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Abstract

Aims/hypothesis Metabolomics has opened new avenues for
studying metabolic alterations in type 2 diabetes. While many
urine and blood metabolites have been associated individually
with diabetes, a complete systems view analysis of metabolic
dysregulations across multiple biofluids and over varying
timescales of glycaemic control is still lacking.

Methods Here we report a broad metabolomics study in a
clinical setting, covering 2,178 metabolite measures in saliva,
blood plasma and urine from 188 individuals with diabetes
and 181 controls of Arab and Asian descent. Using multivar-
iate linear regression we identified metabolites associated with
diabetes and markers of acute, short-term and long-term
glycaemic control.
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Results Ninety-four metabolite associations with diabetes
were identified at a Bonferroni level of significance
(p<2.3x107°), 16 of which have never been reported. Sixty-
five of these diabetes-associated metabolites were associated
with at least one marker of glycaemic control in the diabetes
group. Using Gaussian graphical modelling, we constructed a
metabolic network that links diabetes-associated metabolites
from three biofluids across three different timescales of
glycaemic control.

Conclusions/interpretation Our study reveals a complex net-
work of biochemical dysregulation involving metabolites
from different pathways of diabetes pathology, and provides
a reference framework for future diabetes studies with meta-
bolic endpoints.
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Introduction

Metabolomics [1, 2] has been successfully used to identify
molecules associated with diabetes [3], including metabolites
from the three major energy sources (carbohydrates, lipids and
proteins [4—6]) as well as molecules associated with plasma
phospholipids [7, 8] and branched chain amino acids
(BCAAs) [9, 10], and individual molecules such as o-
hydroxybutyrate [11] and 2-aminoadipic acid [12]. To date,
most large-scale, population-based studies have focused only
on metabolites collected from a single biofluid, primarily
blood or urine. However, we recently showed that saliva can
also be used to identify metabolic changes in diabetes [13].
Since metabolic readouts of diabetes-related biochemical pro-
cesses in circulating body fluids are primarily proxies for bio-
chemical processes occurring elsewhere in the body, these
results need to be interpreted in context. We propose that a
systems-wide analysis combining metabolomic measure-
ments obtained across different biofluids isolated from the
same patient would improve our understanding of the interac-
tions between and roles of different organs and tissues in the
development and progression of diabetes.

Impaired glucose metabolism is a hallmark of diabetes, and
episodes of dysregulated glucose levels can be monitored on
different timescales. For studies assessing the associations be-
tween metabolites and diabetes in a case—control design, it is
essential to interrogate metabolites that are specifically asso-
ciated with individual markers of glycaemic control in patients
with diabetes. The most frequently used endpoints for medi-
cally assessing patients with diabetes is the blood HbA . level,
which reflects the time-averaged blood glucose level collected
over the previous 2—3 months [14] and can be considered a
marker of long-term glycaemic control. The 1,5-
anhydroglucitol (1,5-AG) level is also used as a marker of
time-averaged blood glucose levels, with lower levels of 1,5-
AG being the consequence of frequent episodes of glucosuria
experienced over the previous 1-2 weeks [13, 14]. Finally,
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glucose in the urine (glucosuria) is used as a marker of acute
glucose dysregulation over a timescale of 612 h. Therefore,
for the purpose of this study, glucose homeostasis in individ-
uals shall be characterised on three different timescales, with
urinary glucose serving as a marker of acute glycaemic con-
trol, plasma 1,5-AG levels as a marker of short-term
glycaemic control and HbA . as a marker of long-term
glycaemic control.

Gaussian graphical models (GGMs) have proven to be
powerful tools for detecting signatures of biochemical path-
ways in large metabolomics datasets [15, 16]. Using this ap-
proach, the variability in metabolic individuality encountered
in larger population studies represents a natural experiment
that allows one to derive biochemical connections between
correlated metabolites in a purely data-driven manner.
Metabolite-metabolite interactions in these GGMs are identi-
fied by partial correlations between the measured metabolites;
they have been shown to correspond to known biochemical
interactions that can be used for reconstructing metabolic net-
works from data alone [16, 17]. Mapping metabolite—disease
associations onto such networks may then allow for functional
interpretation in a naturally derived biochemical context
[18-20].

In this study, we examined how metabolic systems are
altered in diabetes and how these changes are related to
glycaemic control over three different timescales (acute, short
term and long term) across three biofluids (plasma, urine and
saliva). Using a comprehensive non-targeted metabolomics
approach, we made over 2,000 individual metabolite mea-
sures per individual in plasma, urine and saliva samples from
369 participants of Arabic and Asian ethnicities. Using linear
regression analysis with relevant covariates and stringent
Bonferroni correction, we first identified metabolites in saliva,
plasma and urine that were associated with diabetes. Among
these metabolites, we then identified those associated with at
least one of the three glycaemic control variables in samples
from patients with diabetes. Finally, we derived a GGM for all
metabolites measured in all three biofluids, thereby creating a
biochemical reference network that revealed biochemical con-
nections between all diabetes-associated metabolites across
the different biofluids and timescales of glycaemic control.

Methods
Study design

This study was embedded in the Qatar Metabolomics Study
on Diabetes (QMDiab), a cross-sectional case—control study
with 374 participants [13, 20]. All study participants were
enrolled between February 2012 and June 2012 at the
Dermatology Department of Hamad Medical Corporation
(HMC) in Doha, Qatar. Inclusion criteria were a primary form
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of type 2 diabetes (for patients) or an absence of type 2 dia-
betes (for controls). Sample collection was conducted in the
afternoon, after the general operating hours of the morning
clinic. Patient and control samples were collected in a random
order as they became available and at the same location using
identical protocols, instruments and study personnel. Samples
from patients and controls were processed in the laboratory in
a blinded manner. Data from five participants were excluded
from the analysis because of incomplete records, leaving 176
patients and 193 controls. Of the 193 control participants ini-
tially enrolled, 12 had HbA,. levels above 6.5% (48 mmol/
mol) and were subsequently classified as patients, resulting in
188 patients and 181 controls.

