney tests. E: Distribution of 21
phyla for children who became anti-islet cell autoantibody–positive
and children who remained anti-islet cell autoantibody–negative for
three age groups.
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status with evenness (P = 0.27; Fig. 1C) and richness
(P = 0.56; Fig. 1D). Richness and evenness were also
not different after adjustment for associated covari-
ates (Shannon evenness, P = 0.62; Chao richness, P =
0.40).

Supporting the association of bacterial evenness with
increasing age, the analysis of the distribution of all 21
phyla revealed a considerable shift between ages 6 months
and 1 year (Fig. 1E). This shift was primarily due to an
increase in the relative abundance of Firmicutes in both the
autoantibody-positive (P = 8.7 3 1026) and autoantibody-
negative (P = 0.016) groups. The distribution of phyla
remained relatively constant between ages 1 and 2
years.

To account for the effect of age- and sample-dependent
collinearities, the data were grouped into the following three
age intervals: 0.5 6 0.25 years (anti-islet cell autoantibody–
positive N = 19; anti-islet cell autoantibody–negative N =
21); 1 6 0.25 years (anti-islet cell autoantibody–positive
N = 16; anti-islet cell autoantibody–negative N = 19),
and 2 6 0.5 years (anti-islet cell autoantibody–positive
N = 18; anti-islet cell autoantibody–negative N = 20). At
each age interval, no differences between anti-islet cell
autoantibody–positive and anti-islet cell autoantibody–
negative children were observed for evenness (P0.5 =
0.22, P1 = 0.83, P2 = 0.29; Supplementary Fig. 1A–C)
and richness (P0.5 = 0.12, P1 = 0.1, P2 = 0.63; Supple-
mentary Fig. 1D–F).

Anti-Islet Cell Autoantibodies and Bacterial
Community Composition
Differences in bacterial community composition were
tested by comparing the intragroup distances of bacterial
abundances between case and control children based on
Bray-Curtis distances (33) estimated on the 75 genera
that remained after filtering bacteria with low abundances

(,0.01%). Single-variable and multivariable npMANOVA
(35) models, including the covariates age at sampling
time, caesarean section, duration since solid food intro-
duction, duration since introduction of gluten, and breast-
feeding at sampling time were applied for each of the three
age intervals.

The covariates with the strongest effects on bacterial
community composition at age 0.5 years were breast-
feeding (P = 0.002, Supplementary Table 2) and the
duration since first solid food introduction (P = 0.001,
Supplementary Table 2). At age 1 year, only duration since
first solid food introduction (P = 0.049, Supplementary
Table 2) was associated with bacterial community compo-
sition and at age 2 years the effects of nutrition vanished.
Children who became anti-islet cell autoantibody–positive
did not show significant differences in community com-
position in univariable (P0.5 = 0.52, P1 = 0.36, and P2 =
0.35) and multivariable npMANOVA (P0.5 = 0.20, P1 =
0.38, and P2 = 0.18; Supplementary Table 2) analyses
for all of the three analyzed age intervals. PCoA plots
did not show a noticeable clustering of anti-islet cell
autoantibody–positive and –negative children (Fig. 2).

Anti-Islet Cell Autoantibodies and Bacterial
Abundances
Abundances at the phylum and genus levels were assessed
at ages 0.5, 1, and 2 years. None of the eight analyzed
phyla differed in bacterial abundances between anti-islet
cell autoantibody–positive and –negative children. Of the
75 analyzed genera, Dorea and Barnesiella abundances at
age 0.5 years (P = 0.003 and P = 0.035), Candidatus Nar-
donella abundances at age 1 year (P = 0.031), and Erwinia
and Enterobacter abundances at age 2 years (P = 0.024 and
P = 0.045) differed between anti-islet cell autoantibody–
positive and –negative children (Supplementary Tables 3–
5). None of these were significant after correction for

Figure 2—Bacterial community composition for children in whom anti-islet cell autoantibodies developed and children who remained
autoantibody-negative. A–C: Results of PCoA and univariable npMANOVA analyses comparing intragroup Bray-Curtis distances of bac-
terial abundances between case and control children for three age classes. Probes of children who became anti-islet cell autoantibody–
positive (anti-islet aAb+) are labeled in red, and probes of children who remained anti-islet cell autoantibody–negative (anti-islet aAb2) are
labeled in blue. For each child and each time interval, at most one probe was used.
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multiple testing. None of the genera showed a persistent
difference between anti-islet cell autoantibody–positive
and –negative children across all three age groups.

