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SUMMARY

The let-7 tumor suppressor microRNAs are known for
their regulation of oncogenes, while the RNA-binding
proteins Lin28a/b promote malignancy by inhibiting
let-7 biogenesis. We have uncovered unexpected
roles for the Lin28/let-7 pathway in regulating metabo-
lism. When overexpressed in mice, both Lin28a and
LIN28B promote aninsulin-sensitized state that resists
high-fat-diet induced diabetes. Conversely, muscle-
specific loss of Lin28a or overexpression of let-7
results in insulin resistance and impaired glucose
tolerance. These phenomena occur, in part, through
the let-7-mediated repression of multiple components
of the insulin-PI3BK-mTOR pathway, including /IGF1R,
INSR, and IRS2. In addition, the mTOR inhibitor, rapa-
mycin, abrogates Lin28a-mediated insulin sensitivity
and enhanced glucose uptake. Moreover, let-7 targets
are enriched for genes containing SNPs associated
with type 2 diabetes and control of fasting glucose
in human genome-wide association studies. These
data establish the Lin28/let-7 pathway as a central
regulator of mammalian glucose metabolism.

INTRODUCTION

Metabolic disease and malignancy are proposed to share
common biological mechanisms. Reprogramming toward glyco-

lytic metabolism can increase a cancer cell’s ability to generate
biomass, a phenomenon termed the “Warburg Effect” (Denko,
2008; Engelman et al., 2006; Gao et al., 2009; Guertin and Saba-
tini, 2007; Laplante and Sabatini, 2009; Vander Heiden et al.,
2009; Yun et al., 2009). Likewise, many genes identified in type
2 diabetes (T2D) genome wide association studies (GWAS) are
proto-oncogenes or cell cycle regulators (Voight et al., 2010).
MicroRNAs (miRNAs) are also emerging as agents of metabolic
and malignant regulation in development and disease (Hyun
et al., 2009; Peter, 2009). The let-7 miRNA family members act
as tumor suppressors by negatively regulating the translation
of oncogenes and cell cycle regulators (Johnson et al., 2005;
Lee and Dutta, 2007; Mayr et al., 2007; Kumar et al., 2008). Wide-
spread expression and redundancy among the well-conserved
let-7 miRNAs raise the question of how cancer and embryonic
cells are able to suppress this miRNA family to accommodate
rapid cell proliferation. In human cancers, loss of heterozygosity,
DNA methylation, and transcriptional suppression have been
documented as mechanisms to reduce let-7 (Johnson et al.,
2005; Lu et al., 2007). Another mechanism for let-7 downregula-
tion involves the RNA-binding proteins Lin28a and Lin28b
(collectively referred to as Lin28a/b), which are highly expressed
during normal embryogenesis and upregulated in some cancers
to potently and selectively block the maturation of let-7 (Heo
etal., 2008; Newman et al., 2008; Piskounova et al., 2008; Rybak
et al., 2008; Viswanathan et al., 2008). By repressing the biogen-
esis of let-7 miRNAs and in some cases through direct mRNA
binding and enhanced translation (Polesskaya et al., 2007; Xu
and Huang, 2009; Xu et al., 2009; Peng et al., 2011), Lin28a/b
regulate an array of targets involved in cell proliferation and
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differentiation in the context of embryonic stem cells and cancer
(Viswanathan and Daley, 2010).

Little is known about the in vivo function of the Lin28/let-7 axis.
The pathway was first revealed in a screen for heterochronic
mutants in C. elegans, where loss of /in-28 resulted in precocious
vulval differentiation and premature developmental progression
(Ambros and Horvitz, 1984; Moss et al., 1997; Nimmo and Slack,
2009), whereas loss of let-7 led to reiteration of larval stages and
delayed differentiation (Abbott et al., 2005; Reinhart et al., 2000).
We previously showed that Lin28a gain of function promotes
mouse growth and delays sexual maturation, recapitulating the
heterochronic effects of /in-28 and let-7 in C. elegans, as well
as the height and puberty phenotypes linked to human genetic
variation at the Lin28b locus identified in GWAS (Zhu et al.,
2010). The conservation of Lin28 and let-7’s biochemical and
physiological functions throughout evolution suggests an
ancient mechanism for Lin28 and let-7’s effects on growth and
developmental timing.

In this report we found that both Lin28a and LIN28B transgenic
mice were resistant to obesity and exhibited enhanced glucose
tolerance. In contrast, muscle-specific Lin28a knockout and
inducible /et-7 transgenic mice displayed glucose intolerance,
suggesting that the Lin28/let-7 pathway plays a specific and
tightly regulated role in modulating glucose metabolism in
mammals. In vitro experiments revealed that Lin28a enhances
glucose uptake via an increase in insulin-PISBK-mTOR signaling
due in part to the derepression of multiple direct let-7 targets in
the pathway, including IGF1R, INSR, IRS2, PIK3IP1, AKT2,
TSC1and RICTOR. Experiments with the mTOR-specific inhibitor
rapamycin demonstrate that Lin28a regulates growth, glucose
tolerance, and insulin sensitivity in an mTOR-dependent manner
in vivo. In addition, analysis of T2D and fasting glucose whole
genome associations suggests a genetic connection between
multiple genes regulated by /et-7 and glucose metabolism in
humans. These metabolic functions for Lin28a/b and let-7 in vivo
provide a mechanistic explanation for how this pathway might
influence embryonic growth, metabolic disease and cancer.

