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ABSTRACT   

A blind separation technique based on Independent Component Analysis (ICA) is proposed for breast tumor delineation 
and pathologic diagnosis. Tissue morphology is determined by fitting local measures of tissue reflectance to a Mie 
theory approximation, parameterizing the scattering power, scattering amplitude and average scattering irradiance. ICA 
is applied on the scattering parameters by spatial analysis using the Fast ICA method to extract more determinant 
features for an accurate diagnostic. Neither training, nor comparisons with reference parameters are required. Tissue 
diagnosis is provided directly following ICA application to the scattering parameter images. Surgically resected breast 
tissues were imaged and identified by a pathologist. Three different tissue pathologies were identified in 29 samples and 
classified as not-malignant, malignant and adipose. Scatter plot analysis of both ICA results and optical parameters 
where obtained. ICA subtle ameliorates those cases where optical parameter’s scatter plots were not linearly separable. 
Furthermore, observing the mixing matrix of the ICA, it can be decided when the optical parameters themselves are 
diagnostically powerful. Moreover, contrast maps provided by ICA correlate with the pathologic diagnosis. The time 
response of the diagnostic strategy is therefore enhanced comparing with complex classifiers, enabling near real-time 
assessment of pathology during breast-conserving surgery. 
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1. INTRODUCTION  
Early detection of breast cancer is the keystone of recovery [1]. Once a localized malignant tumor is detected, a surgery 
procedure must follow. Breast-Conserving Therapy (BCT) has been the standard of care for early invasive breast cancers 
and it includes local excision and radiation treatment to the breast [2]. However, if tumor is not extracted correctly and 
some malignant cells are left on the patient, there is a high risk of reappearance, even with the radiation treatment [3]. 
Drastic solution for surgeons could be a mastectomy, i.e., complete excision of the breast, but this intervention produces 
serious consequences on patients, not only biologically but also psychologically [4] since it a dramatic fact in a social 
and emotional way. All this problems may not appear if the extraction of malignant tissue is accurate. To this aim, a high 
resolution and fast system of microscopy should be installed on the surgery room to correctly delineate boundaries of 
malignancy with precision.  This would be the ultimate goal of the study presented on this line of research. 

A scanning spectroscopy platform is proposed to analyze the spatial distribution of the scattering because it reflects the 
natural heterogeneity observed in tissue morphology [5]. To analyze only the first order scattering, a modeling of 
spectral data has to be done to minimize multiple scattering and absorption effects. Scattering parameters have 
previously been used on breast cancer detection. Wang et al. [6] developed a method of image reconstruction of Mie 
scattering parameters with near-infrared source, interpreting adipose and fibrograndular tissues on different breast tissue 
samples. Also non-optical scattering has been studied. Recently, Elshemey et al. [7] evaluated the diagnostic capability 
of X-ray scattering profile parameters on breast cancer excised samples, achieving a diagnostic accuracy up to 97%.  
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On a previous work [5] a k-NN classifier demonstrated discrimination between benign and malignant tissues with a 
sensitivity and specificity of 91 and 77% respectively, using the scattering parameters as starting points. Nevertheless 
this classifier is hard to train and computationally slow compared with much simpler classifiers as those based on the 
evaluation of linear thresholds. In this study, Independent Component Analysis (ICA) has been applied over the 
scattering parameters to extract more diagnostically defining features from the model-based ones.  

ICA has been previously used on breast cancer detection and other biomedical application involving spectral analysis. 
ICA is applied on breast cancer detection to obtain interesting features on mammograms [8]-[10]. Amara et al. 
experimental results [8] showed 71.2% of accuracy using ICA to detect suspicious regions on mammograms. Costa et al. 
[9] combined ICA and Linear Discriminant Analysis (LDA) reaching a 95.2% of accuracy discriminating benign and 
malignant masses on mammograms. Kopriva et al. [10] extracted tumor maps from skin fluorescence RGB images with 
ICA and other unsupervised linear mixture model. They concluded that these techniques would also work in other multi-
channel medical imaging systems.  

This study analyses the viability of independent component analysis when applied on scattering parameters with the aim 
of simplifying and improving the classification of malignancy. The resulting extracted ICA features seem to be easily 
classified with a threshold providing a fast and simple linear classification.  

 

2. MATERIALS AND METHODS 
1.1 Localized reflectance measurements 

The imaging system consists of a confocal spectroscopic set-up and a raster-scanning platform built using translation 
stages. Both subsystems, optical and electromechanical, are integrated within a custom developed LabVIEW interface. 
Figure 1 shows a schematic of the measurement set-up. The illumination optics consists of a 50 µm core fiber (F1) 
coupled to a 100W tungsten-halogen white light source placed at the front focal point of an achromatic lens (L1).  A 
10X, long working distance, plan-apochromatic objective (L2) was used to refocus the light onto the sample.  The 
illumination optics was modeled in Zemax software to assure an illumination spot size smaller than one scattering length 
(typically 100 µm) over the entire wavelength band (510-785 nm) that covers the strong hemoglobin absorption peaks. 
The detection optics uses the same objective to collect the backscattered light from the sample and a 50/50 beam splitter 
to separate illumination and detection beam paths. Another achromatic lens (L3) focuses the detected photons onto a 100 
µm core optical fiber acting as the confocal pinhole. A more detailed description of the system and its calibration and 
characterization procedures can be found in [11]. 

