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Abstract

A quickly growing number of characteristics reflecting various aspects of gene function and evolution can be either
measured experimentally or computed from DNA and protein sequences. The study of pairwise correlations between such
quantitative genomic variables as well as collective analysis of their interrelations by multidimensional methods have
delivered crucial insights into the processes of molecular evolution. Here, we present a principal component analysis (PCA)
of 16 genomic variables from Saccharomyces cerevisiae, the largest data set analyzed so far. Because many missing values
and potential outliers hinder the direct calculation of principal components, we introduce the application of Bayesian PCA.
We confirm some of the previously established correlations, such as evolutionary rate versus protein expression, and reveal
new correlations such as those between translational efficiency, phosphorylation density, and protein age. Although the
first principal component primarily contrasts genomic change and protein expression, the second component separates
variables related to gene existence and expressed protein functions. Enrichment analysis on genes affecting variable
correlations unveils classes of influential genes. For example, although ribosomal and nuclear transport genes make
important contributions to the correlation between protein isoelectric point and molecular weight, protein synthesis and
amino acid metabolism genes help cause the lack of significant correlation between propensity for gene loss and protein
age. We present the novel Quagmire database (Quantitative Genomics Resource) which allows exploring relationships
between more genomic variables in three model organisms—Escherichia coli, S. cerevisiae, and Homo sapiens (http://
webclu.bio.wzw.tum.de:18080/quagmire).
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Introduction
Over the past two decades, experimental high-throughput
technology has been delivering increasingly accurate meas-
urements describing the functioning of genes, their
transcripts, and their encoded proteins in the cell. Ge-
nome- and proteome-wide measurements of functional ge-
nomic variables, such as the abundance of transcripts and
proteins in the cell or gene essentiality, combined with the
availability of completely sequenced genomes for a wide
range of species, open unprecedented opportunities for
studying collective behavior of genes, and their evolution.
Multifaceted interdependencies between phenotypic
and evolutionary properties of genes have been subject
of active research, especially due to their implications
for systems biology.

In particular, the evolutionary rate (ER) of proteins
has been investigated in the context of a large variety of
genome-scale data sets, and a number of correlates have
been identified which include propensity of gene loss
(PGL), protein length, designability, mRNA abundance,
codon adaptation index (CAI), number of protein intera-
ction partners, essentiality, and exon–intron structure, as

well as functional annotation (Pál et al. 2006; Rocha
2006). Many of these observed variables are in fact measur-

able or computable surrogates of the underlying biological
phenomena. Thus, for example, protein length is related to

the cost of biosynthesis of proteins while mRNA abun-
dance is a measure of gene expression level (EL).

The most comprehensive to date assessment of protein
sequence ER in five closely related yeast species (Xia et al.
2009) found both protein and mRNA abundance, protein
function, and the content of certain amino acids to be
among its strongest genomic correlates. Other relevant fea-
tures related to the evolution of proteins include structural
disorder (SD), GC content, number of interactions, gene
duplicability, and essentiality, as well as the number of tran-
scriptional regulators.

Many observed pairwise correlations are very weak and
may disappear when a confounding variable has been con-
trolled for. For example, it was reported that in yeast, the
correlation between the number of protein interactions
and the ER is due to the bias of experimental interaction
studies toward more abundant proteins (Bloom and Adami
2003). Interestingly, Lemos et al. (2005) reported that in
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Drosophila melanogaster, such bias can be eliminated by
using high-confidence interaction data.

More recently, it has been argued that the complex
structure of interdependencies of varying strength between
multiple quantitative genomics variables can be best
captured by multidimensional analysis (Wolf 2006), and
indeed, the first studies collectively analyzing multiple
variables were published (Drummond et al. 2006; Wolf
2006; Wolf et al. 2006 ). Specifically, Wolf et al. (2006)
applied principal component analysis (PCA) to a set of
seven genomic variables to characterize phenotypic and
evolutionary features of eukaryotic orthologous groups
(KOGs, Koonin et al. 2004). The variables were EL, ER,
knockout effect (KE), number of protein–protein (PPI)
and genetic (GI) interactions a protein is involved in, num-
ber of paralogs (NP) as well as PGL. The first principal
component in this analysis (PC1) received strong opposite
contributions from ER and PGL on the one hand and PPI,
EL, KE, and NP, on the other hand. PC1 could thus be
interpreted as gene status, with high-status (important)
genes being those that lead to lethal phenotypes when
being knocked out, are highly expressed, strongly
connected on the interaction network, have many paral-
ogs, and are evolutionary conserved. The second principal
component (PC2) was dominated by strong positive con-
tributions of NP and GI and a negative contribution of KE.
According to Wolf et al., PC2 reflects gene adaptability to
changes in the cellular and extracellular environment.
Many adaptable genes can be knocked out without
major effects on fitness, and are functionally backed up
by other genes.

One technical difficulty in analyzing multiple genomic
variables is that the results of high-throughput experimen-
tation often do not cover the entire gene complement of
the organism studied. Many methods of multivariate
statistics, such as PCA, cannot operate on incomplete data,
in particular when some values are missing in almost all
samples (genes). It is therefore crucial to either perform
careful preprocessing of data or to adapt the estimation
method appropriately.

The presence of outliers is another recurring problem in
quantitative genomics analyses. In microarray studies, for
example, up to 15% of the data involving extreme values
is not a rarity. Commonly used second-order methods,
based on the assumption that the underlying data follow
a multivariate Gaussian distribution, are particularly prone
to outliers. Less probable values far away from the mean
cause the mean to shift toward these values. Difficulties
caused by data outliers can be handled by either discarding
the outliers altogether (provided that they can be robustly
identified) or by using robust estimation methods. In the
univariate case, the latter option can imply, for example,
replacing the mean by the median, which is not affected
by extreme values as long as there are not too many of
them. In the multivariate setting robust estimation is
a more challenging task because, for example, a definition
of multivariate median cannot be formulated in closed
form by arithmetic operations on the data. For this reason,

sample removal is often considered sufficient for practical
applications.