Since nutrition affected bacterial composition in our
cohort, we also compared bacterial abundances between
children in whom anti-islet cell autoantibodies developed
and children who remained autoantibody-negative after
adjustment for confounding factors. None of the phyla
abundances were significantly different after the adjust-
ment. Some additional genera showed differences after
adjusting for confounding factors (Supplementary Tables
3–5). These include Veillonella abundances, which were
lower in children in whom anti-islet cell autoantibodies
developed (average 3%) than in children who remained
autoantibody-negative (average 10%; P = 0.0098) at age
0.5 years, and Enterococcus abundances, which were
higher in children in whom anti-islet cell autoantibodies
developed (average 3%) than in children who remained
autoantibody-negative (average 0.8%, P = 0.00011) at
age 0.5 years. Again, these differences were not signifi-
cant after correction for multiple comparisons.

Anti-Islet Cell Autoantibodies and Bacterial Interaction
Networks
Since the gut microbiome constitutes an ecosystem where
bacteria depend on each other, and in particular compete
for nutrition, we hypothesized that a functional interplay
of bacteria is crucial for the development of the gut
microbiome and that differences in the interaction
between bacteria might be associated with the develop-
ment of anti-islet cell autoimmunity. We therefore used
microbial correlation networks at the genus level (N = 75)
as an approximation for bacterial interactions using two
different scores: EC and the number of isolated nodes.
Correlation-based bacterial interaction networks were es-
timated at ages 0.5, 1, and 2 years for the anti-islet cell
autoantibody–positive and –negative groups.

EC is a measure of the relative importance and
connectivity of each node in a network (40). EC of
a node accounts for the centrality of its neighbors, assum-
ing that a node is more central if the surrounding neigh-
bors also have high centrality (43). Differences in EC
indicate that the information flow varies throughout the
network. The networks of children who became anti-islet
cell autoantibody–positive showed significantly different
centrality distributions at age 0.5 years (P = 0.0024; Fig.
3A, D, and G) and again at age 2 years (P = 0.013; Fig. 3C,
F, and I). Most of the genera that had high centrality at
age 0.5 years had also high centrality at age 2 years for
children who became autoantibody-positive (88%) and
children who remained autoantibody-negative (77%). No
differences were observed between the two groups at age
1 year (Fig. 3B, E, and H).

In both groups, a cluster of nodes had high ECs (.0.5).
In contrast to the autoantibody-negative group, more
nodes with intermediate levels of EC (.0.05 and ,0.5)
were found in the anti-islet cell autoantibody–positive

group (Fig. 3). At age 0.5 years, the bacterial genera En-
terococcus, Sarcina, Prevotella, and Corynebacterium showed
high EC in networks of children who became anti-islet cell
autoantibody–positive and low EC (,0.05) in networks of
children who remained autoantibody-negative (Supple-
mentary Fig. 2A). A detailed overview of EC values at
age 1 year can be found in Supplementary Fig. 2B. At
age 2 years, Barnesiella and Candidatus Nardonella showed
high EC in the autoantibody-positive and low EC in the
autoantibody-negative group (Supplementary Fig. 2C).
In contrast, Staphylococcus and Nocardioides had high
EC in the autoantibody-negative group and low EC in the
autoantibody-positive group (Supplementary Fig. 2C).

While EC measures the capacity of overall information
flow, node degree measures the connectivity in a topolog-
ical sense. In the following, we refer to genera with node
degree #1 as isolated nodes. More isolated bacterial gen-
era (Fig. 3A–F) were found in children who developed anti-
islet cell autoantibodies at ages 0.5 years (P = 0.00012) and
2 years (P = 0.0044; Fig. 4). A detailed overview of node
degrees of all genera in the bacterial networks for anti-
islet cell autoantibody–positive and –negative children is
shown in Supplementary Fig. 3. Sample sizes differed
slightly between anti-islet cell autoantibody–positive chil-
dren (N0.5 = 19, N1 = 16, N2 = 18) and anti-islet cell
autoantibody–negative children (N0.5 = 21, N1 = 19,
N2 = 20) in the three age groups. We therefore performed
interaction network estimates for all possible equal num-
ber subsets of children who remained autoantibody-
negative. At 0.5 and 2 years of age, there was no single
combination of children who remained autoantibody-
negative that resulted in a similar high number of isolated
bacterial genera as that observed for children who became
anti-islet cell autoantibody-positive. No differences in the
number of isolated bacterial genera between the two
groups were observed at 1 year of age.