 
Fig. 1. Scatter imaging system set-up. 

The acquired spectral reflectance is spectrally corrected versus a Spectralon reference (Labsphere, Inc., North Sutton, 
New Hampshire) to allow direct comparison between tissue samples. Afterwards, the spectrally corrected reflectance is 
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fitted by an empirical approximation to Mie’s theory. This approximation accounts for scatter versus wavelength and a 
Beer’s Law attenuation factor is included to correct for the presence of significant local absorption by hemoglobin: 

 )}(*)1()(*]{[* 222exp)( λελελλ HbHbO StOStOHbTbAR −+Γ−−=  (1) 

Parameters A  and b  are scattering amplitude and scattering power, respectively. Both magnitudes depend on the size 
and number density of scattering centers in the volume of interrogated tissue, thereby reflecting variations in breast 
tissue morphology. Γ refers to the mean optical pathlength (dependent on the illumination and detection geometry), 
parameter   ][HbT  is the total hemoglobin concentration, parameter 2StO is the oxygen saturation factor (ratio of 
oxygenated to total hemoglobin), 

2HbOε and Hbε  refer to the molar extinction coefficients of these two chromophores 
respectively (Oregon Medical Laser Center Database, [12]). Oxygenated and deoxygenated hemoglobin were the 
dominant tissue chromophores encountered in the measured waveband [5]. The measured reflectance spectra are fit to 
this model using a nonlinear least squares solver to obtain estimates of scattering amplitude and scattering power relative 
to the Spectralon reference. Apart from the specific scattering parameters, amplitude (A) and power (b), a measure of 
average scattering irradiance, avgI , is calculated by integrating the reflectance spectrum over a waveband between 620 
nm and 785 nm that avoids the hemoglobin absorption peaks.  

The present study is focused on the analysis of 29 specimens of breast tissue [5], with 48 different Regions of Interest 
(ROIs) corresponding to 7 different pathologies that are aggregated into 3 main typologies: non-malignant, malignant 
and adipose. All the data is summarized in Table I. 
 
Table I.  Information on the statistics of the analyzed breast tissues. 

Tissue type No of ROIs 
Non-Malignant 25 

Malignant 14 
Adipose 9 

Total ROI 48 
 

1.2 Independent Component Analysis 

The hypothesis of this work is that hidden and diagnostically powerful factors could be linearly mixed within the 
scattering parameters maps: A ,  b and avgI . This hidden features could be more classifiable in a more rapid and simple 
way. The model faced on this analysis is shown on Eq. (2). 

xWy =                                                                                              (2) 

where y  is a nm×  variable containing the output independent components; x  is the nm×  input variable, i.e. the 
scattering parameter maps (A ,  b and avgI ); W  is the mm×  mixture matrix. On this study m  would be three (the 
considered scattering optical parameters) and n  the number of pixels analyzed on each image. The unknown latent 
variables contained in y are supposed to be mutually independent and non-Gaussian [13].  

Fast-ICA method [14] was selected because of its simplicity and computational behavior. Fast-ICA algorithm is based 
on the maximization of the kurtosis, related to the ‘peakeness’ of the probability distribution function, of the output 
components in order to reach the maximum non-Gaussianity. The reason for this is based on the Theorem of Central 
Limit establishment, which says that linear mixtures of independent variables tend to be Gaussian, so the non-
gaussianity of components of mixture will denote independency. The formulated problem on Eq. (2) has some inherent 
ambiguities with sign and order of the output components, or sources, which may cause difficulties on selecting a global 
threshold on a final linear classification. 
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Fig. 2. ICA “cocktail party” [13] application over the scattering parameters: amplitude (A) , power (b) and average scattering 

irradiance, avgI .  

1.3 Scatter plot 

Strong correlation was observed on previous study [5] between the scattering power (b) and the logarithm of the 
scattering amplitude (A). This statistically similar behavior of both parameters made ICA to just reveal two independent 
components as output. Then we achieve two sets of variables. A useful technique to represent two variables is a 2D 
scatter or dispersion plot, where one variable behaves as abscise and the other one as ordinate. The resulting plane shows 
the relationship between variables, i.e. how separable they are and which way of classification would be the more 
accurate. 