In Wolf et al. (2006), a three-step sample-reduction ap-
proach for data preprocessing was adopted: 1) remove all
samples with more than one data value missing, 2) replace
the remaining missing values by the mean of each respec-
tive variable, and 3) remove outliers with values deviating
from the mean by more than one standard deviation. The
number of samples (KOGs) for data analysis was reduced
from 10,058 to 4,124 in step 1) and to 3,912 in step 3), still a
sizeable data set. As we show below for bigger sets of in-
completely defined variables, this simple sample-reduction
approach can result in a prohibitively large fraction of the
data excluded from consideration, justifying the need for
more sophisticated data preprocessing strategies.

The goal of this work is to extend previously published
analyses to a larger set of functional genomic variables and
then to identify meaningful components/directions within
this multivariate data set using an improved methodology
capable of coping with large numbers of missing values and
extreme outliers. Toward this end, we have constructed
a database for genomic variables called Quagmire. We an-
alyze a total of 16 variables from this database, adding pro-
tein abundance (ABU), CAI, SD, phosphorylation density
(PHD), protein age (AGE), transfer RNA (tRNA) adaptation
index (TAI), protein half-life (HL), pI (PI), and protein
molecular weight (MW) to the initial set of variables used
by Wolf et al. 2006. Correlation analysis shows that two-
thirds of the variable pairs share significant correlation,
suggesting evidence for constraint and adaptation.
Functional classes of genes influencing these correlations
are derived from enrichment analysis. Different correlates
were found for the number of paralogs derived by sophis-
ticated phylogenetic analyses (NP) and by a simplistic
method involving counting significant Blastp (Altschul
et al. 1997) hits (NPB). Instead of standard PCA, we apply
Bayesian PCA, which allows for a probabilistic handling of
missing values and can operate on the entire set of available
samples.

Materials and Methods

Yeast Genome Data
Sequence Data
Whole genome sequence data (corresponding to the NCBI
genome project ID 13838) as well as MW and pI values (pI)
for 6,086 yeast gene products were downloaded from the
PEDANT database (Walter et al. 2009). Database IDs for all
other data types (described below) were mapped to stan-
dard gene names for S. cerevisiae. In the rare cases, when
such mapping was not possible respective data items were
excluded from consideration.

The percentage of structurally disordered residues (SD)
was determined by DISOPRED (Ward et al. 2004). The
number of disordered residues within a sequence was
divided by protein length to calculate percentage of
disordered residues for each protein. SD values range from
0 to 100.
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Phosphorylation Density
Phosphoproteomics data was provided by the Matthias
Mann group (Gnad et al. 2009). The obtained data set in-
cluding unpublished data contained positions of phosphor-
ylated TYR/THR/SER residues in 1,292 yeast proteins, with
4.8 phosphorylated residues per protein on average. For
each protein, we calculated PHD by dividing the number
of phosphorylated sites by protein length. All other yeast
proteins were considered to be nonphosphorylated and
were assigned zero PHD.

Protein Abundance
Newman et al. (2006) provided abundance data for a total
of 4,130 proteins measured from growth in yeast extract
peptone dextrose medium (supplementary table S1).
Abundance values for 2,526 proteins were explicitly spec-
ified, whereas the remaining 1,604 proteins were described
as having ‘‘very low abundance.’’ This latter set of proteins
was assigned zero abundance in our final data set.

Protein Half-Lives
Protein half-lives (HL) were measured by Belle et al. (2006)
by monitoring the abundance of TAP-tagged proteins as
a function of time upon inhibiting protein synthesis.
The distribution of half-lives was found to be close to log-
normal, with a mean and median half-life of approximately
43 min. The half-life values measured for 3,751 proteins
range from 2 to 115,997 min. There are only seven proteins
that have a half-life greater than 6,000 min.

Number of Protein–Protein and Genetic Interactions
Interaction data were downloaded from the BioGRID
database (Breitkreutz et al. 2008) that provides a compre-
hensive literature-curated collection of protein and genetic
interactions for major model organism species. The data
are downloadable for each species in a separate text file
(we used file version 2.0.45). The downloadable file
provides the complete set of genetic and protein interac-
tions along with respective literature sources and experi-
mental details. Protein–protein and genetic interactions
can be distinguished by the experimental system specified
for each interaction. Proteins in BIOGRID involved only in
self-interactions (PPI and GI) were assigned values of 0.

mRNA Expression Level
We used a reference set of mRNA expression values
for 6,249 yeast genes constructed by Greenbaum et al.
(2002) by merging and scaling the results of several previ-
ously published gene chip and serial analysis of gene expres-
sion experiments.

Codon Adaptation Index
CAI is a measure of synonymous codon usage bias and can
take values from 0.0 (no bias) to 1.0 (maximum bias).
Technically, it can be calculated based on the similarity
of codon usage between a given gene and a trusted set
of highly expressed genes from a given organism. It is thus
a computational proxy for experimentally measured
mRNA concentration (Sharp and Li 1986). We obtained
CAI values for 5,980 yeast genes from the Saccharomyces

Genome Database (Christie et al. 2004) (http://downloads
.yeastgenome.org/protein_info/).

tRNA Adaptation Index
The TAI is a measure of the tRNA usage by coding sequen-
ces inspired by the CAI of Sharp and Li (1986). The TAI
scoring scheme is described in detail in dos Reis et al.
(2004). High TAI values correspond to high levels of trans-
lational efficiency and vice versa. The TAI data set was
downloaded from Man and Pilpel (2007; supplementary
table S2) and contained data for 3,338 genes with values
ranging from �2 to 2.15.

Gene Essentiality
Gene essentiality (ESS) was defined based on disruption data
downloaded from the FTP site of the CYGD database
(Güldener et al. 2005) (ftp://ftpmips.gsf.de/yeast/catalogues
/gene_disruption/gene_disruption_18052006). CYGD con-
tains yeast essentiality data collected from over 800 sources.
Within this data set, 940 genes have a lethal KE (assigned the
value of 1) and 4,656 genes have a viable KE (assigned the
value of 0), whereas data for 490 genes are not available.