DISCUSSION

In murine models, associations between gut microbiome
composition and type 1 diabetes or anti-islet cell autoim-
munity have been found (11,44–46). Little is known re-
garding the early establishment of the gut microbiome in
children in whom anti-islet cell autoimmunity develops.
In this study, stool samples from children participating in
the prospective BABYDIET cohort were analyzed within
the first 3 years of life to compare bacterial diversity,
composition, individual phyla, and genera abundances,
and interaction networks for children who became anti-
islet cell autoantibody–positive to those of children who
remained anti-islet cell autoantibody–negative. No differ-
ences in bacterial diversity or community composition were
observed between autoantibody-positive and -negative
children. After correction for multiple testing, there
were no individual bacterial genera that showed sig-
nificantly different abundances between anti-islet cell
autoantibody–positive and anti-islet cell autoantibody–
negative children. However, children who became anti-islet
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cell autoantibody–positive showed significantly different
distributions of EC in correlation-based interaction net-
works of bacterial communities, and their networks con-
sisted of more isolated nodes than those of children who
remained autoantibody-negative.

The strengths of our study lie in the relatively large
number of stool samples analyzed, the early and sequen-
tial sample collection, and the homogenous cohort of

first-degree relatives of individuals with type 1 diabetes
with similar type 1 diabetes high-risk HLA DR-DQ
genotypes. Furthermore, case and control children were
matched by date of birth so that stool samples were
collected within the same year and season, and under
similar study conditions between groups. Although the
control islet autoantibody–negative children in our study
are well-matched to the case children, they are enriched

Figure 3—Bacterial interaction networks for children in whom anti-islet cell autoantibodies developed and children who remained
autoantibody-negative. Bacterial networks of genera are shown for children who became anti-islet cell autoantibody–positive (anti-islet
aAb+) (A–C) and children who remained autoantibody-negative (anti-islet aAb2) (D–F) for three different age classes. Each node represents
1 of the 75 analyzed genera. Nodes with high EC ($0.5) are labeled in yellow, nodes with intermediate EC (>0.05 and <0.5) are labeled in
green, and nodes with low EC (#0.05) are labeled in blue. Isolated nodes are labeled with red stars. G–I: Comparison of cumulative EC
distributions between children who became anti-islet aAb+ and children who remained anti-islet aAb2 for three different age classes. P values
to test for differences in cumulative distributions were obtained by one-sided Kolmogorov-Smirnov tests.
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for type 1 diabetes susceptibility genes and may therefore
not be the most suitable control subjects. We have not
examined the microbiome in children without an enriched
genetic susceptibility, and it is possible that our findings
may not represent the microbiome status of children from
the general population. Development of multiple islet auto-
antibodies, a status that confers extreme risk for diabetes
(47), occurred in the majority of the islet cell autoantibody–
positive children in our study. However, findings may differ
if only case children in whom diabetes subsequently devel-
oped were analyzed. Further limitations of the study in-
clude the collection of samples at home with overnight
transport at room temperature, and that the data on other
potential confounding factors, such as infections or antibi-
otic therapy, were not available for this analysis.

Two other studies (10,20) from Finland have investi-
gated the role of the gut microbiome in children in whom
anti-islet cell autoantibodies developed. One study (10)
investigating four children who seroconverted and an equiv-
alent number who remained anti-islet cell autoantibody–
negative found a lower bacterial diversity and differences
in the abundances of the phyla Bacteroidetes and Firmicutes
in children with anti-islet cell autoantibodies before, at,
and after islet autoantibody seroconversion. At the genus
level, the same study found differences in Eubacterium and
Faecalibacterium abundances, and reported that community
composition was more similar in children who remained
anti-islet cell autoantibody–negative compared with chil-
dren who became anti-islet cell autoantibody–positive
(10). A second study (20) from Finland compared the
gut microbiome of 18 children in whom anti-islet cell
autoimmunity developed with 18 children in whom it
did not develop. In contrast to our study, the anti-islet