3. DISCUSSION  
Given the strong statistical similarity between scattering power and amplitude, and assuming that this was the reason 
why FastICA did not generate three different output components, the work has been focused only on the scattering 
power, b, and on the average scattering irradiance, avgI .  As result, the analysis generates two independent components, 

1IC and 2IC , from these two model-based parameters b and avgI .  At each image pixel, output ( 1IC and 2IC ) and input 

data (b and avgI )   will be now linked by the mixture matrix W  as stated in Eq. (3). 
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After a detailed analysis of the scatter plots of the ICA results, some samples exhibit a strong correlation with the 
behavior of the scatter plots of optical parameters. Figure 3 shows how the ICA only rotates the axes, fact that becomes 
useless from a classification point of view. In these cases, the corresponding mixing matrix W  defined on Eq. (2) and 
(3) results to be almost diagonal or anti-diagonal concluding that IC image maps are very similar to the optical 
parameters map and no improved relevant information is provided after ICA application. A simple diagnosis criteria 
based on the evaluation of a threshold in just one of the scatter plot axes is able to be implemented in both cases, 
scattering parameters domain and IC components domain.   
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Scatter plot of the scattering parameters               Scatter plot of IC components 

  

  

 

 

 

 

 

 

 

 

Fig. 3. Scatter plots of scattering parameters (left) and independent components (right) on samples where the mixture matrix is almost 
diagonal or anti-diagonal. 

 

Nevertheless, on some other tissue samples, a subtle improvement of diagnosis separation is achieved on the scatter 
plots provided by ICA. This fact would make possible a better linear classification through the evaluation of a linear 
threshold. The right column of Figure 4 shows how the separation of clusters, corresponding to different tissue 
diagnosis, is improved after ICA implementation. This fact can be observed on the rotation and expansion of the data 
that would help in the definition of the diagnosis threshold.  

This fact validates the idea that the improvement is not only on the implementation of a simple lineal classifier for 
diagnosis, but also on the possibility of using just one independent component to visually guide the surgeon. As the 
variance of the data relies only on one axis direction, all the diagnostically interested information on the optical 
parameters could be collected on a single image corresponding to one of the independent components. Figure 4 suggests 
that the evaluation of just one independent component, the vertical one ( 2IC ), would provide guidance to the surgeon 
for tissue discrimination. The insets of Figure 4 show that the corresponding mixing matrixes W  are not now diagonal 
for these cases. This analysis reveals that the final IC image becomes a mixture of both optimal parameters (b and avgI ) 
extracting all the relevant information from both of them. 
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Scatter plot of the scattering parameters               Scatter plot of IC components 

  

  

 

 

 

 

 

 

 

 

Fig. 4. Scatter plots of scattering parameters (left) and independent components (right) on tissue samples where the mixture matrix is 
not diagonal or anti-diagonal. 

 

When the most discriminant independent component is displayed (right column of Figure 5), high visual correlation 
between pathological regions of interest and different contrast levels on the image was achieved. Furthermore, this 
independent component map is consistent with the H&E image (Hematoxylin and Eosin stain) supplied by the 
pathologist (left column of Figure 5).  

Finally, the most significant independent component provides a more accurate and contrasted visual result than the 
optical parameters themselves. The metric demonstrating this fact is the mixing matrix W , as already described. As on 
most of the samples this matrix is not diagonal, an algebraic mix of optical parameters in performed on ICA result, as 
shown on Eq. (4):  

 

 avgiii IwbwIC 21 +=                                                                        (4) 

 

ICA would be getting the most discriminate features from each one of the scattering parameters generating an 
improvement. In addition, this mixture map provides more contrast than the parameters’ maps themselves, as Fig. 6 
displays, and could provide a clearer guidance map for the surgeon when he is in an intraoperative context.   
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H&E image Pathologist ROI Independent component image 

   

   

   

   
 

 

 

 

 

Fig. 5. Visual correlation between H&E slides (left), pathological regions of interest (center) and the 
different levels on most discriminant independent component image (right). The same color is not always 

associated to same pathology due to ICA inherent ambiguities. 
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H&E image b , scattering power avgI , average irradiance Most discriminant IC 
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Fig. 6. Visual correlation between H&E slides (1st column), scattering power map (2nd column), average scattering irradiance (3rd 
column) and the most discriminant independent component image (4th column).  

4. CONCLUSIONS 
Spatial domain ICA technique has been applied over optical scattering parameter model-based maps, extracted from 
localized reflectance measures of breast tissue resected specimens. Although three scattering parameters (A, b and Iavg) 
where firstly used as ICA input, finally scattering amplitude ‘A’ was avoided due to its statistical similarity with the 
scattering power ‘b’.  As advantage, to help in the following automatic classification stage, the two resulting ICs have 
been represented  in a scatter/dispersion plot. As a result of this post-processing stage, it has been checked that ICA 
subtly helps in the grouping of the diagnostic categories in tissue samples where the scattering parameter b and Iavg were 
less separable. This fact can be checked on the mixture matrix of the definition of the problem, W. After displaying the 
ICA resulting tissue image, consistency with pathology regions of interest and visual correlation with H&E images has 
been achieved. Furthermore, ICA seems to favorably mix the diagnostic information from b and Iavg to finally obtain a 
more discriminate surgeon-guide image. 

However some problems with inherent ambiguities of ICA algorithm still have to be solved. Also, it has been checked 
that sometimes ICA does not change the optical parameters, as the mix matrix W is mostly diagonal or anti-diagonal. 
This fact may be suggesting that optical parameters are already independently enough on some tissue samples, which 
motivates the idea of applying ICA directly on the reflectance measures to avoid modeling, and some significant maps 
could be obtained in a absolutely blindly way. 
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