ORIGINAL ARTICLE

EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall

C. SCHULZ,*1 M.-L. VON BRÜHL,*1 V. BAROCKE,* P. CULLEN,† K. MAYER,* R. OKROJEK,* A. STEINHART,* Z. AHMAD,* E. KREMMER,‡ B. NIESWANDT,§ J. FRAMPTON,¶ S. MASSBERG* and R. SCHMIDT*

*Deutsches Herzzentrum und I. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich; †Medizinisches Versorgungszentrum für Laboratoriumsmedizin, Münster; ‡Institute of Molecular Immunology, Helmholtz Center, Munich; §Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine and the Institute of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Würzburg, Germany; and ¶Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK

To cite this article: Schulz C, von Brühl M-L, Barocke V, Cullen P, Mayer K, Okrojek R, Steinhart A, Ahmad Z, Kremmer E, Nieswandt B, Frampton J, Massberg S, Schmidt R. EMMPRIN (CD147/basigin) mediates platelet–monocyte interactions *in vivo* and augments monocyte recruitment to the vascular wall. *J Thromb Haemost* 2011; **9**: 1007–19.

Summary. Background: Platelets play a central role in hemostasis, in inflammatory diseases such as atherosclerosis, and during thrombus formation following vascular injury. Thereby, platelets interact intensively with monocytes and enhance their recruitment to the vascular wall. Objectives: To investigate the role of the extracellular matrix metalloproteinase inducer (EMMPRIN) in platelet-monocyte interactions. Methods and Results: Isolated human monocytes were perfused in vitro over firmly adherent platelets to allow investigation of the role of EMMPRIN in platelet-monocyte interactions under flow conditions. Monocytes readily bound to surface-adherent platelets. Both antibody blockade and gene silencing of monocyte EMMPRIN substantially attenuated firm adhesion of monocytes to platelets at arterial and venous shear rates. In vivo, platelet interactions with the murine monocyte cell line ANA-1 were significantly decreased when ANA-1 cells were pretreated with EMMPRIN-silencing small interfering RNA prior to injection into wild-type mice. Using intravital microscopy, we showed that recruitment of EMMPRIN-silenced ANA-1 to the injured carotid artery was significantly reduced as compared with control cells. Further silencing of EMMPRIN resulted in significantly fewer ANA-1-platelet aggregates in the

Correspondence: Christian Schulz and Roland Schmidt, Deutsches Herzzentrum und 1, Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Lazarettstr. 36, 80636 München, Germany.

Tel.: +49 89 1218 0; fax: +49 89 1218 4013.

 $E\text{-}mails: chrisschulz@mytum.de \ and \ rolschmidt@yahoo.de\\$

¹These authors contributed equally to this work.

Received 18 July 2010, accepted 2 February 2011

mouse circulation as determined by flow cytometry. Finally, we identified glycoprotein (GP)VI as a critical corresponding receptor on platelets that mediates interaction with monocyte EMMPRIN. Thus, blocking of GPVI inhibited the effect of EMMPRIN on firm monocyte adhesion to platelets under arterial flow conditions in vitro, and abrogated EMMPRIN-mediated platelet—monocyte aggregate formation *in vivo*. *Conclusions:* EMMPRIN supports platelet—monocyte interactions and promotes monocyte recruitment to the arterial wall. Therefore, EMMPRIN might represent a novel target to reduce vascular inflammation and atherosclerotic lesion development.

Keywords: adhesion, atherosclerosis, extracellular matrix metalloproteinase inducer, glycoprotein VI, monocytes, platelets.

Introduction

Atherosclerosis is a progressive inflammatory disease of the vascular wall, and a common cause of morbidity and mortality worldwide [1]. Platelets and monocytes are critically involved in atherogenesis [2]. Notably, platelets are recruited to the vascular endothelium of atherosclerotic arteries at very early stages of lesion development, and even before vascular alterations become visible [3]. Adherent platelets thereby pave the way for subsequent leukocyte recruitment [3]. During atherogenesis, circulating monocytes are recruited to the vascular wall in a coordinated multistep process of tethering, rolling, and then firm adhesion to the activated endothelium [4]. This process is strongly supported by adherent platelets [4]. Furthermore, interaction of platelets with circulating monocytes induces inflammatory and procoagulatory pathways in both cell types [5–7]. In the clinical setting, increased formation of platelet-monocyte aggregates (PMAs) has been noted in patients with acute myocardial infarction [8], and interactions between platelets and monocytes play a relevant role in the procoagulant state found in these patients [9].

Various ligand–receptor pairs have been identified that mediate PMA formation. So far, firm binding of monocytes and platelets has been mainly attributed to the interaction of P-selectin with P-selectin glycoprotein (GP) ligand-1 (PSGL-1), binding of the β_2 -integrin MAC-1 to platelet GPIb α , and to fibrinogen-bridged binding of MAC-1 (and also cellular adhesion molecules, i.e. ICAM) to platelet GPIIb–IIIa [4]. However, the contribution of other adhesion molecules in this process remains largely unknown.

Adherent monocytes secrete matrix metalloproteinases (MMPs) and express membrane-type (MT) MMPs, which enable them to migrate into the developing plaque [10–12]. De novo synthesis of certain metalloproteinases, such as MT1-MMP, MMP-2, and MMP-9, is induced by the immunoglobulin-like GP extracellular matrix metalloproteinase inducer (EMMPRIN [CD147]; basigin in mice) [13]. The basic mechanisms of this process have been partially elucidated in tumor cells: EMMPRIN-expressing tumor cells induce the synthesis of MMPs such as MMP-1, MMP-2, MMP-3, and MMP-9, as well as MT1-MMP and MT2-MMP, in adjacent fibroblasts by means of a transcellular homophilic EMMPRIN-EMMPRIN interaction [14–16]. In consequence, EMMPRIN expression on various tumor cells correlates with metastasis development and patient mortality [17]. Recently, we determined that certain proatherogenic stimuli upregulate expression of EMMPRIN on monocytes in vitro [18,19]. We also showed enhanced surface expression of EMMPRIN on monocytes from patients with acute myocardial infarction. EMMPRIN stimulates expression of MMP-9 in monocytes and of MMP-2 in smooth muscle cells, indicating a key regulatory role for MMP activity at the vascular wall [20]. Interestingly, EMMPRIN ligation fosters platelet activation and degranulation in vitro [20]. In addition, platelets induce nuclear factor-kB-regulated activation pathways in monocytes in an EMMPRIN-dependent manner, triggering the subsequent release of proinflammatory cytokines and MMPs from monocytes [21]. In the present study, we demonstrate that EMMPRIN enhances platelet–monocyte interactions in vivo and promotes monocyte recruitment to the vascular wall. Furthermore, using genetic ablation or antibody blockade of common platelet adhesion receptors, we expand recent data by identifying platelet GPVI as a relevant counterreceptor for monocyte EMMPRIN.

Materials and methods

Animals

Specific pathogen-free wild-type C57BL6/J and B6.129s7-Selp/J (CD62P^{-/-}) mice were obtained from Charles River (Sulzfeld, Germany). Mice lacking the GPIIb integrin (*Itga2b*^{-/-}) were generated as previously described [22]. Mice lacking the transcription factor nuclear factor-erythroid 2 (NF-E2^{-/-}) were

provided by B. Isermann (University of Heidelberg) [23,24]. All groups were age-matched (8–16 weeks) and sex-matched. NF-E2-deficient, CD62P-deficient and *Itga2b*-deficient mice were all on a C57BL6/J background. All experimental procedures performed on animals met the requirements of the German legislation on protection of animals and were approved by the Government of Bavaria/Germany.