Ethics statement

This study was conducted following the World Medical
Association Declaration of Helsinki — Ethical Principles for
Medical Research Involving Human Subjects. It was ap-
proved by the Institutional Review Boards of HMC and
Weill Cornell Medical College — Qatar (WCMC-Q; research
protocol no. 11131/11). All study participants provided writ-
ten informed consent.

Phenotyping

Information regarding age, sex, ethnicity, BMI and diabetes
history was obtained by trained researchers using question-
naires and standardised protocols (Table 1). Saliva, plasma
and urine specimens were collected and processed using
standardised collection protocols and stored on ice for trans-
portation. Within 6 h of collection, all samples were clarified
by centrifugation at 2,500¢ for 10 min, aliquoted and stored at
—80°C. Duplicate blood samples were sent directly to the hos-
pital’s clinical biochemistry laboratory for comprehensive
analysis including HbA . level, lipid profile, general chemis-
try and a complete blood count [13].

Metabolomics

Metabolic profiling was achieved using ultra-HPLC and GC
separation, coupled with tandem MS using established proce-
dures and technology (at Metabolon, Durham, NC, USA;
Table 2) [21, 22]. The essential steps of this process are pro-
vided as electronic supplementary material (ESM) Methods.
Median process variability, as determined by repeated mea-
surements of pooled samples, was 15.3% in saliva, 15.8% in
plasma and 9.8% in urine. In the initial sample set of 374
participants, 147 metabolites were detected in saliva, plasma
and urine, 391 were detected in only two sample types and
1,030 were detected in a single sample type. Thus, a total of
2,253 individual metabolite signals were measured in the three
biofluids (603 in saliva, 759 in plasma and 891 in urine) when

counting the same molecule in different biofluids as separate
entities, or a total of 1,568 unique metabolites when counting
detection of the same molecule in multiple fluids only once.
After excluding metabolite measures with fewer than 50 valid
detections in a single fluid (13.6%), many of which were
xenobiotics related to medication, 2,178 distinct metabolite
measures were used for analysis (ESM Table 1).

Statistical analysis

Regression analysis Metabolite levels were scaled by run-
day medians, normalised using osmolality (saliva and urine
data only), log-transformed and then z-scored. Missing values in
metabolites with more than 20% missing data points were im-
puted to the smallest detected value since it can be assumed that
they are probably below the detection limit of the method. Values
for metabolites >4 SD from the mean were excluded from the
analysis. Multivariate linear regression, adjusting for age, sex,
ethnicity and BMI, was used to assess the statistical significance
of the association of metabolites with diabetes, as previously
described [5]. A stringent Bonferroni level of significance of
p<2.3x107 (=0.05/2,178) was used to infer association.

Glycaemic control By limiting the analysis to Bonferroni
significant diabetes-associated metabolites (n=94), we exam-
ined their association with acute glycaemic dysregulation (6—
12 h) and short- (1-2 weeks) [13] and long-term (2—3 months)
[14] glycaemic control; only diabetes patients were included
in this case. Acute glycaemic dysregulation was defined by
MS detection of glucose in urine (66 out of 188 cases; a
dichotomous variable). Note that metabolomics measure-
ments only provide semiquantitative measures of glucose in
urine. Therefore, a physiological cut-off to define glucosuria
could not be applied. However, in only two of the 181 controls
was glucose detected in urine. We therefore consider the de-
tection limit of the MS measure a viable proxy. Short- and
long-term glycaemic control scales were defined by 1,5-AG
and HbA /. levels in plasma, respectively (continuous vari-
ables) [14]. As in the previous regression analysis, multivari-
ate linear regression adjusting for age, sex, ethnicity and BMI
was performed. A Bonferroni level of significance of p<1.8 %
107* (=0.05/(94 % 3)) was used to infer association (94 metab-
olites and three measures of glycaemic control).

GGMs Based on the complete quality-checked and imputed
metabolomic datasets (369 individuals and 2,178 metabolite
measures), we computed partial correlation values adjusting
for diabetes state, age, sex, ethnicity and BMI to construct the
GGMs. A stringent Bonferroni level of significance of
p<2.1x107%[=0.05/([2,178x2,177)/2)] was applied to deter-
mine significant partial correlation edges. In the resulting
GGM with 3,742 edges (significant partial correlations)
connecting each of 1,907 metabolites with at least one other
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Table 1 General characteristics

of the participants Characteristic Type 2 diabetes (n=188) Controls (n=181) p value

Age (years) 53.8 (35.0-70.7) 38.5(23.6-62.3) <0.001
Sex (female [%]) 81 (43.1) 99 (54.7) 0.03
Ethnicity® (%)

Arab 93 (43.1) 113 (62.4)

South Asian 74 (39.4) 39 (21.5) 0.002

Filipino 14 (7.4) 22 (12.2)

Other or mixed 73.7) 7(3.9)
BMI (kg/m?) 29.5 (21.6-42.6) 27.6 (21.7-39.1) 0.004
Waist circumference (cm) 101.0 (83.0-128.0) 94.5 (74.0-116.1) <0.001
Hypertension (%) 103 (54.8%) 27 (14.9%) <0.001
Total cholesterol (mmol/1) 4.95 (3.03-6.88) 5.13 (3.74-6.61) 0.11
HDL-cholesterol (mmol/l) 1.13 (0.71-1.78) 1.22 (0.77-1.90) 0.02
LDL-cholesterol (mmol/l) 2.79 (1.45-4.45) 3.07 (1.55-4.67) 0.02
Triacylglycerol (mmol/l) 1.77 (0.76-4.69) 1.38 (0.63-3.61) 0.002
Creatinine (nmol/l) 75.0 (48.4-112.6) 69.0 (50.0-99.0) 0.01
HbA . (%) 7.8 (5.6-11.5) 5.5(4.7-6.2) <0.001
HDbA |, (mmol/mol) 62 (38-102) 37 (28-44) <0.001
Duration of diabetes (years) 8.0 (1.0-31.7) N/A N/A
Diabetes medication (%)

