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Abstract

Background: Phenomenological information about regulatory interactions is frequently available and can be
readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into
the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches,
methods for the conversion of Boolean systems into systems of ordinary differential equations have been
developed recently. As biological interaction networks have steadily grown in size and complexity, a fully
automated framework for the conversion process is desirable.

Results: We present Odefy, a MATLAB- and Octave-compatible toolbox for the automated transformation of
Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean
equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from
the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of
ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill
functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as
the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB
toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the
simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the
usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem
cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain
boundary.

Conclusions: Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems
of ordinary differential equations. It can be efficiently connected to a variety of input and output formats for
further analysis and investigations. The toolbox is open-source and can be downloaded at http://cmb.helmholtz-
muenchen.de/odefy.

Background
The ultimate goal of the increasingly popular systems
biology approach is the integration of many different
molecular interactions into extensive computer models
that closely reflect real-life behavior of their underlying
biological systems. Mathematical implementations of
various biological systems have been proposed recently,
including cell cycle control in yeast [1] and Caulobacter
crescentus [2], and circadian rhythms of Arabidopsis
thaliana [3] to name but just a few. Such studies are
primarily designed to match known measurable pheno-
types of the respective systems and reveal insights into

the precise quantitative evolution of biochemical species
over time. With a reasonable in silico implementation of
a biological system at hand, predictions of knockout and
perturbation effects can be performed by the computer.
For most biological systems, however, only qualitative

information about regulatory interactions is available,
which is not sufficient to implement precise kinetic rate
laws for each biochemical reaction. A well-established
workaround for this lack of information is the applica-
tion of discretized modeling approaches. In Boolean
methodology, for example, we abstract from actual
molecule quantities and assign each player in the system
the state on or off (e.g. active or inactive). Despite the
simplicity of Boolean models we still assume them to
provide information about the general dynamics and
capabilities of the underlying system. Recently proposed
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Boolean models include developmental processes in D.
melanogaster [4], the regulation of the mammalian cell
cycle [5], the activation of T-cells [6] and EGFR signal-
ing in human hepatocytes [7].
In [8] we described a novel technique called HillCube

for the automatic transformation of Boolean models
into systems of autonomous first-order ordinary differ-
ential equations (ODEs). HillCubes are based on multi-
variate polynomial interpolation and incorporate Hill
kinetics (see Implementation), which are known to pro-
vide a good generalized approximation of the synergistic
dynamics of gene regulation [9,10]. Important properties
of the system like steady-state behavior are preserved
during the transformation. Our methodology allows to
enrich Boolean models built up from coarse information
by features of quantitative models, such as intermediate
expression levels, continuous transitions and different

time-scales. Other approaches for the analysis of purely
phenomenological regulatory networks have been devel-
oped recently (cf. e.g. [6,11]) but do not employ contin-
uous, quantitative modeling.
Here we present a user-friendly implementation of the

HillCube technique suitable for large-scale networks in
a MATLAB/Octave toolbox called Odefy. This software
provides convenient access to different model sources,
the conversion process itself and various analysis and
export methods (Figure 1). Boolean models may be
entered as sets of Boolean equations directly or created
with the yEd graph editor [12]. The user may build con-
ventional interaction graphs with activating and inhibit-
ing edges or use an intuitive hypergraph representation
of Boolean models [13]. In addition, models can be
imported from the CellNetAnalyzer toolbox [6], GINsim
[14] and the PBN toolbox [15]. After generating the