Reagents

For fluorescence-activated cell sorting (FACS) experiments with human cells, mouse anti-human EMMPRIN/CD147 mAb (clone HIM6), anti-human PAC-1 (clone PAC-1) and anti-human CD62P (clone AK-4) were from BD Pharmingen (Heidelberg, Germany). Mouse anti-human CD11b (clone BEAR), CD18 (clone 7E4), CD29 (clone K20), CD162 PL1 (clone 3E2.25.2, blocking antibody) and CD162 PL2 (clone 5D8.8.12, non-blocking antibody) were from Immunotech (Hamburg, Germany). Mouse anti-human CD14 phycoery-thrin (clone TUK4) was from Dako (Hamburg, Germany). For FACS experiments with murine cells, rat anti-mouse CD11b, CD41, CD42b and CD162 and rat IgG₁ control were from BD Pharmingen. Rat anti-mouse CD18 was from Immunotech. Hamster anti-mouse CD29 and hamster IgG control were from eBioscience (Frankfurt, Germany).

For flow chamber experiments, blocking mouse anti-human EMMPRIN/CD147 mAb (clone UM8D6) was from Ancell (Bayport, MN, USA). The anti-GPVI mAb 5C4 was generated as previously described [25].

For mouse *in vivo* experiments, blocking anti-GPVI mAb (clone 1F5-1-11) was generated as previously described [26]. Rat isotype-control IgG (clone 14B7) served as a control. The mAb against GPIbα (p0p/B) was prepared as a Fab fragment as previously described [27,28]. Non-immune rat IgG Fab served as a control.

Cells

Washed human platelets were isolated from whole blood as previously described, and adjusted to a final concentration of 2×10^8 mL⁻¹ in Hepes Tyrode buffer [29]. Human monocytes were isolated as previously described [30]. Briefly, mononuclear cells were isolated by centrifugation of citrate-phosphatedextrose-adenine-anticoagulated blood on a Ficoll gradient (20 min, $800 \times g$, room temperature). Mononuclear cells were cultured on plastic dishes $(0.5 \times 10^6 \text{ cells mL}^{-1})$ in very-lowendotoxin RPMI-1640 (Biochrom, Berlin, Germany) supplemented with 10% low-toxic fetal calf serum (Clonetics, Solingen, Germany). After 24 h, non-adherent cells were removed by gentle washing. The remaining cells (85-90% CD14-positive monocytes) were resuspended in EDTA (0.05% phosphate buffered saline [PBS]) and washed in PBS. ANA-1 is a murine monocyte cell line that is derived from C57BL/6 mice [31] ANA-1 cells were purchased from the European Collection of Cell Cultures (Porton Down, UK) and maintained in suspension culture.

Gene silencing of EMMPRIN

Small interfering RNA (siRNA)-mediated gene silencing of EMMPRIN/basigin was performed as previously described [20]. The siRNA sequence for human EMMPRIN was GAC GGC CAT GCT GGT CTG CAA (dXdY-overhang), and the siRNA sequence for the mouse homologous protein basigin was provided by Qiagen (Hilden, Germany). Nonsilencing control siRNA (Qiagen) served as a negative control.

Intravital microscopy

ANA-1 cells were transfected with EMMPRIN-silencing siRNA or non-silencing control siRNA. Cells were labeled with 5-carboxyfluorescein-diacetate succinimidyl ester (DCF) and adjusted to 5×10^6 cells in 300 µL of PBS [25]. Mice were anesthetized by isoflurane inhalation combined with intraperitoneal injection of midazolam, fentanyl, and medetomidin. Polyethylene catheters were introduced into the left jugular vein of recipient mice, and 5×10^6 fluorescently tagged ANA-1 cells were introduced intravenously. For arterial injury, the common carotid artery was dissected free and ligated vigorously near the carotid bifurcation for 5 min as previously described [25]. Interaction of ANA-1 cells with the vascular wall of carotid arteries was visualized in situ by intravital videofluorescence microscopy before and after vascular injury. We used an Olympus BX51WI-microscope (× 20 water immersion objective, XLUMPlanFI 20 ×/0.95W; Olympus, Hamburg, Germany) together with an MT20 illumination system and Cell^R image acquisition software (Olympus). Adherent cells were indicated as number of adherent ANA-1 cells per unit surface area (mm²).

To assess platelet thrombus formation at the site of injury, we performed another set of experiments. Platelets were labeled with DCF, and 1.5×10^5 platelets in a volume of 250 µL were injected intravenously into the jugular vein. Immediately thereafter, carotid injury was induced by ligature as described above. Platelet thrombus formation was imaged by intravital microscopy with the Olympus BX51WI microscope. Platelet thrombus area at the site of injury was quantified for 30 min in 5-min time intervals, and calculated as thrombus area (in µm²) per mm² vessel surface area. All images were evaluated with a computer-assisted image analysis program (CAPIMAGE 7.4; Ingenieurbuero Dr. Zeintl, Heidelberg, Germany).

Flow cytometry

In vivo formation of PMAs DCF-tagged ANA-1 cells (5×10^6) were injected intravenously into anesthetized mice. After 10 min, heparinized whole blood was collected by cardiac puncture of the left ventricle. Whole blood was stained with a Cy5-labeled anti-GPIIb (CD41) mAb (MWReg 30; BD Pharmingen). PMA formation was determined by flow cytometric analysis (FACS Calibur; Becton Dickinson, Heidelberg, Germany) of platelet (CD41)-positive cells within the ANA-1 population, the latter being defined by DCF

positivity. To analyze the role of GPIb, we pretreated C57BL6/ J mice with 4 mg kg⁻¹ body weight anti-GPIb p0p/B Fab fragments or control IgG Fab [32]. To investigate the role of GPVI, we applied 8 mg kg⁻¹ body weight function-blocking anti-GPVI mAb (clone IF5-1-11) or a non-GPVI-binding control IgG (clone 14B7) intraperitoneally 120 min before ANA-1 cell injection [27]. In experiments with *Itga2b*-deficient mice, we identified platelets by their surface expression of GPIba (CD42b). Mouse platelet counts were acquired with a Sysmex cell counter (Sysmex, Hamburg, Germany).

Validation of blood sampling technique To exclude the possibility that blood sampling by ventricular puncture artificially induced platelet activation, we compared the technique of cardiac puncture eith blood sampling from the facial vein [33]. This assay is described in detail in Data S1. As cardiac puncture allowed us to collect larger amounts of the circulating blood from the mice, we used this technique to achieve a higher number of cells (counts) for flow cytometric analysis.

Determination of monocyte surface markers following siRNA treament Expression of surface markers was determined on ANA-1 cells and human monocytes that were treated with EMMPRIN-silencing siRNA or non-silencing control siRNA (Fig. S2). We applied mAbs directed against either EMMPRIN, CD11b, CD18, CD29, or CD162, and flow cytometric analysis was performed.

Flow chamber

Monocyte recruitment to adherent platelets under flow Experiments were basically performed as previously described [34]. In brief, glass coverslips were coated with collagen (type 1, rat tail) and placed into a flow chamber (FCS2; Biotechs, Butler, PA, USA). The flow chamber was mounted on an inverted fluorescence microscope (Zeiss Axiovert, Jena, Germany). Isolated washed human platelets were perfused for 10 min at 1000 s⁻¹, which is equivalent to the shear forces found in medium-sized arteries under physiologic conditions, to achieve high surface coverage of firmly adherent platelets [32,34]. Thereafter, platelets were superfused for another 10 min with isolated human monocytes that were either left untreated (medium) or treated with: (i) EMMPRIN-silencing siRNA; (ii) non-silencing control siRNA; (iii) mouse antihuman EMMPRIN/CD147 mAb; or (iv) control IgG₁. For monocyte superfusion, we applied either arterial (1000 s⁻¹) or venous (200 s^{-1}) wall shear rates [35,36].

