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Introduction

Abstract

Context: Thyroid hormone transport across the plasma membrane depends on transmembrane
transport proteins, including monocarboxylate transporter 8 (MCTS8). Mutations in MCT8
(or SLC16A2) lead to a severe form of X-linked psychomotor retardation, which is characterised by
elevated plasma triiodothyronine (T5) and low/normal thyroxine (T4). MCT8 contributes to hormone
release from the thyroid gland.

Objective: To characterise the potential impact of MCT8-deficiency on thyroid morphology in a patient
and in Mct8-deficient mice.

Design: Thyroid morphology in a patient carrying the A224V mutation was followed by ultrasound
imaging for over 10 years. After thyroidectomy, a histopathological analysis was carried out. The
findings were compared with histological analyses of mouse thyroids from the Mct8 "% model.
Results: We show that an inactivating mutation in MCT8 leads to a unique, progressive thyroid
follicular pathology in a patient. After thyroidectomy, histological analysis revealed gross
morphological changes, including several hyperplastic nodules, microfollicular areas with stromal
fibrosis and a small focus of microfollicular structures with nuclear features reminiscent of papillary
thyroid carcinoma (PTC). These findings are supported by an Mct8-null mouse model in which we
found massive papillary hyperplasia in 6- to 12-month-old mice and nuclear features consistent with
PTC in almost 2-year-old animals. After complete thyroidectomy and substitution with levothyroxine
(1-T4), the preoperative, inadequately low T4 and free T, remained, while increasing the 1-T4 dosage led
to T3 serum concentrations above the normal range.

Conclusions: Our results implicate peripheral deiodination in the peculiar hormonal constellation of
MCT8-deficient patients. Other MCTS8-deficient patients should be closely monitored for potential
thyroid abnormalities.
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Mutations in MCT8 have been described in more than
25 families, including missense, nonsense, splice site

Mutations in the monocarboxylate transporter 8
(MCTS8) gene (SLC16A2) lead to a syndrome of severe
psychomotor retardation (1-3), and are the cause
for the Allan—Herndon-Dudley syndrome (OMIM
300523), one of the first X-linked mental retardation
syndromes described. Patients present with axial
hypotonia, spastic or dystonic quadriplegia, and usually
do not attain the ability to speak, sit, stand or walk.
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and insertion mutations, as well as small and large
deletions (1-4). Thus, it is generally assumed that the
syndrome is caused by a loss-of-function mechanism.
Thyroid hormones need transmembrane transport
proteins to cross cellular membranes (5). A number of
thyroid hormone transport proteins have been identi-
fied, including MCTS8, a 12-transmembrane spanning
member of the major facilitator superfamily (6, 7).
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Several lines of evidence suggest that triiodothyronine
(T3) transport is impaired in MCT8-deficient patients
and in Mct8-deficient mouse models (8—10). While T;
transport is significantly decreased in cortical neurons
cultured from Mct8-deficient mice (11), Mct8-deficiency
may be partially compensated in some mouse tissues
by the coexpression of alternative T5 transporters (11).
Recently, two reports showed the involvement of Mct8
in the secretion of thyroid hormones from the thyroid
gland in mice (12, 13). However, the paradoxically
low total thyroxine (T4) level in the presence of elevated
T3 and normal to high TSH observed both in humans
and mice still remains unexplained.

In one patient reported previously (1), thyroid
sonography was inconspicuous at 16 months and 3
years of age. From 9 years of age, we have noted
progressive hyperperfused nodular changes, which after
more than 1 year of further observation became
suggestive of thyroid malignancy. Total thyroidectomy
was performed in the patient. Histological analysis
demonstrated gross morphological alterations in the
thyroid, but did not clearly support diagnosis as
papillary carcinoma. We also observed a high frequency
of papillary thyroid hyperplasia in the Mct8-deficient
mouse model. In the oldest mice, these changes were
classified as papillary thyroid carcinoma (PTC).

