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Abstract

Incorporation of plant litter is a frequent agricultural practice to increase nutrient availability in soil and
heavily relies on the activity of cellulose degrading microorganisms. Here we address the question how
different tillage treatments affect soil microbial communities and their cellulose degrading potential in a long-
term agricultural experiment. To identify potential differences in microbial taxonomy and functionality, we
generated six soil metagenomes of conventional (CT) and reduced (RT) tillage-treated topsoil samples, which
differed in their potential extracellular cellulolytic activity as well as microbial biomass.

Taxonomic analysis of metagenomic data revealed few differences between RT and CT and a dominance of
Proteobacteria and Actinobacteria, whereas eukaryotic phyla were not prevalent. Prediction of cellulolytic
enzymes revealed glycoside hydrolase families 1, 3, 5, 94, auxiliary activity family 8 and carbohydrate
binding module 2 as the most abundant in soil. These were annotated mainly to the phyla of Proteobacteria,

Actinobacteria and Bacteroidetes.
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These results suggest that the observed higher cellulolytic activity in RT soils can be explained by a higher
microbial biomass or changed expression levels but not by shifts in the soil microbiome. Overall this study
reveals stability of soil microbial communities and cellulolytic gene composition under the investigated

tillage treatments.

Introduction
The most abundant organic polymer on earth is cellulose. As a key component of plant cell walls it is highly
abundant in all plants mostly in combination with hemicellulose and xylan (Varner & Louis 1989). The
degradation of cellulose is an essential ecosystem service and it is of key value to gain more quantitative and
qualitative understanding of the role of cellulose breakdown within the carbon cycle and in a changing
environment. Cellulases are in general hydrolytic and divided into three major types: p-1,4-endoglucanases
(EC3.2.1.4), B-1,4-exoglucanases and -glucosidases (EC3.2.1.21) (Lynd et al. 2002). Exoglucanases are
further divided into cellobiohydrolases or, cellobiosidases (EC3.2.1.91, EC3.2.1.176) and cellodextrinases
(EC3.2.1.74). These cellulases differ in their binding and cutting sites on the cellulose fibers or oligomers.
Besides hydrolysis, other catalytic modes of action to cut cellulose chains have been identified, namely
oxidoreduction, mediated by the enzyme cellobiose dehydrogenase (CBH, EC 1.1.99.18, (Langston et al.
2011)) or induced by a quinone- or glycopeptide-mediated Fenton reaction (Baldrian & Valaskova 2008), and
phosphorolytic degradation (EC 2.4.1.20, EC 2.4.1.49, (Reichenbecher et al. 1997)). Cellulases generally
consist of a catalytic module, classified into glycoside hydrolase- (GH-) families, and often harbour a
carbohydrate binding module (CBM), whereas cellulases with oxidoreductive catalytic modules are classified
as auxiliary activities- (AA-) family of proteins. The classification into modules is based on amino acid
sequence similarity (Henrissat 1991) and a comprehensive description of these module families can be found
in the CAZy database (Carbohydrate-active enzymes database; www.cazy.org, (Lombard et al. 2014)).
Different agricultural practices like tillage and fertilization strategies influence world-wide carbon cycles
in soil (Lal 2004; Schimel 1995; Schlesinger & Andrews 2000). Tillage, a key component of modern

agriculture, disperses added nutrients throughout the soil and aerates the soil, but also affects soil aggregates
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(Abdollahi et al. 2014). There is a strong ongoing debate on how different tillage treatments impact not only
yields, but also soil nutrients and diversity and activity of soil microbial communities. To clarify this question
several long term agricultural experiments have been established to assess the adaptation of soils to different
tillage treatments. In this context it was shown that reduced tillage (RT) leads to a higher carbon content and
higher microbial biomass in the topsoil compared to conventional tillage (CT) (van Groenigen et al. 2011;
Kistermann et al. 2013; Alvarez et al. 1995; Kandeler et al. 1999).