In another set of experiments, isolated washed human platelets were perfused for 10 min at 1000 s⁻¹ to achieve high platelet surface coverage. Surface-adherent platelets were then incubated with: (i) rat anti-human blocking GPVI mAb (10 μg mL⁻¹); or (ii) control IgG. Thereafter, platelets were superfused for another 10 min at 1000 s⁻¹ or 200 s⁻¹ with human monocytes that were treated with EMMPRIN-silencing siRNA or control siRNA. Transient interaction (rolling)

and firm adhesion of monocytes on the platelet surface were studied in real time. The number of firmly adherent monocytes was assessed by counting the cells that did not move or detach from the surface within 20 s. All images were videotaped and evaluated by blinded staff. In addition, we performed a control experiment investigating the activation of adherent platelets in the presence of GPVI mAb (Fig. S6). This assay is described in detail in Data S1.

PMA formation under flow Formation of PMAs under arterial flow conditions in vitro was assessed in a closed flow chamber system [37]. Chamber slides were precoated for 30 min with 1% bovine serum albumin to block firm adhesion. Human monocytes and platelets were isolated and washed, and added to Tyrodes solution. Before experiments, monocytes were preincubated with human EMMPRIN/CD147 mAb (clone UM8D6) or control IgG₁ for 30 min. Thereafter, platelet and monocyte suspensions were mixed, resulting in a final concentration of 1×10^8 platelets mL⁻¹ and 1×10^5 monocytes mL⁻¹. Cell suspensions (preincubated with either IgG₁ or anti-EMMPRIN mAb) were perfused for 30 min at 1000 s⁻¹. In another experiment, platelets were preactivated with ADP (5 μm) for 5 min. Cell suspensions were perfused in parallel, with a duplicate setup and multichannel flow chamber slides (µ-slides; Ibidi, Martinsried, Germany), thus excluding time-dependent effects on platelets and monocytes. In addition, we applied an air-driven continuous flow pump system (Ibidi) to minimize mechanical stress on suspended cells. After perfusion, cell suspensions were analyzed by flow cytometry with CD14/CD41 antibodies to assess PMA formation, as described above.

Statistics

Results were reported as mean \pm standard deviation, and were analyzed by Student's *t*-test or one-way ANOVA with a Tukey post hoc test where appropriate. The number of individual experiments is indicated by n. P < 0.05 was considered to be significant.

Results

EMMPRIN mediates firm adhesion of monocytes to platelets under arterial and venous flow conditions

We applied a flow chamber assay to directly analyze the interactions of platelets and monocytes under flow conditions. First, we allowed human platelets to adhere to collagen, resulting in high surface coverage of firmly adherent platelets [38]. Subsequent perfusion of isolated human monocytes over immobilized platelets resulted in robust monocyte adhesion (Fig. 1A). Blocking of EMMPRIN substantially inhibited firm adhesion of monocytes to platelets as compared with pretreatment with isotype-matched control antibody (Fig. 1B,D). Interestingly, a significant effect of EMMPRIN inhibition was observed under both venous (200 s⁻¹) and arterial

(1000 s⁻¹) flow conditions (Fig. 1B,D). To confirm the results obtained in the presence of a blocking antibody, EMMPRIN surface expression on monocytes was next inhibited by pretreatment with EMMPRIN-specific siRNA (Fig. S1). Control siRNA treatment served as a negative control. Importantly, gene silencing of EMMPRIN also significantly attenuated monocyte adhesion to immobilized platelets at wall shear rates of 200 s⁻¹ and 1000 s⁻¹ (Fig. 1A,B,D). siRNA treatment showed no effect on surface expression of PSGL-1, lymphocyte function-associated antigen-1, β_1 -integrin, and β_2 -integrin (Fig. S2).

Interestingly, neither pretreatment of monocytes with activity-blocking antibody nor EMMPRIN silencing showed a significant effect on monocyte rolling when they were perfused over immobilized platelets under arterial shear conditions (Fig. 1C). Under venous flow conditions, we found a minor effect of EMMPRIN antibody blockade on monocyte rolling. However, this effect was not seen when EMMPRIN was silenced by siRNA pretreament (Fig. 1E).

EMMPRIN fosters monocyte recruitment to the vascular wall in vivo

The above results prompted us to study the effect of EMMPRIN on platelet-mediated monocyte recruitment to the vascular wall in vivo, using intravital epifluorescence microscopy. For this, surface expression of EMMPRIN was inhibited by specific siRNA pretreatment in ANA-1 cells. Firm adhesion to the vascular wall was quantified before and after ligature-induced injury of the mouse carotid artery. Ligature injury induced platelet thrombus formation at the site of the vascular lesion within minutes (Fig. S3). This represents an established trigger for subsequent recruitment of circulating leukocytes [39]. In wild-type mice, inhibition of EMMPRIN surface expression substantially reduced firm adhesion to the injured vascular wall as compared with control siRNA-treated monocytes (Fig. 2A,B). To further investigate the role of platelets in this context, we utilized mice deficient in the transcription factor NF-E2. NF-E2^{-/-} mice exhibit defective platelet release from megakaryocytes, which results in the absence of platelets from circulating blood (Fig. S4) [23,24]. Notably, in NF-E2^{-/-} mice, not only the number of recruited monocytes but also the effect of EMMPRIN was strongly reduced (Fig. 2C). These findings reinforce the importance of platelets for monocyte recruitment to the vascular wall after arterial injury. Furthermore, here we have identified EMM-PRIN as a novel player in this process that augments monocyte recruitment in vivo. However, the effect of EMMPRIN in supporting monocyte adhesion seems to mostly depend on the presence of platelets.

It is of note that recruitment of ANA-1 cells to the vascular wall is a very rare event in the absence of vessel injury, e.g. 5–10 min before induction of the carotid ligature (Fig. 2B). However, we cannot exclude the possibility that a minor population of ANA-1 cells is recruited via EMMPRIN, independently of GPVI or platelets (Fig. 2A).

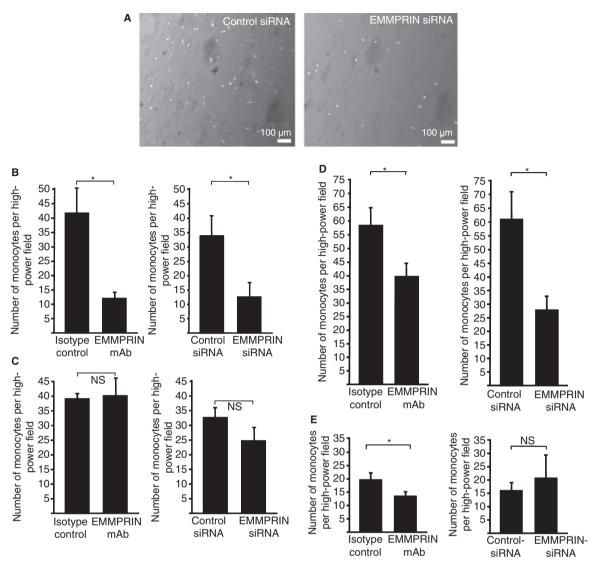


Fig. 1. Extracellular matrix metalloproteinase inducer (EMMPRIN) induces firm monocyte adhesion under arterial and venous shear conditions in vitro. Isolated human monocytes were perfused over collagen-immobilized platelets for 10 min at a shear rate of 1000 s⁻¹ (A-C) or 200 s⁻¹ (D, E). Before perfusion experiments, monocytes were treated with either: (i) EMMPRIN-silencing small interfering RNA (siRNA); (ii) non-silencing control siRNA; (iii) mouse anti-human EMMPRIN/CD147 mAb (UM8D6); or (iv) control IgG₁. (A) Representative micrographs of adherent monocytes pretreated with EMMPRIN-silencing siRNA or non-silencing control siRNA, and perfused at 1000 s⁻¹. Quantitative results are shown as number of firmly adherent monocytes (B, D) or number of monocytes interacting transiently with platelets (C, E) per high-power field. Mean \pm standard deviation; n = 5-7; *P < 0.05 as compared with control, NS, not statistically significant.