Number of Paralogs
We downloaded the set of yeast paralogous families
from the EnsemblCompara (Vilella et al. 2009) resource.
These paralogy predictions were made by a sophisticated
gene-tree based procedure that allows for reconstructing
the evolutionary history of yeast gene families based on
comparison with other species. Additionally, we used
a straightforward approach to find paralogs based on
Blastp similarity searches. The number of duplicates found
by Blastp at an E value threshold of 10�10 is denoted NPB.

Propensity for Gene Loss
PGL is a measure of the evolutionary conservation of a gene
as a whole introduced by Krylov et al. (2003). It was de-
termined based on the phyletic patterns describing
presence or absence of orthologous groups (KOGs) in
seven eukaryotic species including yeast. Because the odds
for a gene to be lost grow with time, the topology of the
phylogenetic tree has to be taken into account. For
a particular gene, PGL is calculated as the ratio between
the sum of lengths of the tree branches associated with
the loss of that gene and the sum of all branch lengths.
If a given KOG occurs in all seven eukaryotic species, its
PGL value is zero. As stated in the reference (Krylov
et al. 2003), the value of one (the highest possible PGL)
would theoretically be assigned to a gene present in the
last common ancestor but lost in all lineages. Because such
situations cannot be observed, PGL values can be in the
range between zero and a maximum value of less than
one. We downloaded PGL data from the NCBI ftp site
(ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl). The file con-
tained values for 4,852 KOGs ranging from 0 to 0.49.
We assigned the PGL value of each KOG to its member
yeast genes. For example, if KOG0002 has a value
0.0675, then all yeast genes belonging to this KOG are as-
signed the value 0.0675. The final PGL data set contained
values for 3,883 genes.
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Protein Age Group (AGE)
Kim and Marcotte (2008) assigned yeast genes to different
age groups based on the occurrence patterns of their con-
stituent PFAM (Finn et al. 2010) domains in three
kingdoms of life—archaea (A), bacteria (B), and eukaryotes
(E)—as well as in fungi (F). The group ‘‘ABE’’ includes the
oldest proteins containing domains found in all three
kingdoms. The group ‘‘AE’’ lists proteins that are common
to archaea and eukaryotes, whereas the group ‘‘BE’’ lists
proteins that are common to bacteria and eukaryotes. Pro-
teins in the group ‘‘E’’ are specific for eukaryotes excluding
fungi. Finally, the group ‘‘F’’ contains the youngest proteins
present only in fungi. We encoded age groups numerically
such that the genes belonging to the ABE group were rep-
resented by the number 3, groups A and BE, presumed to
be equally old, were both assigned the number 2, whereas E
and F were encoded by 1 and 0, respectively.

Evolutionary Rate
ERs were estimated by Wall et al. (2005) by calculating
the ratio between nonsynonymous (dN) and synonymous
(dS) divergence based on DNA sequence alignments of
S. cerevisiae genes with orthologs from three other species
from the Saccharomyces genus: S. bayanus, S. mikatae, and
S. paradoxus. The adjusted dN/dS values for 3,035 genes
obtained from supplementary materials were in the range
from 0 to 0.53.

Preprocessing of Data
The data set consists of 16 variables determined for 6,086
open reading frames and was stored as a matrix X. In a first
preprocessing step, each variable was centered by subtract-
ing its mean calculated over non-missing values. Then all var-
iables were normalized to unit standard deviation in order to
make them comparable on the same scale; again the stan-
dard deviation was calculated only over non-missing values.

Correlation Analysis
In thiscontribution, we decidedto discuss data in the context
of Pearson’s correlationand correspondingprincipal compo-
nents in order to describe the second-order moments of the
data. Without going into the debate of nonparametric versus
parametric models, we want to stress that of course also
other nonparametric covariance estimators, such as Spear-
man statistics or Kendall’s tau exist (see e.g., Visuri et al. 2000);
however, they also do not measure higher order dependen-
cies, and their use in PCA is not as straightforward. In partic-
ular, the inclusion into a Bayesian framework to efficiently
deal with missing values is not yet clear. We decided to stay
in the parametric world of Pearson’s correlation in order to
allow more direct comparison of findings with a previous
study (Wolf et al. 2006) and to focus the reader’s attention
only on linear aspects of the data correlations.

PCA With Missing Values Using a Bayesian
Framework (Bayesian PCA)
We seek to identify key components contributing mostly
to the variance of the total data set X. The standard

machine learning approach to this problem, the PCA
(Jolliffe 2002), iteratively projects the centered data matrix
X along its direction of maximal variance. The projections
are known as principal components and are mutually
orthogonal.

PCA can be interpreted as a compression of data,
minimal in the sense of the mean square error. This is
equivalent to the minimum of the cost function

CðU; VÞ5
X

Xij !5NA

ðXij � ðUVÞijÞ
2;

where Xij is the value of variable j for gene i, and U is a matrix
for mapping principal component matrix V to data matrix X,
respectively.

This cost function ignores missing values (Xij ! 5 NA).
Methods for minimizing this cost function have been
proposed (see Ilin and Raiko 2010; for a review). Here,
we employ the probabilistic model for PCA (Bayesian
PCA; Ilin and Raiko 2010), which has the benefit of
a well-described regularization, important in our case of
noisy large-scale data. The model is given by

Xj 5UVi þ m þ error;

with Gaussian priors on Vj, mean m and error with variance s2.
Here, Xj and Vj denote the j-th columns of the matrices X and V,
respectively. This results in a formulation of the likelihood
p(VjX,U,s). Because without regularization such likelihood max-
imization is prone to overfitting, a Bayesian regularization of this
likelihood was proposed (Ilin and Raiko 2010) by also imposing
Gaussian priors on U and m. In our case, only the prior on U
matters because we preprocess the data such that mean equals
zero. We employ the variational Bayesian approach to approx-
imate the posterior by expectation-maximization.