However, it is currently unclear how different tillage treatments influence the phylogenetic structure of
the soil microbial community, in particular those which drive the degradation of polymers, like cellulose,
which are major constituents of plant residues used to improve soil quality. Only a few studies have
compared conventional tillage to no-tillage systems and these studies have detected several differences in
taxonomy and functionality of the associated microbial communities (Souza et al. 2013; Carbonetto et al.
2014). For example in a long-term (26 years) experiment, deep tillage practice led to a lower microbial
diversity in the top 10 cm of the soil (Silva et al. 2013). However, no in-depth analysis focussing on microbes
catalysing carbohydrate degradation has been performed so far in agricultural systems.

Thus, in this study we assess the impact of different tillage treatments on microbial communities which
drive cellulose degradation in soil. Samples were taken from the topsoil (0-10 cm) of a long-term field
experiment, where a split plot-based study has been established with conventional (CT; 25 cm working
depth) and reduced tillage (RT; 8 cm working depth) treatments (Meyer-Aurich et al. 2009; Kiistermann et al.
2013). One month before sampling, corn had been harvested and the remaining plant litter had been
incorporated into the soil with the different tillage treatments. Due to the different tillage depths the amount
of plant residues and consequently the amount of straw in the topsoil differed between the two treatments
(Tebriigge et al. 1999). To assess the influence of different tillage treatments on the enzymatic activity of key
cellulolytic enzymes in the soil, the potential enzymatic activities of f-glucosidase and cellobiohydolase were
measured using methylumbeliferone-labeled substrates.

We explored the influence of long-term conventional and reduced tillage on the taxonomic and functional

diversity of soil microbial communities, which are involved in cellulose degradation. As it is well accepted
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that cellulases occur ubiquitously in all kingdoms (http://www.cazy.org, Lombard et al. 2014) and show a
high genetic diversity, we employed a shotgun sequencing approach to identify the different cellulases
present and the microbes harbouring these genes in a qualitative (diversity) and semi-quantitative manner.
The analysed top soils differed in their amount of total organic carbon (Kistermann et al. 2013). Therefore,
we hypothesized to find a higher relative abundance and diversity of genes coding for cellulases in soil

samples from RT compared to CT.

Experimental Procedures

Site description and soil sampling

Soil was sampled from an agricultural field experiment, established in 1992 at a research farm in Scheyern,
40km north of Munich (Germany) (Meyer-Aurich et al. 2009; Kustermann et al. 2013). From this field
experiment, two tillage treatments were analysed: conventional tillage with moldboard plough (25 cm
working depth) and reduced tillage with rotary harrow (8 cm working depth). The experiment has been set up
with three independent replicates (split plot design). Ten-year-average precipitation and temperature are
respectively 792.3 mm and 8.3 °C (2000-2010). The soil is a Luvisol with a pH of 6.3, consisting of 2.2%
coarse sand, 17.0% fine sand, 55.4% silt and 25.4% clay.

The soil was sampled in November 2012, one month after corn harvest and incorporation of the plant
residues into the soil. Of every plot a composite sample of five soil cores to a depth of 10 cm was taken with
a soil auger of 5 cm diameter, and sieved with a 3-mm sieve. Afterwards, a subset of the soil was mixed and
immediately stored on dry ice and subsequently at -80 °C before DNA extraction. The remaining soil was

stored at 4 °C.

Enzymatic activity assays, biomass and chemical measurements

Potential enzymatic activity was measured one day after sampling of soil stored at 4 °C. Potential cellulose
degradation activity of the microbial community was assessed by adding methylumbeliferone-complexed

(MU-)B-D-glucoside and MU-B-cellobioside to soil solutions (Pritsch et al. 2005). The optimum substrate



105  concentration (C,p) and incubation time (T ) for degradation of both substrates were determined during a
106 pilot experiment; Co,=800uM MU-R-cellobioside and 500puM MU-R-D-glucoside, Tqx= 120 min for both.
107  Fluorescence measurement after incubation of the substrate with soil solution was done with a

108  spectrophotometer at excitation wavelength A=365 nm and emission wavelength of A=450 nm. Fluorescence
109  values were corrected for soil-autofluorescence or fluorescence inhibition by soil particles (quenching) and
110  background noise.