EMMPRIN mediates the formation of PMAs in vitro and in vivo

Platelet-monocyte interaction and aggregate formation contributes to arterial thrombosis and exacerbates atherosclerotic lesion formation [5,40]. Therefore, we next investigated the role of EMMPRIN in platelet-monocyte interactions in vivo. We intravenously infused EMMPRIN siRNA-pretreated or control siRNA-pretreated monocytic cells into wild-type mice, and PMAs were quantified by flow cytometry. Importantly, inhibition of EMMPRIN surface expression in monocytes significantly reduced the number of platelet–ANA-1 aggregates (Fig. 3A,B). To ensure that EMMPRIN-dependent aggregate formation also takes place in the absence of other whole blood constituents (e.g. fibrinogen), we investigated platelet-monocyte interactions under flow conditions in vitro. We applied a recently established closed flow chamber model that allows the recirculation of cells under conditions of unidirectional arterial flow and minimizes cell activation [37]. Here, we coperfused isolated human platelets and human monocytes at 1000 s⁻¹, and quantified PMA formation by flow cytometry. Importantly, blockade of EMMPRIN reduced PMA formation in the Tyrodes-buffered medium (Fig. 3C). This indicates that an EMMPRIN-dependent mechanism directly modulates the interaction of platelets and monocytes, independently of bridging molecules (e.g. plasma fibrinogen).

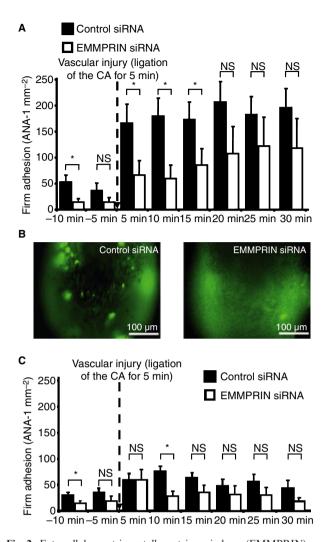


Fig. 2. Extracellular matrix metalloproteinase inducer (EMMPRIN) supports monocyte recruitment to the vascular wall *in vivo*. Adhesion of murine ANA-1 cells was visualized in the carotid artery (CA) by intravital video fluorescence microscopy before and after vascular injury. Before injection, ANA-1 cells were transfected with EMMPRIN-silencing small interfering RNA (siRNA) or non-silencing control siRNA. Cells were labeled with 5-carboxyfluorescein diacetate succinimidyl ester and injected intravenously into wild-type C57/B6 mice (A, B) and nuclear factor-erythroid 2-deficient mice (C), which lack circulating platelets. Microscopic images obtained 10 min after injury are presented in (B). The number of adherent monocytes was quantified at consecutive time points, and is given per mm² of vascular surface. Mean \pm standard deviation; n=8; *P<0.05 for EMMPRIN siRNA vs. control siRNA; NS, not statistically significant.

In the same model, preactivation of platelets, which increased EMMPRIN surface expression [21], not only enhanced aggregation of isolated human platelets and monocytes, but also showed a stronger inhibitory effect of EMM-PRIN blockade on PMA formation (Fig. 3D).

EMMPRIN mediates platelet-monocyte interactions independently of integrins and P-selectin

It is well known that monocytes interact with platelets via PSGL-1/P-selectin signaling and also by binding of MAC-1

 $(\alpha_{\rm M}\beta_2)$ to GPIb α or GPIIbIIIa [40]. Thus, we next investigated the significance of EMMPRIN in vivo under functional blockade of GPIba, or in the genetic absence of P-selectin $(CD62P^{-/-})$ or the platelet surface receptor GPIIb $(Itga2b^{-/-})$. As the integrin subunit α_{IIb} solely dimerizes with β_3 -integrin, the Itga2b^{-/-} mouse model reveals a specific deficiency in the GPIIb-IIIa receptor, which is exclusively expressed on platelets and megakaryocytes. We intravenously infused EMMPRIN siRNA-pretreated or control siRNA-pretreated ANA-1 cells either into (i) wild-type mice, (ii) CD62P^{-/-} mice, (iii) *Itga2b*^{-/-} mice or (iv) wild-type mice pretreated with either GPIbafunction blocking antibody or control Fab antibody. Importantly, the effect of EMMPRIN was persistent in all groups, and silencing of EMMPRIN reduced PMA formation by between approximately 40% and 70% (Fig. 4). It is of note that blood collection from the cardiac ventricle did not artificially induce platelet activation or platelet-ANA-1 aggregate formation (Fig. S5). Furthermore, treatment with anti-GPIba Fab antibody did not alter platelet numbers, as described previously [41]. Thus, EMMPRIN-mediated interaction of monocytes and platelets is not dependent on P-selectin, GPIIb integrin, or GPIba.

EMMPRIN is a transmembranous member of the immunoglobulin superfamily, and EMMPRIN on one cell is known to bind to EMMPRIN on adjacent cells in a transcellular homophilic process. We earlier identified EMMPRIN on platelets, and found that its surface expression is increased upon platelet activation [21]. This was recently confirmed by others in a prospective clinical study linking platelet activation and EMMPRIN surface expression in patients with coronary artery disease [42]. Furthermore, cells transfected with EMMPRIN tether to EMMPRIN-coated matrices under flow, indicating that EMMPRIN might also serve as an adhesion receptor and mediate homophilic cell interactions [43]. Therefore, we addressed the question of whether EMMPRIN expressed by activated platelets might serve as an adhesion receptor for flowing monocytes. To investigate this, we applied the abovedescribed (Fig. 1) flow chamber assay to analyze the interactions of platelets and monocytes in vitro. Again, we allowed platelets to adhere to collagen, which has previously been shown to induce EMMPRIN expression on platelets [21]. Collagen-adherent human platelets were incubated with either a function-blocking EMMPRIN antibody or control IgG₁, and superfused with human monocytes pretreated with EMM-PRIN siRNA or control. Blockade of platelet EMMPRIN did not reduce binding of monocytes to platelets at 1000 s⁻¹ (Fig. 5A). However, when venous shear rates of 200 s⁻¹ were applied, we now observed a significant effect on firm monocyte adhesion by blockade of EMMPRIN. Importantly, monocyte recruitment to platelets could be inhibited either by blockade of EMMPRIN on collagen-adherent platelets or by pretreatment of monocytes with EMMPRIN-silencing siRNA prior to perfusion (Fig. 5B). Thus, our findings indicate direct binding of monocyte EMMPRIN to EMMPRIN on the platelet surface. However, such homophilic platelet-monocyte interactions seemed to be relevant only at lower shear rates.

