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Abstract

Background: Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a
tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very
significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity
of resource use are poorly understood.

Methodology/Principal Findings: Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes
with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm
diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and
measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules
removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass
spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all
increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the
uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such
as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the
streambeds with higher flow heterogeneity.

Conclusions/Significance: Our results suggest biophysical mechanisms, including hydrodynamics and microbial
complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in
streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and
ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity.
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Introduction

A growing body of reviews and meta-analyses has recently

highlighted the functional consequences of biodiversity for

ecosystem functioning [1,2,3,4]. Collectively, these studies suggest

biodiversity effects on ecosystem functioning, although highly

variable in strength, across most study systems. Experiments

typically manipulate biodiversity by randomly generating an

array of species combinations from a species pool in homoge-

neous systems with little physical, chemical and biological

structure–an approach that is frequently and increasingly

criticized because of its lack of realism [5,6]). Theory predicts

environmental heterogeneity to allow expression of niche

differences and thereby biodiversity effects [7,8] and empirical

work on algae [9] plants [10,11] and macrofauna [12,13,14]

increasingly support this prediction. Microorganisms, however,

the most diverse organisms on Earth [15], have remained largely

exempt from this research [16]. Microorganisms are tightly linked

with biogeochemical cycles and ecosystem functions at all scales

[17]. Key to this fundamental link is dissolved organic carbon

(DOC), a large pool of reduced carbon [18], which, depending on

its bioreactivity, is taken up by heterotrophic microbes thereby

mediating trophic transfer and carbon fluxes [19,20]. In most

freshwater ecosystems DOC is predominantly of terrestrial origin,

conventionally classified as recalcitrant and yet fueling the net

heterotrophy of these ecosystems [21]. The advent of novel

ultrahigh-resolution mass spectrometry is now increasingly

unveiling the molecular complexity of DOC in various aquatic

ecosystems [22,23,24,25,26]. However, the link between molec-

ular diversity of DOC and microbial biodiversity remains elusive

(e.g., [24,27]) despite its potential consequences for ecosystem

functioning.

In this paper, we report the results of an experiment designed to

test the hypothesis that fine-scale physical heterogeneity in

streamside flumes affects bacterial biodiversity and DOC resource

use by benthic biofilms. Biofilms are matrix-enclosed and attached

communities that dominate microbial life in streams where they

can control key ecosystem functions [28]. We experimented with

40-m-long streamside flumes and constructed streambed land-

scapes with varying spatial heterogeneity. Bedforms, typical for
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low-submergence headwater streams, induced spatial gradients of

velocity and streambed landscapes of increasing flow heterogeneity

(i.e., spatial variation of flow conditions); flume-average velocities

and residence times were kept nearly identical across flumes. We

studied how spatially heterogeneous flow offers opportunities for

benthic biofilms to develop into diverse communities from the

same regional species pool (i.e., the inoculum in the streamwater)

in microhabitats along the bedforms, and how flow heterogeneity

and biofilm diversity affect DOC removal and its diversity. We

challenged biofilms with the hydrophobic fraction of DOC

leached from riparian vegetation since this fraction, rather than

the hydrophilic fraction, has typically reduced bioavailability

[29,30]. Ultrahigh-resolution mass spectroscopy served to describe

the molecular diversity of DOC removed from the water and

molecular fingerprinting based on 16S rRNA was used to infer

microbial biodiversity.

Materials and Methods

Experimental setup
Experiments were conducted in streamside flumes (length:

40 m, width: 0.4 m). Five flumes contained 38 triangular dune-

shaped bedforms (Figure 1a), respectively, with a height of 2, 4, 6,

8 and 10 cm. Bedforms were periodically installed to create

landscapes of differing velocity variance (i.e. flow heterogeneity).

One flume without bedforms served as control. Bedforms were

impermeable and covered with a monolayer of natural graded

gravel (,4 cm diameter) as substrate for biofilm growth. Pore

space was thus minimized to reduce confounding effects from

surface-subsurface hydrodynamic exchange and related processing

rates. All flumes received the same raw stream water (Oberer

Seebach, Austria) with the same constant discharge (2.25 L s21).

The resulting flow may be identified as shallow rough-bed flow

Figure 1. Constructed landscapes differing in flow heterogeneity. Graphs describe shape of and hydrodynamic conditions over
approximately one bedform (38 per flume). X-axis represents longitudinal flume dimension (equivalent to main flow direction, total flume length
40 m) with distances given in cm. (a) Side-view of impermeable 1-m-long bedform lining the bottom of the mesocosm. Bedforms of variable height
(2–10 cm) were used to create the heterogeneity gradient. I, II, III and IV show the positions (‘‘microhabitats’’) of ceramic coupons used for
determination of biomass and T-RFLP. (b) A representative vertical cross section along the thalweg in the flume with 8 cm bedforms showing water
velocity conditions above a single bedform. Y-axis represents depth below water surface (in cm), contours show length of velocity vector, blue arrows
show amount and direction of current. (c) and (d) show contour plots of depth (c, blue) and velocity (d, length of 3-D vector Rxyz, yellow-orange)
above a single bedform in each of the 6 heterogeneity treatments, Y-axis represents lateral flume dimension (distances in cm, total flume width
0.4 m) and red arrows show amount and direction of current.
doi:10.1371/journal.pone.0009988.g001
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typical for headwater streams. The flumes were continuously fed

in a once-through mode to assure identical water chemistry and

microbial inoculum. A header tank and tilting weirs ensured

steady and spatially uniform flow. Nearly identical average flume-

level velocities were achieved by adjusting flume slopes individ-

ually with repeated measurements of mean velocity by slug

additions of NaCl-solutions [31]. We thus created flow environ-

ments of differing velocity variance (i.e. spatial flow heterogeneity)

but identical mean water velocities.