111 For measurement of microbial carbon, water extractable organic carbon (WEOC) was determined
112 before and after chloroform fumigation (Joergensen 1996). For determination of WEOC, soils were mixed
113 with 0.01M CaCl,in a 1:5 ratio, incubated in an overhead shaker for 40 min at room temperature, filtered,
114  and stored at -20 °C until measurement with the Dimatoc 100 (DimatecAnalysentechnik GmbH, Germany).
115 For measurement of total carbon (TC) and nitrogen (TN) soil was dried at 40 °C for ca. 5 days and
116  ground to powder shaking in a tissue lyzer at 30 Hz for 3-9 min. 20-25 mg of ground soil powder was

117  weighed in duplicate, wrapped in aluminium and subjected to elemental analysis using an Elementar Vario
118  EL Il instrument in combustion mode.

119

120 DNA isolation & Pyroseguencing

121 Soil DNA was extracted from 300 mg of frozen soil samples using the DNA-isolation kit ‘Genomic DNA
122 from soil’ NucleoSpin Soil Kit (Macherey— Nagel, Germany) according to the protocol of the manufacturer.
123 DNA was stored at -20 °C until further processing. Library preparation was performed according to the

124 Roche protocol “Rapid Library Preparation Method Manual” using Roche Molecular Identifier (MID)

125  adapters as barcodes. Amplification of DNA via emulsion PCR was done according to the Roche protocol
126  “emPCR Method Manual - Lib-L Large Volume (LV)”. Pyrosequencing was carried out on the Genome
127  Sequencing (GS) FLX+ instrument, using a GS FLX Titanium sequencing kit XL+. Image- and signal

128  processing was performed by the provided Roche software. The sequences are deposited in SRA under the
129  BioProject ID: PRINA235154.

130
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132 Real-time PCR assays

133  Quantitative real-time PCR (qPCR) was performed using primers for amplification of the bacterial 16S

134  ribosomal gene (Bach et al. 2002) and the fungal Internal Transcribed Spacer (ITS) regions (White et al.

135  1990). The reaction mixtures (total volume 25 pl) for quantification of the 16S ribosomal gene consisted of:
136  12.5 pl Power SYBR Green master mix (Life Technologies), 5 pmol of each primer, 0.5 pl 3% bovine serum
137  albumin (BSA) and 2 pl soil DNA template. The reaction mixtures (total volume 25 pl) for quantification of
138  the ITS gene consisted of: 12.5 pl Power SYBR Green master mix (Life Technologies), 10 pmol of each

139  primer and 2 pl soil DNA template. For quantification, standard curves were calculated using serial dilutions
140  (10%to 10° gene copies pl™) of a plasmid containing Fusarium oxysporum DNA (for fungal gPCR) or

141  Pseudomonas putida (for bacterial gPCR). PCR detection limit was assessed to 10 gene copies ul™. In order
142 to prevent PCR inhibition, the optimal dilution for each amplification assay was determined by dilution series
143 of DNA extracts (data not shown). The gPCR assays were performed in 96-well plates. All PCR runs started
144 with a hot start at 95°C for 10 minutes, then either 40 cycles of 94°C for 30 s, 55°C for 30 s and 72°C for 30 s
145  for ITS samples or 40 cycles of 95°C for 45 s, 58°C for 45 s and 72°C for 45 s for 16S gPCR. Finally melting
146 curve analyses were carried out for all samples by a final cycle of 95°C for 15 s, 60°C for 30 s and 95°C for
147 15 s. The amplification efficiency was calculated from the formula Eff = [1005°") _1]*100, and resulted in
148  the following efficiencies: 16S: 102% and ITS: 87%.