RESULTS
Lin28a Tg Mice Are Resistant to Obesity and Diabetes

We previously described a tetracycline-inducible Lin28a trans-
genic (Lin28a Tg) mouse that showed leaky constitutive Lin28a

expression in the absence of induction (Zhu et al., 2010). In
that study, we showed that these mice cleared glucose more
efficiently during glucose and insulin tolerance testing (GTT
and ITT), classic metabolic tests used for the characterization
of whole animal glucose handling. Given that young Lin28a Tg
mice exhibited enhanced glucose metabolism, we tested if old
Lin28a Tg mice were also resistant to age-induced obesity.
Compared to Lin28a Tg mice, wild-type mice fed a normal diet
gained significantly more fat mass with age (Figure 1A). Dual
Energy X-ray Absorptiometry scans showed increased
percentage lean mass and reduced percentage body fat in the
Lin28a Tg mice (Figures 1B and 1C). To rule out behavioral alter-
ations, we measured activity over three days in isolation cages
and found no differences in horizontal activity, O,/CO,
exchange, and food/water intake between wild-type and Tg
mice (Figures S1A and S1B available online). To determine if
these mice were resistant to HFD-induced obesity, we fed
mice a diet containing 45% kcals from fat, and observed resis-
tance to obesity in the Lin28a Tg mice (Figure 1D). Lin28a Tg
mice consumed as much high-fat food as their wild-type litter-
mates, ruling out anorexia (data not shown). Furthermore, we
inquired if Lin28a Tg mice were resistant to HFD-induced dia-
betes and found that they had markedly improved glucose toler-
ance and insulin sensitivity under HFD conditions (Figures 1E
and 1F). Lin28a Tg mice also showed resistance to HFD-induced
hepatosteatosis (Figure 1G). Taken together, leaky Lin28a
expression in the muscle, skin and connective tissues (Zhu
et al., 2010) protected against obesity and diabetes in the
context of aging and HFD.

iLIN28B Tg Mice Are Resistant to Diabetes

Although Lin28a and Lin28b both block let-7 miRNAs, they are
differentially regulated, resulting in distinct expression patterns
during normal development and malignant transformation (Guo
et al., 2006; Viswanathan et al., 2009). Given that LIN28B is over-
expressed more frequently than LIN28A in human cancer, we
sought to determine if LIN28B exerts a similar effect on glucose
metabolism. Thus, we generated a mouse strain carrying an
inducible copy of human LIN28B driven by a tetracycline trans-
activator rtTA placed under the control of the Rosa26 locus
(iLIN28B mouse, see Experimental Procedures). After 14 days
of treatment with the tetracycline analog doxycycline (dox),
high levels of LIN28B were induced and mature let-7’s were

Figure 1. Lin28a Tg and iLIN28B Tg Mice Are Resistant to Obesity and Diabetes and Lin28a Is Physiologically Required for Normal Glucose

Homeostasis

(A) Aged wild-type (left) and Lin28a Tg mice (right) fed a normal diet, at 20 weeks of age.

B) Percentage body fat and (C) lean mass as measured by DEXA.

)
D) Weight curve of mice fed a HFD containing 45% kcals from fat.

E) Glucose tolerance test (GTT) and (F) Insulin tolerance test (ITT) of mice on HFD.

G) Liver histology of mice fed HFD.

H) Human LIN28B mRNA expression in a mouse strain with dox inducible transgene expression (named iLIN28B).

J) Kinetics of fed state glucose change after induction.
K) GTT and (L) ITT under normal diets.

M) iLIN28B growth curve under HFD.

N) GTT after 14 days of HFD and induction.

(
(
(
(
(
(I) Mature let-7 expression in gut, spleen, liver, muscle and fat.
(
(
(
(
(O) GTT and (P) ITT of Myf5-Cre; Lin28a™" mouse.

Controls for Lin28a Tg mice are WT. Controls for iLIN28B Tg mice carry only the LIN28B transgene. Controls for muscle knockout mice are Lin28a

I mice. The

numbers of experimental animals are listed within the charts. Error bars represent SEM. *p < 0.05, **p < 0.01.
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repressed in metabolically important organs (Figures 1H and 1l),
resulting in hypoglycemia with an average fasting glucose of <
50 mg/dL in induced mice compared to > 150 mg/dL in control
mice (p < 0.01). To determine the kinetics of this effect, we
measured fed state glucose daily and noted falling glucose levels
after 5 days (Figure 1J). Glucose and insulin tolerance tests on
dox-induced animals on normal diets showed considerable
improvements in glucose tolerance and insulin sensitivity
(Figures 1K and 1L). When assessing islet B cell hyperactivity,
we found that iLIN28B mice produced no more insulin than
control littermates during glucose challenge (data not shown).
Under HFD, we found that induced iLIN28B mice were surpris-
ingly resistant to weight gain (Figure 1M) despite a trend toward
increased food intake (9.9 versus 4.8 g/mouse/day; p = 0.075).
These mice continued to exhibit superior glucose tolerance after
14 days of dox induction under HFD (Figure 1N), when average
weights were 34.5 + 1.05 g for controls and 27.1 + 0.99 g for
iLIN28B mice, demonstrating that HFD had a strong obesogenic
and diabetogenic effect on control but not on LIN28B induced
animals. Unlike the Lin28a Tg mice, expression was not leaky
in the iLIN28B mice (Figure 1H and 3F) and uninduced mice ex-
hibited no growth or glucose phenotypes (Figures S1C and S1D),
making this a better model for inducible Lin28 hyperactivation.
These data show that both Lin28 homologs have similar effects
on glucose metabolism and obesity, suggesting that these
effects are mediated through common mRNA or miRNA targets
of the Lin28 family.

Lin28a Is Physiologically Required for Normal Glucose
Homeostasis

We then asked if Lin28a is physiologically required for normal
glucose metabolism in one specific adult tissue compartment,
skeletal muscle, since previous studies have found low but
significant levels of Lin28a expression in the muscle tissues of
mice (Yang and Moss, 2003; Zhu et al., 2010). We generated
a skeletal muscle-specific knockout of Lin28a (see Experimental
Procedures). These muscle-specific knockout mice showed
impaired glucose tolerance (Figure 10) and insulin resistance
(Figure 1P) relative to wild-type littermates, demonstrating that
Lin28a activity in skeletal muscles is required for normal glucose
homeostasis. We analyzed miRNA expression in muscle tissue
by gRT-PCR and found no significant difference in let-7 levels
during adult (data not shown) or embryonic stages (Figure S1E),
suggesting that Lin28a loss of function affects glucose homeo-
stasis either through let-7-independent mRNA binding or
through changes in the spatiotemporal distribution of let-7
miRNA. Together, these data show that Lin28 isoforms are
important and essential regulators of glucose homeostasis.