Flow heterogeneity
Acoustic Doppler Velocimetry (VectrinoH Nortek, 4-beam side-

looking probe, 50 Hz for 1 min, time series of n = 3000) described

the 3-D flow fields and served to derive heterogeneity of flow as its

spatial variation. In each flume, velocity was mapped over one

entire bedform (,5 mm above substrate) at nodes of a 565 cm

grid. For each node, we determined depth, mean length of the 3-

dimensional velocity vector Rxyz, turbulent kinetic energy TKE,

and turbulence intensity TI (see Text S1). 80 measurements per

flume yielded reliable estimates for description of the average flow

environment and its spatial variation. SDRxyz, the standard

deviation of Rxyz is the central independent variable and a

surrogate for flow heterogeneity.

Biofilm communities
Sterile unglazed ceramic coupons (162 cm) served as substra-

tum for biofilm growth [32]. In each flume, coupons were sampled

from 4 distinct microhabitats (upstream side, crest and down-

stream side of each bedform, and the trough between two

bedforms, all along the thalweg, see Figure 1a), along triplicate

bedforms (72 coupons per sampling date and parameter) within a

restricted flume segment for microbial biomass (bacterial biomass

and chlorophyll-a) and for bacterial community composition.

Coupons were sampled four times over a growth period of 4–5

weeks during summer season. Biofilms reached stationary growth

after approximately 3–4 weeks. Coupons from triplicate bedforms

were processed as composite samples for bacterial community

composition. To determine microbial biomass SYTOX-stained

bacteria were counted and sized using a Cell-Lab-Quanta

(Beckman Coulter). Chlorophyll-a was assayed as described

elsewhere [32]. Microscopy was used to describe biofilm

architecture at several spatial scales.

Terminal-restriction fragment length polymorphism
DNA from biofilm communities was extracted and purified with

the UltraClean Soil DNA Isolation kit (MoBio Carlsbad, Calif.).

Non-colonized ceramic coupons served as negative controls. The

fluorescently labeled primers used for PCR of the 16S rRNA gene

were FAM labeled 27F and JOE-labeled 1492R (Thermo

Electron, Germany) [4]. PCR was performed as described

elsewhere [33]. PCR-products were cleaned using gel electropho-

resis and the QIAquick Gel Extraction kit (Qiagen). Restriction

digests were done as described earlier [33], using approximately

300 ng DNA and the enzyme HhaI. The products were desalted

by gel filtration using MultiScreen-HV 96-well plates (Millipore),

loaded with Sephadex G-50 (Sigma). The dried product was re-

suspended in 10 ml HIDI formamide and 0.5 ml size marker

GS2500 Rox (Applied Biosystems), denatured at 95uC and

immediately placed on ice. DNA fragments containing the

fluorescently labelled forward primer were separated in a Capillary

Sequencer 3130 Xl (Applied Biosystems), and electropherograms

were analyzed with the GeneMapper software. Restriction

fragments smaller than 30 bp and larger than 900 bp were

excluded from further analysis to avoid detection of primers and

uncertainties of size determination. Peaks .2% of maximum peak

height were clearly distinguishable from background noise. The

relative contribution of the respective operational taxonomic units

(OTUs) to total community was estimated as peak height divided

by the cumulative peak height of the given sample [34,35];

TRFLP analysis can provide reproducible quantitative results

[34,35,36]. Fragments containing the forward and the reverse

primer were analyzed separately. T-RFLP patterns produced with

the forward primer showed generally more heterogeneity in

restriction fragment size than the corresponding T-RFLP patterns

containing the reverse primer. Results in this study refer to the

forward fragments because of their higher information content.

Biodiversity partitioning and community composition
As the use of diversity indices is limited for molecular fingerprint

data [33,34], we employed various diversity indices of the Hill-

family [35], namely richness, the Shannon entropy and the Gini-

Simpson coefficient, which differ in their sensitivity towards rare

species. Diversity partitioning was done according to Jost [36]. In

addition, we used the average Bray-Curtis distance between

samples from one flume at a given time as a complementing

measure for beta diversity. Regional diversity was also decom-

posed into the 2 independent orthogonal components richness and

evenness following the evenness definition of Hill [35,36,37]. This

decomposition followed by separate analysis seems important as

evenness and richness may not necessarily correlate positively and

may not lead to the same ecosystem process response (e.g. [37,38].

Pielou’s classical Shannon evenness definition as ln( q = 1D)/ln(S)

was included in our analyses because of its traditionally widespread

use in ecology. Molecular fingerprinting has limited ability to

detect numerically minor taxa [34], and we therefore repeated the

analysis using reduced datasets with taxa common to all flumes or

all microhabitats. To oppose effects of diversity components to

effects of species identity (‘‘selection’’ or ‘‘sampling’’ in the context

of the biodiversity-ecosystem function debate), we described

similarity among flumes with regard to community composition

at flume level (gamma) by computing Bray-Curtis dissimilarity

matrices between flumes. See Text S1 for rationale and details of

computation of these various metrics.