Insulin 39 (20.7) 0(0.0) N/A
Oral hypoglycaemic medication

Metformin 120 (63.8) 0(0.0) N/A

Sulfonylureas 70 (37.2) 0 (0.0) N/A

Thiazolidinediones 6(3.2) 0 (0.0) N/A

Dipeptidyl peptidase-4 inhibitors 19 (10.1) 0 (0.0) N/A

Other 15 (8) 0(0.0) N/A
Oral corticosteroids 6(3.2) 1 (0.6) 0.12

Data represent median (90% range) or number of participants (%)

p values are based on the Mann—Whitney U or x* test

 Classified as Arabs (from Bahrain, Egypt, Traq, Jordan, Kuwait, Lebanon, Morocco, Oman, Palestine, Qatar,
Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen) or as South Asians (from
Bangladesh, India, Nepal, Pakistan and Sri Lanka)

N/A, not applicable

metabolite, we only kept the 546 metabolites nominally asso-
ciated (p<0.05) with diabetes and removed all other metabo-
lites with their edges. Thus, a total of 33 GGM subnetworks
(with at least three metabolites in a network) were obtained

Table 2 Number of samples and metabolites detected

Sample® Participants (n) Metabolites ()
Saliva 328 581

Plasma 359 720

Urine 356 877

Total 1,043 2,178

At least one type of sample was collected from each of the 369 study
participants. Reasons for missing samples are that some patients did not
provide blood or urine; in some cases, no saliva could be collected be-
cause of technical problems with the collection kit
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(Fig. 1). All statistical analyses were performed using the R
statistical package (version 2.14, www.r-project.org/) and the
GeneNet package in R (http://cran.r-project.org/web/
packages/GeneNet/).

Results

Of 2,178 metabolite measures in saliva, plasma and urine,
94 were associated with diabetes at a Bonferroni level
of significance

Of the 2,178 individual metabolite associations in the three
biofluids tested, 546 displayed nominal significance (p<0.05)
with diabetes after adjusting for covariates (Table 3 and ESM
Table 2). Ninety-four of the 546 metabolite associations
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Fig. 1 Workflow for the generation of the GGM. Starting with 2,178
metabolites and 2.3 million partial correlations, two steps were conduct-
ed. (a) Step 1: filtering on significant partial correlations (3,742) by re-
moving metabolites with no significant correlation to any other

remained significant after stringent Bonferroni correction
(p<2.3x107°). These 94 associations were found across the
three biofluids as follows: three in saliva, 28 in plasma and 63
in urine, with a total of 24 associations representing metabolites
of unknown biochemical identity (unknowns). Eleven of the 94
associations were statistically significant in more than one
biofluid. The 94 metabolite associations covered 59 distinct
metabolites of known identity and 23 of unknown identity.
Sixteen of the known and 22 of the unknown metabolites have
not previously been reported in association with diabetes.

Of the 94 diabetes associations, 65 were also identified
as specifically associated with acute, short-term
or long-term glycaemic control within the diabetes group

By limiting the analysis to the 94 diabetes—metabolite associa-
tions, and further to samples collected only from patients with
diabetes, we identified 65 associations—at a Bonferroni level of
significance (p< 1.8x 10 *=0.05/[94 x3])—with at least one of
the three glycaemic control timescales investigated here:
presence/absence of glucose in urine (glucosuria) as an acute
marker; 1,5-AG in plasma as a short-term marker; and HbA .
as a long-term marker of glycaemic control (Table 4). Among
the 65 metabolite associations (one in saliva, 21 in plasma, 43 in
urine), 59 were associated with glucosuria, 56 with 1,5-AG in
blood plasma, 54 with HbA ;. and 49 with all three timescales
(Fig. 2). Twenty-nine of the 94 diabetes—metabolite associations
did not associate with any timescale of glycaemic control.

GGM subnetworks identify key biochemical
perturbations associated with diabetes

We identified 3,742 significant partial correlations (p<2.1 x 10°®
after Bonferroni correction) between all 2,178 metabolite
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metabolite, leaving 1,907 metabolites in the GGM network. (b) Step 2:
filtering on metabolites nominally associated with type 2 diabetes
(»<0.05), i.e. 546 metabolites, resulted in 33 subnetworks containing at
least three metabolites and covering 243 metabolites

measurements, which define the edges between the metabolites
in the GGM network (Fig. 1). In total, 1,907 (87.6%) metabolite
measures were connected to at least one other metabolite mea-
sure by a significant partial correlation edge. For interpretation in
the context of this study, GGM nodes were limited to the 546
metabolite measures nominally associated with diabetes
(p<0.05) and the edges between these metabolites. This resulted
in 33 subnetworks containing at least three nodes, of which 18
subnetworks comprise five or more nodes (sece ESM Table 4).
Many of the identified subnetworks connect metabolites from
the same metabolic pathway (pathway annotation is shown in
ESM Table 2). For example, some contain mostly bile acids
(subnetworks 7 and 15), medium-chain fatty acids (subnetwork
5), acylcarnitines (subnetwork 12) or carbohydrates (subnet-
work 9). Other subnetworks connect metabolites from multiple
pathways, such as glycolysis to BCAA metabolism (subnetwork
3). Four of the largest GGM subnetworks are of specific interest
for further analysis because they contain many well-established
diabetes biomarkers and reflect major pathways known to play
roles in diabetes. These four subnetworks (Fig. 3) are: the sub-
network containing 1,5-AG (subnetwork 1, termed 1,5-AG
subnet in the following discussion); the subnetwork containing
BCAAs and glycolysis-related metabolites (subnetwork 3; gly-
colysis-BCAA subnet); the subnetwork that includes several
urine ketone bodies (subnetwork 8; urinary ketone body subnet);
and the subnetwork containing plasma carbohydrates (subnet-
work 9; carbohydrates subnet). The complete set of GGM
subnets is provided in digital format as ESM Data.

