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Abstract

In recent years, microRNAs have been shown to play important roles in physiological as well as malignant pro-
cesses. The PhenomiR database http://mips.helmholtz-muenchen.de/phenomir provides data from 542 studies that
investigate deregulation of microRNA expression in diseases and biological processes as a systematic, manually
curated resource. Using the PhenomiR dataset, we could demonstrate that, depending on disease type, indepen-
dent information from cell culture studies contrasts with conclusions drawn from patient studies.

Rationale
MicroRNAs (miRNAs) are approximately 22-nucleotide
endogenous RNAs predicted to regulate the expression
of most mammalian genes [1]. Since the discovery of
miRNAs in Caenorhabditis elegans, the influence of
these regulatory RNAs on cellular processes has been
established in a large variety of metazoa [2]. Accord-
ingly, individual studies as well as large-scale endeavors
have detected a growing number of miRNAs [3,4], up to
695 in human according to miRBase release 12.0 [5]. A
proteome study that investigated the influence of the
abundance of a single miRNA on cells found that the
mode of regulation occurs through modulation of pro-
tein expression rather than as a binary off-switch [6].
However, the potential of deregulated miRNA expres-
sion to cause severe impairments has already been
demonstrated in the early days of microRNA research
[7]. In 2004, it was shown that deregulated miRNA
expression is associated with human diseases such as
lung cancer [8]. One year later, Lu et al. [9] analyzed
miRNA expression in cancer types and observed that
miRNA profiling is a more reliable indicator for cancer
than mRNA expression profiles. In the meantime, addi-
tional studies have demonstrated that miRNAs are sig-
nificant indicators for specific diseases and can, for
example, be used to create decision trees differentiating
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cancer types solely by miRNA expression profiles
[10,11]. In recent years, deregulated expression of
miRNA has also been found to be associated with
human diseases such as cardiomyopathy, muscular dis-
orders and neurodegenerative diseases [12-14]. The
samples used for these studies stem from biopsies of
patients or cell cultures, which are used as easily tract-
able experimental models. Besides diseases, microRNAs
are also known to have functional roles in eukaryotic
organisms. MicroRNA-mediated gene silencing was
shown to be involved in a number of cellular processes,
such as cell growth, larval development and B-cell dif-
ferentiation [15,16,7].

Due to the increasing amount of data in miRNA
research, several resources have been established, cover-
ing topics such as experimentally validated miRNA tar-
gets (Tarbase [17]), and prediction of miRNA targets
(Targetscan [18], PITA [19], PicTar [20]) or serving as
miRNA repositories (miRBase [5]).

In order to provide a comprehensive overview of dif-
ferentially regulated miRNA expression data in diseases
and general biological processes, we generated the Phe-
nomiR database. We aim at high data quality by manual
annotation by experienced biocurators. PhenomiR pro-
vides an in-depth annotation of the studies, not only
including information like the mode of miRNA expres-
sion (up or down) and the miRNA detection method,
but also data such as the quantitative fold-change of
miRNA expression, the sample size and the origin of
the samples (patients or cell culture) analyzed (Figure
1), which are not available from any existing resource.
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Figure 1 Overview of the PhenomiR web page, the search options, search results and a database entry.
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This comprehensive repository allows for the first time a
large-scale statistical analysis of aspects such as genomic
localization of deregulated miRNAs or the influence of
sample origin. Using PhenomiR data from cell culture
studies and patient studies, we found that, depending on
the disease type, independent information from cell cul-
ture studies is in conflict with conclusions drawn from
patient studies. Furthermore, a systematic analysis of 94
diseases shows for the first time that deregulated micro-
RNA clusters are significantly overrepresented in the
majority of investigated diseases (approximately 90%)
compared to singular microRNA gene products.