Materials and methods

The patient

The detailed endocrine and neurological phenotype
of the patient carrying the A224V mutation in MCT8
has been reported previously (1, 14). He demonstrates
the typical hormonal features of MCT8-deficiency with
low serum T, and elevated T5 levels. As we could show
earlier, the A224V mutation enables MCT8 to be still
localised at the cell surface, but the mutant protein does
not exhibit transport activity in cellular T;-uptake
assays (15). In the follow-up protocol of this patient
with a so far unknown molecular mechanism in a
new rare disease (Doppler)-sonography was included
starting from the age of 1 year. Owing to increasing
hyperperfusion of nodular changes in the thyroid
resulting in a picture resembling thyroid malignancy,
thyroidectomy had to be performed at an age of 10 years
without complications. Postoperative substitution was
initiated with 75 pg levothyroxine (1-T4) per day.

Mice

The mouse strain carrying a null mutation in the Mct8
gene was described previously (9, 11). The mice were
of a C57Bl/6] genetic background for more than ten
backcrosses. Animal experimentation was approved
by Landesamt fiir Gesundheit und Soziales, Berlin,
#T0458/09. A subset of animals had been subjected to
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the pathology screen at the German Mouse Clinic
(Helmholtz Zentrum Miinchen) with similar results
concerning thyroid pathology as assessed by the
laboratory in Essen.

Hormone measurements

Thyroid hormones from 20 male mice of each genotype
(Mct8 """ and Mct8 ™ 'Y) were measured by a competitive
RIA (Diasorin, Saluggia, Italy) as described previously
(16). TSH in mouse serum was determined by a self-made
RIA using a guinea pig anti-mouse TSH antibody
(AFP98991) and a crude TSH/LH RP (AFP51718MP)
obtained from the National Hormone and Peptide
Program (NHPP), USA as described in Streckfuss et al. (16).

OPCR analysis

Human A pool of total RNA prepared from normal
human thyroid tissue was purchased from BioCat
(Heidelberg, Germany), reverse transcribed and ana-
lysed by qPCR as described recently (11).

Mouse Single thyroids from mice were prepared using
a commercial RNA extraction kit, reverse transcribed
and analysed by qPCR with an iCycler instrument and
SYBR green as described (11). All analyses were done
in triplicate. 18S rRNA was used as reference gene.

Western blot

Single thyroids from wild-type C57Bl/6 and Mct8 ™'Y
were homogenised, separated by SDS-PAGE and
transferred to nitrocellulose membrane. The anti-
MCT8 antibody from Atlas Antibodies (Stockholm,
Sweden) was used for detection as described (11).
Transferrin served as membrane fraction control.

Histological analyses

Thyroids were embedded in paraffin and stained with
hematoxylin and eosin (H&E). Immunohistochemical
stainings were performed as described (11) with
antibodies against Mct8 (1:250, Atlas Antibodies),
thyroglobulin (Tg; 1:750, Thermo Fisher Scientific,
Waltham, MD, USA) and sodium/iodide symporter (NIS;
1:1200, Acris Antibodies, Herford, Germany). Morpho-
metrical analyses were performed on about 100 follicles
per group at the age of 9 months. Axiovision Software
(Carl Zeiss AG, Oberkochen, Germany) was used for
measurements on a Zeiss Axioscope II mot plus
equipped with an AxioCam. The formulas given in the
publication of Friedrichs et al. (17) were used.

Deiodinase assay

Type I deiodinase assay was performed on whole thyroid
homogenates as described before (18).
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Ethics statement

Thyroidectomy was performed, as therapy, not as a
research objective, after seeing the progressive changes
in the thyroid. Sonography images were presented to a
clinical grand round without mentioning the genetic
disease of the patient. Because of the feeble condition of
the mentally retarded patient, it was decided not to
perform multiple fine-needle biopsies. Because surgery
was indicated based on the clinical management of the
patient and was not part of a scientific study, ethics
approval was not obtained. The patient’s parents
provided written consent for thyroidectomy and publi-
cation. There are not yet clinical guidelines for the
management of this rare disease.