Discussion

Of the 94 metabolite associations with diabetes found in this
study, many have been previously reported in association with

@ Springer



Diabetologia

Table 3 Metabolites associated with type 2 diabetes

Metabolite® Superpathway” Pathway Saliva Plasma Urine Reported association
with a diabetes-related
[ Sig B Sig B Sig phenotype*
Alanine Amino acid Alanine and aspartate metabolism 0.196 0.110 0.541 ¥ [24]
N-acetyl-(3-alanine Amino acid Alanine and aspartate metabolism n.d. 0.188 0.517 1  Not previously reported
Creatinine Amino acid Creatine metabolism n.d. —0.103 -0.558 [5]
2-Hydroxybutyrate Amino acid Cysteine, methionine, SAM, 0.158 0.703 0.881 F [4,6,11,33,41]
taurine metabolism
Cysteine Amino acid Cysteine, methionine, SAM, n.d. 0.186 0.654 + [6,25]
taurine metabolism
«-Ketobutyrate Amino acid Cysteine, methionine, SAM, —0.032 0592 + nd [11, 25]
taurine metabolism
Homocysteine Amino acid Cysteine, methionine, SAM, n.d. n.d. -0.639 ¥ [41, 42]
taurine metabolism
Pyroglutamine Amino acid Glutamate metabolism -0305 * -0471 § —0331 *  Not previously reported
Glutamate Amino acid Glutamate metabolism 0.119 0.209 -0.478 T [43]
5-Oxoproline Amino acid Glutathione metabolism 0.241 —0.235 -0.753 § [41]
3-Hydroxypyruvate Amino acid Glycine, serine and threonine n.d. 098 + 0909 {  Not previously reported
metabolism
1-Methylhistidine Amino acid Histidine metabolism n.d. -0593 f —-0.598 T [44, 45]
Trans-urocanate Amino acid Histidine metabolism 0.121 n.d. —0.533 1  [46]
Pipecolate Amino acid Lysine metabolism 0.281 0.697 + 0822 [28, 41]
3-methoxytyrosine Amino acid Phenylalanine & tyrosine n.d. -0.526 ¥ -0.279 *  Not previously reported
metabolism
4-Hydroxyphenylpyruvate =~ Amino acid Phenylalanine & tyrosine -0.219 0490 * 0.581 f  Not previously reported
metabolism
Vanillylmandelate Amino acid Phenylalanine & tyrosine n.d. n.d. —0.651 1  Not previously reported
metabolism
Homovanillate Amino acid Phenylalanine & tyrosine n.d. n.d. —0.523 1  Not previously reported
metabolism
Phenylalanine Amino acid Phenylalanine & tyrosine —0.006 0.109 0573 F [5, 25]
metabolism
Kynurenate Amino acid Tryptophan metabolism n.d. -0322 * 0531 f  [47]
3-Hydroxyproline Amino acid Urea cycle; arginine-, proline-, n.d. n.d. 0.647 T [48]
metabolism
Citrulline Amino acid Urea cycle; arginine-, proline-, 0.148 —0.588 f nd. [4,5]
metabolism
Homocitrulline Amino acid Urea cycle; arginine-, proline-, n.d. —0.207 —0.541 7 [5]
metabolism
Ornithine Amino acid Urea cycle; arginine-, proline-, 0.077 —-0.378 * 0.525 f [41, 49]
metabolism
Proline Amino acid Urea cycle; arginine-, proline-, —0.010 0.196 0.654 § [4, 5]
metabolism
3-Hydroxyisobutyrate Amino acid Valine, leucine and isoleucine n.d. 0541 + 0529 1 [50,51]
metabolism
«-Hydroxyisovalerate Amino acid Valine, leucine and isoleucine —0.022 0.066 0.683 F [51]
metabolism
Isobutyrylcarnitine Amino acid Valine, leucine and isoleucine 0.203 —0.067 -0.532 ¥ [52, 53]
metabolism
Isoleucine Amino acid Valine, leucine and isoleucine 0.090 0.179 0589 + [4,5]
metabolism
Leucine Amino acid Valine, leucine and isoleucine —0.071 0.126 0613 [4-6]
metabolism
Fructose Carbohydrate Fructose, mannose, galactose, -0.172 0.878 0.177 [4, 6]
starch, and sucrose metabolism
Mannose Carbohydrate Fructose, mannose, galactose, —0.091 1.136 0.731 [4, 5, 41]
starch, and sucrose metabolism
1,5-AG Carbohydrate Glycolysis, gluconeogenesis, -0.998 T —-1.287 T 0.161 [4, 5,13, 41, 54]
pyruvate metabolism
1,3-Dihydroxyacetone Carbohydrate Glycolysis, gluconeogenesis, 0.140 0.631 {t nd Not previously reported
pyruvate metabolism
Glucose Carbohydrate Glycolysis, gluconeogenesis, 0.159 1.158 + 0913 f  Diagnostic for diabetes
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Table 3 (continued)