iLet-7 Mice Are Glucose Intolerant

In addition to their ability to suppress let-7 biogenesis, Lin28a
and Lin28b also regulate mRNA targets such as Igf2, HMGAT,
OCTA4, histones and cyclins through non-/et-7 dependent mech-
anisms of MRNA binding and enhanced translation (Polesskaya
et al., 2007; Xu and Huang, 2009; Xu et al., 2009; Peng et al.,
2011). To test if altered let-7 expression might produce the oppo-
site phenotypes of Lin28a/b gain of function, we generated
a mouse strain in which let-7g can be induced with dox under
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the control of the Rosa26 locus (iLet-7 mouse, See Experimental
Procedures). To ensure that endogenous Lin28 would not block
pri- or pre-let-7g biogenesis, we used a chimeric let-7g species
called let-7S21L (let-7g Stem, mir-21 Loop), in which the loop
region of the precursor miRNA derives from mir-21 and cannot
be bound by Lin28, thus allowing for let-7 processing despite
Lin28 expression (Piskounova et al., 2008). Global transgene
induction from three weeks of age onward increases mature
let-7g levels in liver (>50-fold), skin (>20-fold), fat (~4-fold) and
muscle (~4-fold) (Figure 2A). This level of let-7 overexpression
led to reduced body size and growth rates in induced animals
(Figures 2B and 2C). Growth retardation was proportional and
not manifested as preferential size reduction in any particular
organs (Figure S2A). Similar to the iLIN28B mice, leaky expres-
sion was not detected and uninduced male mice exhibited no
growth or glucose phenotypes (Figures S2B-S2D).

After 5 days of let-7 induction, these iLet-7 mice produced an
increase in fed state glucose (Figure 2D). GTT revealed glucose
intolerance in mice fed normal (Figure 2E) or HFD (Figure 2F).
Surprisingly, ITT failed to detect a difference in insulin sensitivity
(Figure 2G). The decreased glucose tolerance in the setting of
comparable insulin sensitivity suggested either decreased
insulin production from islet B cells in response to glucose, or
higher insulin secretion to compensate for peripheral insulin
resistance. Thus, we measured insulin production following
glucose challenge, and found that iLet-7 mice produced more
insulin than controls (Figure 2H). These results demonstrated
that broad overexpression of let-7 results in peripheral glucose
intolerance and compensatory overproduction of insulin from
islet B cells.

To test if let-7 induction could abrogate the glucose uptake
phenotype of LIN28B overexpression, we crossed the iLIN28B
to the iLet-7 inducible mice. After 10 days of induction, simulta-
neous induction of LIN28B and let-7g did not result in any differ-
ences in glucose tolerance (Figures 2| and 2J), in contrast to
LIN28B or let-7g induction alone. Taken together, the opposing
effects of Lin28 and let-7 expression on glucose regulation
show that Lin28 overexpression influences metabolism in part
by suppressing let-7, and that let-7 alone is sufficient to regulate
glucose metabolism in vivo.

Insulin-PISBK-mTOR Signaling Is Activated

by Lin28a/b and Suppressed by let-7

To dissect the molecular mechanism of the effects of Lin28 and
let-7 on glucose regulation, we turned to the C2C12 cell culture
system. Overexpression of Lin28a in C2C12 myoblasts resulted
in protein levels of Lin28a similar to that observed in mouse
embryonic stem cells (ESCs) (Figure 3A), and led to robust
let-7 suppression (Figure 3B). In C2C12 myotubes differentiated
for 3 days, Lin28a promoted Ser473 phosphorylation of Akt and
Ser235/236 phosphorylation of S6 ribosomal protein, suggesting
activation of the PIBK-mTOR pathway (Figure S3A). In this
setting, Lin28a increased myotube glucose uptake by 50% (Fig-
ure 3C). Lin28a-dependent glucose uptake was abrogated by
24hr treatment with the PISK/mTOR inhibitor LY294002 or the
mTOR inhibitor rapamycin (Figure 3C), but not the MAPK/ERK
inhibitor PD98059 (Figure S3B), demonstrating that Lin28a-
dependent glucose uptake requires the PISBK-mTOR pathway.
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Figure 2. iLet-7 Mice Are Glucose Intolerant

(A) let-7g and let-7a qRT-PCR in tissues of dox induced iLet-7 mice (n = 3) and controls (n = 3).

(B) Reduced size of induced animals.

(C) iLet-7 growth curve for males and females.

(D) Fed state glucose in iLet-7 mice induced for 5 days.

GTTs performed on mice fed with either (E) normal diet or (F) HFD.
(G) ITT on normal diet.

(H) Insulin production during a glucose challenge.

(I) GTT of LIN28B/Let-7 compound heterozygote mice before (blue) and after (red) induction with dox.

(J) Area under the curve (AUC) analysis for this GTT.

Controls for iLet-7 Tg mice carry either the Let-7 or Rosa26-M2rtTa transgene only. The numbers of experimental animals are listed within the charts. Error bars

represent SEM. *p < 0.05, *p < 0.01.

To exclude myotube differentiation-dependent phenomena,
we tested the effects of Lin28a on PI3BK-mTOR signaling in undif-
ferentiated myoblasts under serum-fed, serum-starved, and
insulin-stimulated conditions (Figure 3D). In the serum-fed state,
we found that Lin28a promoted the activation of PI3K/Akt sig-
naling by increasing Akt phosphorylation at both Ser473 and
Thr308, compared to the pBabe control. Furthermore, we found

that Lin28a robustly increased the phosphorylation of mTORCH1
signaling targets S6 and 4EBP1 in the serum-fed state. Serum-
starvation for 18 hr abrogated the phosphorylation of Akt, S6
and 4EBP1, indicating that Lin28a-induction of PIBK-mTOR
signaling requires exogenous growth factor stimulation. Upon
insulin stimulation, Akt phosphorylation increased dramatically
and, both phospho-S6 and phospho-4EBP1 levels were
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Figure 3. Insulin-PIBK-mTOR Signaling Is Activated by Lin28a/b and Suppressed by let-7

(A) Western blot analysis of Lin28a protein expression in C2C12 myoblasts infected with control pBabe or Lin28a overexpression vector, and mouse ESCs, with
tubulin as the loading control.

(B) Quantitative PCR for let-7 isoforms in C2C12 myoblasts, normalized to sno142, after Lin28a overexpression.

(C) 2-deoxy-D-[°H] glucose uptake assay on 3-day-differentiated C2C12 myotubes with and without Lin28a overexpression, treated with DMSO, the PI3K
inhibitor LY294002, and the mTOR inhibitor rapamycin for 24 hr.