Results and discussion

Database contents

In recent years, a wealth of studies published in the
scientific literature has investigated deregulation of
miRNA expression in diseases and other biological pro-
cesses. PhenomiR provides a repository that offers all
the scattered information about miRNA expression in a
structured and uniform format. This allows users to per-
form individual queries for specific miRNAs and
diseases as well as to use the complete dataset for large-
scale statistical analyses. All information in PhenomiR is
extracted from published experiments and has been

manually curated. The literature reference for each data-
base entry is annotated as a PubMed identifier and is
hyper-linked to PubMed in the web frontend. Each indi-
vidual entry of the database refers to an instance of a
publication describing a specific disease or bioprocess
(Figure 1). Currently, PhenomiR documents data from
296 articles that describe 542 studies. This dataset
includes 11,029 data points, each representing one
deregulated miRNA in an experiment.

A design principle of PhenomiR is to use well-estab-
lished ontologies and resources. As miRBase is the
primary resource for miRNA annotation and nomencla-
ture, we use the miRBase identifiers and nomenclature
for annotation of miRNAs. In order to enable conveni-
ent analysis of the dataset, miRNA designations from
previous nomenclature releases were mapped to miR-
Base release 12.0 [5]. For annotation of diseases we use
information from the Online Mendelian Inheritance in
Man (OMIM) Morbid Map [21]. The OMIM Morbid
Map is an alphabetical list of diseases described in
OMIM, including their corresponding cytogenetic loca-
tions. In contrast to disease vocabularies like Disease
Ontology (DO) or MeSH (Medical Subject Heading) dis-
ease categories, the widely popular OMIM classification
scheme contains additional information about the
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disease, such as clinical features, population genetics and
genes that are experimentally shown to be involved in
the respective disease. If no appropriate OMIM disease
term is available for the annotation of a disease (cur-
rently the case for 20.7% of studies), we introduce addi-
tional terms like ‘dermatomyositis’ and ‘thyroid
carcinoma, medullary’. In addition to the OMIM terms,
PhenomiR annotates Morbid Map-associated higher-
level disease classes, such as cancer or cardiovascular,
which were introduced by Goh et al. [22]. In this sys-
tem, each annotated disease from the Morbid Map is
associated with one of 22 disease classes. miRNA
expression analyses of biological processes are predomi-
nantly performed for developmental processes and
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responses to conditions like folate starvation. For the
annotation of biological processes we assign terms from
Gene Ontology [23]. Cell lines or tissues (Figure 2) that
were used as samples in the analyses are annotated
using the BrendaTissueOntology (BTO) [24].

In addition to the sample information, PhenomiR pro-
vides the experimental methods used for miRNA
expression analyses: to a large extent, expression studies
of miRNAs have been performed with microarrays (29%
of all miRNA phenotype correlations). Other methods,
such as RT-PCR (47%) and Northern blot (10%), are
also used to reconfirm the results for selected miRNAs
(Figure 3a). Information about differential expression of
miRNAs in PhenomiR is given as the qualitative
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Figure 2 Overview of a PhenomiR entry structure.
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attributes ‘miRNA overexpression’ or ‘miRNA downre-
gulation’. In most articles (75%) authors also publish
quantitative results. This information allows discrimina-
tion between marginally and significantly deregulated
miRNAs. If such information is available, quantitative
data (as fold-change) are additionally annotated in Phe-
nomiR. Data content from miRNA expression studies
curated in PhenomiR show a high heterogenity in the
amplitude of fold-change and the available measure-
ments. Studies like that of Nikiforova et al. [25] present
only few values considered to be significant by the
authors, whereas in an analysis of melanoma and neural
system tumor syndrome 222 values are presented [26].
Accordingly, the extent of maximum miRNA deregula-
tion lies in a range from 1.42-fold in a renal cell carci-
noma study [27] to 5,997-fold for acute lymphoblastic
leukemia [28]. Therefore, we do not set arbitrary thresh-
olds for the numbers of deregulated miRNAs or the
fold-changes but present the data as they are provided
by the scientists, leaving possible filtering and threshold-
ing or weighting to any later analysis.

In case studies containing analyses of putative target
genes from significantly deregulated miRNAs, verified
target genes are annotated. The annotation includes gene
name and identifier of the target gene, the effect on gene
product expression (up- or down-regulation) as well as
the mechanism of regulation, for example, transcriptional
repression or translational inhibition (Figure 1).