Figure 1 Odefy overview. Odefy generates models from sets of Boolean equations or Boolean hypergraphs created with yEd. Alternatively,
Boolean models can be imported from the CellNetAnalyzer, GINsim or the PBN toolbox. Odefy contains a method for the automatic generation
of multi-compartment models from a given single cell model. Boolean models can be exported to other discrete input formats (for the GNA and
SQUAD toolboxes), used for Boolean simulations and analysis within Odefy, or they can be converted to systems of ordinary differential equation
(ODE). These ODE systems can either be directly simulated and analyzed with Odefy or exported to well-established model formats, including
MATLAB script files, SBML, SB Toolbox models and R script files.
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ODEs, the user can easily adjust model parameters and
perform time-course simulations using Odefy’s graphical
user interface. The ODE systems can be exported to
MATLAB script files for further usage in MATLAB pro-
grams, to ODE script files for the R computing platform,
to the SBML format, or to the well-established
MATLAB Systems Biology Toolbox [16]. Due to the
nice mathematical properties of the produced ODEs and
the integration with state-of-the-art modeling tools, a
variety of analysis methods can be immediately applied
to the models generated by Odefy, including bifurcation
analysis, parameter estimation, parameter sensitivity
analysis and so on. For compatibility, we also integrated
export options to the discrete model formats of the
Genetic Network Analyzer [17] and SQUAD [18].
In this manuscript we first discuss the mathematical

backgrounds and implementation details of the Odefy
toolbox, including the different model import sources,
analysis methods and export options. In the results sec-
tion, two examples of quantitative modeling with our
toolbox are given, namely a motif from stem cell differ-
entiation and the regulatory network responsible for the
establishment and stable maintenance of the mid-hind-
brain boundary. We show the ease-of-use of the Odefy
toolbox and demonstrate similar dynamical properties
between a molecular model of the stem cell motif and
the corresponding derived Odefy model. The mid-hind-
brain example specifically emphasizes the importance of
a fully automated conversion method from discrete to
continuous models.

Implementation
Mathematical background
This section outlines the mathematical formulation of
our automatic Boolean model conversion technique. For
a detailed description of this methodology along with
motivations, comparisons to similar approaches and
application to a T-cell signaling model, we refer the
reader to [8]. A Boolean model consists of N species X1,
X2, ... , XN each taking a value xi Î {0, 1}. The value of
Xi at time t + 1 depends on the species Xi1, Xi2, ... ,

xiNi
and is given by the Boolean update function Bi

(xi1, xi2, ... , xiNi
) Î {0, 1}. In a discrete simulation, time

is discretized and the values of x1, x2, ... , xN at time t +
1 are determined by synchronously setting

x t B x t x t x t i Ni i i i iNi
( ) : ( ( ), ( ), , ( )) { , }, , , .+ = ∈ =1 0 1 1 21 2  

The main idea is to convert the above discrete model
into a continuous ODE model, where species Xi is
allowed to take values xi Î [0, 1], and its temporal
development is described by the ordinary differential
equation (ODE)

 x
i

B x x x xi i i i iN ii
= −1

1 2
( ( , , , ) ).

The right hand side of this equation consists of two
parts, an activation function Bi describing the produc-
tion of species Xi and a first-order decay term. An addi-
tional parameter τi is introduced to the system, which
can be understood as the life-time of species Xi. Bi can
be considered a continuous homologue of the Boolean
update function. The key point is how it can be
obtained from Bi in a computationally efficient manner.
In Odefy, three different methods to transform Bi into

Bi are implemented. They are shortly described in the
following. For simplicity of notation, we omit the sub-
script i.
BooleCube
The basis of all three transformation methods are the
so-called BooleCubes
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which we obtain by multilinearly interpolating the
Boolean function B, see Figure 2A.
HillCube
The functions B I are affine multilinear. Many molecu-
lar interactions, however, are known to show a switch-
like behavior, which can be modeled using sigmoid
shaped Hill functions f x x x kn n n( ) / ( )− + , see Figure

Figure 2 Continuous homologues of Boolean functions. Continuous homologues of Boolean functions. A Multilinear interpolation of a two-
variable OR gate (Boole-Cube). B Hill functions with Hill coefficients n = 2, 4, 8, 16 and k = 0.5 as continuous relaxation of a Boolean step
function. C Composition of BooleCube from (A) with Hill functions (HillCube). D normalized HillCube from (C).
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2B. The two parameters n and k have a clear biological
meaning. The Hill coefficient n determines the slope of
the curve and is a measure of the cooperativity of the
interaction. The parameter k corresponds to the thresh-
old in the Boolean model, above which one defines the
state of a species as on. Mathematically speaking, it is
the value at which the activation is half maximal, i.e.
equal to 0.5. We now introduce a Hill function fi with
parameters (ni, ki) for every interaction and define a
new continuous function