(D) Western blot analysis of the effects of Lin28a overexpression on PI3BK-mTOR signaling in C2C12 myoblasts, under serum-fed (fed), 18 hr serum starved (SS) or
insulin-stimulated (Ins) conditions. Insulin stimulation was performed in serum-starved myoblasts with 10 pg/mL insulin for 5 min. Prior to insulin stimulation,
serum-starved myoblasts were treated with either DMSO or 20 ng/mL rapamycin for 1 hr.

(E) Western blot analysis of the effects of let-7f or control miRNA on PISBK-mTOR signaling in C2C12 myoblasts under serum-fed (fed), 18 hr serum starved (SS) or
insulin-stimulated (Ins) conditions.

(F) Western blot analysis of the effects of LIN28B induction by dox on PI3K-mTOR signaling in quadriceps muscles in vivo (n = 3/L/IN28B Tg mice and 3 LIN28B Tg
only mice).

(G) Insr and p-4EBP1 protein levels in wild-type and Lin28a muscle-specific knockout adults. Error bars represent SEM. *p < 0.05, **p < 0.01.

increased even further by Lin28a overexpression, suggesting
that Lin28a increases the insulin-sensitivity of C2C12 myoblasts.
Importantly, we found that rapamycin abrogated the Lin28a-
induction of phospho-S6 and phospho-4EBP1 upon insulin
stimulation, but did not affect let-7 levels (Figure S3C) or Lin28a
itself (Figure 3D), indicating that the mTOR dependence is occur-
ring downstream of Lin28a.

To test if the effects of Lin28a on insulin-PI3K-mTOR signaling
are let-7-dependent, we transfected either mature let-7f duplex
or a negative control miRNA into both Lin28a-overexpressing
and pBabe control myoblasts (Figure S3D and Figure 3E).

86 Cell 747, 81-94, September 30, 2011 ©2011 Elsevier Inc.

Because mature let-7 duplexes cannot be bound and inhibited
by Lin28a protein, this experiment tests if PIS3K-mTOR activation
is occurring downstream of let-7. Transfection with control
miRNA did not affect Lin28a-induction of the phosphorylation
of Akt, S6, or 4EBP1 in serum-starved myoblasts upon insulin
stimulation. Transfection with let-7f, however, attenuated the
Lin28a-induction of phospho-Akt (Ser473), and abrogated the
increase in S6 and 4EBP1 phosphorylation upon insulin stimula-
tion in Lin28a-overexpressing myoblasts (Figure 3E). In pBabe
control myoblasts, let-7 duplex still suppressed S6 and 4EBP1
phosphorylation in the serum-fed state, serum-starved, and
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Figure 4. Lin28a/b and let-7 Regulate Genes in the Insulin-PI3K-mTOR Pathway
(A) Shown are the numbers of conserved let-7 binding sites within 3'UTRs found using the TargetScan algorithm.
(B) Putative let-7 binding sites in 16 genes of the insulin-PI3K-mTOR pathway and in Lin28a/b.

(C) 3'UTR luciferase reporter assays performed to determine functional let-7

binding sites. Bar graphs show relative luciferase reporter expression in human

HEK293T cells after transfection of mature /et-7f duplex normalized to negative control miRNA. Shown also are mutations in the seed sequence of the /et-7

binding sites for INSR, IGF1R and IRS2.

(D) Western blot analysis of Lin28a, Irs2, and tubulin in C2C12 myoblasts with and without Lin28a overexpression.
(E) Western blot analysis of LIN28B, total IRS2, INSR and TUBULIN in HEK293T cells with either let-7f transfection or shRNA knockdown of LIN28B. Error bars

represent SEM. *p < 0.05, *p < 0.01.

insulin-stimulated conditions, relative to total S6 and 4EBP1
protein. The suppression of mTOR signaling by let-7 even in
the absence of Lin28a implies that let-7 can act independently
downstream of Lin28a. Together with data indicating that
let-7 abrogates Lin28a-specific induction of p-Akt, p-S6 and
p-4EBP1 upon insulin stimulation, this demonstrates that the
effects of Lin28a on PIBK-mTOR signaling are at least in part
due to let-7 and that Lin28 and let-7 exert opposing effects on
PI3K-mTOR signaling.

Totestif these effects of Lin28 on insulin-PI3BK-mTOR signaling
are also relevant in vivo, we examined the quadriceps muscles of
iLIN28B mice and found that dox-induction led to increases in the
phosphorylation of Akt (S473), S6 and 4EBP1, the targets of
PI3K-mTOR signaling (Figure 3F). Furthermore, the Insulin-like
growth factor 1 receptor (Igf1r) and the Insulin receptor (Insr)
proteins were also upregulated in the muscles upon LIN28B
induction, reinforcing the fact that Lin28a/b drives insulin-PI3K-
mTOR signaling in C2C12 myoblasts and within mouse tissues.
On the other hand, similar analysis of the Lin28a muscle-specific
knockout mice revealed reduced Insr and p-4EBP1 expression
(Figure 3G), demonstrating that Lin28a is both necessary and
sufficient to influence glucose metabolism through the regulation
of insulin-PI3K-mTOR signaling in vivo.

Lin28a/b and let-7 Regulate Genes
in the Insulin-PIBK-mTOR Pathway
On the RNA level, Lin28a overexpression in C2C12 myoblasts
leads to an increase in MRNA levels of multiple genes in the

insulin-PIBK-mTOR signaling pathway (Figure S4A). Although
both Lin28a suppression of let-7 and direct Lin28a binding to
mRNAs could increase mRNA stability and thus increase
mRNA levels, it is possible that these increases do not reflect
direct interactions. To find direct targets, we performed a bio-
informatic screen using the TargetScan 5.1 algorithm (Grimson
et al., 2007), and found that 16 genes in the insulin-PI3K-
mTOR pathway contained evolutionarily conserved let-7 binding
sites in their respective 3'UTRs (Figures 4A and 4B). Next, we
performed 3’ UTR luciferase reporter assays to determine if
these genes were bona fide and direct targets of let-7. To do
this, we generated luciferase reporters with twelve human
3'UTR fragments containing conserved let-7 sites. Luciferase
reporter expression in human HEK293T cells after transfection
of either mature let-7f duplex or a negative control miRNA
demonstrated that the 3’ UTRs of INSR, IGF1R, IRS2, PIK3IP1,
AKT2, TSC1 and RICTOR were targeted by let-7 for suppression
(Figure 4C). Three-base mismatch mutations in the seed region
of the let-7 binding sites abrogated let-7’s suppression of
INSR, IGF1R and IRS2. To confirm that the luciferase reporters
predicted actual changes in protein expression mediated by
let-7, we assayed the endogenous expression of some of these
proteins upon Lin28a/b overexpression. We found that an
increase in Lin28a upregulated Irs2 (Figure 4D) in vitro, and
that an increase in LIN28B upregulated Igfir and Insr protein in
skeletal muscles in vivo (Figure 3F). Conversely, INSR and
IRS2 are reduced upon both let-7f transfection and LIN28B
shRNA knockdown in HEK293T, demonstrating that these
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regulatory mechanisms hold in both mouse and human cells,
and in the setting of both LIN28B gain and loss of function (Fig-
ure 4E). This establishes a direct mechanism for let-7’s repres-
sion and Lin28’s derepression of multiple components in the
insulin-PIBK-mTOR signaling cascade.