149

150 Analysis of sequencing data and prediction of cellulolytic enzymes

151  Sff-files were separated by MID adapters, using 454/Roche SFF Tools. Trimming of reads was carried out
152 using a modified DynamicTrim (Cox et al. 2010) as supplied by MG-RAST (Meyer et al. 2008) using the
153  following settings: minimum Phred score= 15, maximum number of bases below minimum Phred score=5,
154  minimum read length=50. Remnant adapter sequences and duplicated reads were removed using Biopieces
155  (www.biopieces.org) and cd-hit (Fu et al. 2012), respectively. For taxonomic and functional annotation,

156  filtered reads were blasted against both the National Center for Biotechnology Information (NCBI) non-
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redundant protein database and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-database (June
2011) using Diamond (Buchfink et al. 2014) as well as against the Silva SSU-database using Blastn (expect
(e)-value threshold= 10™*). Mapping of the top 25 blast results (i.e. hits with lowest e-value) to taxonomic and
functional annotations was carried out with the MetaGenome ANalyzer (MEGAN, Version 5.2.3) software
(http://ab.inf.uni-tuebingen.de/software/megan5/). During the MEGAN analysis the following settings were
used: Min support=1, Min score=50, Top%=10, Min-Complexity Filter=0. Visualization of data was
performed in R (R Core Team 2013). To obtain a relative abundance of reads, the number of reads was
divided by the total number of filtered reads per sample and multiplied by 100.

For prediction of catalytic modules (GH and AA) and carbohydrate binding modules (CBM) in the
reads, protein open-reading frames were predicted using FragGeneScan (Rho et al. 2010) and translated to
protein sequences. Different families of catalytic modules and CBMs harboured by the key enzymes in
cellulose degradation B-1,4-endoglucanases, B-1,4-exoglucanases, f-glucosidases, cellodextrin
phosphorylases and cellobiose dehydrogenases, were selected from the CAZy database (www.cazy.org
(Lombard et al. 2014)). Protein Hidden Markov Model (HMM)-logos can be used to scan protein sequences
using hmmscan (Eddy 2011). For the selected families, several HMM-logos are available in the Protein
family (Pfam) A 26.0 database (Punta et al. 2012) and in the DataBase for automated Carbohydrate-active
enzyme Annotation (dbCAN, Yin Y et al., 2012), but can also be personally built using hmmbuild (which is
contained within the HMMER version 3.0 (March 2010), packaged together with hmmscan;
http://hmmer.org/) and an alignment-file with sequences containing the corresponding module domain as
input (alignment files were generated using sequences from CAZy for each corresponding family).

Because the selected module families also contain a varying amount of enzymes other than
cellulases, we decided to validate the specificity of these HMM-logos for cellulases by scanning them against
a list of positive or negative cellulase sequences. These lists have been assembled by downloading CAZy
entries for all glycoside hydrolase, carbohydrate binding and auxiliary activity families that contain
cellulolytic proteins. A list of 1283 entries was then classified as positive, having a matching EC number (as

mentioned in the introduction) and a list of 1390 entries as negative where the EC number did not match. Of
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the positive sequences, 662 were eukaryotic. For the families AA8 and AA9, entries that mentioned activity
on cellulose in the name were included in the positive list. Taking all Genbank Ids for these positive and
negative entries, the corresponding protein sequences were downloaded from NCBI. Finally, these lists were
scanned with the three sets of HMM-logos (from Pfam A, dbCAN or personally built) and the HMM-logos
that annotated most of the positive sequences (see supplementary Table S1 in bold) were used to scan the
translated protein sequences from the metagenomes (e-value threshold= 10™).

To limit the number of false positive predictions we refined the search for cellulases by performing
an additional quality control step, i.e. blasting all HMM-annotated protein sequences against the above-
mentioned positive sequences database using blastp (e-value threshold= 10"°). To obtain a relative abundance
of reads, the number of reads was divided by the total number of filtered reads per sample and multiplied by
100,000.

For taxonomic annotation, all reads with a predicted cellulolytic module, i.e. after scanning against
the HMM-logos and the positive sequences database, were blasted against the NCBI non-redundant protein

database using Diamond (minscore=50) and mapped with MEGANS (parameters as previously announced).