A survey about the PhenomiR dataset reveals that can-
cers are by far the most thoroughly investigated diseases
(81%) followed by muscular (4.3%) and cardiovascular
(4.1%) disorders (Figure 3b). The largest number of can-
cer studies is devoted to leukaemia (16.7%), colorectal
cancer (10.6%) and breast cancer (9.5%).

PhenomiR is the largest publicly available resource of
miRNA deregulation in diseases and biological pro-
cesses, providing 11,029 data points (miR2Disease: 2,663
data points) and 572 miRNAs (miR2Disease: 347

miRNAs) as of September 2009. Out of 542 PhenomiR
entries, 90 provide information about miRNA expression
in biological processes such as cardiac muscle develop-
ment or eye development, which are not available from
any other existing database. In comparison to resources
like miR2Disease [29] and HMDD [30], PhenomiR pro-
vides comprehensive experiment information such as
fold-change of miRNA dysregulation, cohort information
and study design. Moreover, we particularly focused on
the thorough use of ontologies, which are invaluable for
in-depth statistical analysis and further exploitation of
the data as shown in the analyses below. Especially in
publications presenting all data on deregulated miRNAs,
fold-change information allows a threshold to be set in
order to separate marginally from significantly deregu-
lated miRNAs. Cohort information specifies the number
of patients analyzed in a study and thus determines the
statistical significance of the data. Data from cell culture
studies and patient studies are identified by the study
design information. Without this information the first
data analysis shown below would not have been possi-
ble. Finally, to our knowledge, manually annotated data
about differential miRNA regulation in bioprocesses are
not found in any other publicly available database. Phe-
nomiR is freely accessible and the data can be down-
loaded as tab-delimited text files (see also Additional file
1). New content releases for PhenomiR will appear every
half year.

Search options and predefined datasets

In order to obtain an overview of the PhenomiR dataset,
the web page links to three lists that display: all entries;
all diseases; and all annotated miRNAs (Figure 1). In
addition, statistical information about the number of
database entries, most frequently annotated miRNAs,
and so on are provided on the front page. Currently,
567 different miRNAs were found to be deregulated in
at least one entry.
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For queries, PhenomiR offers two search options, a
‘General search’ as well as a ‘Specific search’ (Figure 1).
The ‘General search’ performs simultaneous queries
across several attributes like ‘miRNA name’, ‘disease’ or
‘gene name’. This is optimized for searches where com-
prehensiveness rather than specificity is required. The
results can be displayed either as respective entries or
associated miRNAs. The ‘Specific search’ allows the
selection of individual annotated attributes shown in a
pull-down menu. Additionally, specific searches can be
combined by using the logic operators AND, OR and
NOT. As in the ‘General search’, results can be dis-
played as a list of database entries. Another way to
depict the results is to generate a list of all miRNAs
found in any of the corresponding studies. Results of
both search options are linked to the respective entries.

To demonstrate the additional value of the compre-
hensive annotation in PhenomiR, we investigated the
influence of differentially regulated genomic microRNAs
on diseases from a large-scale statistical point of view.

Differences between disease-associated microRNA
expression in patients and cell lines

Cell lines have been established in life sciences as easy
to manipulate model systems for the study of cellular
processes. However, studies using both in vitro and in
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vivo systems have shown that the results from each - for
example, in cancer - do not always correlate. In previous
studies differences in gene expression patterns between
cell lines and their fresh-frozen tissue counterparts have
been observed [31]. Accordingly, analysis of DNA copy
number alterations between cell lines and fresh tissue
revealed recurring deviations in cell lines [32]. Cell cul-
tures are also frequently used to investigate differential
miRNA expression in cellular systems. In PhenomiR, we
have collected 119 in vitro studies of miRNA expression
in various diseases revealing implications for the prog-
nosis of diseases. With respect to the discrepancies
between cell cultures and living organisms mentioned
above, we asked whether cell cultures are reliable dis-
ease models for the analysis of differential miRNA
expression.