Results

Case report

MCTS is the most abundant thyroid hormone transpor-
ter in the human thyroid as judged by qPCR (Fig. 1A).
As in the mouse, MCTS8 is located in the basolateral
membrane (Fig. 1B). A patient carrying an A224V
mutation was described in detail in the initial and a
subsequent publication of MCT8-deficiency (1, 14), and
was followed since the age of 4 months.

Ultrasound features At an age of 16 months, a normal
thyroid structure with a small volume (1.1 ml) was
found (Fig. 1C). During follow-up, thyroid structures
changed gradually with irregular, in part nodular
appearance in ultrasound (Fig. 1D), which culminated
in a massive hyperperfused, entirely altered thyroid
image at an age of 9 years (Fig. 1E and F). During this
process of transformation the volume of the thyroid
remained within the normal, age-adjusted range. Based
on the severe hyperperfusion and the progressive
transformation, the suspicion of malignancy arose. We
decided to perform complete thyroidectomy when the
patient was 10 years old. Since the preoperative
calcitonin level was only 5 pg/ml, C-cell hyperplasia or
medullary thyroid carcinoma was deemed unlikely.

Pathology Histological analysis revealed microfollicu-
lar areas with a peculiar fibrous stroma as well as
several nodules with macrofollicular structure (Fig. 1G-T).
The stroma was rich in extracellular matrix that was
considered responsible for the coarse appearance noted
already during surgery (Fig. 1]). Thyroid stroma fibrosis
represents a typical feature of various thyroid cancers
(papillary and medullary carcinoma); however, a
normal distribution of C-cells (not shown) within the
areas showing stromal fibrosis argues against malig-
nancy. In a focus of <5 mm, irregularly shaped nuclei
of varying size were noted resembling PTC. However,
these nuclear changes were not considered sufficient to
justify the diagnosis of PTC (Fig. 1K and L).
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Figure 1 Clinical and pathological features of MCT8-deficiency in a
patients thyroid. Expression of MCT8 in the human thyroid. (A) QPCR
analyses in the human thyroid gland relative to 8-actin mRNA. MCT8
is the most abundantly expressed T; transporter. Eight transporters
were tested. SLC10A1, which is only expressed in liver served as a
negative control. (B) Immunohistochemistry for MCT8 in the normal
human thyroid. The protein is located in the basolateral membranes of
thyrocytes. Ultrasonographic imaging: (C) patient’s thyroid at an age
of 16 months. (D) Single nodule in the patient’s thyroid at the age of
3 years. (E) Still normal-sized thyroid with marked diffuse nodular
changes at the age of 9 years with normal volume. (F) Doppler image
from (E) shows hyperperfusion. Histological sections of the patient’s
thyroid: (G) overview. Macrofollicular nodules with epithelial hyper-
plasia adjacent to a large microfollicular area with stromal fibrosis.
(H) Detail from (G), stromal fibrosis surrounding small ‘inactive’
follicles. (I) Large, active follicles with epithelial invaginations into the
colloid. (J) Microfollicular area with stromal sclerosis. (K) Small focus
with irregularly shaped nuclei resembling nuclear changes of PTC.
(L) Higher magnification of nuclear irregularities: note the pronounced
ground-glass appearance of nuclei, whereas another hallmark of
PTC, namely the irregular shape of nuclei, is lacking.
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Figure 2 Thyroid function tests in a patient carrying the A224V
mutation. Thyroid function tests in a patient carrying the A224V
mutation. Patient age is indicated in the top line and sonography is
indicated below. L-T, supplementation dose is depicted as black
columns. Hormone levels and cognate reference values are given
below. Data from the same patient already reported in (14) are
marked with an asterisk (*). Thyroidectomy is indicated by the
vertical bar.

Molecular analysis Additional molecular pathological
investigations for BRAF mutations and possible
RET/PTC rearrangements from this area yielded
negative results (data not shown). Owing to the final
diagnosis of a small area of PTC-like histology without
clear detection of malignant structures, no further
radioiodine therapy was initiated.