Glucose and DOC uptake
We produced several hundreds of liters of filtered cold-leaf-

leachate (48 h) from riparian vegetation (Petasites sp., Phalaris sp.,

Mentha sp., Veratrum sp., Cirsium oleraceum) to study dynamics of

complex DOC. This DOC from riparian vegetation mimics an

important terrestrial subsidy, which can generate substantial pulses

of DOC in headwaters [39]. Mass uptake of glucose (as a highly

labile control substrate) and DOC was measured by separately

injecting the respective solutions into the flumes and monitoring

concentration loss in recirculating systems over 6–8 hours on

multiple occasions. Recirculation was done to increase interaction

time of solutes with the biofilm; devices associated with

recirculation were free of biofilm. Experiments were performed

with no biofilm and with 24 d old biofilm for DOC; and with no

biofilm and with 12, 18 and 23 d old biofilm for glucose,

respectively. Starting concentrations were 600–900 nmol L21 and

8 mg L21 for glucose and DOC, respectively. Water samples were

collected at the flume outlets, filtered and frozen immediately

before analysis. Glucose was analysed with HPLC–PAD (Dionex

ICS3000) using a CarboPac PA20 column (30uC, 20 mM NaOH

eluent, flow rate 0.5 mL min21). DOC concentration was

measured using a SIEVERS (Ionics Instruments) and a Shimadzu

TOC-VCPH/CPN. Mass transfer coefficients (uptake velocity vf,

Biofilms in Heterogeneous Flow
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units length time21) for glucose and bulk DOC were calculated

from log-linear fits of concentration decline in time (see Text S1).

DOC composition
DOC (2 L water samples) from the header tank (inflow) and

from each flume after recirculation (residual) was extracted using

XAD-8 resin [40]. Fourier-transform-ion cyclotron-mass spec-

trometry (FTICR-MS) was performed in ESI(2) mode on a

Bruker (Bremen, Germany) 12 T APEX-Qe FTICR-MS

equipped with an APOLLO-II ionization source [41]. Mass

spectra (750 accumulated scans) were acquired with a time domain

of 1 megaword over a mass range of 100–2000 m/z. Peak lists

were exported at a signal-to-noise-ratio of 1 and elemental

formulae were calculated for a maximum composition of

C100O80N5S. See Text S1 for calibration details, validity checks

and tolerance limits. To exclude sensitivity and contamination

artifacts all data analyses were conservatively limited to com-

pounds positively identified in the inflow and in all residual

samples (361 individual peaks). 276 peaks had reliably assigned

mass formulae within tolerance limits. DOC-diversity was

calculated from relative peak intensities and compound-specific

mass transfer coefficients were computed from peak intensity ratios

of inflow and residual. Multiple linear regression and hierarchical

partitioning [42] identified a subset of predictors repeatedly

explaining most of the variance of compound-specific mass

transfer in individual flumes. Reduced models were used to

investigate gradients among flumes by relating unstandardized

slopes of the regression models to environmental heterogeneity

(SDRxyz). See Text S1 for details of data analysis.

Data synthesis
We hypothesized biodiversity components and community

composition as explanatory links between environmental hetero-

geneity and resource use. Because of the multivariate nature of

most of the involved entities, we used causal modeling on

dissimilarity matrices calculated from subsets of appropriate

variables [43] to explore hypothesized causal links between the

metavariables flow heterogeneity, structural and compositional

biofilm diversity, community composition, resource use diversity

and ecosystem functions. Mantel and partial Mantel (controlling

for environmental heterogeneity) tests with full-randomized

distributions (6! permutations) were used to test for associations.

Mantel statistics do not have to be large to be statistically

significant. They are related to correlation coefficients and we

calculated path coefficients to test hypothesized causal relation-

ships and facilitate visual representation. Significance of path

coefficients was calculated by randomization of all involved

matrices using 105 permutations. All calculations were done in

R [44], using packages vegan and sem.

Results

Physical heterogeneity
High-resolution mapping of 3D-flow velocimetry with Acoustic

Doppler Velocimetry revealed flow environments typically for

bedforms (Figure 1). Flow fields became more variable as bedform

height (2, 4, 6, 8 and 10 cm; one flume without bedforms served as

control) increased. Flow velocity generally accelerated along the

upstream side and decelerated along the downstream side of the

bedforms. Turbulent kinetic energy increased accordingly and was

highest downstream of the bedform crest, whereas turbulence

intensity was highest between consecutive bedforms, where wake-

induced eddies formed. These fine-scale changes over multiple

bedforms of the same dimension caused spatial heterogeneity of

flow, expressed as the standard deviation of the average 3-

dimensional flow velocity vector, to increase from 1.6 cm s21 to

6.3 cm s21 across all six flumes (Figure S1). Individually adjusting

the slope of each flume, we achieved to keep nearly identical mean

flow velocity (7.660.4 cm s21 which translates to a residence time

of 8.8 min) and mean water depth (6.760.4 cm) among flumes

(Table S1). Background DOC and nutrient concentrations in the

streamwater were almost identical across all six flumes (Table S2).

Given this setting and the fact that all flumes were continuously fed

from the same water reservoir, we are confident that our

experimental design isolated physical spatial heterogeneity as the

major factor.