Inoursetting,we useBayesianPCAwithunrestrictedGauss-
ian densities (which corresponds to full covariance matrices)
for approximating the posterior distributions of Ui and Vj.

Influential Genes Affecting Pairwise Correlations
We employ a simple greedy algorithm to find top genes
affecting pairwise correlations the most when not consid-
ered for the analysis. Genes were removed one-by-one from
the set of yeast genes and the effect (magnitude and sign)
on the Pearson correlation value each time was noted. The
genes that changed the correlation value the most (in the
direction of the opposite sign) when excluded from the
correlation calculation were considered to be top influen-
tial genes. For the purposes of this paper, the number of top
influential genes was chosen such that significant enrich-
ment of annotated functions could be found.

Statistical Difference Between Distributions
The P value that two distributions are different is estimated
by both the Mann–Whitney and Kolmogorov–Smirnov
test. The maximal value from the two tests is reported.

FunCat Enrichment Analysis
Yeast genes are assigned to FunCat functional categories
(Ruepp et al. 2004). P values for enrichment of certain cat-
egories in selected groups of genes compared with the rest
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of the genome were estimated using the hypergeometric
distribution. If k genes belonging to a particular functional
category is found in s query genes and C genes have been
assigned to this category in the entire genome of G genes,
the enrichment P value is estimated by

P � 1 �
Xk� 1

i5 0

�
C
i

��
G � C
s � i

�

�
G
s

�

The P value is subsequently Bonferroni corrected.

Results and Discussion

Quagmire: A Quantitative Genomics Resource
We created a novel database, QUAGMIRE, in which we
manually collected data regarding various quantitative
properties of genes and proteins, such as EL, protein abun-
dance, protein half-life, PHD, etc. Information was
extracted from online supplementary materials (Word
documents, Excel tables) of original research papers as well
as from Web pages of respective labs. The first version of
QUAGMIRE focuses on three best-studied model
organisms: the eubacterium Escherichia coli, the unicellular
eukaryote S. cerevisiae, and Homo sapiens. We have set up
a web interface that allows to explore relationships
between genomic variables and to download the entire
data set. Quagmire is freely available for download from
http://webclu.bio.wzw.tum.de:18080/quagmire.

Overview of the Yeast Data Set and Correlation
Structure
In this work, we consider 16 properties (genomic variables)
of yeast genes or their gene products (table 1) from the
Quagmire database. A dedicated webpage has been setup
that shows pairwise correlations among all the genomic
variables used in this paper (http://webclu.bio.wzw
.tum.de:18080/quagmire/yeast-correlation.jsp). Some of
these variables can be classified as evolutionary variables
(PGL, ER, AGE, and NP) determined by genome compari-
son. Other variables are phenotypic variables describing
various aspects of gene function and structure. MW, pI,
SD, CAI, and TAI are intrinsic properties of proteins and
genes that are directly computed from their amino acid
or DNA sequences, respectively. Values for other pheno-
typic variables (PHD, ABU, HL, PPI, GI, EL, and ESS) were
extracted from experimental papers.

A basic data structure required to understand the
complex interplay between the genomic variables listed
above is the matrix of their pairwise correlations shown
in table 2. We will refer to this table in our analysis
presented below.

Missing Values and Outliers
Although sequence derived variables such as MW or pI are
complete in terms of having a value for each gene, exper-
imental data often have values missing. For many variables,

listed in table 1 values could only be determined for a subset
of genes (fig. 1). For example, in our data, genetic interac-
tions are known for only 3,665 (60.4%) of protein-coding
genes. ER can only be calculated for 3,035 genes because
other genes either do not have orthologs in one of the three
yeast species (S. bayanus, S. mikatae, or S. paradoxus),
contain introns or did not pass an alignment quality filter.
The full set of 16 variables is available for only 640 (10.5%)
protein-coding genes.

For our set of 16 variables, applying the three-step
strategy utilized by Wolf et al. 2006 (removing genes with
more than one missing value, replacing missing values
left with the mean and removing outliers of more than
one standard deviation) would result in removing 4,846
samples (genes), or 80% of the data.

Another problem with the data preprocessing approach
mentioned above is its assumption of normality when re-
moving outliers. As illustrated by the boxplots in figure 2
and by the quantile–quantile plots in supplementary figure
S1, Supplementary Material online, the variables show sub-
stantial deviations from both normal and lognormal distri-
butions. Moreover, when replacing a sizeable number of
samples by their mean, excessively strong mass put on
the mean can disturb the original distribution and further
complicate outlier detection.

Application of the Bayesian PCA to the Extended
Set of 16 Genomic Variables
Correlates to ER
Upon applying the Bayesian PCA method described in the
Material and Methods section to the set of 16 genomic var-
iables, we obtained the PCA biplot shown in figure 3
(Statistical significance of the found correlations is demon-
strated in supplementary fig. S2, Supplementary Material
online). As expected, the most pronounced effect observed
in figure 3 is the strong opposite contributions made to
PC1 by ER, on the one hand, and measures related to pro-
tein abundance (EL, CAI, and ABU), on the other hand. ER
and protein abundance-related variables are significantly
anticorrelated (fig. 4; table 2). It has been known for a num-
ber of years in a wide range of organisms that gene EL is
a strong predictor of ER (Pal et al. 2001; Yang et al. 2009),
and a number of explanations for this phenomenon have
been introduced. Akashi (2001) proposed that for highly
expressed genes, there is a selection against change of
amino acids associated with less optimal codons in order
to maintain high accuracy of protein synthesis (transla-
tional selection). Theoretical models have been proposed
to explain the influence of codon bias on protein produc-
tion rate (Gilchrist 2007). Later, it was argued that highly
expressed genes evolve slowly in order to prevent muta-
tion-induced and native sequence misfolding of their en-
coded proteins (translational robustness; Drummond
et al. 2005; Wolf et al. 2010). The need for translational ro-
bustness can help explain the need for translation selection.
The requirement for translational accuracy and robustness
is related to organismal fitness. Rocha and Danchin (2004)
postulated that selection against deleterious mutations
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must be stronger in proteins that have a large overall impact
on the organismal fitness which, in turn, is expected to cor-
relate with EL. Recently, a fitness cost–benefit model of gene
expression has been related to ER (Gout et al. 2010).