Outcome After surgery, the patient was treated with an
increasing dose of L-T, with the aim to normalise TSH.
Treatment was initiated with 75 pg 1-T4 (4 ug/kg per
day) and the dose was finally escalated to reach 125 pg
(6 ng/kg per day; Fig. 2), a dose normally considered
quite high. Accordingly, while T, and TSH were
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normalised, the treatment leads to Ts levels above
normal, resembling the same preoperative increased
T3/T4 ratio typical for MCT8-deficient patients. The
contribution of residual thyroid tissue to this constella-
tion was excluded by measuring postoperative Tg,
which was very low (0.3 pg/l) consistent with complete
thyroidectomy:.

Mouse model

In parallel to our observations of gradual changes in
the patient’s thyroid, we took advantage of our Mct§8-
deficient mouse model to investigate whether the
observed histological changes are specific for the
A224V mutation in the patient or whether lack of
functional MCT8 expression in the thyroid bears wider
relevance. Mct8 is also the predominant thyroid
hormone transporter in the murine thyroid (Fig. 3A),
where it shows the same basolateral membrane
localisation as in human thyrocytes (Fig. 3B). When
we investigated the thyroid tissue from 6-month-old
Mct8-deficient mice, we found giant nodules with
thyroid follicular cell hyperplasia (Fig. 3C). More
detailed examinations of these follicles in Mct8 'Y
mice by immunohistochemistry demonstrated normal
staining for Tg and the NIS. Measurements of cross-
sectional follicular areas indicated a shift towards
bigger follicles in Mct8 Y mice (Fig. 3D). Follicular
epithelial extension was also significantly increased in

C
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Figure 3 Histological and morphometric alterations in thyroids from Mct8-deficient mice. (A) QPCR analyses in the murine thyroid gland.
Mct8is the most abundantly expressed T3 transporter. Seven out of 14 transporters tested are shown. Liver-specific Slc10a1 was used as a
negative control. Inset: Mct8 protein expression in thyroid compared with brain. Transferrin receptor (TfR) served as membrane protein
control. (B) Immunohistochemistry for Mct8 in the murine thyroid. The protein is located in the basolateral membrane of thyrocytes. Thyroid
tissue from an Mct8~" mouse (right) served as negative control. Follicles are indicated by broken lines. Scale bar 50 um. (C) Follicular cell
tumour with papillary structures and nuclear features of papillary carcinoma (nuclear infoldings, grooves and other irregularities, elongation
and overlapping) in Mct8-deficient thyroids as analysed by H&E staining, immunohistochemistry for thyroglobulin (Tg) and sodium/iodide
symporter (NIS). Note the basolateral localisation of NIS in the aberrant epithelium. Scale bars 50 um. (D) Follicular size is increased in
Mct8-deficient thyroids. Cross-sectional follicular areas were measured, grouped according to size and the fraction of follicles falling into
each group was plotted against the area. (E) Follicular epithelial extension is significantly increased in Mct8-deficient thyroids. ***P<0.001,
Student’s t-test, two-sided, unpaired. (F) Activity of type | deiodinase is unaltered in Mct8-deficient thyroids. n=6 animals/group.
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Figure 4 Progressive thyroid pathology in aged Mct8-deficient
mice. (A) Thyroid section of a 600 days old Mct8~* mouse.

(B) Detail from (A) demonstrates papillary structures. (C and D)
Characteristic nuclear features of papillary thyroid carcinoma
including irregular shape, nuclear overlap, nuclear pseudoinclu-
sions, crowding and enlargement. (E) Thyroid gland from a 78 days
old Mct8** mouse with normal morphology. (F) Tiny papillary
microcarcinoma in the thyroid gland from a 600 days old Mct8*”
mouse. (G) Progressive thyroid pathology in Mct8-deficient mice.
The fraction in (%) of thyroids containing papillary lesions is
increasing with age. Fifty-six mice were investigated (30 Mcts=%
and 26 Mct8™* mice). Small papillary infoldings occurred in (1/4)
Mct8~" and (0/4) Mct8™* mice younger than 6 months. Papillary
lesions occurred in (6/14) Mct8~" and (0/14) Mct8"* mice of 6
months to 1 year of age. Papillary lesions and papillary carcinoma
of 1-4 mm size were found in (11/12) Mct8~" mice above the age
of 2 years. Only two Mect8™** mice out of eight of the same age
group harboured very small papillary foci. Fisher’s exact test
(two-sided) reported significant differences between genotypes