Microbial biomass distribution and biofilm architecture
Chlorophyll-a concentration correlated with flow heterogeneity

(as the standard deviation of the water velocity above sediment)

whereas bacterial abundance did not (Figure 2). The spatial

coefficients of variation (CV) of chlorophyll-a and bacterial

abundance, computed from four repeatedly sampled microhabi-

tats along the bedforms, clearly increased with flow heterogeneity

(Figure 2). These patterns suggest structural differentiation of the

biofilms with increasingly higher bedforms. This was in fact

supported by microscopic analysis of biofilms from two micro-

habitats with distinct hydrodynamics — the crest and the trough

(Figure 3). Around the bedform crest, biofilms developed directed

architectures with filamentous streamers floating in the water,

whereas in deeper and low-shear microhabitats between bedforms,

multidirectional flow generated non-directed and connecting

microcolonies.

Bacterial biodiversity
T-RFLP analyses identified a total of 76 bacterial operational

taxonomic units (OTUs) in the biofilm samples in all flumes with

an average of 26613 (mean6SD) per flume. Total bacterial

diversity at flume-scale (regional or gamma diversity) was

partitioned into the two orthogonal independent components

alpha (average diversity within microhabitats) and beta (among

microhabitats) diversity, and into richness and evenness, respec-

tively (see Methods). We employed various diversity indices of the

Hill-family [35], namely richness, the Shannon entropy and the

Gini-Simpson coefficient, which differ in their sensitivity towards

rare species. We found beta diversity to significantly increase with

flow heterogeneity, while neither alpha nor gamma (flume-level

diversity) diversity (nor any evenness measure) did (Fig. 4a, SI

Table S6). Interestingly, this pattern remained unchanged upon

conservative re-analysis that excluded rare OTUs prone to

sampling error by T-RFLP [45]. In fact, by using only OTUs

found in all microhabitats (i.e., samples) at each date, we reduced

the analysis to a conservative investigation of pure evenness effects

among widespread and common taxa. This approach revealed

patterns of beta diversity that were even stronger with higher

slopes when plotted against flow heterogeneity and higher

coefficients of determination. Still no significant effects of flow

heterogeneity on gamma diversity or gamma evenness could be

found. The stability of these diversity patterns reduces the

likelihood of artefacts often inherent to T- RFLP analysis.

Similarly, mean Bray-Curtis distances among the four microhab-

itats along the bedforms, another robust measure for beta

diversity, significantly increased with flow heterogeneity

(r2 = 0.89, P = 0.005). Thus, we could identify a relatively small

but stable beta-component that is clearly related to the

hydrodynamic microenvironment and largely relies on relative

abundance patterns of frequent OTUs.

Biofilms in Heterogeneous Flow

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e9988



Resource use
To explore the possible consequences of spatial flow heteroge-

neity and related biodiversity patterns for resource use as an

ecosystem process, we first measured the uptake of experimentally

added monomeric glucose and then of a complex DOC mixture

by mature biofilms typical for baseflow in headwaters. We

extracted DOC from riparian vegetation to simulate a major

carbon input to streams during leaf litter fall in autumn [39,46].

Leaf packs accumulating on the streambed release large amounts

of DOC (including carbohydrates) [46], which become potentially

available to the benthic biofilms. In contrast to the highly labile

glucose, the hydrophilic component of the leachate, generally

assumed to be relatively recalcitrant to microbial uptake [29,30]

challenged biofilms.

We computed mass transfer coefficients (vf, see Methods) of

glucose, bulk DOC and individual DOC-compounds, which are

equivalent to the average vertical velocity at which solutes are

removed from the water column, and which represent a measure

of uptake efficiency relative to availability. vf is independent from

scaling effects of velocity and flume depth; its product with

concentration represents the average flux of a solute to the

streambed. We found vf of glucose (vf-Glucose) and bulk DOC

(vf-DOC) significantly increased with increasing flow heterogeneity

(Figure 4b, c); controls without biofilms confirmed that the

observed vf-Glucose and vf-DOC vf were attributable to microbial

activity.

To test whether the observed increase in vf-DOC with flow

heterogeneity was paralleled by compositional shifts in the DOC

removed by the biofilms, we analyzed the molecular composition

of the hydrophobic DOC fraction (from solid-phase extraction)

using ultrahigh-resolution Fourier Transform Ion Cyclotron

Resonance Mass Spectrometry (FTICR-MS, see Methods). Data

analysis remained restricted to those compounds that were

identified in both the inflow and all residual (after recirculation)

samples to exclude compounds that were likely produced within

the flumes (e.g., algal exudates). We hypothesized that without

effects of flow heterogeneity nor of compound-specific character-

istics of DOC other than concentration, mass transfer coefficients

would be equal for all DOC compounds. Comparative analyses of

the molecular composition of the inflow and the residual (i.e., after

recirculation) DOC pools in each flume revealed increased

similarity of resource use (i.e. distribution of uptake among various

DOC compounds) among flumes with similar heterogeneity

(Figure 5a). Compound-specific mass transfer coefficients

(vf-indDOC, 361 compounds) exhibited less variation at higher flow

heterogeneity, indicating more even (i.e., uniformly distributed)

Figure 3. Microbial biofilm structure. Microscopic darkfield and
orthophotographic images of biofilms from the crest (a–c) and the
trough (d–f) between 2 consecutive bedforms. Arrows on indicate main
flow direction, numbers indicate biofilm age in days.
doi:10.1371/journal.pone.0009988.g003