Statistical analysis of sequencing data and diversity analysis

To detect global differences between the metagenomes, principal component analysis was performed on the
relative order count data of metagenomic reads annotated to the NCBI non-redundant protein database and
the KEGG database and analysed with MEGANS. Significant differences of soil measurements and annotated
read counts between CT and RT soils were determined by unpaired t-test statistics, and adjusted using the
Bonferroni correction for metagenomic data, using R (R Core Team 2013). Before testing for differences
between soil parameter-measurements, QQ-plots and Shapiro-Wilk tests for normal distribution were
performed. For the PCA-plot, the data was square-root transformed, as the QQ-plot showed no normal
distribution. Differences were regarded significant when the adjusted p-value was smaller than 5 %
(P<0.05). In addition, only taxa or pathways with a relative abundance of at least 0.05% in one of the

replicates were included. Due to the low amount of predicted cellulases, no abundance cut-off was used to
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detect possible differences between tillage treatments. Shannon indices were calculated using the vegan

package in R (Oksanen et al. 2013).

Results

Microbial biomass and enzymatic activities

As expected, we found higher total soil carbon and nitrogen contents under conditions of reduced tillage
(C=1.62 +0.13%, N=0.17 + 0.01%) compared to conventional tillage treatment (C=1.08 £ 0.07%, N=0.12 +
0.01%, P=0.004 respectively P=0.004). In addition, reduced tillage leads to significantly higher microbial
biomass compared to soil under conventional tillage, as measured by carbon analysis (0.28 + 0.03
respectively 0.16 + 0.02 mg g™ dry weight (DW), P=0.004, Fig. 1a) and by gPCR of both bacterial (8.37 +
0.49 x 10" respectively 6.82 + 0.19 x 10" copies g* DW, P=0.007) and fungal DNA (5.58 + 1.03 x 10°
respectively 3.40 + 0.40 x 10° copies g™ DW, P=0.027). The high ratio of bacterial 16S rRNA genes to fungal
ITS genes was not influenced by the treatments. Potential extracellular enzyme activity measurements
showed that CT results in a lower activity than RT for both B-glucosidase (278.7 + 40.9 respectively 545.1 +
86.1nmol MU h™ g* DW,P=0.049) and cellobiohydrolase (5.0 + 1.6 respectively 28.8 + 2.7nmoIMU h™ g*

DW, P=0.002) (Fig. 1b and 1c).

Taxonomic and functional annotation of metagenomes

Shotgun sequencing of the six DNA libraries (3 independent replicates per tillage treatment) resulted in an
overall amount of 0.5 Gigabases of data, which corresponds to a mean of 157,106 filtered reads per replicate
with an average length of 410 bps (Table S2).To account for the different number of reads between the
biological replicates, relative abundances per replicate were calculated. Taxonomic annotation of the
metagenomes was performed by blasting all filtered reads against the Silva SSU database and assigning the
taxonomic rank with MEGANS. Due to the low amount of ribosomal sequences in the metagenomes (0.12%),
only a classification at kingdom level was performed and revealed a dominance of Bacteria (86.15%)

followed by Eukaryota (13.39%) and Archaea (0.45%) (data not shown). 61% of the reads could be
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taxonomically annotated to at least super-kingdom level with the NCBI non-redundant protein database.
Therefore, all further taxonomic annotations refer to the NCBI database. At super-kingdom level the majority
of reads was mapped to Bacteria (98.03%) followed by Eukaryota (1.08%), Archaea (0.73%) and Viruses
(0.05%). Exploratory rarefaction analysis at each taxonomic level revealed an acceptable coverage of
diversity on the order level for all six samples (Fig. 2). Taxonomic analysis showed that all soil metagenomes
are dominated by Proteobacteria and Actinobacteria that together make up for 26.3% of all reads (Fig. S1a).
Further prevalent bacterial phyla were Bacteroidetes (3.3%), Acidobacteria (3.3%), Verrucomicrobia (1.7%),
Gemmatimonadetes (1.4%), Planctomycetes (1.3%) and Chloroflexi (1.1%). At the order level
Actinomycetales, Rhizobiales, Myxococcales, Burkholderiales and Planctomycetales accounted for 13.5% of
all annotated reads (Fig. S1b).

The principal component analysis performed on the relative order count data from the metagenome
reads (Fig. S2) revealed no clear clustering of replicates from conventional and reduced tilled soils. In
accordance, no significant change in alpha-diversity (Shannon indices: conventional tillage: 3.58+0.02,
reduced tillage: 3.55+0.04) between the metagenomes was detected. Significantly different abundances of
taxonomically annotated metagenome reads between CT and RT soils are shown in Table S3. Genes
annotated to originate from the order Ktedonobacteraceae were more abundant in conventional tillage-treated
soil compared to reduced tillage-treated soil (P=0.003).