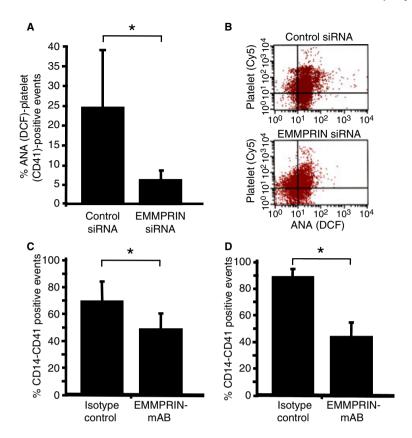
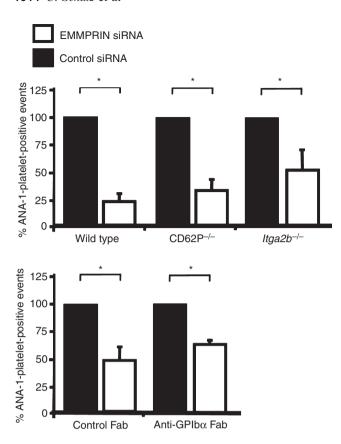



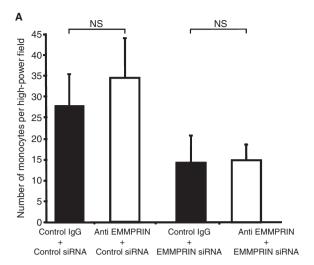
Fig. 3. Extracellular matrix metalloproteinase inducer (EMMPRIN) mediates formation of platelet-monocyte aggregates. (A) ANA-1 cells tagged with the fluorescent dye 5-carboxyfluorescein-diacetate succinimidyl ester (DCF) were injected intravenously into wild-type mice, and blood collection was performed after 10 min. Platelet-monocyte aggregate formation was determined by flow cytometric analysis of platelet (Cy5)-positive cells within the ANA-1 population, the latter being defined by DCF positivity. Mean \pm standard deviation (SD); n = 8; *P < 0.05 as compared with control small interfering RNA (siRNA). (B) Dot blot representation of flow cytometry data. Six thousand events are displayed. (C, D) Aggregate formation of isolated platelets and monocytes under arterial flow conditions (shear rate: 1000 s⁻¹) was assessed in a closed flow chamber system to study circulating cells. Monocytes were pretreated with blocking EMMPRIN mAb or control IgG₁. Platelets were either unstimulated (C) or preactivated with ADP (D). Platelet-monocyte aggregate formation was determined by flow cytometric analysis of platelet (CD41)-positive cells within the monocyte population, the latter being defined by CD14 positivity. Mean \pm SD; n = 6; *P < 0.05 as compared with isotype control.

Platelet GPVI mediates binding of monocyte EMMPRIN in vitro and in vivo

Only recently has GPVI been identified as a putative receptor for EMMPRIN [43]. In detail, it has been shown that GPVItransfected Chinese hamster ovary cells tether to an EMM-PRIN-coated surface under flow [43]. Here, we investigated the role of GPVI in platelet-monocyte interactions and PMA formation. Therefore, we used the above-described flow chamber model, applying arterial and venous shear rates. Instead of EMMPRIN mAb, we now used an anti-GPVI mAb to block GPVI on surface-adherent platelets before subsequent perfusion of isolated human monocytes. Importantly, functional blockade of GPVI on adherent platelets reduced firm monocyte adhesion to platelets at high shear rates (Fig. 6A). Furthermore, under arterial flow conditions, blockade of platelet GPVI inhibited the effect of EMMPRIN silencing on monocyte adhesion to platelets (Fig. 6A). These findings support the notion that monocytes interact via EMMPRIN with platelet GPVI under arterial shear conditions. In contrast, blockade of platelet GPVI did not significantly reduce monocyte adhesion to platelets when venous shear conditions were applied, and also the effect of EMMPRIN siRNA was not altered (Fig. 6B). Thus, in this model, platelet GPVI seemed to be dispensable at lower shear rates. It is of note that incubation of surface-adherent platelets with anti-GPVI mAb did not alter platelet activation and EMMPRIN surface expression as compared with the IgG control (Fig. S6A,B).

We next investigated the role of GPVI in EMMPRINdependent PMA formation in vivo. We intravenously infused EMMPRIN siRNA-pretreated or control siRNA-pretreated ANA-1 cells into wild-type mice pretreated with a GPVI function-blocking antibody. Interestingly, the effect of EMM-PRIN was virtually abrogated following application of the GPVI mAb (Fig. 6C). Thus, in contrast to other adhesion molecules, e.g. GPIIb integrin or GPIba, GPVI plays a critical role in mediating EMMPRIN-dependent platelet-monocyte interactions in vivo. It is of note that antibody treatment had no effect on platelet numbers (Fig. S7).

Fig. 4. Extracellular matrix metalloproteinase inducer (EMMPRIN) mediates platelet monocyte interactions in the absence of P-selectin, glycoprotein (GP)IIb integrin, and GPIbα. *In vivo* platelet–ANA-1 aggregate formation was assessed in mice. EMMPRIN small interfering RNA (siRNA)-pretreated or control siRNA-pretreated ANA-1 cells were intravenously infused into either wild-type mice, CD62P^{-/-} mice, GPIIb integrin-deficient mice ($Itga2b^{-/-}$), or wild-type mice pretreated with a GPIbα function-blocking Fab antibody or control Fab. Platelet–monocyte aggregate formation was determined after 10 min by flow cytometric analysis of platelet-positive cells within the ANA-1 population, the latter being defined by 5-carboxyfluorescein-diacetate succinimidyl ester positivity. Platelets were detected by surface expression of CD41, or in $Itga2b^{-/-}$ mice by expression of GPIbα (CD42b). Mean \pm standard deviation; n = 4–8; *P < 0.05 as compared with control siRNA.

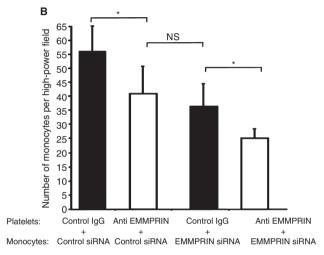

Discussion

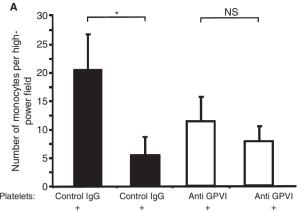
Platelet-monocyte interactions are found in various inflammatory conditions and in acute ischemic events. Although some ligand-receptor pairs that modulate PMA formation have been identified, additional molecules may be involved in this process [44]. Here, we identified a novel role of EMMPRIN in the interaction of platelets and monocytes in circulating blood and following vascular injury. In detail, we show: (i) that EMM-PRIN mediates firm monocyte adhesion to surface-adherent platelets in vitro at arterial and venous shear rates; (ii) that EMMPRIN augments platelet-mediated monocyte adhesion to the vascular wall *in vivo*; (iii) that EMMPRIN fosters the formation of platelet-ANA-1 complexes within the circulation *in vivo*; and (iv) that platelet GPVI represents a critical counterreceptor that mediates platelet adhesion to monocyte EMM-PRIN both in vitro and *in vivo*.

Recruitment of monocytes to the vascular wall and their subsequent proteolysis-mediated migration into the developing plaque is crucial at all stages of atherogenesis, from the fatty streak to plaque rupture, with its clinical sequelae of myocardial infarction and stroke. During atherosclerotic lesion development, platelet recruitment is an early finding and precedes leukocyte adhesion [3]. Once platelets become adherent, they support monocyte recruitment either directly by providing a sticky surface, or indirectly by triggering an inflammatory response of the endothelium. Adherent platelets exhibit increased surface expression of P-selectin, which serves as a ligand for PSGL-1 on monocytes. Besides PSGL-1-CD62P interaction, firm adherence of monocytes to platelets has up to now mainly been attributed to interaction of monocytic MAC-1 ($\alpha_M \beta_2$) with platelet GPIb α , and to fibrinogen-bridged binding of MAC-1 to platelet GPIIb/IIIa [45–50]. Kuijper et al. [51] reported that blocking of P-selectin or its monocyte ligand PSGL-1 on platelets inhibited about half of the firm adhesion of monocytes to surface-bound platelets under arterial flow conditions. These data suggest that additional adhesion receptors could be involved in firm monocyte adhesion to surface-bound platelets [44].