Figure 2. Microbial biofilm biomass. (a) Flow heterogeneity
(SDRxyz) versus mean z-standardised bacterial abundance and chloro-
phyll-a (error bars represent 95% confidence intervals, sample size
n = 12 per flume); and (b) flow heterogeneity versus the average
coefficient of variation of bacterial abundance and the bacterial
abundance to chlorophyll-a ratio (error bars represent 95% confidence
intervals generated by bootstrapping, sample size n = 4 per flume, see
Methods).
doi:10.1371/journal.pone.0009988.g002

Biofilms in Heterogeneous Flow

PLoS ONE | www.plosone.org 5 April 2010 | Volume 5 | Issue 4 | e9988



consumption across all compounds of the DOC mixture

(Figure 5b). This would translate into decreasing metabolic

specialization as flow heterogeneity increases. Evenness patterns

of the molecular composition of both the inflow and residual DOC

pools (Figure 5c) indicate that resource use was limited to the more

abundant compounds in less heterogeneous flow, while it gradually

included less abundant compounds as flow heterogeneity

increased.

Furthermore, hierarchical partitioning analysis (see Methods

and Text S1) consistently identified the relative availability in the

inflow DOC pool (computed as the relative FTICR-MS peak

intensity, rIinflow) as a key predictor of compound-specific mass

transfer coefficients (vf-indDOC) in individual flumes; followed by the

O:C ratio, H:C ratio and aromaticity (Tables S4 and S5, Fig. S2).

These results show a clear effect of compound chemistry on mass

transfer. Compounds of higher relative availability (as rIinflow) are

preferentially removed from the stream water – decoupled from

their absolute uptake proportional to concentration (implicit to

mass transfer, vf). These results also suggest that more oxygenated

compounds are removed more readily from the water. Specifically,

regression coefficients of the O:C ratio, H:C ratio and aromaticity

(Table S5) suggest consumption of carbohydrates and oxygen-rich

aromatics, which are also likely compounds of the fresh leaf

leachate. Other predictors, such as the presence of nitrogen atoms

and molecule size, did not influence vf-indDOC in individual flumes.

In support of the evenness pattern (Figure 5c), the strength of

the relationship (expressed as the slope of the regression model)

between rIinflow and vf-indDOC in individual flume models

significantly (r2 = 0.71, P,0.05) decreased with increasing flow

heterogeneity. Similarly, negative relationships between slopes of

predictors (or predicted effect sizes) of individual flume models and

flow heterogeneity were found for O:C, aromaticity and nitrogen

(Table S5). In the case of O:C ratios, gradients across flumes with

increasing flow heterogeneity were weak. Nitrogen proved to be a

good predictor across flumes while its effect remained negligible in

the within-flume regressions. A reduced model built on rIinflow and

nitrogen as the predictors best explaining the heterogeneity

gradient had significantly lower prediction quality (indicated by

r2) with higher heterogeneity (r2 = 0.70, P,0.05, Table S5). These

results indicate increasing independence of an individual com-

pound mass transfer from controlling factors — either availability

(i.e., rIinflow) or intrinsic chemical properties — at higher flow

heterogeneity. Hence, we further used the model coefficients as a

proxy for resource use diversity.

The typical way of qualitatively visualizing ultrahigh-resolution

spectra are Van Krevelen diagrams showing compounds in a

chemical space defined by H:C versus O:C [41,47]. While this

approach makes exhaustive and less restrictive use of the wealth of

data generated by FTICR-MS, it is potentially compromised by

sensitivity issues and contamination effects. Van Krevelen

diagrams of inflow and residual DOC pools in the control flume

and the flume with highest bedforms (Figure S2) allowed to

recognize the preferential removal of O-rich and H-poor

compounds as well as the effect of aromaticity and nitrogen.

Van Krevelen diagrams were thus able to confirm our extensive

quantitative analysis.

Relating flow heterogeneity to biodiversity and resource
use

Our experiments revealed a significant positive relationship

between bacterial biodiversity and the diversity of DOC

compounds removed from the water. This is supported by the

slope of the relationship between vf-indDOC and rIinflow (as a proxy

for resource use diversity), which correlates better with bacterial

beta diversity than with flow heterogeneity (r2 = 0.97, P,0.001,

Figure S3a) and also exhibits strong partial correlation with beta

diversity holding flow heterogeneity (SDRxyz) constant (partial

Figure 4. Relationship between flow heterogeneity and
bacterial biodiversity and carbon mass transfer. The standard
deviation of Rxyz (i.e. the length of the 3-dimensional vector of velocity)
explains (a) b-diversity, as the effective number of communities using
an Hill exponent q = 1 (data pooled from multiple sampling dates and z-
standardised, sample size n = 4 per flume on each of 4 dates); (b)
glucose mass transfer coefficients at various biofilm growth states; and
(c) bulk DOC mass transfer coefficients. Triangles indicate controls with
no biofilms in (b) and (c).
doi:10.1371/journal.pone.0009988.g004

Biofilms in Heterogeneous Flow
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R = 20.99, P = 0.001). Similarly, the standard deviation of

vf-indDOC, an additional descriptor for resource use diversity,

correlated with beta diversity (r2 = 0.83, P = 0.011, partial

R = 20.97, P = 0.006, Figure S3b), but not with flow heterogeneity

(r2 = 0.47, P = 0.13). Neither gamma diversity nor gamma

evenness explained the diversity in resource use.