For functional annotation, the metagenomes were mapped to the KEGG database, to which 35.21 %
of the reads could be annotated, and visualized with MEGANbS. Two-component system, Purine metabolism,
ABC transporters, Nitrogen metabolism and Pyrimidine metabolism were among the most abundant
pathways and account for 6.14 % of all reads (Fig. S3). Soils under conventional tillage contained
significantly more genes involved in Carbohydrate metabolism (P=0.008), Xenobiotics Biodegradation and
metabolism (P=0.0006), Arachidonic acid metabolism (P=0.006), Tyrosine Metabolism (P=0.010) and Drug

Metabolism (P=0.0006, Table S3).
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Prediction of cellulolytic enzymes from metagenomes of conventional and reduced tillage-treated soils

When focusing on the enzymes involved in cellulose degradation within the starch and sucrose metabolism
pathway of KEGG, the B-glucosidase (EC 3.2.1.21) and endoglucanase (EC 3.2.1.4) were most abundant,
with 270 reads (mean relative abundance 0.071% = 0.008) for conventional and 410 reads (mean relative
abundance 0.073% = 0.003) for reduced tillage annotated to B-glucosidase. 123 reads (mean relative
abundance 0.032% + 0.004) for conventional and 186 reads (mean relative abundance 0.033% + 0.001) for
reduced tillage were annotated to endoglucanase. These numbers revealed no significant difference between
conventional and reduced tillage. Much fewer reads were annotated to exoglucanase (EC 3.2.1.91, CT:
0.001%=0.0006 and RT: 0.002%=0.0018) and cellobiose phosphorylase (EC 2.4.1.20, CT: 0.002%+0.0014
and RT: 0.001%=0.0005) and none to cellobiose dehydrogenase (EC 1.1.99.18). In the KEGG database there
is no reference KEGG Orthology groups for cellobiosidase (EC 3.2.1.176) or cellodextrinase (EC 3.2.1.74).
More extensive screening of the metagenomes for cellulases was performed using hmmscan. To
identify the most sensitive HMMs for cellulolytic proteins we benchmarked publically available as well as
personally built HMMs against a set of positive and negative CAZy proteins (see Experimental Procedures).
This revealed that most HMMs detected also many negative CAZy proteins. Using the most sensitive HMMs
(Table S1 in bold), 5,906 reads could be annotated to a catalytic or carbohydrate binding module. To reduce
the number of false positive predictions using hmmscan, an additional filtering step was performed by
scanning the predicted cellulases against the same set of positive CAZy proteins (Table S4). After this
quality control step 2,021 reads remained with a predicted catalytic or carbohydrate binding function, which
corresponds to 0.214 % of the total amount of metagenome reads. The percentage of total annotated
cellulases was not different between treatments. A large variety of catalytic modules and CBMs that are
involved in cellulose degradation were found in the metagenomes of this agricultural soil; 18 glycoside
hydrolases, 4 auxiliary activities and 14 carbohydrate binding modules (Fig. 3). After quality control, most
hits were found for GH1, GH3, GH94, AA8 and CBM2. Statistical analysis revealed significantly more reads

annotated to CBM11 in conventional tillage-treated soil than in reduced tillage-treated soil (P=0.020).
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Conversely, reduced tillage-treated soil contained more reads annotated to GH48 than conventionally tilled
soil (P=0.032).