B x x f x f xN N N
H IB( , , ) : ( ( ), , ( )),1 1 1 =

which we call HillCubes, see Figure 2C. We can show
that for sufficiently large Hill exponents n, there will be
a steady-state of the continuous system in the neighbor-
hood of each Boolean steady-state [8].
Normalized HillCube
Note that Hill functions never assume the value 1, but
approach it asymptotically. Hence, the HillCubes are not
perfect homologues of the Boolean update function B. If
this is desired a simple solution is to normalize the Hill
functions to the unit interval. This yields another con-
tinuous (perfect) homologue of the Boolean function B
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which we call normalized HillCube, see Figure 2D.

Implementation in MATLAB/Octave
The core functionality of Odefy is accessible through a
set of functions for the MATLAB/Octave command line
or via a Java-based graphical user interface. Figure 1
shows an overview of the complete Odefy tool-box. The
following section provides detailed descriptions of the
model definition and import process, ODE generation,
model simulation and exporting.

Model definition & representation
An Odefy input model consists of a set of Boolean
update rules for the underlying regulatory system. Our
toolbox currently supports several possibilities to define
such models:

(i) The user may enter a set of symbolic Boolean
equations in text-form, allowing for the quick and
intuitive generation of model structures (Figure 3A).
Boolean equations consist of model variables and the
three Boolean operators AND, OR and NOT. For
the Odefy import process, we represent these opera-
tors by the MATLAB language-specific operators
&&, || and ~, respectively. Throughout this manu-
script, we stick to the common mathematical nota-
tion of ∧ for AND, ∨ for OR and ¬ for NOT.
(ii) Models can be derived from directed graphs cre-
ated in the free yEd graph editing software [12]. The
user builds an interaction graph of activating and
inhibiting edges, which is then converted to an
Odefy Boolean model (Figure 3B). Note that we
need to specify how multiple regulatory inputs of a
single factor are combined into a Boolean update
rule. For this a generic logic of the form f(X) = (A1

⊖ A2 ⊖ ... ⊖ Am) ⊙ ¬(I1 ⊗ I2 ⊗ ... ⊗In) defined by
three Boolean operators ⊖, ⊙, ⊗ Î {∧, ∨} is used,
where A1, ... , Am is the set of activators and I1, ... ,
In represent all the inhibitors of X. The Odefy
default setting is to activate the output if at least one
activator and no inhibitors are active. In order to
create this behavior we choose ⊖ = ∨, ⊙ = ∧, ⊗ = ∨
resulting in

f X A A A I I Im n( ) ( ) ( ).= ∨ ∨ ∨ ∧ ¬ ∨ ∨ ∨1 2 1 2 

The assignment of Boolean operators can be changed
during the import process into the Odefy toolbox. In
addition to the possibility of inputing interaction graphs,

Figure 3 Boolean model definition. A The easiest way to define a Boolean model in Odefy is to specify a set of Boolean equations in a text
file. This example represents an asymmetric version of the mutual inhibitory switch shown in the results section. Note the use of the MATLAB
language-specific operators &&, || and ~. B Regulatory interaction graph created with the yEd graph editor. Regular arrows represent activatory
influences whereas diamond-head arrows stand for inhibition. Note that we need to specify a generic logic to combine multiple regulatory
inputs for node E. The Odefy default at least one activator and no inhibitors logic would result in E = (A ∨ C) ∧ ¬ (B ∨ C). C Alternative
representation of the Boolean model as a hypergraph. Using a specialized node ‘&’ we can precisely specify the Boolean logic for node E. All
edges not incident to a ‘&’ node are treated with an OR logic. The resulting Boolean update rule reads E = (A ∧ ¬ B) ∨ C ∨ ¬ D. ∧ = logical
AND, ∨ = logical OR, ¬ = logical NOT.
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we implemented an intuitive hypergraph-based repre-
sentation of Boolean models in the sum of product form,
which is capable of describing any Boolean update func-
tion [13] (Figure 3C).