To formally test biodiversity and community composition as

explanatory links between flow heterogeneity and resource use,

we applied causal modeling on dissimilarity matrices (Methods,

Table S3) and computed path coefficients from the Mantel

correlation structure (Table 1, Figure 6). Glucose uptake seemed

to be predominantly controlled by flow heterogeneity. In

contrast, path coefficients distributed effects on DOC mass

transfer among resource use diversity and flow heterogeneity,

which suggests combined controls of flow-induced mass transfer

and biodiversity on the use of complex resources. Mantel and

partial Mantel tests controlling for the effect of flow heterogeneity

confirmed the apparent link between the diversity of DOC use

and bacterial beta diversity, the latter being a function of flow

heterogeneity (Table 1, Figure 6). The spatial variation of

microbial biomass (structural diversity) generated similar patterns

(Figure S4, Table S7). Notably, beta diversity strongly correlated

with patterns of resource use, which is expressed based on

compound-specific mass transfer coefficients and is hence

concentration-independent. As a flux, bulk DOC mass transfer

depends on both mass transfer coefficients and the skewed

distribution of compound concentrations. Hence, resource use

distribution and diversity will only partially explain bulk DOC

mass transfer.

Discussion

In this study, we present evidence that the manipulation of fine-

scale flow heterogeneity may affect bacterial biodiversity in benthic

biofilms and their resource use. The more heterogeneous flow

landscapes triggered larger bacterial biodiversity and structural

differentiation of biofilms, ultimately resulting in a broader range

of DOC compounds removed more rapidly by the biofilms. To

our knowledge, this is the first study attempting to integrate

microbial diversity with environmental heterogeneity and chem-

ical diversity of DOC as the major resource for microbial

heterotrophs.

Ecological theory [7,48] predicts that biodiversity influences

ecosystem functioning through niche differentiation or facilitation,

often subsumed under the term ‘‘complementarity effect’’, and

through stochastic processes involved in community assembly,

usually referred to as ‘‘sampling’’ or ‘‘selection’’ effects. Combi-

natorial experimental design and appropriate analysis are required

to partition complementarity and selection effects [49]. This works

for artificially assembled communities in plots, pots or vials under

homogenous and reproducible conditions. It is not a trivial task,

however, to manipulate microbial diversity in systems that reflect

environmental heterogeneity as in nature. We allowed biofilms to

assemble in heterogeneous landscapes from a same natural species

pool and at scales relevant to ecosystems. This does not allow for

the traditional combinatorial design [49], but our study still

informs on the effects of environmental heterogeneity on microbial

biodiversity and resource use.

Figure 5. DOC resource use. (a) Dendrogram (UPGMA clustering
algorithm) showing similarity of resource use distribution among all 6
flumes with increasing flow heterogeneity (height of bedforms in cm).
An Euclidean distance matrix was calculated from normalized mass
transfer coefficients of 361 DOC compounds present in all residual (after
recirculation) and inflow samples. (b) Frequency distributions of
compound specific mass transfer coefficients (n = 361) in all 6 flumes.
(c) Shannon-Wiener diversity/evenness of the molecular composition of
the residual DOC pool. Note the similar evenness of the inflow (dashed
line) and residual DOC pools in the high-heterogeneity landscapes. The

decreasing trend indicates a gradual additional uptake of compounds
of low relative concentration in the inflow with increasing heteroge-
neity (analysis on 361 individual compounds identified from all
samples).
doi:10.1371/journal.pone.0009988.g005
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Our results from causal modelling indicate that complementar-

ity as a mechanism underlying the relationship between biodiver-

sity and resource use may be true for DOC as a complex resource

but most likely not for glucose. Rather, we argue that glucose

uptake is largely controlled by variables modulated by flow

heterogeneity, such as turbulence [50] or boundary layer thickness

([28], Singer et al. unpublished data), for instance. Glucose is, in

fact, readily available to most microbial heterotrophs for

metabolism and biosynthesis. However, the rate-limiting step for

glucose uptake can shift from its intrinsic biological availability to

limitation of mass transfer through the diffusional boundary layer

overlying the biofilm and through resistance to mass transfer

within the biofilm – both controlled by hydrodynamics and biofilm

architecture [28]. Lower boundary layer thickness in faster or

more turbulent flow nonlinearly affects mass transfer to the biofilm

[51]. Such hydrodynamic control on mass transfer is supported by

the close similarity of glucose mass transfer for different levels of

biofilm biomass (Fig. 4b). We therefore suggest flow-induced

enhanced mass transfer along increasingly higher bedforms as the

prime mechanism underlying the increased glucose uptake in

heterogeneous landscapes with more turbulence. Hydrodynamic

theory [52] predicts momentum flux and pressure gradients to

increase along bedforms as used in our mesocosms, and to

generate microhabitats differing in flow velocity, turbulence and

mass transfer.

In contrast, we postulate that DOC removal was most likely

controlled by mechanisms related to biodiversity rather than just

to flow. Several lines of evidence support this hypothesis. The

increase of bacterial beta diversity across the gradient of flow

heterogeneity suggests diversification of hydrodynamic microhab-

itats along bedforms to generate distinct local communities

assembled from the same species pool in the streamwater [53].