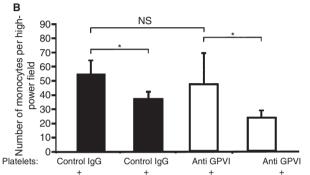
Very recent in vitro data have indicated that EMMPRIN may act as an adhesion molecule [43]. We show here that both human monocytes and murine ANA-1 cells utilize EMMPRIN for interaction with platelets under flow conditions in vitro and in the mouse circulation in vivo. Thereby, EMMPRIN not only mediates firm adhesion to surface-adherent platelets, but also induces the formation of circulating PMA. Circulating platelet-leukocyte aggregates play a critical role in inflammatory conditions [4], and have been found in autoimmune diseases [52], acute lung injury [53], and coronary artery disease [54]. Although interactions with different leukocyte populations, e.g. neutrophils, have been described, circulating activated platelets preferentially bind monocytes over other subsets [55]. Interestingly, the half-life of detectable circulating PMAs is much longer than the time required for very rapid loss of Pselectin from the platelet surface [56,57]. This is another observation supporting the notion that, in addition to Pselectin, other adhesion molecules are involved in plateletmonocyte interactions. In the presence of functional EMM-PRIN (ANA-1 cells treated with control siRNA), we observed numerous ANA-1-platelet aggregates in vivo, even in the absence of P-selectin (CD62P^{-/-}). However, when EMM-PRIN-silenced ANA-1 cells were infused into CD62P^{-/-} mice, we observed a strong reduction in the number of circulating aggregates. Likewise, the effect of EMMPRIN persisted under functional blockade of GPIba with Fab fragments, as well as in mice in which GPIIb integrin was genetically ablated. Thus, monocyte EMMPRIN triggers interactions with platelets by a mechanism that is not dependent on the common adhesion molecules (P-selectin, GPIba, or GPIIbIIIa).

Together with previous data from our group [21] and others [42] showing that platelets expressed EMMPRIN by an activation-dependent mechanism, we also investigated EMM-PRIN-EMMPRIN-mediated monocyte adhesion to platelets.

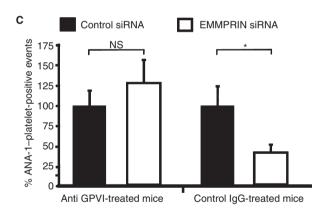



Fig. 5. Homophilic interactions of monocyte and platelet extracellular matrix metalloproteinase inducer (EMMPRIN) mediate firm monocyte adhesion at venous shear rates. In a flow chamber model, isolated platelets were perfused over a collagen matrix, and surface-adherent platelets were then incubated with either blocking EMMPRIN mAb or control IgG₁. Platelets were then superfused for 10 min at (A) 1000 s⁻¹ or (B) 200 s⁻¹ with human monocytes that were treated with EMMPRIN-silencing small interfering RNA (siRNA) or control siRNA. The number of firmly adherent monocytes was quantified. Inhibition of EMMPRIN on either monocytes or surface-adherent platelets reduced monocyte adhesion at 200 s⁻¹. Mean \pm standard deviation; n = 5-7; *P < 0.05; NS, not statistically significant.

At shear rates of 200 s⁻¹, adhesion of human monocytes, which were superfused over surface-adherent activated platelets, was decreased by function blocking of EMMPRIN on the platelet surface. Thus, homophilic interactions of EMMPRIN expressed on both platelets and monocytes contributed to monocyte adhesion under venous flow conditions. Interestingly, we observed the strongest reduction of monocyte adhesion in the presence of both functional blockade of platelet EMMPRIN and silencing of monocyte EMMPRIN. One reason for this finding could be that siRNA treatment did not silence monocyte EMMPRIN entirely, or vice versa, EMMPRIN blockade on adherent platelets was not complete following antibody incubation.


Interestingly, we found that platelet GPVI is critical for EMMPRIN-mediated platelet-ANA-1 aggregate formation in vivo. Blockade of GPVI virtually abrogated the effect of EMMPRIN silencing in mice. However, when we perfused isolated monocytes over isolated platelets in vitro, inhibition of platelet GPVI reduced monocyte adhesion under arterial flow conditions but seemed to be dispensable at lower shear rates. It is therefore tempting to speculate, at least for perfusion of isolated cells in vitro, that a homophilic interaction between platelet and monocyte EMMPRIN reduced the importance of platelet GPVI under conditions of low shear stress.

The platelet collagen receptor GPVI plays a crucial role in platelet activation, adhesion, and aggregation [58]. It triggers platelet thrombus formation at the site of vascular injury [27], and inhibition of GPVI reduces atheroprogression in vivo [38]. Interestingly, in patients with coronary artery disease and acute cardiac ischemia, both EMMPRIN and GPVI are upregulated. We recently found increased expression of EMMPRIN on circulating monocytes in patients with myocardial infarction [20]. Likewise, GPVI is upregulated on the surface of circulating activated platelets in acute coronary syndrome [59]. On the basis of these findings it is tempting to speculate that, in addition to well-established adhesion receptor pairs, EMMPRIN-GPVI-mediated binding may have increased relevance under inflammatory and acute ischemic conditions by supporting the interaction of platelets and monocytes.


Surface-adherent and activated platelets mediate rapid monocyte recruitment following vascular injury, whereas the extracellular matrix itself has only a low capacity to mediate monocyte arrest under arterial shear conditions [51]. We show here that, in vivo, EMMPRIN supports the adhesion of monocytes to the site of endothelial rupture. Thus, in the presence of functional EMMPRIN, significantly more ANA-1 cells were recruited. We also showed that platelet thrombus formation at the site of vessel injury occurred rapidly following ligature induction. Importantly, in NF-E2-deficient mice, which lack circulating platelets, recruitment of monocytes was strongly reduced in both EMMPRIN siRNA-treated monocytes and control cells. Thus, EMM-PRIN-dependent recruitment of monocytes to the vascular wall in vivo is controlled by platelets. However, the effect of EMMPRIN appeared to diminish over time, and was no longer significant 20 min after ligature application. It is well known that platelets accumulate at sites of vascular injury, where they become activated and aggregate. In addition, we have previously shown that tissue factor-dependent luminal fibrin formation strongly increases 20–30 min after injury [60]. Thus, it is possible that, at that time, the effect of EMMPRIN in our experimental setup may have been overcome by coagulation factors exposed intraluminally and also by additional ligand-receptor interactions (e.g. PSGL-1 interaction with P-selectin expressed on activated platelets), all of which contribute to local monocyte recruitment. Furthermore, recent evidence suggests that surface levels of platelet GPVI, like those of GPIba, are controlled by distinct mechanisms,

Monocytes: Control siRNA EMMPRIN siRNA Control siRNA EMMPRIN siRNA

Monocytes: Control siRNA EMMPRIN siRNA Control siRNA EMMPRIN siRNA

such as shedding by metalloproteinases [61] or by as yet unknown platelet-expressed proteases [62]. Thus, downregulation or redistribution of GPVI on the platelet surface might also account for this observation. Finally, there was a trend for reduced firm adhesion of EMMPRIN-silenced monocytes in NF-E2^{-/-} mice postinjury. Thus, it might be possible that a minor population of ANA-1 cells is recruited via EMMPRIN, independently of GPVI or platelets.