at 6 months to 1 year (P=0.0159) and >1 year (P=0.0194).
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Mct8-deficient mice (Fig. 3E). Diol activity was not
different between Mct8 'Y and Mct8*'Y thyroids
(Fig. 3F). We then analysed the thyroids of mice up to
600 days of age and found even more dramatic
changes. In some 600 day-old animals, almost the
entire gland consisted of papillary structures (Fig. 4A).
Focally, irregular follicular structures showed intralum-
inal papillary projections with cells exhibiting marked
nuclear changes. Based on these nuclear changes, these
foci were classified as PTC (Fig. 4B-D). Despite these
profound morphological changes, we never observed
invasion of adjacent tissues. Thyroids from wild-type
mice of this strain remained inconspicuous (Fig. 4E),
although occasionally in 600 days old animals, minute
papillary structures, similar to those seen in young
Mct8 'Y mice, were detected, but these lacked any
nuclear changes (Fig. 4F). Large hyperplastic areas were
never observed in control animals. Plotting the
incidence of papillary changes in the thyroids of mice
against animal age revealed an increase of thyroid
pathology with time in Mct8’¥ mice (Fig. 4G). In the
group older than 1 year more than 80% of the mutant
mice sustained papillary thyroid alterations.

The only known functions of MCT8 are cellular
uptake or release of thyroid hormones. Whereas
elevated total serum Tj; levels in the face of low normal
T4 are found in both human patients and in the Mct8-
deficient mouse model, some controversy remained
whether TSH levels are normal or slightly elevated. We
have analysed groups of 20 male mice of each Mct8*"¥
and Mct8 " genotype between the age of 3 and 21
months and measured total T3, T4 and TSH. Since no
variation with age was noted, we pooled the data and
finally were able to support a significant twofold
increase in TSH in the Mct8-deficient group (Fig. 5).

Discussion

We describe here, for the first time, a case of altered
thyroid morphology in a patient with MCT8-deficiency.
Progressive changes in thyroid morphology were
followed over the years and resulted in total thyroid-
ectomy. Histological analysis demonstrated massive
morphological alterations, but did not clearly support
diagnosis of PTC. In fact, the appearance of the patient’s
thyroid does not completely resemble any syndrome we
are aware of. Papillary thyroid hyperplasia develops
with age in Mct8-deficient mice supporting the notion
that changes in thyroid histology are related to the loss-
of-function genotype of MCTS8 in the patient. Nuclear
changes in very old Mct8-deficient mice are consistent
with PTC. A problem for comparison is that the
histological pictures are not exactly the same in the
patient and mouse model. Apart from the species
differences that are also seen in other aspects of this
syndrome, the loss-of-function mutation in MCT8/Mct8
occurs in both instances. It is unclear at present what
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Figure 5 Thyroid function tests in Mct8-deficient mice. Total T3 is
increased, while total T, is inappropriately low in Mct8~" mice. TSH
is significantly increased in the mutants. Animals were 3—21 months
of age. No correlation of T3 and T, values with age was noted. TSH
increased with age. ***P<0.001, Mann-Whitney U test.