Metabolite® Superpathway® Pathway Saliva Plasma Urine Reported association
with a diabetes-related
pe Sig B Sig B Sig phenotype*
Lactate Carbohydrate Glycolysis, gluconeogenesis, 0.063 0474 * 0.584 f [4, 24, 41, 55]
pyruvate metabolism
Pyruvate Carbohydrate Glycolysis, gluconeogenesis, 0.188 0718 +  —0.190 [23,41]
pyruvate metabolism
Arabitol Carbohydrate Nucleotide sugars, pentose -0.274 0.095 —0.546 1  Not previously reported
metabolism
Gluconate Carbohydrate Nucleotide sugars, pentose —0.249 0949 +  0.185 Not previously reported
metabolism
Ribose Carbohydrate Nucleotide sugars, pentose 0.007 n.d. -0.603 T Not previously reported
metabolism
Xylonate Carbohydrate Nucleotide sugars, pentose -0.112 0.079 —0.507 +  Not previously reported
metabolism
Threonate Cofactors and vitamins Ascorbate and aldarate —0.118 0.094 -0.539 [41]
metabolism
2-Methylcitrate Energy Krebs cycle n.d. n.d. -0.624 F [56]
Malate Energy Krebs cycle -0.103 0303 * 0715 ¥ [4]
7-Ketodeoxycholate Lipid Bile acid metabolism n.d. n.d. —0.549 1  Not previously reported
Adipate Lipid Fatty acid, dicarboxylate n.d. n.d. -0.584 [57]
Ethanolamine Lipid Glycerolipid metabolism —0.046 n.d. -0.546 +  [6,41]
Mpyo-inositol Lipid Inositol metabolism —0.140 0.126 0.887 f [5, 11, 41]
3-Hydroxybutyrate Lipid Ketone bodies —0.065 0271 * 0917 ¥ [S, 6,41, 58]
Acetoacetate Lipid Ketone bodies —0.053 n.d. 0.584 [59]
Heptanoate (7:0) Lipid Medium-chain fatty acid —0.018 -0.577 ¥ nd. [4, 5]
N1-methyladenosine Nucleotide Purine metabolism, n.d. -0.074 —0.495 1  Not previously reported
adenine containing
Pro-hydroxy-pro Peptide Dipeptide n.d. -0.548 ¥ -0.601 7 [5]
Glycylglycine Peptide Dipeptide —-0.175 n.d. —0.621 {  Not previously reported
y-Glutamylglutamine Peptide y-Glutamyl n.d. -0.503 ¥ nd. [60]
y-Glutamylleucine Peptide y-Glutamyl -0.093 —0.026 0.551 [5]
Benzoate Xenobiotics Benzoate metabolism -0.109 -0.539 f -0276 * [6]
Glycolate (hydroxyacetate) Xenobiotics Chemical —0.232 0.086 —0.478 1  Not previously reported
Metformin Xenobiotics Drug 0.601 1.042 1.116 1  Diabetes medication
X-11333 Unknown Unknown n.d. n.d. —0.603 1  Not previously reported
X-10593 Unknown Unknown n.d. n.d. —0.554 1  Not previously reported
X-11315 Unknown Unknown -0.555 + -0.820 ¥ nd [4]
X-11429 Unknown Unknown n.d. -0.824 T —0.186 Not previously reported
X-11540 Unknown Unknown n.d. —0.580 f nd. Not previously reported
X-12170 Unknown Unknown n.d. n.d. —0.539 +  Not previously reported
X-12253 Unknown Unknown n.d. n.d. —0.557 1  Not previously reported
X-12682 Unknown Unknown n.d. n.d. 0.583 1  Not previously reported
X-13431 Unknown Unknown n.d. —0.225 —0.629 1  Not previously reported
X-13840 Unknown Unknown n.d. n.d. —0.520 {  Not previously reported
X-14331 Unknown Unknown n.d. n.d. 0.741 1  Not previously reported
X-14625 Unknown Unknown n.d. n.d. 0.750 1  Not previously reported
X-14955 Unknown Unknown n.d. n.d. 0.665 1  Not previously reported
X-15497 Unknown Unknown -0.103 0575 + nd. Not previously reported
X-15503 Unknown Unknown n.d. -0.261 * —0.810 1  Not previously reported
X-17299 Unknown Unknown n.d. -0412 * —0.560 1  Not previously reported
X-17323 Unknown Unknown n.d. n.d. —0.483 1  Not previously reported
X-17629 Unknown Unknown n.d. —0.669 f nd. Not previously reported
X-17676 Unknown Unknown n.d. n.d. —0.884 1  Not previously reported
X-18221 Unknown Unknown n.d. 1.011  + nd Not previously reported
X-18475 Unknown Unknown n.d. n.d. —0.627 1  Not previously reported
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Table 3 (continued)

Metabolite® Superpathway® Pathway Saliva Plasma Urine Reported association
with a diabetes-related
pe Sig B Sig B Sig phenotype*
X-18887 Unknown Unknown —0.023 n.d. —0.653 1  Not previously reported
X-19437 Unknown Unknown —0.060 —0.846 ¥ 0367 *  Not previously reported

# Limited to associations at a Bonferroni level of significance of p<2.3x 107 (%); nominal significant associations (p<0.05) in other body fluids are

included (*); metabolites not detected (n.d.) in the matrix are reported

® Metabolites are sorted by pathway classification

¢ Estimators of effect size (3) are expressed as differences in SD between patients and controls, using z-scored and log-scaled data; positive (3 values
indicate higher metabolite concentrations in diabetes patients compared with controls