Previously, Lin28a has been shown to enhance Igf2 translation
independently of let-7 (Polesskaya et al., 2007), offering an alter-
native mechanism by which Lin28a might activate the insulin-
PIBK-mTOR pathway. To determine the relative contribution of
this mechanism, we performed in vitro and in vivo loss of function
experiments. Following siRNA knockdown of Igf2 in C2C12 (the
efficacy of knockdown is shown in Figure S4B), we found only
minimal changes in S6 and 4EBP1 phosphorylation (Figure S4C).
In these C2C12 myotubes, glucose uptake was unaffected
by Igf2 knockdown, but significantly decreased by let-7a (Fig-
ure S4D). In addition, we crossed the Lin28a Tg mice with Igf2
knockout mice and found that the absence of Igf2 did not
abrogate enhanced glucose uptake, insulin sensitivity, or the
anti-obesity effect mediated by Lin28a (Figure S4E-H). Taken
together, these data indicate that the metabolic phenotypes
we have observed are not solely due to the ability of Lin28a/b
to promote translation of /gf2 mRNA, but do not rule out the
possibility that Lin28a/b might modulate other mRNAs in the
insulin-PI3BK-mTOR signaling pathway.

mTOR Mediates Lin28a’s Enhancement of Growth

and Glucose Metabolism In Vivo

Given that Lin28a activates the insulin-PI3K-mTOR pathway
both in vitro and in vivo, we asked whether the metabolic effects
of Lin28a in vivo could be abrogated by pharmacological inhibi-
tion of the mTOR pathway. To do this, we injected Lin28a Tg and
wild-type littermates with rapamycin 3 times per week beginning
when mice were 18 days old. Rapamycin abrogated the growth
enhancement in Lin28a Tg mice at doses that had minimal
growth suppressive effects on wild-type mice (Figures 5A and
5B), suggesting that Lin28a promotes growth in an mTOR-
dependent manner. Selective suppression of Lin28a-driven
growth was observed using several parameters: weight (Figures
5B and 5C), crown-rump length (Figure 5D), and tail width (Fig-
ure 5E). We also tested if the enhanced glucose uptake pheno-
type in vivo was likewise dependent on mTOR. Indeed, glucose
tolerance testing showed that short-term rapamycin reversed
the enhanced glucose uptake effect of Lin28a (Figures 5F and
5@G) and reduced the insulin-sensitivity of Lin28a Tg mice to
wild-type levels (Figures 5H and 5I). These data indicate that
the glucose uptake, insulin sensitivity and animal growth pheno-
types of Lin28a overexpression in vivo are dependent on mTOR
signaling.

let-7 Target Genes Are Associated with Type 2 Diabetes
in Human GWAS

Finally, we sought to assess the relevance of the Lin28/let-7
pathway to human disease and metabolism, using human
genetic studies of T2D and fasting glucose levels. Because the
Lin28/let-7 pathway has not been previously implicated in T2D,
we first asked whether any of the genes that lie in T2D associa-
tion regions identified in T2D GWAS and meta-analyses (Voight
et al., 2010) are known or predicted let-7 targets. We used Tar-
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getScan 5.1 to computationally predict let-7 targets (Grimson
et al., 2007), and found that 14 predicted let-7 target genes lie
in linkage disequilibrium to 39 validated common variant associ-
ations with T2D, including IGF2BP2, HMGA2, KCNJ11 and
DUSP9 (strength of T2D association signals p < 4 x 1079
(Table 1). Of the computationally predicted let-7 targets associ-
ated with T2D, IGF2BP1/2/3 and Hmga2 have been verified as
let-7 targets in several studies (Boyerinas et al., 2008; Mayr
et al., 2007). To validate the connection between Lin28 and
GWAS candidate genes, we analyzed the expression of Igf2bp
and Hmga family members in C2C12 cells with and without
Lin28a overexpression, and observed increases in Igf2bp1,
Igf2bp2, and Hmga2 mRNA following Lin28a overexpression
(Figure 6A). To ensure that this was not a C2C12- or muscle-
specific phenomenon, we confirmed the upregulation of these
genes in 3T3 cells following human LIN28A or LIN28B overex-
pression on the mRNA (Figure 6B) and the protein level for
the Igf2bp family (Figure 6C). We also observed increased
expression of Igf2bp2 and Igf2bp3 (Figure 6D) in Lin28a Tg
muscle, confirming this link in vivo.