In order to analyze the concordance of in vivo and in
vitro data, we extracted disease information from Phe-
nomiR with sufficient miRNA annotation for both study
designs. We first compared the consistency of miRNA
annotation within each disease for both in vivo and in
vitro experiments. This was done by means of an intra-
consistency score, defined as the fraction of miRNAs
showing a concordant expression pattern within a dis-
ease annotated by at least two experiments. In a second
step, we computed the cross-consistency score between
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in vivo and in vitro data as the fraction of miRNAs
showing the same expression pattern between these two
study designs. Figure 4 shows the obtained consistency
scores for 15 diseases that had sufficient data coverage
in PhenomiR. Only 6 out of 15 diseases (glioblastoma,
ovarian cancer, hepatocellular carcinoma, colorectal can-
cer, gastric cancer and chronic myeloid leukemia) show
the expected high cross-consistency (73 to 100%)
between in vivo and in vitro experiments. On the other
hand, we found six diseases (pancreatic cancer, non-
Hodgkin lymphoma, neural system tumor, lung cancer,
breast cancer and prostate cancer) with only moderate
cross-consistency scores (51 to 61%). Analyzing the cor-
responding in vivo and in vitro data, we obtained high
intra-consistency scores, which indicate a high homoge-
neity within these experiments. However, the resulting
cross-consistency scores are rather low, implying limited
relevance of in vitro experiments for those diseases.
Finally, we also found three diseases (squamous cell car-
cinoma, acute myeloid leukemia (AML) and cervical
cancer) with low cross-consistency (24 to 38%), reveal-
ing severe discrepancies between cell culture experi-
ments and patient studies. High intra-consistency scores
corroborate the significance of this observation and
exclude the possibility that the results stem from differ-
ent experimental conditions.

These findings could possibly arise as an artifact of the
selection of cell cultures or subtypes of diseases investi-
gated in the published studies. Indeed, this is not the
case, as can be seen from the example of AML. AML is,
according to the French-American-British (FAB) classifi-
cation system, divided into eight subtypes, MO through
to M7, based on the type of cell from which the leuke-
mia developed and its degree of maturity. All AML cell
culture studies have been performed with NB-4 cells
and HL-60 cells, which are both from the M3 subtype
(promyelocytic or acute promyelocytic leukemia). In
contrast, patient studies from different AML subtypes
are annotated in PhenomiR. For our analysis, data from
the respective patient studies has been pooled in order
to obtain a statistically sufficient amount of data. How-
ever, comparison of cell culture studies with data from
Saumet et al. [33], which also analyzed patients with
AML from the M3 subtype, confirm that our findings
hold true for similar AML subtypes. In cervical cancer
the two patient studies did not classify specimen accord-
ing to the World Health Organization classification or
the Bethesda System. However, the three different cell
lines that were used for in vitro studies exhibited consis-
tent results (100%). In conclusion, these two examples
show that our findings are not distorted by the origin of
the samples that were used in the studies.

Recent studies have shown that miRNA expression
profiles have a high prognostic potential in disease
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classification and that it is even possible to build deci-
sion trees in order to differentiate cancer tissue origins
[10,11]. However, our large-scale analysis including data
from more than 413 surveys has shown that data from
in vitro and in vivo studies correlate for diseases like
pancreatic cancer and ovarian cancer, but display signifi-
cant inconsistencies in squamous cell carcinoma and
cervical cancer. Discrepancies between experimental
results from organisms and cell cultures could occur for
two reasons. Most notably, the cell line immortalization
process has been implicated as a source of cytogenetic
changes [34]. In addition, multiple growth passages, to
which commercially available cell lines are routinely
subjected, have been shown to be associated with ran-
dom genomic instability [35]. These observations and
the results of our study show that the potential of cell
cultures in the investigation of miRNA expression in
diseases is limited. As a consequence, the suitability of
cell cultures has to be verified for each disease and cell
line before using such data as a tool for the prognosis of
diseases in human.

microRNA clusters are significantly overrepresented in
most investigated diseases