(iii) Odefy can be tightly integrated with the well-
established CellNetAnalyzer (CNA) toolbox [6]. By a
plugin-like menu interface the user can execute
Odefy from within CNA and convert existing CNA
models into systems of differential equations.
Furthermore, parameter settings made in the CNA
user interface are directly passed to Odefy and used
for simulation and exporting.
(iv) Finally, Boolean models can be directly imported
from the GINsim XML format [14] and the Prob-
abilistic Boolean Networks toolbox [15].

The Odefy toolbox can efficiently handle large-scale
models containing 50 players and more. One of the lar-
gest cellular Boolean model, a T-cell model with 94
nodes and a total of 123 regulatory interactions [19],
can be transformed and simulated in less than one sec-
ond on a standard workstation. Internally, Boolean mod-
els are stored as multidimensional arrays (i.e. hypercubes
with edge length 2) for rapid element access and Boo-
lean function evaluation. The time complexity of model
generation lies in  (2N) with N being the highest
degree of all nodes, yielding an exponential growth of
computational runtime. The limiting size of Odefy mod-
els is thus not the number of nodes contained, but
rather the highest number of incoming edges for any
node in the model. For most regulated genes, however,

we assume the number of modeled input regulatory fac-
tors to be equal to or less than 10, which can be
handled on the order of one second per node by Odefy.
To account for systems consisting of multiple cells or,

more generally, compartments driven by identical regu-
latory networks, Odefy contains an automated multi-
compartment expansion procedure. Given a Boolean
model and the assignment of an intercompartment flag
for a given set of factors in the model, Odefy generates
a larger model corresponding to a linear row of con-
nected compartments. Factors flagged as intercompart-
mental exhibit their influence towards the two
neighboring cells and are combined using an OR logic
(see also: Mid-hindbrain example below).
Simulation and analysis
After model creation, the resulting ODE systems can be
simulated directly by numerical integration algorithms
or, alternatively, exported to various external model for-
mats. Note that Boolean models as such are parameter-
free, and the dynamical parameters for the ODEs have
to be set externally. For convenience, Odefy employs a
set of reasonable default values for all parameters in
order to allow for a quick analysis of the system. Import,
parameter adjustment, simulation and exporting can be
accessed by the Odefy command line functionality as
well as a graphical user interface (Figure 4). These Java
Swing-based user dialogs provide a platform-indepen-
dent look and feel. They use the MATLAB-internal Java
engine and therefore do not require an external Java
runtime environment. For advanced MATLAB users
and users of the Octave environment, we provide func-
tions for convenient parameter access, Boolean state

Figure 4 Odefy graphical user interface. A Screenshot of the Odefy simulation dialog for convenient access to the dynamic model
parameters, initial values, conversion types and plot options. All settings can be saved to or loaded from the current workspace. B Export dialog
for all discrete and continuous Odefy export formats. C Exemplary time-course simulation of the cell cycle model from [5] with default
parameters.
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analysis (steady states and state-transition graph) and
phase plane visualization of dynamic simulations.
Export
Export formats for Odefy models include the MATLAB/
Octave ODE script files, the Systems Biology (SB) Tool-
box [16], the SBML format, script files for the R com-
puting platform, the Genetic Network Analyzer (GNA)
[17] and SQUAD [18]. SB Toolbox contains various
advanced analysis functions for dynamical systems like
parameter sensitivity and bifurcation analysis. The
SBML format can be read by various systems biology
software tools like COPASI [20] and CellDesigner [21]
and thus provides a versatile interchange format. The
GNA allows a structural analysis and qualitative simula-
tions of systems of piece-wise linear ODEs. SQUAD
analyzes discrete and continuous models using the stan-
dardized qualitative dynamical systems approach.
Toolbox
The Odefy toolbox is platform-independent due to the
availability of MATLAB and Octave for all major operat-
ing systems and the direct integration of the Java Runtime