Though our results on DOC uptake and its molecular composition

do suggest complementary resource use, Mantel statistics related to

gamma diversity and gamma evenness were not significant (Table

S7). We recognize that gamma biodiversity does not support

complementarity (as niche differentiation) at the level of taxonomic

resolution available by T-RFLP. However, we argue that flow

heterogeneity generates a small but relevant beta diversity

component (at the meter-scale), when biofilms differentiate into

functionally non-redundant local communities whose diversified

metabolic capabilities may induce regional complementarity [54]

along the bedforms. Architectural differentiation and various

microbial taxa coexisting in close proximity in stream biofilms [55]

may foster facilitation in biofilms. For instance, exploitation and

syntrophy [56,57] or priming by algae [58] (themselves explicitly

distributed in space) may help degrade complex molecules. These

processes are certainly assisted by small-scale spatial variations of

biofilm architecture, related mass transfer and induced resource

gradients within biofilms [28]. Ultimately, this may diversify the

relative distribution of DOC moieties and shift consumption

towards hitherto less attractive DOC compounds. Community

composition was also found to be related to DOC mass transfer

but not to flow heterogeneity nor to resource use diversity, which

suggests regional ‘‘selection’’ [2,48] at flume-scale as a further

mechanism linking biofilm biodiversity to resource use. This effect

seems limited, however, as community composition was only

weakly influenced by heterogeneity and beta diversity. The

‘‘selection’’ effect could also occur locally, which, according to

theory [7,59], can still be interpreted as (regional) complementar-

ity in heterogeneous environments.

Most studies linking biodiversity to resource use do not account

for the molecular diversity of the resource, which, however, can

greatly exceed the biodiversity itself [22,23]. Results from FTICR-

MS showed that biofilms in the more heterogeneous landscapes

removed a wider range of DOC compounds from the stream

water – a pattern that clearly parallels the gradient of bulk DOC

uptake. The results also suggest that DOC consumption became

increasingly decoupled from compound-specific availability and

chemical characteristics with increasing flow heterogeneity.

Essentially, this is supported by compound-specific mass transfer

coefficients (vf-indDOC of 361 compounds) exhibiting less variation

at higher flow heterogeneity, which indicates more even (i.e.,

uniformly distributed) consumption across all compounds of the

DOC pool. This would translate into decreasing metabolic

specialization as flow heterogeneity increases. Evenness patterns

of the molecular composition of both the inflow and residual DOC

pools (Fig. 2c) indicate that resource use was limited to the more

Table 1. Mantel statistics between metavariable dissimilarity matrices.

b-diversity
resource use
distribution

resource use
diversity

DOC mass
transfer

glucose mass
transfer

community
composition

flow heterogeneity .81*
P = .007

.38
P = .22

.48
P = .046

.55
P = .018

.94*
P = .000

.52
P = .07

beta diversity .61
P = .011

.83*
P = .008

.73
P = .010

.86*
P = .004

.50
P = .06

resource use distribution .55
P = .038

.51
P = .017

.21
P = .23

.29
P = .18

.23
P = .31

resource use diversity .85*
P = .007

.40
P = .09

.54
P = .07

.59
P = .024

.16
P = .26

DOC mass transfer .57
P = .05

.01
P = .37

.37
P = .12

.67*
P = .007

.68*
P = .000

glucose mass transfer .50
P = .047

2.21
P = .75

.45
P = .09

.53
P = .07

.47
P = .10

community composition .15
P = .33

.04
P = 41

2.12
P = .64

.55*
P = .001

206
P = 49

Lower diagonal gives partial Mantel statistics (controlling for flow heterogeneity). Significant values are in bold and marked with an asterisk when significant at P,0.05
after Bonferroni-correction. Used dissimilarity matrices: HET (flow heterogeneity), BETA (beta diversity), DOCUSE (resource use distribution), DOCDIV (resource use
diversity), DOCMT (DOC mass transfer), GLCMT (glucose mass transfer). See Methods and Table S3 for details of computation.
doi:10.1371/journal.pone.0009988.t001
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abundant compounds in less heterogeneous flow, while it gradually

included less abundant compounds as flow heterogeneity

increased.

Our FTICR-MS results also suggest that more oxygenated

compounds were removed more readily from the water. This

finding contradicts traditional energetic considerations from

microbial food webs models [60]. While process design in

biotechnology often rests on the relationship between microbial

yield and the degree of reduction of the substrates, microbial

ecologists have not used this relationship frequently, at least in

part, because of the difficulty of measuring the elemental

composition of DOC [60]. Studies that apply ultrahigh-resolution

techniques, such as FTICR-MS, to streamwater [24,25] and

groundwater [61] DOC increasingly document the bioreactivity of

oxygenated compounds and corroborate our findings. For

instance, Kim et al. [58] studied the fate and transformation of

DOC on passage through bioreactors containing streambed

microorganisms from a temperate and a tropical stream. They

found that oxygen-rich molecules were selectively removed and

that microbial metabolism modified DOC to lower molecular

weight compounds in both streams. Using electrospray-ionization

mass spectrometry, Seitzinger et al. [24] found good consistency in

the molecular composition of DOC in two streams and a high

degree of similarity of compound removal as determined from

batch assays from both study streams. Our results complement

these previous studies on streamwater DOC molecular structure

[24,25] and findings relating biofilm metabolism to physical

habitat heterogeneity [62].