While creating the PhenomiR database we found indivi-
dual studies that investigated the impact of not only
deregulated single miRNAs but also miRNA clusters,
such as miR-17-92, miR-106b-93-25 and miR-222-221,
on diseases, especially cancer [36,37]. Using the compre-
hensive dataset from our PhenomiR database we asked
whether the impact of miRNA clusters on diseases is
restricted to only a few examples or whether miRNA
clusters significantly correlate with the pathobiology of
diseases. According to release 12.0 of mirBase, 695
miRNA genes have been detected in the human genome
so far [5]. Analysis of the genomic distribution of miR-
NAs shows that it is strongly biased towards neighbor-
hoods on chromosomes. Given a maximum distance of
5 kb, about 34% of human miRNAs appear as miRNA
clusters of at least two members, leading to 62 miRNA
clusters. Microarray profiling of miRNAs has shown
that neighboring miRNAs within a distance of up to 50
kb are frequently co-expressed [38]. It can be assumed
that miRNA clusters are not only often jointly expressed
but also act in a concerted way on interrelated cellular
functions [36].

First, we systematically analyzed the homogeneity of
expression patterns within miRNA clusters. In order to
determine the concordance of expression, we excluded
those clusters from further analysis having less than half
of all miRNAs annotated in PhenomiR, leading to 47
remaining clusters. The clusters are denoted as exhibit-
ing a homogeneous expression pattern if all annotated
miRNAs are either up- or downregulated. In total,
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disease-associated clusters revealed homogeneous
expression patterns for 77% of all annotated diseases,
which confirms the hypothesis of co-expression of
miRNA clusters. For example, cluster mir-221-222
shows a consistent expression pattern in 93% of the dis-
eases (Additional file 2).

As some of the investigated diseases show an extre-
mely unidirectional expression pattern - that is, almost
all annotated miRNAs are either upregulated or downre-
gulated - we might find homogeneous patterns even by
chance. In order to take this effect into account, we cre-
ated a null model by randomly linking miRNA expres-
sion patterns (10,000 times within each disease). In
total, 23 clusters (50%, P-value < 0.05) showed a signifi-
cantly higher homogeneity pattern in all annotated dis-
eases compared to that expected by chance (Additional
file 2). These clusters exhibit a homogeneous expression
pattern in at least 87% of all annotated diseases.

To investigate the association of miRNA clusters with
human diseases, we estimated the enrichment of
miRNA clusters in disease-associated miRNAs. Analysis
from articles restricted to only a few miRNAs could
introduce an overestimation of disease association with
miRNA clusters. In order to avoid this bias, we chose
only data from patient studies using miRNA microar-
rays, since microarrays are standardized tools that aim
to cover the most comprehensive dataset of known miR-
NAs. For the estimation of cluster enrichment we used a
log-odds score (LOD): we calculated the fraction of dis-
ease-associated miRNAs within a cluster for each
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disease and divided this number by the background fre-
quency of 34% (Figure 5). We found enrichment for 46
out of 52 (88.5%) diseases (P-value = 6.1 x 107%). Within
these 46 diseases, miRNAs located in clusters are, on
average, 1.4 times (LOD = 0.58) enriched compared to
random. However, it may be argued that polycistronic
miRNA loci are more likely associated with diseases
because multiple combinations of miRNAs could possi-
bly generate a phenotype, that is, only one miRNA of a
cluster may act as the causative while the others act as
‘bystanders’. In order to address this question, we con-
sidered miRNA clusters as single loci and calculated the
enrichment of polycistronic miRNA loci for each disease
(see Materials and methods). We found that polycistro-
nic loci are, on average, 3.5 times more disease-asso-
ciated than expected by chance (Additional file 3),
whereas differentially expressed single miRNA loci are
not enriched in diseases (Additional file 4). In conclu-
sion, both analyses show a significant enrichment of
clustered miRNAs in diseases regardless of whether the
single miRNA members are used for the analysis or the
cluster is viewed as one locus. Thus, it is highly unlikely
that only one miRNA of a cluster is associated with a
disease. Indeed, experimental analyses show that differ-
ent miRNAs from miRNA clusters act synergistically
(36,39].