A high magnitude negative correlation does not neces-
sarily imply that variables are far apart along principal com-
ponents. For example, the distance between AGE and ER
along PC1 is not as great as between ER and EL, but we
observe that AGE is more negatively correlated with ER
as noted for mammalian proteins (Vinogradov 2010).

From table 2, we also observe a significant negative cor-
relation between ER and PPI (from BIOGRID). There has
been much debate as to whether proteins involved in many
interactions evolve more slowly, with some studies
confirming this trend (Fraser et al. 2002), whereas others
rejecting it (Batada et al. 2006). To a large extent, the

answer to this question depends on the protein interaction
data set used. In a large-scale comparison of various inter-
action databases (Saeed and Deane 2006), it was estab-
lished that the network connectivity of proteins derived
from BioGRID data (at that time) as well as from DIP
(Salwinski et al. 2004), MINT (Ceol et al. 2009), and two
INTACT (Kerrien et al. 2007) subsets shows a weak but sta-
tistically significant association with the rate of protein evo-
lution, whereas BIND (Bader et al. 2003) and small-scale
manually annotated MIPS data sets (Güldener et al.
2006) are poorly correlated with it. Overall, it is probably
fair to say that most of the studies conducted so far did find
a rather weak negative correlation between interactivity
and ER (Pál et al. 2006). From figure 3, we also observe
that PPI and ER variables make an opposite contribution
to the PC1.

Table 1. Sixteen Yeast Variables Examined in This Study.

Name Abbreviation Type
Number
of Genes

Value Range

ReferencesMin Max

Molecular weight MW Numeric 6,068 1,977 559,310 Walter et al. (2009)
Isoelectric point pI Numeric 6,086 3.195 13.460 Walter et al. (2009)
Percentage of structurally disordered residues SD Numeric 6,086 0 (24) 100 Ward et al. (2004)
Phosphorylation density PHD Numeric 1,292 0 (4794) 0.1059 Gnad et al. (2009)
Protein abundance ABU Numeric 4,130 0 (1616) 86,150 Newman et al. (2006)
Protein half-life HL Numeric 3,739 2 115,997 Belle et al. (2006)
Number of protein–protein interactions PPI Numeric 3,820 0 (78) 366 Breitkreutz et al. (2008)
Number of genetic interactions GI Numeric 3,665 1 922 Breitkreutz et al. (2008)
mRNA expression level EL Numeric 5,635 0.10 392 Greenbaum et al. (2002)
Codon adaptation index CAI Numeric 5,980 0.04 1 Christie et al. (2004)
tRNA adaptation index TAI Numeric 3,330 22.09 2.15 Man and Pilpel (2007)
Gene essentiality ESS Nominal 5,596 0 (4656) 1 Güldener et al. (2005)
Propensity of gene loss PGL Numeric 3,883 0 (1418) 0.49 Krylov et al. (2003)
Protein age AGE Nominal 4,276 0 (347) 3 Kim and Marcotte (2008)
Evolutionary rate ER Numeric 3,035 0 (7) 0.53 Wall et al. (2005)
Number of Paralogs (Ensembl) NP Numeric 6,086 0 (4123) 26 Vilella et al. (2009)
Number of Paralogs (Blastp) NPBa Numeric 6,086 0 (3318) 96 Altschul et al. (1997)

NOTE.—Numbers in parentheses indicate how many zeros are in the corresponding data set. If no parentheses appear then no zeros are present.
a Two alternative definitions of the number of paralogs (NP and NPB) were used (see Materials and Methods).

Table 2. Pairwise Pearson Correlation of 16 genomic variables

MW PI SD PHD ABU HL PPI GI EL CAI TAI ESS PGL AGE ER NPBa

PI 20.182*

SD 0.098* 0.068*

PHD 0.018 20.117* 0.259*

ABU20.049* 0.009 20.099* 0.049*

HL 20.033* 0.026 20.005 20.002 0.018
PPI 0.034*20.005 0.044* 0.030 0.000 0.039*

GI 0.040*20.033 0.048*20.013 0.009 20.017 0.232*

EL 20.112* 0.071*20.079* 0.089* 0.748* 0.004 0.033* 20.029
CAI 20.101* 0.019 20.124* 0.091* 0.529* 0.006 0.059* 20.019 0.626*

TAI 0.061*20.071* 0.050* 0.034* 0.121* 20.011 0.019 0.030 0.144* 0.298*

ESS 0.070*20.092*20.022 0.033* 0.012 0.006 0.265* 20.055* 0.036* 0.048* 0.065*

PGL 0.008 20.045*20.071*20.030 20.090* 20.002 20.177* 20.046*20.120*20.198*20.097*20.236*

AGE20.080*20.001 20.374*20.151* 0.091* 0.028 20.051* 20.056* 0.077* 0.102*20.054*20.039* 0.014
ER 0.019 0.066* 0.317*20.007 20.165* 20.004 20.166* 20.039 20.170*20.369* 0.018 20.198* 0.126*20.199*

NPB 0.248* 0.032* 0.060* 0.215* 20.004 20.008 0.173* 0.017 20.011 0.014 20.011 20.013 20.054*20.092* 20.087*

NP 0.145* 0.000 20.024 0.169* 0.057* 20.009 20.049* 20.054* 0.022 0.074* 0.030 20.133*20.032*20.096* 20.025 0.464*

a Two alternative definitions of the number of paralogs (NP and NPB) were used (see Material and Methods). Cells are colored in the following manner: Light
red—significant negative correlation R � �0.2; Red—significant negative correlation R , �0.2; Light green—significant positive correlation R � 0.2; Green—significant
positive correlation R . 0.2; and White—nonsignificant correlation.