Patterns of bacterial abundance across the six heterogeneity

landscapes did not parallel patterns of glucose and DOC removal,

indicating no role of bacterial abundance as a driver of resource use.

We did not quantify the architectural differentiation of biofilms across

flumes, but it becomes obvious from the spatial variation of both

chlorophyll-a and bacterial abundance among microhabitats, that

biofilm differentiation was highest in the more heterogeneous flumes.

This is also supported by microscopic analysis of the biofilms and

points to an adaptive response of biofilms to the prevailing

hydrodynamics in the various microhabitats. For instance, biofilms

can exhibit a high degree of architectural differentiation (e.g., floating

streamers) enabling them to maximize resource use and to maintain

high biomass irrespective of the hydrodynamic conditions [63,64].

We cannot exclude possible indirect effects of this biofilm

differentiation on glucose and DOC uptake. For instance, Bottacin-

Busolin et al. [65] showed in the same experimental system that

biofilm architectural differentiation as induced by streambed

topography increased the transient storage of water and putatively

of contained solutes. In line with Battin et al. [28] extended storage of

solutes within and around biofilms and hence in close proximity with

microbial cells would enhance the uptake of organic compounds.

The observed gradients of mass transfer and resource use

diversity were not generated by surface area effects in the flumes.

In fact, mass transfer coefficients are expressions of uptake

performance corrected for the water volume and streambed

surface area in the various flumes. Furthermore, bedforms were

sealed to avoid confounding effects from varying streambed

topography and induced hydrodynamic exchange and carbon

processing [66]. Our experimental design thus mimicked streams

with a shallow interfacial zone constrained by bedrock or clay soils

[67] or by extensive benthic biofilm growth isolating the deeper

sediments in the streambed from the surface water [66].

What are the implications of our study? Streams and rivers are

increasingly recognized to contribute to global carbon fluxes, but

the underlying mechanisms remain obscure [21]. Our experimen-

tal work suggests that diverse (as architectural differentiation and

biodiversity) biofilms use a wider range of DOC resources in

heterogeneous flow. Underlying candidate mechanisms involve

hydrodynamics and related mass transfer, and complementarity

potentially induced by microbial facilitation, and selection effects.

Thus, complex biophysical mechanisms may underlie the

relationship between microbial biodiversity and ecosystem func-

tioning in heterogeneous streams. Our study may thus provide

fundamental insights into processes driving globally relevant

carbon fluxes in stream ecosystems. Because streams are most

vulnerable to human alteration through habitat homogenization

[68] and degradation, it is imperative to illuminate these

mechanisms at the fine scale.

Supporting Information

Figure S1 Descriptive statistics of depth and velocity across the

flow heterogeneity gradient.

Found at: doi:10.1371/journal.pone.0009988.s001 (0.02 MB

PDF)

Figure 6. Metavariable path diagrams. Path coefficients were
calculated from Mantel statistics (Table 1). Diagram (a) and (b) with and
without resource use diversity, respectively. Line style indicates
significance of link. Numbers in boxes represent error variances (%).
See Figure S4 for further path diagrams.
doi:10.1371/journal.pone.0009988.g006
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Figure S2 Van Krevelen diagrams of CHONS molecular

compositions.

Found at: doi:10.1371/journal.pone.0009988.s002 (0.14 MB

PDF)

Figure S3 Relationships of beta-diversity with diversity of DOC

resource use and bulk DOC uptake.

Found at: doi:10.1371/journal.pone.0009988.s003 (0.02 MB

PDF)

Figure S4 Alternative metavariable path diagrams calculated

from Mantel statistics.

Found at: doi:10.1371/journal.pone.0009988.s004 (0.03 MB

PDF)

Table S1 Characterization of the hydrodynamic conditions over

the control streambed and the bedforms of the landscapes

increasing in flow heterogeneity.

Found at: doi:10.1371/journal.pone.0009988.s005 (0.04 MB

PDF)

Table S2 Water-related environmental background conditions

(nutrient concentrations, DOC concentrations and temperature)

measured at the outlet of mesocosms and in the header tank.

Found at: doi:10.1371/journal.pone.0009988.s006 (0.01 MB

PDF)

Table S3 Metavariable dissimilarity (distance) matrices and

underlying variables.

Found at: doi:10.1371/journal.pone.0009988.s007 (0.02 MB

PDF)

Table S4 Results of hierarchical partitioning analysis of DOC

compound-specific characteristics as predictors for mass transfer to

the streambed.

Found at: doi:10.1371/journal.pone.0009988.s008 (0.01 MB

PDF)

Table S5 Selected multiple linear regression models using DOC

compound-specific characteristics as predictors for mass transfer to

the streambed.

Found at: doi:10.1371/journal.pone.0009988.s009 (0.01 MB

PDF)

Table S6 Results of flume level (gamma) biodiversity partition-

ing into independent orthogonal components alpha and beta, or

richness and evenness.

Found at: doi:10.1371/journal.pone.0009988.s010 (0.02 MB

PDF)

Table S7 Associations between metavariable dissimilarity ma-

trices as expressed by Mantel statistics.

Found at: doi:10.1371/journal.pone.0009988.s011 (0.02 MB

PDF)

Text S1 Method Details

Found at: doi:10.1371/journal.pone.0009988.s012 (0.11 MB

PDF)
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