These results show that deregulation of miRNA clus-
ters in diseases is obtained not just in a few examples
but appears to occur systematically in the vast majority
of human diseases investigated in our analysis. Although
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Figure 5 miRNA cluster enrichment in human diseases. For each disease the log-odds (LOD) score is plotted. There is an enrichment of
miRNA cluster members for 46 diseases (88.5%). miRNA cluster members are, on average, 1.4 times (LOD = 0.58) enriched compared to random.
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random and red points depict disorders with few deregulated cluster members. For abbreviations of disease names see Additional file 13.
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studies of miRNA expression in diseases are dominated
by various types of cancer (Figure 3), comparable results
are found if cancer and non-cancer diseases are exam-
ined separately (Additional file 5). The lower deregula-
tion of single miRNAs is probably due to the fact that
miRNAs do not act as binary off-switches but rather
modulate protein expression [6]. For instance, the
response to altered mir-223 expression on the human
proteome indicates that, for most interactions, miRNAs
act as rheostats to make fine-scale adjustments to pro-
tein output [6]. As shown above, deregulation of
miRNA clusters affects expression of several miRNAs at
the same time. A concerted action of several miRNAs
on a common target or pathway has a much higher
potential to influence cellular processes. In fact, for sev-
eral specific clusters such a synergistic regulatory effect
has been shown. Overexpression of miR-200 miRNA
clusters in NMuMG cells hindered epithelial-mesenchy-
mal transition by enhancing E-cadherin expression
through direct targeting of ZEBI and ZEB2, which
encode transcriptional repressors of E-cadherin [39]. In
gastric cancer, two miRNA clusters, miR-106b-93-25
and miR-222-221, were found to suppress different cell-
cycle inhibitors [37]. Such results are further corrobo-
rated by in silico analyses of target genes of members of
miRNA clusters [40]. These experimental findings and
the systematic correlation of miRNA cluster deregula-
tion with human disease shown here strongly support
the idea that a coordinated regulatory effect is a general
attribute of miRNA clusters. The pivotal role of miRNA
clusters in miRNA-based gene silencing found in human
diseases suggests that effective treatment of various dis-
eases may require a combinatorial approach to target
not singular miRNAs but rather miRNA clusters.

Materials and methods

Comparison between in vivo and in vitro experiments

To evaluate the expression consistency of miRNAs in
vivo, we first allocated all in vivo expression profiles in
PhenomiR to the corresponding diseases. Within each
disease, these entries were grouped by miRNAs and all
groups containing less than two entries were discarded.
Subsequently, we checked for consistent expression
profiles - that is, all entries for a specific miRNA must
show the same expression (either down- or up-regula-
tion) to be counted as consistent. The intra-consis-
tency score for in vivo or in vitro experiments is
defined for every disorder to be the fraction of miR-
NAs with consistent expression patterns throughout all
allocated entries of a group and all miRNAs involved
in the disease. For the estimation of the cross-consis-
tency score we grouped all miRNAs with consistent
expression profiles in both study designs (in vivo and
in vitro) for that specific disease. Additionally, we
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added those miRNAs to the groups that contained
only one entry in the in vivo and in vitro experiments,
respectively. The cross-consistency score for compari-
son of in vivo and in vitro experiments was then calcu-
lated as the fraction of miRNAs showing a consistent
expression pattern compared to the total number of
miRNAs for each disease.

Human miRNA cluster data

A miRNA cluster is defined as set of miRNAs in which
each member has at least one other member of the
same set within 5 kb according to chromosomal loca-
tions. Chromosomal positions for all human miRNAs
were obtained from mirBase (release 12.0). In total, we
obtained 62 human miRNA clusters containing, in sum,
240 of 695 (34%) human miRNAs in miRBase. For
results based on miRNA clusters defined by 10-kb and
50-kb thresholds, see Additional files 6, 7, 8, 9, 10, 11,
12 and 13).