*R values are shown with significant correlations (P value , 0.05) marked with an asterisk.
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Propensity for Gene Loss and Protein Age
Besides sequence ER, we also include in our analysis two dif-
ferent measures pertinent to the conservation and loss of
whole genes. The first measure, PGL, reflects the propensity
of a certain KOG to be lost in the course of evolution. Because
our analysis is yeast-centric, PGL can be considered an esti-
mate of the fraction of eukaryotic genomes in which orthologs
of a given yeast gene have been lost. It is computed as the sum
of all branch lengths where a given ortholog group has been
lost divided by the sum of all examined branch lengths (Krylov
et al. 2003). High PGL values thus correspond to genes
frequently lost in evolution. For the genomes, we examined
the maximum PGL value is 0.49 (table 1). The second measure,
AGE, attempts to capture the difference between ancient
genes, present in all three kingdoms of life, and more novel
genes, specific for all eukaryotes or even to yeast only. The
AGE variable is encoded in such a way (see Materials and
Methods) that its higher values correspond largely to older

proteins (exceptions occur if certain genes are horizontally
transferred across taxonomic domains). Importantly, PGL
and AGE are not significantly correlated. Fungal-specific pro-
teins (AGE 5 0) have a higher than average PGL, but older
proteins retained in yeast do not have a significantly higher or
lower than average PGL. For example, large groups of relatively
ancient proteins (AGE5 3; with homologs in Eukaryotes, Bac-
teria, and Archaea) can be retained in all examined
organisms (PGL 5 0) or lost in many such organisms (e.g.,
PGL . 0.3). There are 670 ancient yeast proteins (AGE 5

3), which have a PGL of 0. A significantly enriched group
of 139 proteins are involved in protein synthesis (Bonferroni
corrected hypergeometric P, 2.0� 10�27) according to Fun-
Cat annotation. There are also 670 proteins with homologs
appearing in all three taxonomic domains, but these proteins
are more frequently lost during eukaryotic evolution (PGL .
;0.16). One hundred and two of these proteins are involved
in aspects of amino acid metabolism, and this group of

FIG. 1. Distribution of missing values over variables.

FIG. 2. Data statistics plotted for the full data set after mean
removal and rescaling to unit variance. Only samples of magnitude
smaller than 10 are shown for clarity; 25 outliers (0.02% of the data)
were ignored.
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FIG. 3. PCA using the Bayesian PCA algorithm, which efficiently
deals with missing values without sample removal.
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proteins is significantly enriched compared with the fraction
of proteins with such annotation in the genome (Bonferroni
corrected hypergeometric P , 1.4 � 10�34). Amino acid me-
tabolism related proteins are also significantly enriched
amongst 240 proteins with PGL . 0.3. Amino acid metabo-
lism is a category not enriched amongst those three taxo-
nomic domain proteins with PGL 5 0, and protein
synthesis is not enriched amongst such proteins with PGL
. 0.16. This example illustrates that certain classes of ancient
proteins can be highly conserved (i.e., protein synthesis pro-
teins), whereas other classes are often not retained in ge-
nomes (amino acid metabolism proteins). The presence of
such classes of proteins contributes to the absence of signif-
icant correlation between AGE and PGL. Removing protein
synthesis genes from analysis leads to a positive correlation
(r 5 0.04; P , 0.04), and removing amino acid metabolism
genes leads to negative correlation (r 5�0.01; P , 0.04) be-
tween AGE and PGL.

PGL makes a positive contribution to both PC1 and PC2.
Along PC1, PGL makes a contribution of the same sign as
ER. Genes frequently lost in evolution are often observed to
evolve faster (Krylov et al. 2003), and we also see a signif-
icant positive correlation between ER and PGL (table 2).
Highly divergent genes may have a high PGL because they
have escaped ortholog detection. There is also a time de-
pendence between ER and PGL. For many genes, it is likely
that they have accumulated many mutations in the process
of pseudogenization before they are lost. One fact that
makes the two variables different in our data is that ER
is computed within closely related yeast species, but
PGL is a value computed over relatively distant eukaryotes.
PGL is a strong negative correlate with essential gene status
(Krylov et al. 2003) but is a weaker correlate to transcript/
protein abundance related measures (EL, CAI, and ABU)
compared with ER.

Like ER, PGL is clearly anticorrelated with PPI (table 2), as
originally reported in (Krylov et al. 2003) and also discussed
in (Saeed and Deane 2006). It is interesting that in the latter
work, the authors define the age of a protein based on its
propensity to have orthologs in other fully sequenced

genomes, a measure which is essentially the inverse of
PGL used in our work. Significant positive correlation
between the genetic and physical interaction degree has
been discussed before (Costanzo et al. 2010). Proteins that
are highly connected, both physically and through genetic
interactions, are observed to be less likely to be lost in evo-
lution (table 2). Both PPI and GI are also distantly placed
from PGL and ER along the PC2.

A plot of PGL and PPI is shown in figure 4. It is interesting
to contrast this plot with that of ER and ABU (fig. 4), even
though the correlation coefficients are similar (table 2). The
ABU versus ER plot appears to be under strong constraint
such that proteins present in more than 10,000 copies per
cell do not have an ER above 0.05. One protein, YDR385W
(Translation elongation factor eEF2) was measured at 8,764
copies per cell and has an ER above 0.1. The high ER might
be due in part to its nonessentiality. Its abundance, never-
theless, suggests an important role for the protein, but its
high ER helps make it a relatively species-specific target for
inhibitors, such as sordarins (Shastry et al. 2001).

Translational Efficiency
There is a significant anticorrelation between TAI and PGL
but no significant anticorrelation between TAI and ER. In
other words, those yeast proteins predicted to have low
translation efficiency have orthologs that are more readily
lost amongst the examined eukaryotes. Lower translation
efficiency might be a reflection of lower importance for the
fitness of the cell. Indeed, we observe a significant positive
correlation between essentiality and TAI. Ribosomal
occupancy (OCC) is a variable which, like TAI, is related
to protein production speed (Mittal et al. 2009). We also
find significant correlations (P , 0.05) between OCC and
PGL (r 5 �0.09) and OCC and ESS (r 5 0.06).