We next asked whether there is a more widespread connection
between T2D susceptibility and let-7 targets, in addition to the
targets in validated T2D association regions (p < 5 x 1078). To
address this, we applied a computational method called
MAGENTA (Meta-Analysis Gene-set Enrichment of variaNT
Associations) (Segre et al., 2010) to GWAS meta-analyses of
T2D and fasting glucose blood levels, and tested whether the
distributions of disease or trait associations in predefined let-7
target gene sets are skewed toward highly ranked associations
(including ones not yet reaching a level of genome-wide signifi-
cance) compared to matched gene sets randomly sampled
from the genome (Table 1). We tested three types of let-7
target definitions with increasing levels of target validation, from
in silico predicted let-7 targets using TargetScan 5.1 (Grimson
et al., 2007) to experimentally defined targets. For the latter, we
used (i) a set of genes with at least one /let-7 site in their 3' UTR
and whose mRNA was downregulated by let-7b overexpression
in primary human fibroblasts (Legesse-Miller et al., 2009), and
(ii) a set of genes whose protein levels were most strongly down-
regulated by let-7b overexpression in HelLa cells (Selbach et al.,
2008). We first tested the let-7 target sets against the latest T2D
meta-analysis of eight GWAS (called DIAGRAM+) (Voight et al.,
2010), and found significant enrichment (Table 1). The enrichment
rose from 1.05-fold for the broadest definition of let-7 targets
predicted using TargetScan (~1800 genes; p = 0.036) to 1.92-
fold for the experimentally validated target set based on protein
level changes in response to let-7 overexpression (~100 genes;
p=1x1075). Inthe latter case, an excess of about 20 genes regu-
lated by let-7 at the protein level are predicted to contain novel
SNP associations with T2D. Notably IGF2BP2, which is a canon-
ical let-7 target that lies in a validated T2D association locus, was
foundinalltypes of let-7 target definitions in Table 1. Furthermore,
the genes driving the T2D enrichment signals for the different
let-7 target sets include both functionally redundant homologs
of T2D-associated genes, such as IGF2BP1 (IGF2BP2), HMIGA1
(HMGA2), DUSP12 and DUSP16 (DUSP9), and genes in the
insulin-PIBK-mTOR pathway, including /IRS2, INSR, AKT2 and
TSCT (best local SNP association p = 107* to 41079).
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Figure 5. mTOR Is Required for Lin28a’s Effects on Growth and Glucose Metabolism In Vivo

(A) Rapamycin (left 2 mice) and vehicle (right 2 mice) treated wild-type and Lin28a Tg mice shows relative size differences.

(B) Curves showing relative growth (normalized to weight on first day of treatment) for mice treated from 3 weeks to 6.5 weeks of age. Blue and red represent wild-
type and Lin28a Tg mice, respectively. Solid and dotted lines represent vehicle and rapamycin treated mice, respectively. Growth was measured by several other

parameters:

(C) weight, (D) crown-rump length or height, and (E) tail width.
(F) GTT performed after 2 doses of vehicle or (G) rapamycin.
(H) ITT performed after 1 dose of vehicle or (I) rapamycin.

Controls for Lin28a Tg mice are WT. The numbers of experimental animals are listed within the charts. Error bars represent SEM. *p < 0.05, **p < 0.01.

We next tested for enrichment of let-7 target gene associa-
tions with fasting glucose levels, using data from the MAGIC
(Meta-Analysis of Glucose and Insulin-related traits Consortium)
study of fasting glucose levels (Dupuis et al., 2010). We observed
an over-representation of multiple genes modestly associated
with fasting glucose at different levels of significance for the
different let-7 target gene sets (Table 1). The strongest enrich-
ment was found in the genes downregulated at the mRNA level
by let-7, an enrichment of 1.20 fold over expectation (p
1*10~%). Taken together, our human genetic results support the
hypothesis that genes regulated by /et-7 influence human meta-
bolic disease and glucose metabolism.

Recently it has also become clear that Lin28a/b has important
let-7-independent roles in RNA metabolism, as evidenced by

numerous direct mRNA targets whose translation is enhanced
by LIN28A (Peng et al., 2011). Using GSEA, we found that this
list of direct mRNA targets is also significantly enriched for
glucose, insulin and diabetes-related genes (Table S1). Thus,
Lin28a/b may regulate metabolism through direct mRNA-
binding as well as let-7 targets.

DISCUSSION

Lin28 and let-7 Are Mutually Antagonistic Regulators

of Growth and Metabolism

Our work defines a new mechanism of RNA-mediated metabolic
regulation. In mice, Lin28a and LIN28B overexpression results in
insulin sensitivity, enhanced glucose tolerance, and resistance
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Table 1. MAGENTA Analysis of T2D and Fasting Glucose Associations in Different let-7 Target Gene Set Definitions
Expected Observed

Nominal Number of Number of Number of Genes
Number  Gene Set Genes above Genes above Linked to
of Genes Enrichment Enrichment  Enrichment  Enrichment Validated Genes Linked to Validated

let-7 Target Gene Set Analyzed! p Value Cutoff Cutoff Fold GWAS SNPs GWAS SNPs

Type 2 Diabetes (DIAGRAM+ Meta-Analysis)

All targets predicted 1763 0.036 441 462 1.05 14 IGF2BP2, DUSP9, SLC5A6,

by TargetScan TP53INP1, YKT6, ZNF512,
HMGA2, KCNJ11, MAN2A2,
MEST, NOTCH2, ZNF275,
FAM72B, RCCD1

Conserved targets 789 0.089 197 212 1.08 7 IGF2BP2, DUSP9, SLC5A6,

predicted by HMGA2, KCNJ11, MAN2A2,

TargetScan ZNF275

Downregulated mRNAs 795 0.055 199 216 1.09 9 IGF2BP2, DUSP9, SLC5A6,

following let-7 OE TP53INP1, YKT6, ZNF512,
HHEX, IRS1, TLE4

Downregulated mRNAs 502 0.061 126 140 1.11 6 IGF2BP2, DUSP9, SLC5A6,

following let-7 OE + TP53INP1, YKT6, ZNF512

TargetScan

Downregulated proteins 97 1.0E-06* 24 46 1.92 2 IGF2BP2, CDKALT1

following let-7 OE

Downregulated proteins 37 0.011 9 16 1.78 1 IGF2BP2

following let-7 OE +

TargetScan

Fasting Glucose (MAGIC Meta-Analysis)