Environment into MATLAB. It was verified to run
smoothly on Windows, Linux KDE and GNOME as well
as recent versions of Mac OS X. A detailed HTML docu-
mentation is included in the download package, which
also provides a quick start guide to start working with the
toolbox. Odefy is free for non-commerical and academic
use. The toolbox including source codes can be down-
loaded at http://cmb.helmholtz-muenchen.de/odefy.

Results and Discussion
Mutual inhibitory switch
In the following we demonstrate the use of Odefy for
the analysis of a simple regulatory motif. The mutual
inhibitory switch (Figure 5A) is a well-known circuit
involved in developmental processes and stem cell dif-
ferentiation, e.g. in the hematopoietic system [22].
Despite its simplicity the circuit displays remarkable
dynamic characteristics leading to the fate decision
between opposing differentiation lineages. Various theo-
retical studies have been published recently investigating
different aspects and molecular assumptions for this

Figure 5 Mutual inhibitory switch. A Regulatory network known to take a prominent role in stem cell differentiation processes (see e.g. [22]).
It consists of two mutual inhibitory factors (here with auto-activation). Intuitively, only one of the two factors can be fully active at any given
time, leading to a switch-like behavior of this circuit. B This listing diplays the set of commands required to create and analyze the OR logics
version of the mutual inhibitory switch. After initializing Odefy and generating the model structure (lines 1-2), we calculate and output Boolean
steady states (lines 3-4) and finally convert the model into an ODE system to generate a picture of the attractor landscape (lines 5-6). C Boolean
steady states of the OR and AND version of the mutual inhibitory switch model. D, E Phase planes visualizing the attractor landscapes of the OR
(D) and AND (E) logics models. The figures display trajectories of both dynamical systems from various initial concentrations. Trajectories with
the same color fall into the same stable steady state. Both systems comprise three stable continuous steady states, each of which belongs to
one Boolean steady state.
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motif [23-25]. We discuss two different ways of formu-
lating the interactions in this network in terms of Boo-
lean equations. Multiple regulatory inputs (in this case
self-activation and cross-inhibition) can either be com-
bined using an AND or an OR logic for both factors.
Figure 5B shows the MATLAB code that analyzes the
OR logics version of our mutual switch network. After
creating the model structure we calculate and output
the steady states of the Boolean model (Figure 5C).
We demonstrate the actual conversion into an ODE

model and subsequent simulation within the Odefy tool-
box. A two-dimensional phase plane projection of var-
ious initial values is drawn that displays the attractor
landscape generated by the dynamical system (Figure
5D, the phase plane visualization for the corresponding
AND logics model is shown in Figure 5E). Note that
this analysis reveals continuous decision boundaries
between different attractors not apparent in the discrete
model alone. Furthermore, two unstable steady states
emerge which mark the switching points from one
attractor basin to the other. In stem cell research, the
central state is considered to be a pre-differentiation
priming state whereas the other two states correspond
to the regulatory program leading to the commitment
to a certain cell lineage [26]. With our continuous
mathematical representations we gain insights into the
putative switching dynamics of this important

differentiation switch in stem cells. After fitting simu-
lated trajectories to observed time series of expression
data, we could now determine rate parameters and
understand the detailed time dynamics of the system.