kind of mechanism could underlie the progressive
thyroid changes upon loss of MCTS8 function. One
possibility could be a cell-autonomous defect of thyroid
hormone release with a possible exposure to increased
thyroid hormone signaling within the thyrocyte.
Alternatively, Mct8 may be involved in the export
from thyrocytes of toxic metabolites, although there is
as present no indication of any Mct8 substrate other
than iodothyronines. Several genetic alterations are
observed in thyroid cancer and have guided the
generation of respective mouse models (19). These
include germline or somatic mutations in BRAF (20)
and RET (21). RET/PTC3-transgenic mice develop
PTC with lymph node metastases (21). A careful and
detailed histological comparison of RET/PTC3- and
human papillomavirus type 16 E7-transgenic (Tg-E7)
mice showed that RET/PTC3 mice appear as a partial
and transient model of human PTCs, while human
papillomavirus type 16 E7-transgenic mice present with
a dominant goitrous pattern of thyroid changes (22). In
younger Mct8 " mice, the follicular pattern compris-
ing a mixture of huge follicles lined with flat epithelia
and irregularly shaped follicles with ‘palissade-like’
folded epithelia resembles Tg-E7 mice. Mct8 ™Y and
Tg-E7 thyroids thus bear some similarity to goiter.
Papillary thyroid cancer in BRAFY®°E-transgenic mice
is growing rapidly and invades adjacent tissue (20).
Thyroid growth in Mct8-deficient mice is much slower
than in RET/PTC3- and BRAFY°°““transgenic mice.
Moreover, we observed neither lymph node or distant
metastases nor invasive growth into perithyroidal
structures. Pathological changes in Mct8-deficient
mice are therefore different from any described mouse
model of thyroid carcinomas. We speculate that
constant TSH stimulation may contribute to elevated
follicular activity and proliferation as in iodine-deficient
goiter, Graves' disease (23), and mutations in the
thyroid hormone biosynthetic pathway (24). This
notion is supported by the observations by us and
others of increased follicular epithelial extension (12).
Similar as in a case of long-standing goiter due to
Pendred’s syndrome, elevated TSH levels may predis-
pose to hyperplasia that may result in eventual
neoplasia upon the accumulation of additional somatic
mutations (25). Senou et al. (26) have recently
demonstrated oxidative stress in Pendred’s thyrocytes
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that may lead to genomic damage. We have observed a
robust twofold elevation of plasma TSH in Mct8-
deficient mice that, if sustained over years, may promote
the growth of papillary carcinomas, which might
otherwise have remained undetected tiny lesions. At
the moment, it is not possible in our model to clearly
separate the influence of chronically elevated TSH from
a cell-autonomous loss- or gain-of-function phenotype
of Mct8-inactivation. Any manipulation of thyroid
function to the effect of elevated TSH may result in
other confounding metabolic alterations. Notably,
increased TSH is not a consistent finding in patients
with MCTS8-deficiency, nor have TSH levels been
significantly elevated in the patient described in this
study. Therefore, additional mechanisms need to be
considered to explain the complete structural transfor-
mation of the patient’s thyroid tissue.

Another unresolved question is the mechanism
underlying the inappropriately low T, found in patients
and in the mouse model. We suggest that our findings in
the thyroidectomised patient could help resolve this
issue: since Mct8 is apparently involved in thyroidal
hormone secretion (12), it was proposed that unba-
lanced release of thyroid hormones may underlie the
low T4 levels in the MCT8-deficiency syndrome (13).
However, increased instead of decreased T; is a robust
finding in patients and mice lacking MCTS8. In addition,
impaired thyroidal release of iodothyronines from an
MCT8-deficient gland is unlikely the primary cause of
the peculiar high T3, low T, and high-normal TSH
profile, since this pattern persisted after thyroidectomy
and 1-T4 substitution therapy. In our eyes, MCTS-
deficiency may cause a relative pituitary insensitivity
towards T3 and peripheral deiodination may lead to
diminished T, levels. This interpretation is consistent
with the observation that T, supplementation of
athyroid Pax8 ' ~; Mct8 'Y mice revealed inappropri-
ately low T, levels compared with T5 (13). This finding
in combination with our data from the patient strongly
argues for an extrathyroidal, possibly deiodination-
dependent, mechanism responsible for the high Ts;-low
T, constellation in MCT8-deficiency.

In clinical practice, thyroid pathology should be
closely monitored in patients with other MCTS§
mutations to establish whether the thyroid morpho-
logical changes are common to the MCT8-deficiency
syndrome.
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