Analysis of homogeneous expression patterns within
miRNA clusters

For the systematic analysis of coexpression of miRNA
clusters, we considered all miRNAs associated with the
particular diseases. miRNAs not belonging to any clus-
ter and miRNAs of clusters of which at least half the
members are not associated with the appropriate dis-
ease were discarded. For clusters containing only two
members, both miRNAs had to be present. In total, we
obtained 47 unique clusters. We defined a cluster to
be homogeneous if all present members (which is at
least half of all members) show the same expression
pattern (either all up- or all downregulated). For each
unique cluster we thereafter computed the homoge-
neous-fraction, that is, the fraction of co-expression
throughout all obtained disease entries, and calculated
a P-value for this fraction by the following sampling
approach: for every disease entry the expression of all
its associated miRNAs was distributed randomly within
these miRNAs for 10,000 times, keeping the distribu-
tion of up- and downregulated miRNAs constant for
each step. For each sampling step the homogeneous
fraction over all disease entries was computed, which
yields the P-value as the number of sampled homoge-
neous fractions exceeding the original homogeneous
fractions divided by 10,000.

Enrichment analysis of miRNA clusters in human diseases
For this part of the study only data from microarray
experiments were taken into account in order to avoid
a bias introduced by expression experiments investigat-
ing only a few miRNAs by, for example, RT-PCR. To
measure the enrichment of cluster miRNAs compared
to single miRNAs in human diseases, we set up a
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sampling algorithm based on log-odds (LOD) scores: for
each disease, d, we calculated the number of cluster
miRNAs, x4, and the number of non-cluster miRNAs,
ya. The LOD score for disease d is then computed by:

LODd = IOgZ((Xd /(Xd + Yd)) / (Xoverall /(Xoverall + YOverall)))

where Xgyarann denotes the number of the 240 human
cluster miRNAs and Voyeran denotes the number of the
455 human miRNAs not contained in any cluster as
obtained from mirBase (release 12.0). Note that Xgverall
and Yoyeran take into account all known human miRNAs,
not just those annotated in PhenomiR. It can be easily
seen that the LOD score for the enrichment of miRNAs
not contained in any cluster computes to -LODd, where
d is again the disease index. A positive LOD score indi-
cates enrichment for cluster miRNAs compared to non-
cluster miRNAs in a specific disease. For evaluation of
the hypothesis of enrichment of cluster miRNAs
throughout all human diseases we randomly shuffled
the genomic position of all miRNAs in each disease
100,000 times and computed the fraction of cases where
the number of sampled positive LOD scores was at least
as high as the number of positive LOD scores obtained
from the data. In addition, we considered miRNA clus-
ters as single loci and calculated the enrichment of
polycistronic miRNA loci by a LOD score: for each dis-
ease d we calculated the number of polycistronic
miRNA loci, xd, and the number of single miRNAs, yd.
The LOD score for disease d is then computed by:

LODd = 1082((Xd /(Xd + Yd)) / (Xoverall /(Xoverall + YOverall)))

where Xgyerann denotes the number of the 62 human
polycistronic miRNA loci and yoyeran denotes the num-
ber of the 455 human miRNAs not contained in
any cluster as obtained from mirBase (Release 12.0).

Statistical models in the Results and discussion section
All programs for this work were written in Python. Final
data analysis and statistical models were done with the
R statistical language.

Additional file 1: The PhenomiR dataset The PhenomiR dataset.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S1xls]

Additional file 2: miRNA cluster (5 kb distance threshold) showing a
homogenous expression pattern in human diseases T, number of
diseases for which each cluster showing a homogeneous expression
pattern; F, number of diseases for which each cluster shows no
homogeneous expression pattern; Homogeneous-fraction, number of
diseases for which each cluster shows a homogeneous expression
pattern for each miRNA cluster as defined; P-value, estimate by randomly
linking miRNA-expression patterns 10,000 times within each disease.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S2xls]
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Additional file 3: Enrichment of polycistronic miRNA loci in human
diseases For each disease the log-odds (LOD) score is plotted. We found
that polycistronic loci are on average 3.5 times (LOD = 1.83) more
disease-associated than expected. For abbreviations of disease names see
Additional file 13.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S3.pdf]