All targets predicted 1708 0.015 427 450 1.05 3 CRY2, SLC2A2, GLIS3

by TargetScan

Conserved targets 759 0.042 190 207 1.09 1 CRY2

predicted by TargetScan

Downregulated mRNAs 750 1.0E-04* 188 226 1.20 2 CRY2, FADS1

following let-7 OE

Downregulated mMRNAs 484 0.013 121 141 117 1 CRY2

following let-7 OE +

TargetScan

Downregulated proteins 96 0.632 24 23 0.96 0 =

following let-7 OE

Downregulated proteins 35 0.245 9 11 1.22 0 =

following let-7 OE +

TargetScan

The statistical enrichment for genes associated with T2D and fasting glucose among let-7 targets using the MAGENTA algorithm. The TargetScan
algorithm was used to define the “All human /et-7 targets” and the “Conserved let-7 targets” gene sets (http://www.targetscan.org/). mRNA down-
regulation following let-7 overexpression (OE) was measured in primary human fibroblasts (Legesse-Miller et al., 2009), and protein downregulation
following let-7 OE was measured in Hel a cells (Selbach et al., 2008). The enrichment cutoff used is the 75™ percentile of all gene association scores
in the genome. The enrichment fold is the ratio between the observed and expected number of genes above the enrichment cutoff. Genes linked to
validated GWAS SNPs (39 SNPs for T2D and 14 SNPs for fasting glucose) were ordered according to the number of target gene sets they appear in and
then alphabetically. f The following genes were removed from the analysis: (i) genes absent from the full human gene list used in the analysis, (i) genes
that had no SNPs within 110 kb upstream or 40 kb downstream to their most extreme transcript boundaries, or (jii) to correct for potential inflation of
enrichment due to physical proximity of let-7 target genes along the genome, subsets of proximal genes assigned the same best local SNP were
collapsed to one gene and assigned the score of the most significant gene p-value in that subset. *gene sets that pass a Bonferroni corrected cutoff
(p < 0.004).

to diabetes. Our analysis of iLet-7 Tg mice shows that let-7 let-7 suppression. Previously, we showed that transgenic over-
upregulation is also sufficient to inhibit normal glucose meta- expression of Lin28a causes enhanced growth and delayed
bolism, supporting the idea that gain of Lin28a/b exerts effects  puberty, phenotypes that mimicked human traits linked to
on whole animal glucose metabolism at least in part through genetic variation in the Lin28/let-7 pathway in GWAS (Zhu
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Figure 6. let-7 Target Genes Are Associated with Type 2 Diabetes Mellitus and a Model of the Lin28/let-7 Pathway in Glucose Metabolism
mRNA expression of Igf2bp and Hmga family members in (A) C2C12 with and without Lin28a overexpression and in (B) 3T3 cells with and without LIN28A or

LIN28B overexpression.

(C) Western blot of NIH 3T3 cells with Lin28a overexpression showing Lin28a and Igf2bp1/2/3 protein levels (n = 3 biological replicates).

(D) Igf2bp2 and Igf2bp3 mRNA in Lin28a Tg muscle.

(E) Model of Lin28/let-7 pathway in glucose metabolism. Error bars represent SEM. *p < 0.05, **p < 0.01.

et al.,, 2010). Given that Lin28a/b is downregulated in most
tissues after embryogenesis, while let-7 increases in adult
tissues, lingering questions from our earlier report were first,
whether let-7 was sufficient to influence organismal growth,
and second, what function does let-7 have in adult physiology?
Our observation that the iLin28a, iLIN28B, and iLet-7 Tg gain of
function mice, as well as muscle-specific Lin28a loss of function
mice manifest complementary phenotypes supports the notion
that Lin28a/b and let-7 are both regulators of growth and devel-
opmental maturation. We propose that different developmental
time-points demand distinct metabolic needs, and that global
regulators such as Lin28 temporally coordinate growth with
metabolism. The dynamic relationship between Lin28, let-7
and metabolic states during major growth milestones in mam-
mals is reminiscent of the heterochronic mutant phenotypes
originally defined in C. elegans (Ambros and Horvitz, 1984;
Moss et al., 1997; Boehm and Slack, 2005), and suggests that
metabolism, like differentiation, is temporally controlled.

Lin28a/b and let-7 Influence Glucose Metabolism
through the Insulin-PISBK-mTOR Pathway

We have shown that Lin28a/b and let-7 regulates insulin-PI3K-
mTOR signaling, a highly conserved pathway that regulates
growth and glucose metabolism throughout evolution. PI3K/
Akt signaling is known to promote Glut4 translocation to upregu-
late glucose uptake, while mTOR signaling can promote glucose

uptake and glycolysis by changing gene expression indepen-
dently of Glut4 translocation (Brugarolas et al., 2003; Buller
et al., 2008; Duvel et al., 2010). Previous studies have shown
that Lin28a directly promotes Igf2 (Polesskaya et al., 2007) and
HMGAT1 translation (Peng et al., 2011), and that let-7 suppresses
IGF1R translation in hepatocellular carcinoma cells (Wang et al.,
2010). Consistent with these findings, our results define a model
whereby Lin28a/b and let-7 coordinately regulate the insulin-
PISBK-mTOR pathway at multiple points (Figure 6E), a concept
that is consistent with the hypotheses that miRNAs and RNA
binding proteins regulate signaling pathways by tuning the
production of a broad array of proteins rather than switching
single components on or off (Kennell et al., 2008; Hatley et al.,
2010; Small and Olson, 2011). Coordinated regulation is impor-
tant because negative feedback loops exist within the insulin-
PISBK-mTOR pathway. Loss-of-function and pharmacological
inhibition studies have shown that the mTOR target S6K1, for
instance, inhibits and desensitizes insulin-PI3K signaling by
phosphorylating IRS1 protein and suppressing /IRS7 gene tran-
scription (Harrington et al., 2004; Shah et al., 2004; Tremblay
et al.,, 2007; Um et al., 2004). Conversely, TSC1-2 promotes
insulin-PI3K signaling by suppressing mTOR signaling (Harring-
ton et al., 2004; Shah et al., 2004). Although the effects of let-7
and Lin28a/b on the expression of individual genes are modest,
simultaneous regulation of multiple components such as IGF2,
IGF1R, INSR, IRS2, PIK3IP1, AKT2, TSC1, RICTOR in the
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insulin-PIBK-mTOR signaling pathway could explain how this
RNA processing pathway coordinately regulates insulin sensi-
tivity and glucose metabolism by effectively bypassing these
negative feedback loops.