Interestingly, a significant anticorrelation between TAI
and AGE is observed. Relatively young fungal-specific
proteins have significantly higher TAI’s (AGE 5 0, mean:
0.258 ± 0.650) than those of older proteins (AGE 5 1,
mean: 0.055 ± 0.766; AGE 5 2: 0.073 ± 0.864; and
AGE 5 3: �0.004 ± 0.764).

FIG. 4. (A) ER versus protein abundance (ABU). (B) PGL versus number of PPI.
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Gene Dispensability, Duplication, and Interaction Degree
As initially reported by Jeong et al. (2001), more connected no-
des of the yeast protein interaction network also tend to be
more essential (less dispensable). A number of potential ex-
planations has been proposed for this phenomenon,
including dramatic disruption of network structure upon re-
moval of network hubs (Jeong et al. 2001), more frequent in-
volvement of hubs in essential protein interactions (He and
Zhang 2006), as well as participation of prolific interactors
in densely connected subnetworks corresponding to func-
tional or structural modules (Zotenko et al. 2008). This effect
can be observed if protein interaction data of sufficient quality
is used (Batada et al. 2006); it is less prominent or may even be
absent in networks derived from individual high-throughput
two-hybrid interaction experiments (Coulomb et al. 2005).
PPI makes a strong negative contribution to the PC2 together
with gene essentiality, whereas PGL, another proxy of the
overall gene importance for the cell, makes a strong positive
contribution to the component. Entirely in line with the pre-
viously reported findings (Wolf et al. 2006), there is a significant
positive correlation between PPI and ESS and a significant anti-
correlation between these two variables with PGL (table 2). In
other words,high-degreenodestendtobeessentialandare less
likely to be lost in evolution.

In this study, we find a significant anticorrelation
between the number of paralogs (NP; Vilella et al. 2009)
and PPI (table 2). Note that such anticorrelation is not ob-
served if we use paralog counts derived from a simple
Blastp search at an E value threshold of 10�10 (NPB;
Altschul et al. 1997). Proteins have significantly higher
number of paralogs according to NPB as opposed to NP
(mean: 4.2 ± 13.4 vs. 1.1 ± 3.2; Mann–Whitney, Kolmogor-
ov–Smirnov test [MW/KS-test]: P , 6.5 � 10�35). In par-
ticular, proteins having more than four interaction
partners, that is, interacting with more proteins than
the mean NP, have significantly more additional paralogs
when NP is exchanged for NPB (mean difference: 5.5 ± 17.1
vs. 2.0 ± 8.5; MW/KS-test: P , 2.1 � 10�7). In other words,
more hub-like proteins can align with more proteins when
Blastp is used. It has been proposed that protein hubs ex-
perience more fitness constraints. Essential proteins have
greater PPI in our data than nonessential proteins. From
table 2, we also observe that there is a significant anticor-
relation between NP and ESS. Thus, the anticorrelation be-
tween NP and PPI can be partially explained by assuming
that there is more detrimental constraint on duplication if
a protein is more hub like (Li et al. 2006). This would be the
case if stoichiometric requirements exist for some of the
genes. Presumably, certain genes from the yeast whole-ge-
nome duplication event (Kellis et al. 2004) have been lost
due to fitness effects of dosage imbalance.

SD, PHD, and MW
A positive correlation between SD and PPI (table 2) sup-
ports the idea that prolific protein interactors tend to be
more disordered (Haynes et al. 2006), although more sub-
tle effects such as the differences in disorder between in-
teractions of structurally different types (e.g., the number

of binding interfaces) (Ekman et al. 2006; Kim et al. 2008)
obviously cannot be captured in our analysis. The corre-
lation between disorder and PPI may be in part due to the
presence of signal integrators in the PPI network (Mittag
et al. 2010). Known phosphorylation sites preferentially
occur in disordered regions (Iakoucheva et al. 2004;
Landry et al. 2009), and perhaps, this is why PHD is clus-
tered together with SD and PPI in figure 3. It must be
noted that in our work, we do not investigate individual
phosphosites and their evolutionary conservation but
rather use the number of phosphosites per protein. It
has been shown that yeast phosphoproteins tend to have
orthologs more frequently than the proteome average
(Gnad et al. 2007), but we did not find a significant cor-
relation between PHD and PGL. Many protein interaction
hubs in yeast involve large multidomain proteins (War-
ringer and Blomberg 2006; Ekman et al. 2006) with a num-
ber of these proteins containing multiple interaction
interfaces (Kim et al. 2006), and this may help explain
why MW positively correlates (albeit quite weakly) with
PPI. A weak but significant negative correlation between
MW and expression related variables (CAI, EL, and ABU)
presumably results in part from selective pressure to re-
duce overall costs associated with protein biosynthesis,
homeostasis, and metabolism (Warringer and Blomberg
2006).

Disordered regions were observed to have elevated ERs for
a variety of protein families (Brown et al. 2002; Landry et al.
2009), and we observe a significant positive correlation be-
tween the two variables in our data (table 2). SD is observed
to be relatively close to ER along the first component. AGE is
strongly anticorrelated with SD and PHD. Both SD (Xue et al.
2010) and phosphorylation-dependent signaling are
much more prominent in eukaryotic organisms than in pro-
karyotes (Iakoucheva et al. 2004). PHD, however, is similarly
low for proteins conserved in prokaryotes and eukaryotes
(AGE 5 1, SD 5 0.002 ± 0.005; AGE 5 2, SD 5 0.002 ±
0.005; AGE 5 3, SD 5 0.001 ± 0.004) but is substantially high-
er for proteins found only in fungi (AGE 5 0, PHD 5 0.006 ±
0.014; MW/KS-test: P , 0.05). SD is similar for fungal-specific
and eukaryote-specific proteins (AGE 5 0, SD 5 38.5 ± 22.7;
AGE5 1, SD5 37.9± 23.1) but is significantly lower for more
conserved proteins (AGE 5 2, SD 5 29.2 ± 20.9; AGE 5 3,
SD 5 19.4 ± 17.5; MW/KS-test: P , 0.05). In fact, the anti-
correlation between AGE and SD is the strongest in table 2.