The taxonomic affiliation of the pooled cellulase-annotated sequences (from Figure 3) is shown in
Fig. 4 on phylum and order level, and reflects the overall abundance of phyla in the metagenomes (Fig. S1a).
18.56% of all cellulase reads mapped to the Proteobacteria, 11.23% to Actinobacteria and fewer to
Bacteroidetes (8.61%), Cyanobacteria (2.23%), Gemmatimonadetes (2.18%), Verrucomicrobia (2.13%),
Acidobacteria (1.73%), Firmicutes (1.53%) and Chloroflexi (1.53%). Actinobacteria, Bacteroidetes,
Cyanobacteria and Firmicutes show a high abundance here, whereas they are not so abundant in the total
metagenome (respectively 7.1%, 3.3%, 0.7% and 0.8%of total reads, Fig. S1a). Results on order level
support the importance of the role which Actinobacteria (Actinomycetales), Proteobacteria (Rhizobiales («),
Burkholderiales (5), Xanthomonadales (y), Myxococcales (9)), Bacteroidetes (Cytophagales,
Sphingobacteriales) and Verrucomicrobia (Verrucomicrobiales) play in cellulose degradation.Of the reads
that were predicted to contain cellulolytic modules 0.71% mapped to fungi (Ascomycota and Basidiomycota).

Finally, the taxonomic affiliation for the individual most abundant cellulolytic families (GH1, 3, 5,
94, AA8 and CBM2) and the difference between conventional and reduced tillage is shown separately in
Figure S4. The low number of reads leads to a high variation in the amount of annotated reads among

replicates and treatments.

Discussion

Relative abundance and diversity of genes coding for cellulolytic enzymes

We predicted a multitude of cellulolytic enzymes in our study, which reflects the complex nature of cellulose
degradation in soil. The functional annotation of cellulase genes agrees with other studies searching for
catalytic modules and CBMs in aerobic environments, where also genes of GH family 3, 5 and 9 have been
identified (DeAngelis et al. 2010; Anderson et al. 2012; Duan & Feng 2010; Nyyssonen et al. 2013). This is
also true for their taxonomic annotation, as cellulolytic microorganisms have been found in the phyla of

Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria (Woo et al. 2013; Anderson et al. 2012;

12
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Nyyssonen et al. 2013; Berlemont & Martiny 2013). Also the order of Actinomycetales contains well known
cellulose degraders (Vétrovsky et al. 2014; Solans & Vobis 2003), as does the order of Myxococcales
(Reichenbach et al. 2006).

To our knowledge, a similar refining analysis on HMM-annotated reads as presented here (Fig. 3)
has not previously been done. We find a highly variable specificity of each HMM-motif for cellulolytic
function, which ranges from 0.0 to 100.0 % of specificity (Table S4). Our results show that such an analysis
IS necessary to get a more exact prediction of gene function, as results can depend heavily on the nature of the
HMM. However, sequence similarity scoring may not be the optimal method to annotate diverging protein-
coding sequences. To define the actual activity of the predicted cellulases, other approaches like cloning and
subsequent functional characterization, transcriptomics and proteomics are necessary in addition.

To further assess the question what percentage of predicted cellulases can be more reliably annotated,
we compared the sequences predicted to harbour cellulolytic domains (GH and AA) to the sequences that
mapped to KEGG modules. This revealed that 19.5% of all sequences predicted by the HMMs before
filtering and 28.8% after filtering with the curated database were annotated by the KEGG database as well.
This indicates that at least a part of the identified sequences is potentially functional in the soil.

In the overall metagenome, 1.08 % (NCBI nucleotide database) or 13.39 % (Silva SSU database) was
annotated to eukaryotes. Indeed, the gPCR on the soil DNA showed a very low abundance of fungal ITS
sequences, especially compared to bacterial 16S sequences. These results are comparable to earlier measured
ITS-sequence abundance in agricultural soil (Ng et al. 2012). In accordance with the overall metagenome,
0.93% of the predicted cellulases in the metagenome were annotated to eukaryotes (0.71% was annotated to
fungi) when using the NCBI non-redundant protein database. However, 12% of the predicted cellulases were
annotated to a CAZy module which contain mostly eukaryotic sequences (GH7, CBM1 and 49, AA3, 8 and
9). Discrepancies between the annotation results of different databases (NCBI versus Silva or NCBI versus
CAZy) clearly show the database biases towards sequences from often-studied organisms. In a high-
throughput approach, numbers of reads annotated to taxa or functions are only realistic if a sufficient