In conclusion, we identified a novel role of monocyte EMMPRIN in firm adhesion to platelets, PMA formation and monocyte recruitment following vascular injury. Our present data link EMMPRIN more closely to inflammatory diseases such as atherosclerosis. We recently determined that proatherogenic stimuli upregulate the expression of EMMPRIN on

Fig. 6. Role of glycoprotein (GP)VI in extracellular matrix metalloproteinase inducer (EMMPRIN)-mediated platelet-monocyte interactions. In a flow chamber model, isolated platelets were perfused over a collagen matrix, and surface-adherent platelets were then incubated with either blocking GPVI mAb or control IgG. Platelets were then superfused for 10 min at (A) 1000 s⁻¹ or (B) 200 s⁻¹ with human monocytes that were treated with EMMPRIN-silencing small interfering RNA (siRNA) or control siRNA. The number of firmly adherent monocytes was quantified. Blockade of the GPVI receptor on adherent platelets reduced monocyte adhesion at 200 s⁻¹. Mean \pm standard deviation (SD); n = 8; *P < 0.05. (C) In vivo platelet-monocyte aggregate formation was assessed in mice pretreated with a GPVI function-blocking antibody or control IgG. 5-Carboxyfluorescein-diacetate succinimidyl ester (DCF)tagged ANA-1 cells were transfected with EMMPRIN-silencing siRNA or non-silencing control siRNA, and injected intravenously into wild-type mice. Platelet-monocyte aggregate formation was determined after 10 min by flow cytometric analysis of platelet (CD41)-positive cells within the ANA-1 population, the latter being defined by DCF positivity. Mean \pm SD; n = 4-5; NS, not statistically significant.

monocytes [18,19]. Interestingly, EMMPRIN is also expressed in human atheroma, and plays a role in atherogenic cell differentiation and remodeling of the extracellular matrix [63]. Thus, EMMPRIN may play roles in both the differentiation of monocytes and in destabilization of atheromatous plaque. Therefore, EMMPRIN might be a new pharmacologic target for – besides reducing protease activation – inhibiting platelet—monocyte interactions and monocyte recruitment to the vascular wall in inflammatory conditions such as atherosclerosis.

Addendum

C. Schulz: designed and performed research, analyzed data, and wrote the article; M.-L. von Brühl: performed research, analyzed data, and wrote the article; V. Barocke: performed research and analyzed data; P. Cullen: analyzed data and wrote the article; K. Mayer: performed research; R. Okrojek: performed research; A. Steinhart: performed research; Z. Ahmad: performed research; E. Kremmer: contributed vital analytic tools; B. Nieswandt: contributed vital analytic tools; J. Frampton: contributed vital analytic tools; S. Massberg: designed research and wrote the article; R. Schmidt: designed research, analyzed data, and wrote the article. All authors read and approved the final manuscript.

Acknowledgements

We thank M. Hölderle and B. Campbell for expert technical assistance. This work was supported by grants from the German Foundation of Heart Research (F06/07) to R. Schmidt, and the Technical University of Munich to S. Massberg. C. Schulz is the recipient of a scholarship from the Deutsche Akademie der Naturforscher Leopoldina (German National Academy of Sciences).

Disclosure of Conflict of Interests

The authors state that they have no conflict of interest.

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Figure S1. Gene silencing of EMMPRIN.

Figure S2. Flow cytometric analysis of ANA-1 cells and human

Figure S3. *In vivo* platelet thrombus formation in response to ligature injury.

Figure S4. Platelet counts in wild-type and NF-E2^{-/-} mice.

Figure S5. Validation of the blood withdrawal technique.

Figure S6. Activation of adherent platelets in the presence of GPVI mAb and control IgG.

Figure S7. Platelet counts in GPVI mAb-treated mice.

Data S1. Methods.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

References

- 1 Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000; 20: 1262-75.
- Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-41.
- 3 Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 2002; 196: 887-96.
- 4 von Hundelshausen P, Koenen RR, Weber C. Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 2009; 16: 84-96.
- 5 Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003: 9: 61-7.
- 6 Weyrich AS, Elstad MR, McEver RP, McIntyre TM, Moore KL, Morrissey JH, Prescott SM, Zimmerman GA. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest 1996; 97· 1525-34
- 7 Neumann FJ, Marx N, Gawaz M, Brand K, Ott I, Rokitta C, Sticherling C, Meinl C, May A, Schömig A. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets. Circulation 1997; 95: 2387-94.
- 8 Furman MI, Barnard MR, Krueger LA, Fox ML, Shilale EA, Lessard DM, Marchese P, Frelinger AL 3rd, Goldberg RJ, Michelson AD. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 2001; 38: 1002-6.
- 9 Eduard Shantsila E, Lip GYH. Monocytes in acute coronary syndromes. Arterioscler Thromb Vasc Biol 2009; 29: 1433-8.
- 10 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-
- 11 Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P. Macrophage foam cells from experimental atheroma constitutively produce matrix degrading proteinases. Proc Natl Acad Sci USA 1995; 92: 402-6.
- 12 Matias-Roman S, Galvez BG, Genis L, Yanez-Mo M, de la Rosa G, Sanchez-Mateos P, Sanchez-Madrid F, Arroyo AG. Membrane

- type 1-matrix metalloproteinase is involved in migration of human monocytes and is regulated through their interaction with fibronectin or endothelium. Blood 2005; 105: 3956-64.
- 13 Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 1995; 55: 434-9.
- Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 2001; 61: 2276-81.
- Yan L, Zucker S, Toole BP. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 2005; 93: 199-204.
- 16 Suzuki S, Sato M, Senoo H, Ishikawa K. Direct cell-cell interaction enhances pro-MMP-2 production and activation in co-culture of laryngeal cancer cells and fibroblasts: involvement of EMMPRIN and MT1-MMP. Exp Cell Res 2004; 293: 259-66.
- 17 Davidson B, Goldberg I, Berner A, Kristensen GB, Reich R. EMM-PRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin Exp Metastasis 2003; 20: 161-9.
- Schmidt R, Redecke V, Breitfeld Y, Wantia N, Miethke T, Massberg S, Fischel S, Neumann FJ, Schömig A, May AE. EMMPRIN (CD 147) is a central activator of extracellular matrix degradation by Chlamydia pneumoniae-infected monocytes. Implications for plaque rupture. Thromb Haemost 2006; 95: 151-9.
- 19 May AE, Schmidt R, Bulbul BO, Holderle M, Walther F, Schomig A, Gawaz MKlouche M. Plasminogen and matrix metalloproteinase activation by enzymatically modified low density lipoproteins in monocytes and smooth muscle cells. Thromb Haemost 2005; 93: 710-15.
- 20 Schmidt R, Bültmann A, Ungerer M, Joghetaei N, Bülbül Ö, Thieme S, Chavakis T, Toole BP, Gawaz M, Schömig A, May AE. EMM-PRIN regulates MMP activity in cardiovascular cells. Implications in acute myocardial infarction. Circulation 2006; 113: 834-41.
- 21 Schmidt R, Bültmann A, Fischel S, Gillitzer A, Cullen P, Walch A, Jost P, Ungerer M, Tolley ND, Lindemann S, Gawaz M, Schömig A, May AE. Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes. Circ Res 2008; **102**: 302-9.
- 22 Massberg S, Schürzinger K, Lorenz M, Konrad I, Schulz C, Plesnila N, Kennerknecht E, Rudelius M, Sauer S, Braun S, Kremmer E, Emambokus NR, Frampton J, Gawaz M. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 2005; 112: 1180-8.
- 23 Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ, Orkin SH. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/ MGDF in megakaryocyte development. Cell 1995; 81: 695–704.
- 24 Levin J, Peng JP, Baker GR, Villeval JL, Lecine P, Burstein SA, Shivdasani RA. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 1999; 94: 3037-
- 25 Massberg S, Konrad I, Bültmann A, Schulz C, Münch G, Peluso M, Lorenz M, Schneider S, Besta F, Müller I, Hu B, Langer H, Kremmer E, Rudelius M, Heinzmann U, Ungerer M, Gawaz M. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J 2004; 18: 397-9.
- 26 Echtler K, Stark K, Lorenz M, Kerstan S, Walch A, Jennen L, Rudelius M, Seidl S, Kremmer E, Emambokus NR, von Bruehl ML, Frampton J, Isermann B, Genzel-Boroviczény O, Schreiber C, Mehilli J, Kastrati A, Schwaiger M, Shivdasani RA, Massberg S. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med 2010; 16: 75-82.