Protein Half-Life and Isoelectric Point
The only point in figure 3 that does not make any notice-
able contribution to both principal components is protein
half-life (HL). The only two statistically significant correla-
tions of HL are with PPI (positive) and with MW (negative)
(Belle et al. 2006; Tompa et al. 2008), two variables which
seem to offset each other along PC1. We were not able to
confirm previous reports that unstructured proteins have
shorter half-lives (Tompa et al. 2008) when DISOPRED was
applied to our entire data set. We note, however, that in
the data set of protein half-lives published by Belle et al.
(2006), a cap of 300 min was introduced for many proteins
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with very long half-lives, whereas many proteins were re-
ported to have half-life values much higher than 300
min. Upon removing 511 entries with half-lives equal or
greater than 300 min, we find a significant negative corre-
lation between SD and half-life on our and disorder data
from Gsponer et al. (2008); all modified correlations are
given in the supplementary table S3b, Supplementary
Material online. The resulting principal components do
not differ much from the ones without removing the
half-life entries (supplementary fig. S3a, Supplementary
Material online), but PC1 does have a nontrivial contribu-
tion from half-life.

Finally, pI makes a strong contribution to PC2 with
a strong anticorrelation with MW. Based on manual Fun-
Cat annotation, amongst the top 600 proteins (;10% of
the yeast proteome) affecting this latter anticorrelation
(see Materials and Methods), there is an enrichment of
107 ribosomal proteins (Bonferroni corrected hypergeo-
metric P , 2.5 � 10�42) as well as an enrichment of 24
nuclear transport proteins (Bonferroni corrected hypergeo-
metric P , 0.002), compared with the entire yeast
proteome. The ribosomal proteins are significantly
(MW/KS-test P , 1.6 � 10�29) smaller and have more
basic amino acids (mean pI 5 11.3 ± 1.1; mean MW 5

20,462 ± 53,669) compared with the yeast proteome (mean
pI 5 7.5 ± 2.2; mean MW 5 54,709 ± 43,418). The nuclear
transport proteins, however, are larger and have more
acidic amino acids (mean pI 5 5.2 ± 1.4; mean MW
5 142,734 ± 64,194) compared with the yeast proteome.

Conclusions
In this study, we have applied correlation analysis
and Bayesian PCA to interpret 16 genomic variables from
S. cerevisiae, gathered from the Quagmire database. Com-
pared against standard PCA alone, Bayesian PCA allows one
to treat input data with missing values under a probabilistic
framework.

One can make hypotheses concerning what the
principal components represent. Along the first compo-
nent, the most striking feature is the opposite contribution
between mutation (ER, PGL) and expression-related varia-
bles (CAI, EL, ABU, and TAI). Thus, PC1 can be interpreted
largely as the direction where separation between genomic
change and protein expression occurs. The second compo-
nent consists of positive contributions concerning variables
related to the presence or absence of genes or their
protein products. AGE is related to the distribution of
genes in genomes; PGL is proportional to the half-life of
genes in genomes; EL, CAI, ABU, and HL are related to
the concentration of the gene products in the cell. PI is
related to localization (Schwartz et al. 2001) and thus a de-
terminant of local gene product concentration. Negative
contributions come from variables related to the interac-
tions that they make (ESS, GI, PHD, NP, MW, and PPI).
Thus, the second component might be interpreted as
the direction where gene existence and their expressed
protein functions, most importantly network status, are

separated. These hypotheses are speculations for further
research to pursue.

Like studies before, we found a negative correlation
between pairs of variables ER–PPI, ER–AGE, PGL–ESS,
PGL–PPI/GI, and ER–ABU and positive correlations
between PPI–GI, PPI–ESS, PPI–SD, and SD–ER. New nega-
tive correlations were found between TAI–PGL, TAI–AGE,
AGE–PHD, PI–MW, and AGE–SD; and a new positive
correlation was found between TAI–ESS.

For pairs of genomic variables which have significant
correlation, as illustrated by PI and MW, we applied a greedy
method of gathering genes which affect the direction and
magnitude of correlation the most. Subsequent enrich-
ment analysis revealed functional categories of genes which
changed the correlation the greatest when removed. In the
illustration, ribosomal and nuclear transport proteins were
demonstrated to be influential.

We also observed lack of correlation between certain
genomic variables, such as PGL and AGE. By using enrich-
ment analysis, we were able to determine that protein
synthesis and amino acid metabolism genes obscure this
correlation. Removal of these genes causes PGL and AGE
to be significantly correlated.

It is evident that differences in data and definitions can
result in different conclusions. For example, we observed
a significant anticorrelation between the number of paral-
ogs (NP) and both the number of interaction partners (PPI)
and gene essentiality (ESS). Wolf et al. (2006) used ancient
paralogs in that they analyzed the duplication of entire or-
thologous clusters present in seven eukaryotic species
rather than individual genes. Neither the anticorrelation
between NP and essentiality nor the anticorrelation
between NP and PPI was observed in this case. For our data,
proteins with more paralogs are longer (He and Zhang
2005) as found in (Wolf et al. 2006). NP is placed with
ESS and situated opposite PGL along the second compo-
nent, exactly as observed along the ‘‘gene status’’ compo-
nent in (Wolf et al. 2006). Thus, analysis with different
definitions of NP can result in similar but also different
relations with other variables. Easily understanding what
different data and definitions imply will help scientists
navigate quagmires in the field. The methods of analysis
used in this paper will help in this regard.

Supplementary Material
Supplementary table S3 and figures S1–S3 are available at
Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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