4 Where available, previously published associations of these metabolites with a diabetes-related phenotype are cited

SAM, S-Adenosylmethionine; Sig, statistical significance

diabetes and are confirmed here in a different population. In
addition, many metabolites found to be associated with diabe-
tes at a stringent level of significance in one biofluid were also
associated at a nominal level of significance in the other
biofluid(s). These associations thus provide quality control
for the present study and also for the first time a
metabolome-wide view of diabetes associations across several
body fluids. For instance, perturbations in the glycolysis path-
way are reflected by increased pyruvate [23] and lactate levels
[24], and perturbations in phenylalanine and tyrosine metab-
olism have been also found [25]. Increased proteolysis with
aminoaciduria is reflected by increased urinary BCAAs and
aromatic amino acids [26]. The presence of subclinical
ketoacidosis in some patients is indicated by increased levels
of 3-hyroxybutyrate and 3-hydroxyisobutyrate [27]. Our study
also identified established biomarkers in more than one
biofluid, such as 1,5-AG (GlycoMark, GlycoMark, New
York, NY, USA) and 2-hydroxybutyrate (Quantose,
Metabolon, Durham, NC, USA). The commonly used diabetes
drug, metformin, was found to be associated with diabetes in all
three biofluids. Of the 16 newly identified metabolite associa-
tions, many are in pathways that play a role in diabetes, includ-
ing 3-hydroxypyruvate (glycine, serine and threonine metabo-
lism), 3-methoxytyrosine and 4-hydroxyphenylpyruvate (phe-
nylalanine and tyrosine metabolism), 1,3-dihydroxyacetone
(glycolysis pathway) as well as arabitol, gluconate, ribose and
xylonate (nucleotide and pentose metabolism), thus linking the-
se metabolites for the first time to diabetes.

Interpretation of large lists of associations can be challeng-
ing and requires computational support to place biochemically
related metabolites into context. In order to identify biochem-
ical interactions between metabolites and their role in
diabetes-related dysregulation, we used Gaussian graphical
modelling [15, 16]. Four larger networks are of particular
interest and shall be discussed in more detail (Fig. 3). For
instance, metabolites in the 1,5-AG subnet reflect the process
of limited glucose reabsorption capacity of the kidney in pa-
tients with diabetes, linking decreased 1,5-AG levels to
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elevated urine glucose, pipecolate and proline levels [28],
and linking these to other processes, such as ketoacidosis
(via the GGM link to acetoacetate and 4-
hydroxyphenylpyruvate, a keto acid involved in tyrosine me-
tabolism), perturbed BCAA metabolism (reflected by o-
hydroxyisovalerate) and hyperglycemia (reflected in de-
creased urate levels [29-32]). The glycolysis-BCAA subnet
connects metabolites associated with increased proteolysis
and aminoaciduria to ketoacidosis (via 3-hyroxybutyrate and
3-hydroxyisobutyrate [27]) and perturbed glycolysis (via py-
ruvate and lactate). This subnetwork connects the previously
reported increased plasma o-ketobutyrate to increased plasma
2-hydroxybutyrate in diabetes [11] by a direct GGM link.

The glycolysis-BCAA and urinary ketone body subnets
together highlight the relation of the known diabetes marker
2-hydroxybutyrate [11, 33] with elevated BCAAs, glycolysis
and ketoacidosis, which may be interesting for further inves-
tigations since 2-hydroxybutyrate is part of the new Quantose
clinical test [34]. 3-Hydroxyisobutyrate, known to be associ-
ated with ketoacidosis [27] and a product of valine catabolism,
is upregulated in both plasma and urine. The links between
plasma 3-hydroxyisobutyrate to plasma metabolites of 2-
hydroxybutyrate and «-ketobutyrate in the glycolysis—
BCAA subnet, in which a set of diabetes predictors are con-
nected (BCAAs, tyrosine, phenylalanine [35] and 2-
hydroxybutyrate [33]), and the link between urinary 3-
hydroxyisobutyrate to urinary 2-hydroxybutyrate in the uri-
nary ketone body subnet may indicate of a pivotal role for 3-
hydroxyisobutyrate in insulin sensitivity and complications
associated with diabetes.

Connections between metabolites across the different
biofluids were also identified in the GGM subnets. One ex-
ample is the association of 1,5-AG in plasma and saliva with
glucose and ketone bodies (acetoacetate) in urine, as well as to
BCAA metabolism in urine (via «-hydroxyisovalerate).
Another example is the association of BCAAs, tyrosine and
phenylalanine in urine with 2-hydroxybutyrate and ketone
bodies in plasma. Moreover, both the glycolysis—BCAA
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Table 4  Metabolites associated with the three timescales of glycaemic control

Timescale of Metabolite” B —log(p) GGM subnetwork

dysregulation

of glycaemic control® Acute  Shortterm Long term Acute Short term Long term

Acute 3-Hydroxyisobutyrate (urine) 0.696  0.558 0.106 537 23 2.0 Urinary ketone body
Isoleucine (urine) 0.706  0.388 0.078 547 13 1.2 Glycolysis-BCAAs
Leucine (urine) 0.799  0.573 0.100 597 20 1.6 Glycolysis—BCAAs
«-Hydroxyisovalerate (urine) 0.810  0.637 0.116 66" 26 2.1 1,5-AG
Pyruvate (plasma) 0919  0.993 0213 85" 637 6.6" Glycolysis-BCAAs
Lactate (urine) 0921  0.630 0.159 97" 29 427 Urinary ketone body
3-Hydroxybutyrate (urine) 1.056  1.182 0.248 1257 917 9.7 Urinary ketone body
2-Hydroxybutyrate (urine) 1.165  1.138 0211 1547 83f 6.8 Urinary ketone body
Acetoacetate (urine) 1299 1241 0.244 188" 9.6 8.8" 1,5-AG
Mannose (urine) 1285 1372 0.289 20.17 1277 13.17 1,5-AG
B-Hydroxypyruvate (urine) 1.622  1.507 0.301 3517 1417 13.6" 1,5-AG
Glucose (urine) 1.864 1.574 0.342 - 17.47 19.8" 1,5-AG

Short term Glycolate (hydroxyacetate) (urine) —0.266 —0.828 —0.130 1.1 49" 29 Urinary ketone body
3-Hydroxyisobutyrate (plasma) 0.437  0.908 0.155 23 5.7 3.9 Glycolysis-BCAAs
«-Ketobutyrate (plasma) 0.607 1050 0.185 42t 17" 557 Glycolysis-BCAAs
2-Hydroxybutyrate (plasma) 0575 1217 0.189 3.7 10.2 56" Glycolysis-BCAAs
1,5-AG (saliva) -1.159 -2.141 -0.327 737 186 6.4 1,5-AG
1,5-AG (plasma) —-1222 2632  —0.432 1637 - 363 1,5-AG