cell autoantibody–positive children in the study by de
Goffau et al. (20) were already autoantibody-positive at
the time of sampling, and the probands were older. The
authors reported significant differences in the abundance
of the phylum Bacteroidetes, the genus Bacteroides, and sev-
eral bacteria on the species level (20). In addition, a trend
of increased bacterial diversity in anti-islet cell autoanti-
body–negative children was reported (20). We did not
find these reported differences between anti-islet cell
antibody–positive and anti-islet cell antibody–negative
children in our cohort. There was no single phylum that
showed differences between anti-islet cell antibody–
positive and anti-islet cell antibody–negative children.
The reported differences in the abundances of the genera
Faecalibacterium, Eubacterium (10), and Bacteroides (20)
were also not observed in the data presented here. The
deviating results may be explained by differences in sam-
ple sizes (10), in the different study design used by de
Goffau et al. (20), and/or geographical differences be-
tween the German and Finnish children. Finally, a recent
study found differences in the abundances of several
bacteria, including Prevotella, Clostridium, Veillonella,
Bifidobacterium, Lactobacillus, and Bacteroides in the
microbiome of children with established diabetes com-
pared with healthy control children (48).

Nutrition has an important effect on the early
microbial community. For example, exclusively breast-
fed infants have different distributions of bacteria than
formula-fed infants (49). In line with these data, our
analysis of microbial community composition revealed
that early microbiome composition is associated with
breast-feeding duration and the age at which solid food
was introduced. Caesarean section was also found to be
associated with bacterial abundances at the genus level.
These and other confounders should be considered when
analyzing bacterial abundances in young children. We an-
alyzed abundances with and without adjustment for such
confounders. Although some differences in the genera
were observed between children in whom anti-islet cell
autoantibodies did and did not develop, most of the sig-
nificant genera had low abundances, and none of the
genera was significant after multiple testing corrections.

We hypothesized that, instead of individual bacterial
abundances, the interplay between bacteria might be
compromised in children who became anti-islet cell
autoantibody–positive, and that differences in the inter-
action between bacteria might be associated with the de-
velopment of anti-islet cell autoimmunity. The estimation
of microbial co-occurrence networks was recently success-
fully applied to a large microbiome data set from different
body sites (50). This encouraged us to use covariation of
microbial abundances as a surrogate for bacterial interac-
tion and to compare the networks of children who became
anti-islet cell autoantibody–positive with the networks of
children who did not. An increased number of isolated
nodes can cause a reduced number of possible communi-
cation paths, and therefore impair the flexibility of the

Figure 4—Percentage of isolated nodes for children in whom anti-
islet cell autoantibodies developed and children who remained
autoantibody-negative. The percentage of isolated nodes for chil-
dren who became anti-islet cell autoantibody–positive (anti-islet
aAb+) and children who remained autoantibody-negative (anti-islet
aAb2) for three different age classes. P values were obtained by
two-sided Fisher exact tests.
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network and the adaptability of the bacterial community.
Interestingly, we found significantly higher numbers of
isolated nodes in children who became anti-islet cell
autoantibody–positive. In addition, we observed signifi-
cant differences in the distributions of EC, suggesting
differences in the information flow between bacteria. Dif-
ferences were observed at ages 6 months and 2 years but
not at age 1 year. Since many of the children changed from
breast-feeding to solid food and we found the most pro-
nounced shift of large-scale bacterial distributions between
6 months and 1 year, we suspect that strong nutritional
effects may mask anti-islet cell autoimmunity associations
with bacterial networks at ;1 year of age.

To our knowledge, this is the largest study of the early
gut microbiome in children in whom autoimmunity is
developing. Potentially relevant findings in relation to
anti-islet cell autoantibodies did not appear to be focused
on individual microbiota, but on their connectivity.
Moreover, the gut microbiome at an early age was
strongly influenced by factors such as delivery mode,
fundamental changes in nutrition, and the shift to an
adult like microbiome. We suggest that a systemic view is
necessary to understand the complex relationship be-
tween the development of type 1 diabetes, the environ-
ment, and the gut microbiome.