Additional file 4: Enrichment of single miRNA loci in human
diseases For each disease the log-odds (LOD) score is plotted. The LOD
score for disease d is given by: LODy = 10g, ((Ya/(Xg + Ya))/Yoveral/ Xoveral
+ Yoveral))) (see Materials and methods for a detailed description). We
found that differentially expressed single miRNA loci are not enriched in
diseases. Red points depict disorders with few deregulated single miRNA
loci and black points indicate diseases without enrichment compared to
random. For abbreviations of disease names see Additional file 13.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S4.pdf]

Additional file 5: miRNA cluster enrichment for cancer and non-
cancer diseases (a) miRNA cluster enrichment for cancer diseases. (b)
mIRNA cluster enrichment for non-cancer diseases. For each disease the
log odds (LOD) score is plotted. Green points depict enriched diseases.
Black points indicate diseases without enrichment compared to random
and red points depict disorders with few deregulated cluster members.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S5.pdf]

Additional file 6: miRNA cluster (10-kb distance threshold) showing
a homogenous expression pattern in human diseases T, number of
diseases for which each cluster shows a homogeneous expression
pattern; F, number of diseases for which each cluster shows no
homogeneous expression pattern; Homogeneous-fraction, number of
diseases for which each cluster shows a homogeneous expression
pattern for each miRNA cluster as defined; P-value, estimate by randomly
linking miRNA-expression patterns 10,000 times within each disease.
Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S6.xIs]

Additional file 7: miRNA clusters (50-kb distance threshold)
showing a homogenous expression pattern in human diseases T,
number of diseases for which each cluster shows a homogeneous
expression pattern; F, number of diseases for which each cluster shows
no homogeneous expression pattern; Homogeneous-fraction, number of
diseases for which each cluster shows a homogeneous expression
pattern for each miRNA cluster as defined; P-value, estimate by randomly
linking miRNA-expression patterns 10,000 times within each disease.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S7Xls]

Additional file 8: Enrichment of polycistronic miRNA loci in human
diseases For each disease the log odds (LOD) score is plotted. Order is
based on LOD scores for polycistronic miRNA loci using a 5-kb distance
threshold according to chromosomal locations. For abbreviations of
disease names see Additional file 13.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S8.pdf]

Additional file 9: Percentage of polycistronic miRNA loci for each
disease using a 5-kb distance threshold The dashed line shows the
background frequency, which is given by the number of the 62 human
polycistronic miRNA loci, and the sum of polycistronic loci and the 455
human miRNAs that are not contained in any cluster as obtained from
mirBase (release 12.0) using a 5-kb distance threshold according to
chromosomal locations. For abbreviations of disease names see
Additional file 13.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S9.pdf]
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Additional file 10: Percentage of polycistronic miRNA loci for each
disease using a 10-kb distance threshold The dashed line shows the
background frequency, which is given by the number of the 65 human
polycistronic miRNA loci, and the sum of polycistronic loci and the 452
human miRNAs that are not contained in any cluster as obtained from
miRBase (release 12.0) using a 10-kb distance threshold according to
chromosomal locations. For abbreviations of disease names see
Additional file 13.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S10.pdf]

Additional file 11: Percentage of polycistronic miRNA loci for each
disease using a 50-kb distance threshold The dashed line shows the
background frequency, which is given by the number of the 72 human
polycistronic miRNA loci, and the sum of polycistronic loci and the 445
human miRNAs that are not contained in any cluster as obtained from
mirBase (release 12.0) using a 50-kb distance threshold according to
chromosomal locations. For abbreviations of disease names see
Additional file 13.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S11.pdf]

Additional file 12: miRNA cluster enrichment in human diseases For
each disease the log odds (LOD) score is plotted. Order is based on LOD
scores for miRNA clusters using a 5-kb threshold.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-
S12.pdf]

Additional file 13: Diseases used in this analysis and corresponding
short names Diseases used in this analysis and corresponding short
names.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/gb-2010-11-1-r6-

S13xIs]

Abbreviations
AML: acute myeloid leukemia; LOD: log-odds score; OMIM: Online Mendelian
Inheritance in Man.
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