Long term 1,3-Dihydroxyacetone (plasma) ~ 0.692  0.876 0.209 49" 507 6.57 1,5-AG
Fructose (plasma) 1.048  1.296 0317 116" 11.37 15.97 Carbohydrates
B-Hydroxypyruvate (plasma) 1263 1.561 0.351 1627 148" 18.0° 1,5-AG
Gluconate (plasma) 1.081 1290 0.338 1327 1187 18.9° Carbohydrates
Glucose (plasma) 1362 1.686 0.389 213" 20.77 26.4" Carbohydrates
Mannose (plasma) 1282 1.743 0.389 189" 2347 27.5" Carbohydrates

# Metabolites are grouped by the timescale that displayed the strongest association and sorted by p value

® A selection of 24 out of 65 significantly associated (Bonferroni level) metabolites is shown here, excluding unknown metabolites and limited to
metabolites that are part of one of the four larger GGM subnetworks discussed in this paper. The full list is reported in ESM Table 3

Data represent adjusted regression coefficients (3) and negative log;-scaled p values (—log(p)) for the association between metabolites and acute

glycaemic dysregulation (presence/absence of glucose in urine), short-term (1,5-AG in plasma) and long-term glycaemic (HbA.) control

T Bonferroni significant associations (p< 1.8x 107~ or —log(p)>3.75)

subnet and urinary—ketone body subnet reflected several rela-
tionships among metabolites in plasma that were also ob-
served in urine. For example, the association of increased
cysteine—methionine metabolism with BCAA metabolism
(i.e. GGM link between 2-hydroxybutyrate and 3-
hydroxyisobutyrate) in plasma in the glycolysis—BCAA
subnet is also seen in urine in the urinary ketone body subnet.

Many of the 16 newly reported markers display a clear
biochemical link by GGM edges to known markers of diabe-
tes. 3-Hydroxypyruvate is an example of a strong association
of a newly reported metabolite with hallmark processes in
diabetes. It shows concordant upregulation with diabetes in
two biofluids, as in the concordant up- or downregulation of
the known markers 1,5-AG, glucose and 2-hydroxybutyrate.
In addition, both its plasma and urine metabolites are directly
linked in the 1,5-AG subnet to 1,5-AG, and its urine

metabolite is directly linked to glucose in urine. This suggests
that (3-hydroxypyruvate should be further investigated in fu-
ture studies because it is an intermediate in glucose production
from serine [36]. Other molecules such as 4-
hydroxyphenylpyruvate and 1,3-dihydroxyacetone also have
GGM links to 1,5-AG, ketone bodies and urine glucose in the
1,5-AG subnet. A group of catechols in the tyrosine pathway,
namely 3-methoxytyrosine (a product of L-DOPA) [37], is
associated with diabetes, possibly reflecting dopamine defi-
ciency, which was previously reported to be associated with
visual dysfunction in diabetic rodent models [38]. Also, the
links of gluconate to glucose and mannose in the carbohy-
drates subnet, as well as the link of glycolate to 3-
hydroxyisobutyrate in the urinary ketone body subnet, suggest
their relevance to diabetes-related metabolic processes repre-
sented by these GGM subnetworks. Given the stringent
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Glycaemic control :

Specific to acute deregulation

y-Glutamylglutamine (plasma)
Ribose (urine)
Pro-hydroxy-pro (urine)
3-Hydroxyisobutyrate (urine)
Isoleucine (urine)

Leucine (urine) “
o-Hydroxyisovalerate (urine)

Acute: 59

Specific to acute deregulation

65 metabolites

" Short-term: 56

’ Long-term: 54

Specific to acute deregulation and short-
term control

Adipate(urine)

Malate (urine)

| Specific to short-term control

Glycolate (hydroxyacetate) (urine)
3-Methoxytyrosine (plasma)

Specific to short- and long-term control
Pyroglutamine (plasma)

and long-term control

Lactate (urine) X-14331 (urine)

Specific to long-term control

3-Hydroxyisobutyrate (plasma)
2-Hydroxybutyrate (plasma)

Fig. 2 Venn diagram of metabolites specific to and overlapping with the three glycaemic control timescales

%
A x-1 @"

Glycolate
(Hydroxyacetate)
2.y

9
A
@ roxybutyrate (BHBA)

A
3-Hydroxyisobutyrat ‘w

3-Hydroxy-
2-Ethylpropionate <3

A
3-Hydroxypropanoate <

2-Oxobutyrate

Fig. 3 Selected GGM subnetworks. (a) 1,5-AG subnet, (b) glycolysis—
BCAA subnet, (¢) urinary ketone body subnet, (d) carbohydrates subnet.
Included are metabolites nominally associated with diabetes (p<0.05);
edges indicate significant partial correlations (2.1x107%) between two
metabolites. Node size is proportional to the absolute (3 value in the
regression analysis with diabetes. Node colour and shape denote the
biofluid: white triangle, saliva; red circle, plasma; yellow diamond, urine;
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-Methyl-
2-Oxovalerate
Lactate

Pseudouriding™g"
C-Glycosyltryptophan

arrows indicate the direction of the association (upward, higher in diabe-
tes; downward, lower in diabetes); star indicates an association with all
three glycaemic timescales; number indicates an association with
glucosuria (1), 1,5-AG (2) or HbA;. (3). For metabolites that are only
nominally associated with diabetes, no association with glycaemic control
was tested.
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significance cut-off applied in this study, we expect that all 16
associations represent true positives. These may have been
seen in this study for the first time because we collected sam-
ples from undersampled ethnicities with the potential of
displaying very different lifestyles and thus different metabol-
ic patterns.