Whereas our work has implicated let-7 as a regulator of
insulin-PI3BK-mTOR signaling, we do not exclude a parallel role
for direct mRNA targets of Lin28a/b in glucose metabolism,
a hypothesis supported by the recent findings that HMGAT is
translationally regulated by LIN28A and mutated in 5%-10% of
T2D patients (Peng et al.,, 2011; Chiefari et al., 2011). Such
non-let-7 functions are also suggested by the fact that muscle-
specific loss of Lin28a results in glucose derangement without
significant let-7 changes. Nevertheless, it remains likely that
during other developmental stages or in other tissues, let-7
suppression by Lin28a or Lin28b is required for normal glucose
homeostasis. The effects of the Lin28/let-7 pathway on glucose
metabolism in our murine models, together with our observation
that genes regulated by let-7 are associated with T2D risk in
humans, indicates important functional roles for both Lin28a/b
and /et-7 in human metabolism.

let-7 Targets Are Relevant to Disparate Human
Diseases: Cancer and T2D

Metabolic reprogramming in malignancy is thought to promote
a tumor’s ability to produce biomass and tolerate stress in the
face of uncertain nutrient supplies (Vander Heiden et al., 2009).
During their rapid growth phase early in development, embryos
may utilize similar programs to maintain a growth-permissive
metabolism. Dissecting the genetic underpinnings of embryonic
metabolism would likely provide important insights into the
nutrient uptake programs that are co-opted in cancer. While
loss of function studies in the early embryo would help define
the metabolic roles of oncofetal genes in their physiologic
context, classical in vivo metabolic assays are difficult to perform
in embryos. Lin28a and Lin28b are oncofetal genes, and thus
highly expressed in early embryogenesis and then silenced in
most adult tissues, but reactivated in cancer (Yang and Moss,
2003; Viswanathan et al., 2009). Cancer cells may utilize the
embryonic function of Lin28a/b to drive a metabolic shift toward
increased glucose uptake and glycolysis — a phenomenon
termed the “Warburg effect.” Previously, we showed that
Lin28a expression promotes glycolytic metabolism in muscle
in vivo and in C2C12 myoblasts in vitro (Zhu et al., 2010). Though
we cannot yet readily determine the metabolic effects of shutting
off Lin28a/b within the embryo, we have dissected the potent
effects of reactivating and inactivating this oncofetal program
in adults. Conversely, in normal adult tissues that do not express
high levels of Lin28a or Lin28b, one might ask if a role for the
highly abundant /et-7 is to lock cells into the metabolism of termi-
nally differentiated cells to prevent aberrant reactivation of
embryonic metabolic programs. Further studies are required to
understand how this pathway may link mechanisms of tumori-
genesis and diabetogenesis.

Our report implicates Lin28a/b and let-7 as important modula-
tors of glucose metabolism through interactions with the insulin-
PIBK-mTOR pathway and T2D-associated genes identified in
GWAS. Although it is likely that additional mechanisms and feed-
back loops exist, our data suggests a model whereby Lin28a/b
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and let-7 coordinate the GWAS identified genes and the
insulin-PIBK-mTOR pathway to regulate glucose metabolism
(Figure 6E). It also suggests that enhancing Lin28 function or
abrogating let-7 may be therapeutically promising for diseases
like obesity and diabetes. Likewise, results from this work might
shed light on the physiology of aging and, specifically, how the
accumulation of let-7 in aging tissues may contribute to the
systemic insulin resistance that accompanies aging.

EXPERIMENTAL PROCEDURES

Mice

All animal procedures were based on animal care guidelines approved by the
Institutional Animal Care and Use Committee. Mouse lines used in this study
are described in the Extended Experimental Procedures and Figure S5.

Indirect Calorimetry

The apparatus used was a set of 16 OxyMax® Metabolic Activity Monitoring
chambers (Columbus Instruments; Columbus, OH, USA). Each chamber con-
sisted of a self-contained unit capable of providing continuous measurements
of an individual mouse’s total activity and feeding behavior. Monitoring
occurred over a 3-day period. Each subject was placed into an individual
chamber on day 1, with free access to food and water during the course of
the experiment. Subjects were maintained under a normal 12:12 hr light:dark
cycle. All measurements were sampled periodically (at approximately 12 min
intervals) and automatically recorded via the OXYMAX Windows V3.22 soft-
ware. Activity measures over the final 24 hr period were parceled into 2-h
bins and these were used to express diurnal activity levels.

Quantitative RT-PCR
Performed with standard methods, which are described in detail in the
Extended Experimental Procedures.

Histology
Tissue samples were fixed in 10% buffered formalin or Bouin’s solution and
embedded in paraffin.

Glucose and Insulin Tolerance Tests

Overnight-fasted mice were given i.p. glucose (2 mg/g body weight). For
insulin tolerance test, 5 hr fasted mice were given 0.75 U insulin/kg body
weight by i.p. injection (Humulin). Blood glucose was determined with a Life-
scan One Touch glucometer. Insulin levels were measured by ELISA (Crystal
Chem).

Cloning

Murine Lin28a and human LIN28B cDNA was subcloned into pBabe.Puro and
pMSCV.Neo retroviral vectors. LIN28B and Control shRNA in lentiviral plas-
mids were purchased from Sigma-Aldrich and previously reported in Viswana-
than et al., 2009. UTR cloning for luciferase reporters is described in Table S2.

Cell Culture, Viral Production, and Transfection
Performed using standard methods as described in the Extended Experi-
mental Procedures.

Glucose Uptake Assay
In vitro glucose uptake assays were performed as described in Berti and
Gammeltoft, 1999.

Drug Treatments

Rapamycin was injected i.p. 3 times a week for mouse experiments. For cell
culture, C2C12 myotubes differentiated for 3 days were incubated with inhib-
itors for 1 day prior to glucose uptake assays. See Extended Experimental
Procedures for further details.



Western Blot Assay
Performed using standard methods. Detailed methods and reagents used are
described in the Extended Experimental Procedures.

Luciferase Reporter Assay

10 ng of each construct was co-transfected with 10 nM miRNA duplexes or
into HEK293T cells in a 96-well plate using lipofectamin-2000 (Invitrogen).
After 48 hr, the cell extract was obtained; firefly and Renilla luciferase activities
were measured with the Promega Dual-Luciferase® reporter system.

MAGENTA Analysis
See Results, Table 1 Legend, and Extended Experimental Procedures for
detailed methods.

Statistical Analysis

Data is presented as mean + SEM, and Student’s t test (two-tailed distribution,
two-sample unequal variance) was used to calculate p values. Statistical
significance is displayed as p < 0.05 (one asterisk) or p < 0.01 (two asterisks).
The tests were performed using Microsoft Excel where the test type is always
set to two-sample equal variance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, a list
of DIAGRAM and MAGIC consortia members with affiliations, and five figures
and can be found with this article online at doi:10.1016/j.cell.2011.08.033.
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