Acknowledgments. The authors thank Sandra Hummel (Helmholtz
Zentrum München), Christiane Winkler (Helmholtz Zentrum München), Annette
Knopff (Helmholtz Zentrum München), and Melanie Bunk (Helmholtz Zentrum
München) for data management and clinical assistance.
Funding. This work was supported by grants from the Juvenile Diabetes
Research Foundation (17-2012-16 and 17-2011-266), Deutsche Forschungsge-
meinschaft (DFG; grants ZI-310/14-1 to -4), and the Children With Type 1 Di-
abetes Foundation (Stiftung Das Zuckerkranke Kind). E.B. is supported by the
DFG Research Center and Cluster of Excellence, Center for Regenerative Thera-
pies Dresden (grant FZ 111).
Duality of Interest. No potential conflicts of interest relevant to this article
were reported.
Author Contributions. D.E., W.z.C., and M.H. performed the data anal-
ysis, drafted the manuscript, and critically reviewed and approved the manu-
script. A.A., A.G.D.-R., K.A.G., J.R.F., J.C.D., C.T.B., B.K., and E.W.T. performed
the 16S sequencing and data analysis, and critically reviewed and approved the
manuscript. P.A. and M.P. contributed to data collection, islet autoantibody mea-
surement, and interpretation and analysis of the data, and critically reviewed and
approved the manuscript. M.A. and D.S. contributed to the design of this study,
data analysis, data interpretation, and manuscript writing, and critically reviewed
and approved the manuscript. E.B. contributed to the design of this study and
data analysis, and critically reviewed and approved the manuscript. E.W.T. con-
tributed to the design of this study, performed the 16S sequencing and data
analysis, and critically reviewed and approved the manuscript. A.-G.Z. is principal
investigator of the BABYDIET study; contributed to the design of this study, data
collection, data analysis, and manuscript writing; and critically reviewed and
approved the manuscript. A.-G.Z. is the guarantor of this work and, as such,
had full access to all the data in the study and takes responsibility for the integrity
of the data and the accuracy of the data analysis.

References
1. Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes.
Immunity 2010;32:468–478

2. Bonifacio E, Warncke K, Winkler C, Wallner M, Ziegler AG. Cesarean section
and interferon-induced helicase gene polymorphisms combine to increase
childhood type 1 diabetes risk. Diabetes 2011;60:3300–3306
3. Ziegler AG, Bonifacio E; BABYDIAB-BABYDIET Study Group. Age-related islet
autoantibody incidence in offspring of patients with type 1 diabetes. Diabetologia
2012;55:1937–1943
4. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut
microbiota: friends or foes? Nat Rev Immunol 2010;10:735–744
5. Hooper LV, Littman DR, Macpherson AJ. Interactions between the micro-
biota and the immune system. Science 2012;336:1268–1273
6. Kranich J, Maslowski KM, Mackay CR. Commensal flora and the regu-
lation of inflammatory and autoimmune responses. Semin Immunol 2011;23:
139–145
7. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses.
Nat Immunol 2011;12:5–9
8. Atkinson MA, Chervonsky A. Does the gut microbiota have a role in type 1
diabetes? Early evidence from humans and animal models of the disease. Dia-
betologia 2012;55:2868–2877
9. Brown CT, Davis-Richardson AG, Giongo A, et al. Gut microbiome meta-
genomics analysis suggests a functional model for the development of autoim-
munity for type 1 diabetes. PLoS One 2011;6:e25792
10. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune
microbiome for type 1 diabetes. ISME J 2011;5:82–91
11. Roesch LF, Lorca GL, Casella G, et al. Culture-independent identification of
gut bacteria correlated with the onset of diabetes in a rat model. ISME J 2009;3:
536–548
12. Vaarala O. The gut as a regulator of early inflammation in type 1 diabetes.
Curr Opin Endocrinol Diabetes Obes 2011;18:241–247
13. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial
community variation in human body habitats across space and time. Science
2009;326:1694–1697
14. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Mi-
crobiol 1977;31:107–133
15. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping
microbial diversity in the human intestine. Cell 2006;124:837–848
16. Walter J, Ley R. The human gut microbiome: ecology and recent evolu-
tionary changes. Annu Rev Microbiol 2011;65:411–429
17. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the
human gastrointestinal microbiota and insights from high-throughput sequenc-
ing. Gastroenterology 2011;140:1713–1719
18. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the
human infant intestinal microbiota. PLoS Biol 2007;5:e177
19. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed
across age and geography. Nature 2012;486:222–227
20. de Goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition
differs between children with b-cell autoimmunity and those without. Diabetes
2013;62:1238–1244
21. Hummel S, Pflüger M, Hummel M, Bonifacio E, Ziegler AG. Primary dietary
intervention study to reduce the risk of islet autoimmunity in children at increased
risk for type 1 diabetes: the BABYDIET study. Diabetes Care 2011;34:1301–1305
22. Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA
diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A
2011;108(Suppl. 1):4516–4522
23. Fagen JR, Giongo A, Brown CT, Davis-Richardson AG, Gano KA, Triplett EW.
Characterization of the relative abundance of the citrus pathogen Ca. Liberibacter
asiaticus in the microbiome of its insect vector, Diaphorina citri, using high
throughput 16S rRNA sequencing. Open Microbiol J 2012;6:29–33
24. Huang X, Wang J, Aluru S, Yang SP, Hillier L. PCAP: a whole-genome
assembly program. Genome Res 2003;13:2164–2170
25. Cole JR, Wang Q, Cardenas E, et al. The Ribosomal Database Project:
improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;
37(Database issue):D141–D145