In order to go beyond mere association with the disease
endpoint, we examined how the 94 diabetes-associated me-
tabolites relate to the different timescales of glycaemic con-
trol. Our approach of testing these metabolites for a specific
association with one or more timescales of glycaemic control
can be considered the equivalent of low-, medium- and high-
pass frequency filtering. For instance, the levels of a metabo-
lite strongly associated with HbA . levels but only weakly
with glucosuria would be expected to be controlled by biolog-
ical processes that act on a longer timescale, such as changes
in body fat composition. In contrast, metabolites strongly as-
sociated with glucosuria but not with HbA . levels are likely
to be involved in biological processes that respond immedi-
ately to changes in glucose availability.

Table 4 presents a selection of metabolites that were asso-
ciated with one or more timescales of glycaemic control. For
instance, plasma metabolites that were associated with all
three timescales of glycaemic control include pyruvate and
1,3-dihydroxyacetone from the glycolysis pathway; fructose
and mannose as carbohydrates and «-ketobutyrate from the
cysteine pathway; and (3-hydroxypyruvate, gluconate, benzo-
ate and heptanoate (7:0). Urine metabolites that were associ-
ated with all three timescales include 3-hydroxybutyrate and
acetoacetate as ketone bodies, 1-methylhistidine and trans-
urocanate from the histidine pathway; xylonate and arabitol
as pentose sugars, vanillylmandelate and homovanillate from
the phenylalanine and tyrosine pathway; and mannose, 5-
oxoproline, kynurenate, myo-inositol and 3-hydroxypyruvate.
Metabolites that are specifically associated with only one or
two timescales of glycaemic control include 3-
hydroxyisobutyrate and 2-hydroxybutyrate in plasma
(associated with short- and long-term glycaemic control but
not with acute dysregulation); leucine and isoleucine in urine;
and the biochemically related urinary metabolites
a-hydroxyisovalerate and 3-hydroxyisobutyrate, of which
higher levels are associated with the presence of glucose in
urine. Upregulation of malate (Krebs cycle metabolite) in
urine was specific to acute dysregulation and short-term (but
not long-term) glycaemic control, while higher levels of lac-
tate in urine were specific to long-term (rather than short-term)
control. Metabolites that did not show an association with any
marker of glycaemic control but were associated with diabetes
in the case—control design could be associated with effects of
diabetes that are independent of varying glucose homeostasis.
Such metabolites include the urine metabolites of phenylala-
nine, isobutyrylcarnitine, cysteine and alanine, as well as
pipecolate in urine and plasma, and metformin in all three

biofluids; the latter diabetes drug actually confirms this
assumption.

The following limitations of this study need to be consid-
ered: (1) patients and controls were not matched for age, sex,
ethnicity and BMI. However, adjusting for these factors in the
statistical analysis, as we do here, provides an equivalent sta-
tistical power to taking a sample-matching approach [39, 40].
(2) All study participants were enrolled at the Dermatology
Department of HMC. Most patients were not being treated for
acute clinical diabetes dysregulation, so their metabolic state
is most likely to represent the average patient with diabetes on
a day-to-day basis. Several participants were treated for dis-
eases such as eczema and psoriasis and were taking glucocor-
ticoids or immunosuppressive drugs. Patients with diabetes
were taking a wide range and combinations of metabolically
active drugs, such as oral hypoglycaemic drugs, insulin and
statins. (3) Our participants were in a non-defined fasting state
at the time of sample collection. Nevertheless, given the study
setting, most participants did not have a major meal at least 2 h
prior to sampling and therefore were not acutely postprandial.
(4) We collected spontaneous urine samples, rather than ac-
quiring more representative 24 h collections. (5) Diabetes pa-
tients have a higher prevalence of different components of the
metabolic syndrome that may represent confounding factors.
We therefore conducted a sensitivity analysis and demonstrat-
ed that the metabolite—diabetes associations reported in
Table 3 were robust when lipid traits, waist circumference,
WHR or hypertension were adjusted for in the model (ESM
Results). (6) Finally, diabetes-associated complications may
influence metabolite profiles. However, we showed that the
metabolite associations reported in Table 4 are robust when
adjusting for heart disease (n=28), kidney disease (n=17),
retinopathy (n=68), slow-healing wounds (#=29) and neu-
ropathy (n=26; ESM Results).

By accepting these logistical limitations, patient and con-
trol samples could be collected as they became available at the
same location, generally in a random pattern and in large
numbers, using identical protocols, instruments and study per-
sonnel. Some of these limitations probably increased random
error in our data, thus biasing our results toward the null, but
would not create any spurious signals. Had we tried to collect
samples under more ideal conditions of overnight fasting, the
number of participants that could be enrolled in this study
using the available resources would have been considerably
smaller. We therefore feel that our decision to collect samples
as they became available represents a valid trade-off regarding
the overall achievable statistical power by considerably in-
creasing the number of samples at the cost of increasing ran-
dom error in the data. The fact that we could detect 94 metab-
olites associated with diabetes under these conditions under-
lines the robustness of our findings.

To the best of our knowledge this is the first study of this
magnitude to provide a comprehensive association of
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metabolic pathways with diabetes in three biofluids from the
same patients. By going beyond mere associative analyses
with disease and looking at more specific disease-related phe-
notypes (glucosuria, 1,5-AG, HbA.), we could identify par-
ticular metabolic networks that were perturbed in diabetes,
some of which related to specific timescales of glycaemic
control. Notably, this is also one of the first large-scale meta-
bolomics studies of diabetes to include patients from an Arab
population. We trust that the markers and associations report-
ed here, as well as the freely available GGM network of
diabetes-related metabolic perturbations, will contribute to
the growing picture of metabolic changes associated with di-
abetes, and will improve the functional understanding of the
disease with a view of developing new therapeutic approaches
and diagnostic tools.
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