Comparison with an existing ODE model
We now employ the mutual inhibitory switch model
discussed in the preceding section to address an impor-
tant question for our novel modeling approach, namely
whether the quantitative dynamics added to the discrete
model are reasonable, or whether spurious, artifical
effects are created by the method. In the study by Roe-
der et al. [23], a mechanistical model of the switch
motif was proposed, which is based on actual biochem-
ical reactions like promotor binding, transcription/trans-
lation and protein-protein interactions. The system was
reduced to a two factor ODE by applying quasi-steady
assumptions for the DNA and RNA species in the sys-
tem. A comparison between simulation trajectories of
the Odefy-converted model of the AND-gated switch
and the Roeder model is displayed in Figure 6. Both sys-
tems have two non-zero stable steady states at similar
positions, and the attractor basins for both states are
virtually identical. Furthermore, both systems comprise
a third, trivial steady state where both factors are zero.
Interestingly, the parameter assignments we made for
the simulation of the Odefy model, in order to achieve

Figure 6 Comparison with an existing modeling study. A Phase planes visualizing the attractor landscape of the Odefy-converted AND
version of the mutual inhibitory switch from various initial conditions. We set the Hill parameter n to 2 in order to represent dimer binding of
transription factors as proposed in the study by Roeder et al [23]. The self-activation threshold ks was set to 0.01, resembling a highly sensitive
self-activation in comparison to the mutual inhibition. B Simulation of the ODE system from [23] with a high unspecific transription rate. We show
an exact reproduction of the phase plane displayed in Figure 2(h) from the original publication. Both dynamical systems are similar in terms of
multistability, steady state positions and attractor basins, i.e. the initial values that fall into a certain steady state.
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similarity between the model simulations, is qualitatively
comparable with the parameter settings from the Roeder
model. More precisely, the Roeder model employs a
high unspecific transcription rate (we refer to the origi-
nal publication for more details on the parameters),
which effectively reduces the mutual inhibitory influ-
ences in relation to the autoregulatory activation of both
factors. Accordingly, in our model we set the self-activa-
tion threshold to 0.01, which renders both factors
strongly sensitive to their own expression levels. Taken
together, we can reproduce important dynamical fea-
tures of the reaction-based system by Roeder et al.,
inluding multistability, steady state positions, and the
general shape of the attractor basins.

Mid-hindbrain boundary
Our second example of dynamic modeling using Odefy
concentrates on a multicellular biological system. During
vertebrate development, the differentiation between mid-
and hindbrain is determined by several transcription fac-
tors (e.g. Otx2, Gbx2) and secreted factors (e.g. Fgf8,

Wnt1). These genes are stably expressed in a well-defined
spatial pattern around the boundary between prospective
mid- and hindbrain, the so-called mid-hindbrain bound-
ary (Figure 7A). In a recent publication, we have applied
both Boolean modeling and the HillCube conversion
approach to this system [27]. In the following we will
show how to use Odefy for automated model selection,
that is the evaluation of an ensemble of regulatory net-
works with respect to stability of the known expression
patterns. Figure 7B displays the MATLAB code required
to fulfill this goal. First, we load a set of 9 regulatory net-
works known to give rise to the expression pattern along
with 1000 random Boolean equations (not shown in the
code) as a representative set of arbitrarily chosen regula-
tory networks. Then we iterate over all equation systems,
generate a 6 cell multicompartment version of this model
where the species representing the signaling molecules
Fgf8 and Wnt1 are flagged as intercompartmental
(Figure 7C). The multi-cell system is converted to an
ODE system and simulated starting from the known
stable expression state with default parameters n = 3,