- 27 Massberg S, Gawaz M, Gruner S, Schulte V, Konrad I, Zohlnhofer D, Heinzmann U, Nieswandt B. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. *J Exp Med* 2003; 197: 41–9.
- 28 Nieswandt B, Bergmeier W, Rackebrandt K, Gessner JE, Zirngibl H. Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice. *Blood* 2000; 96: 2520–7
- 29 May AE, Kalsch T, Massberg S, Herouy Y, Schmidt R, Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. *Circulation* 2002; 106: 2111–17.
- 30 May AE, Redecke V, Grüner S, Schmidt R, Massberg S, Miethke T, Ryba B, Da Costa CP, Schömig A, Neumann FJ. Recruitment of Chlamydia pneumoniae-infected macrophages to the carotid artery wall in noninfected, nonatherosclerotic mice. Arterioscler Thromb Vasc Biol 2003; 23: 789–94.
- 31 Cox GW, Mathieson BJ, Gandino L, Blasi E, Radzioch D, Varesio L. Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver. *J Natl Cancer Inst* 1989; 81: 1492–6.
- 32 Bergmeier W, Rackebrandt K, Schröder W, Zirngibl H, Nieswandt B. Structural and functional characterization of the mouse von Willebrand factor receptor GPIb–IX with novel monoclonal antibodies. *Blood* 2000; 95: 886–93.
- 33 Donovan J, Brown P. Blood collection. *Curr Protoc Immunol* 2006; Chapter 1: Unit 1.7.
- 34 Schulz C, Schäfer A, Stolla M, Kerstan S, Lorenz M, von Brühl ML, Schiemann M, Bauersachs J, Gloe T, Busch DH, Gawaz M, Massberg S. Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. *Circulation* 2007; 116: 764–73.
- 35 Berny MA, Munnix IC, Auger JM, Schols SE, Cosemans JM, Panizzi P, Bock PE, Watson SP, McCarty OJ, Heemskerk JW. Spatial distribution of factor Xa, thrombin, and fibrin(ogen) on thrombi at venous shear. *PLoS ONE* 2010; **5**: e10415.
- 36 Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. *Blood* 1996; **88**: 1525–41.
- 37 Schulz C, Heiss E, Gaertner F, Orban M, von Bruehl ML, Schramm P, Massberg S. Novel methods for assessment of platelet and leukocyte function under flow application of epifluorescence and two-photon microscopy in a small volume flow chamber model. *Open Biol J* 2009; 2: 130–6.
- 38 Schulz C, Penz S, Hoffmann C, Langer H, Gillitzer A, Schneider S, Brandl R, Seidl S, Massberg S, Pichler B, Kremmer E, Stellos K, Schönberger T, Siess W, Gawaz M. Platelet GPVI binds to collagenous structures in the core region of human atheromatous plaque and is critical for atheroprogression in vivo. *Basic Res Cardiol* 2008; 103: 356–67.
- 39 Massberg S, Konrad I, Schürzinger K, Lorenz M, Schneider S, Zohlnhoefer D, Hoppe K, Schiemann M, Kennerknecht E, Sauer S, Schulz C, Kerstan S, Rudelius M, Seidl S, Sorge F, Langer H, Peluso M, Goyal P, Vestweber D, Emambokus NR, et al. Platelets secrete stromal cell-derived factor lalpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203: 1221–33.
- 40 Yokoyama S, Ikeda H, Haramaki N, Yasukawa H, Murohara T, Imaizumi T. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet–leukocyte aggregates. *J Am Coll Cardiol* 2005; 45: 1280–6.
- 41 Kleinschnitz C, Pozgajova M, Pham M, Bendszus M, Nieswandt B, Stoll G. Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. *Circulation* 2007; 115: 2323–30.
- 42 Pennings GJ, Yong AS, Kritharides L. Expression of EMMPRIN (CD147) on circulating platelets in vivo. *J Thromb Haemost* 2010; 8: 472–81.

- 43 Seizer P, Borst O, Langer HF, Bültmann A, Münch G, Herouy Y, Stellos K, Krämer B, Bigalke B, Büchele B, Bachem MG, Vestweber D, Simmet T, Gawaz M, May AE. EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI–EMMPRIN interaction. *Thromb Haemost* 2009; 101: 682–6.
- 44 Sarma J, Laan CA, Alam S, Jha A, Fox KA, Dransfield I. Increased platelet binding to circulating monocytes in acute coronary syndromes. *Circulation* 2002; **105**: 2166–71.
- 45 Evangelista V, Manarini S, Sideri R, Rotondo S, Martelli N, Piccoli A, Totani L, Piccardoni P, Vestweber D, de Gaetano G, Cerletti C. Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. *Blood* 1999; 93: 876–85.
- 46 Yang J, Furie BC, Furie B. The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in leukocyte–endothelial and leukocyte–platelet interaction. *Thromb Haemost* 1999; **81**: 1–7.
- 47 Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, López JA. Platelet glycoprotein Ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000; 192: 193–204.
- 48 Wright SD, Weitz JI, Huang AJ, Levin SM, Silverstein SC, Loike JD. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. *Proc Natl Acad Sci USA* 1988: 85: 7734–8.
- 49 Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001; 173: 35–43.
- 50 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378–84.
- 51 Kuijper PH, Gallardo Torres HI, Houben LA, Lammers JW, Zwaginga JJ, Koenderman L. P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions. *J Leukoc Biol* 1998; 64: 467–73.
- 52 Pamuk GE, Turgut B, Pamuk ON, Vural O, Demir M, Cakir N. Increased circulating platelet–leucocyte complexes in patients with primary Raynaud's phenomenon and Raynaud's phenomenon secondary to systemic sclerosis: a comparative study. *Blood Coagul Fibrinolysis* 2007; 18: 297–302.
- 53 Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet–neutrophil aggregation. *J Clin Invest* 2006; 116: 3211–19.
- 54 Ott I, Neumann FJ, Gawaz M, Schmitt M, Schömig A. Increased neutrophil–platelet adhesion in patients with unstable angina. *Circulation* 1996; 94: 1239–46.
- 55 Rinder HM, Bonan JL, Rinder CS, Ault KA, Smith BR. Dynamics of leukocyte–platelet adhesion in whole blood. *Blood* 1991; 78: 1730–7.
- 56 Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001; 104: 1533–7.
- 57 Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR. In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. *Proc Natl Acad Sci USA* 1996; 93: 11877–82.
- 58 Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? *Blood* 2003; **102**: 449–61.
- 59 Bigalke B, Lindemann S, Ehlers R, Seizer P, Daub K, Langer H, Schonberger T, Kremmer E, Siegel-Axel D, May AE, Gawaz M. Expression of platelet collagen receptor glycoprotein VI is associated with acute coronary syndrome. *Eur Heart J* 2006; 27: 2165–9.
- 60 Reinhardt C, von Brühl ML, Manukyan D, Grahl L, Lorenz M, Altmann B, Dlugai S, Hess S, Konrad I, Orschiedt L, Mackman N, Ruddock L, Massberg S, Engelmann B. Protein disulfide isomerase

- acts as an injury response signal that enhances fibrin generation via tissue factor activation. J Clin Invest 2008; 118: 1110-22.
- 61 Gardiner EE, Karunakaran D, Shen Y, Arthur JF, Andrews RK, Berndt MC. Controlled shedding of platelet glycoprotein (GP)VI and GPIb-IX-V by ADAM family metalloproteinases. J Thromb Haemost 2007; **5**: 1530–7.
- 62 Bender M, Hofmann S, Stegner D, Chalaris A, Bösl M, Braun A, Scheller J, Rose-John S, Nieswandt B. Differentially regulated GPVI
- ectodomain shedding by multiple platelet-expressed proteinases. Blood 2010; 116: 3347-55.
- 63 Yoon YW, Kwon HM, Hwang KC, Choi EY, Hong BK, Kim D, Kim HS, Cho SH, Song KS, Sangiorgi G. Upstream regulation of matrix metalloproteinase by EMMPRIN; extracellular matrix metalloproteinase inducer in advanced atherosclerotic plaque. Atherosclerosis 2005; **180**: 37–44.