diabetes.diabetesjournals.org Endesfelder and Associates 2013



26. Giongo A, Davis-Richardson AG, Crabb DB, Triplett EW. TaxCollector:
modifying current 16S rRNA databases for the rapid classification at six taxo-
nomic levels. Diversity 2010;2:1015–1025
27. Hong SH, Bunge J, Jeon SO, Epstein SS. Predicting microbial species
richness. Proc Natl Acad Sci U S A 2006;103:117–122
28. Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-
Lorenzen M, Schmid B. Species evenness and productivity in experimental plant
communities. Oikos 2004;107:50–63
29. Chao A. Non-parametric estimation of the number of classes in a pop-
ulation. Scand J Statist 1984;11:265–270
30. Akaike H. A new look at the statistical model identification. IEEE Trans
Automat Contr 1974;19:716–723
31. Kloke J, McKean J. Rfit: rank estimation for linear models, 2013 [Article
online]. Available from http://CRAN.R-project.org/package=Rfit. Accessed 21
February 2014
32. Furrer R, Nychka D, Sain S. fields: tools for spatial data, 2013 [Article online].
Available from http://CRAN.R-project.org/package=fields. Accessed 21 February 2014
33. Bray JR, Curtis JT. An ordination of upland forest communities of southern
Wisconsin. Ecol Monogr 1957;27:325–349
34. Legendre P, Legendre L. Numerical Ecology. 3rd ed. Amsterdam, Elsevier, 2012
35. Oksanen J, Blanchet FG, Kindt R, et al. vegan: community ecology package,
2013 [Article online]. Available from http://CRAN.R-project.org/package=vegan.
Accessed 21 February 2014
36. Brunner E, Munzel U. The nonparametric Behrens-Fisher problem: as-
ymptotic theory and a small sample approximation. Biom J 2000;42:17–25
37. Bartlett MS. Properties of sufficiency and statistical tests. Proc R Soc Lond A
1937;160:268–282.
38. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc B 1995;57:289–300

39. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed place-
ment. Softw Pract Exp 1991;21:1129–1164
40. Gould PR. On the geographical interpretation of eigenvectors. Trans Inst Br
Geogr 1967;42:53–86
41. Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione.
G Ist Ital Attuari 1933;4:1–11
42. Smirnov N. Table for estimating the goodness of fit of empirical dis-
tributions. Ann Math Statist 1948;19:279–281
43. Joyce KE, Laurienti PJ, Burdette JH, Hayasaka S. A new measure of cen-
trality for brain networks. PLoS One 2010;5:e12200
44. Matsuzaki T, Nagata Y, Kado S, et al. Prevention of onset in an insulin-
dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus
casei. APMIS 1997;105:643–649
45. Yadav H, Jain S, Sinha PR. Antidiabetic effect of probiotic dahi containing
Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nu-
trition 2007;23:62–68
46. Calcinaro F, Dionisi S, Marinaro M, et al. Oral probiotic administration in-
duces interleukin-10 production and prevents spontaneous autoimmune diabetes
in the non-obese diabetic mouse. Diabetologia 2005;48:1565–1575
47. Ziegler AG, Rewers M, Simell O, et al. Seroconversion to multiple islet
autoantibodies and risk of progression to diabetes in children. JAMA 2013;309:
2473–2479
48. Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children
with type 1 diabetes differs from that in healthy children: a case-control study.
BMC Med 2013;11:46
49. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the
intestinal microbiota in early infancy. Pediatrics 2006;118:511–521
50. Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence re-
lationships in the human microbiome. PLoS Comput Biol 2012;8:e1002606

2014 Gut Microbiome and Anti-Islet Cell Autoimmunity Diabetes Volume 63, June 2014

http://CRAN.R-project.org/package=Rfit
http://CRAN.R-project.org/package=fields
http://CRAN.R-project.org/package=vegan