Figure 7 The Mid-hindbrain boundary. A Expression patterns of four major factors at the mid-hindbrain boundary. The relevant part of the
neural tube is subdivided into 6 compartments, each displaying a unique expression pattern. The right table represents the known expression
patterns in a Boolean framework (note that the secreted variants of Fgf8 and Wnt1 are not included here). B This code snippet demonstrates
the use of Odefy for model selection. We load a precalculated set of random models along with the 9 known valid models and iterate over all
model equations (lines 1-2, mhbsettings is contained in the examples folder of the Odefy package). Next, we generate Boolean models from
each equation and extend the model to a six cell multicompartment model (lines 3-4). The Boolean model is converted into a system of ODEs
and simulated starting from the known expression state (lines 5-7). Note that we simulate a sufficient amount of time units to ensure the
systems has fallen into a steady state. If the final state after simulation is still correct in terms of activity we assume to model to be valid (lines 8-
10). C Three replicated cells from our hypothetical six-cell system. Note that Wnt1 and Fgf8 are secreted factors and exhibit their influence
towards neighboring cells. D The nine network variants that give rise to the desired steady state pattern. All models contain the mutual
activation between Fgf8 and Wnt1 (between neighboring cells), a mutual inhibition between Otx2 and Gbx2 as well as some regulatory
incluence of the transcription factors towards the secreted factors.
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k = 0.5, τ = 1. If the activity of all players, in terms of
exceeding the Hill threshold parameter, is still correct
after a given amount of time steps, we consider the
model to be valid. The results of this experiment show
that indeed only 9 networks can give rise to the desired
system behavior (Figure 7D). Analyzing these networks
we see, in particular, that the maintenance of the bound-
ary requires a mutual inhibition of Otx2 and Gbx2 and
that these two transcription factors have antagonistic
effects on Fgf8 and Wnt1 expression. Moreover, we find
that Fgf8 and Wnt1 require each other for their stable
maintenance. This agrees well with results from various
loss-and gain-of-function experiments [28]. Note that
while the small network in the former sections could still
be handled manually, the model selection problem for the
mid-hindbrain network demonstrates the absolute neces-
sity for fully automated approaches as implemented in our
toolbox. The system contains 6·4 = 24 differential equa-
tions with a total of up to 20 kinetic parameters for each
compartment. Obviously, a model system of this size with
parameter interdependencies due to multicompartmental-
ity cannot reasonably be handled by manual mathematical
modeling.

Conclusions
Precise mechanistic details about regulatory interactions
required for the quantitative modeling of biological sys-
tems are rare. However, more qualitative, phenomenolo-
gical information like activation and inhibition is
frequently available. With Odefy we created a simple yet
useful toolbox to bridge the gap between qualitative and
quantitative modeling of regulatory networks. A variety
of such discrete models is already available and can
immediately be converted into ODE systems by our tool.
Quantitative modeling might reveal features not pre-

sent in the original Boolean models. For instance, quan-
titative models allow for the estimation of system
robustness with respect to parameter perturbations,
even with ad-hoc parameter values. This provides
insights into the general capability of the system to
withstand external or intracellular fluctuations and has
been demonstrated for various biological systems like
Drosophila segmentation patterns [29] and the mid-
hindbrain specification mentioned in this report.
Furthermore, in [8] we determined parameter values by
least-square fitting to experimental data in a T-cell sig-
naling model. We could, amongst others, successfully
predict relations between binding affinity constants of
ligand-receptor interactions, which represent biochem-
ical quantities not capturable in a Boolean framework.
In this report we explained the concepts of automatic

conversion from Boolean models to systems of ordinary
differential equations. Two example cases were discussed
stressing (a) the ease-of-use of the Odefy toolbox as well

as (b) the requirement for automated conversion methods
for more realistic biological systems like the Mid-hind-
brain boundary network. We demonstrated that a discrete
model converted to an ODE by Odefy displays similar
dynamical properties as a mechanistically derived ODE
model of the same system. Here we could show that, even
though the identity of dynamical parameters between both
modeling approaches is substantially different, qualitatively
similar parameter changes show similar results.
The integration of Odefy with other modeling applica-

tions through the import and export of models extends
the scope of our toolbox. In particular, the SBML export
functionality connects our toolbox to a broad variety of
systems biology softwares supporting this common inter-
change format. With its novel modeling technique and its
easy usability, Odefy will be a valuable tool for researchers
aiming to understand the dynamics of gene regulation.

Availability and requirements
• Project name: Odefy
• Project home page: http://cmb.helmholtz-
muenchen.de/odefy
• Operating system(s): Platform independent
• Programming language: MATLAB/Octave
• Other requirements: MATLAB 7.1 or higher (no
additional toolboxes required), Octave for non-GUI
mode
• License: Free for non-commercial purposes
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