database-representation of the corresponding genes exists. Unfortunately, this is not the case, as databases are
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biased towards culturable bacteria (Wooley et al. 2010) and care should be taken when assessing results
based on similarity to database contents. In addition, the discrepancy between the annotated abundance of
fungi by the Silva SSU database and the qPCR results presented here, might be explained by the detection of
a different fungal sequence (i.e. 18S in the Silva SSU database, and ITS by the PCR assay). Besides database
annotation biases, fungal genes contain many intronic sequences, which require long reads for accurate
annotation. A transcriptomic approach might resolve the hidden contribution of fungi in the soil metabolic
function, as is evidenced by other studies targeting soil transcripts (Kellner et al. 2010; Baldrian et al. 2012).
The low amount of fungi annotated in the overall metagenome and the cellulase-annotated sequences
is striking when one considers the role of fungi in biomass degradation. In forest soils, fungal cellulases are
known to be important for cellulose degradation (Bailey et al. 2002; Buée et al. 2009). It is however known
that agricultural soils harbour lower amounts of fungi than undisturbed soils, as tillage disrupts soil fungal
communities (Miller & Lodge 1997). Furthermore, the yearly application of mineral fertilizers and fungicides

negatively influences the amount of fungi in the sampled soil.

Influence of tillage treatment on soil metagenomes

We hypothesized to find a higher abundance and diversity of cellulase genes in RT soil compared to CT soil,
based on the assumption of higher substrate availability under RT. Few significant differences were found
between the metagenomes, e.g. genes related to GH48 were exclusively found in RT soil, whereas CT soil
harboured more CBM11 genes (Fig. 3). GH48-family proteins are generally harboured by bacteria and
anaerobic fungi, and are always present in cellulosomes. Furthermore, GH48 cellulases are considered the
key component of various cellulolytic systems (Devillard et al. 2004; Olson et al. 2010; Izquierdo et al.
2010). CBM11-family proteins are only known to be present in bacterial cellulases. However, so far not
much is known of the function of cellulase diversity or specific groups of cellulases in the degradation
process in soil. Future research will have to elucidate the specific contribution of each family. Another
finding is that more reads were annotated to the class Ktedonobacteria in CT soil than in RT soil (Table S3).

Ktedonobacteria are gram-positive, aerobic organisms that produce branched vegetative mycelia (Yokota et

14



364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

al. 2012). However, not much is known of their physiology and growth conditions or ecological importance.
Using the KEGG database for functional annotation of the metagenomes we detect significantly more reads
for carbohydrate metabolism and biodegradation of xenobiotics in CT soil compared to RT soil. This is an
interesting finding but difficult to interpret as there are many downstream pathways and none of them differ
between tillage treatments.

Most detected differences were however based on low read counts, questioning their ecological
relevance. For this a metagenomic assessment with higher resolution or more biological replicates can be
helpful to perform more powerful statistics. In general, this in-depth analysis of soil metagenomes from RT
and CT soils reveals no global differences in taxonomic and functional content, and none in alpha-diversity.

This is to our knowledge the first metagenomic analysis of the same agricultural soils under different
tillage practices. It is therefore plausible that a change in tillage practice has far less impact on a functioning
microbial community than a comparison of tillage versus no-tillage, for which several differences in
microbiome structure and taxonomic composition were detected (Carbonetto et al. 2014; Souza et al. 2013).
In this respect we can hypothesize that conditions below 10 cm in the RT soil in this study might resemble
conditions under no-tillage. Indeed, Angers et al. showed that the surface layer and deeper soil layers can be
differentially affected by tillage treatment (Angers et al. 1997). In the subsoil of RT, no extra carbon is
incorporated. Accordingly, no differences in soil organic carbon between CT and RT were observed at deeper
soil levels (18-25 cm) at this experimental site (Kistermann et al. 2013). To confirm whether the subsoil of
RT is affected in a similar way as no-tillage soil, future research is required.

Our results indicate that tillage intensity does not strongly influence microbial community structure
in the timeframe of 20 years, and implies that these microbial communities in agricultural soils are stable to
some extent in response to long-term differences in tillage treatments. The impact of different tillage
treatments might prove less selective for soil microbial community members than other environmental factors
such as the regional climate. This theory is in agreement with a recent meta-analysis of reduced tillage

systems in organic farming (Cooper, personal communication).
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In contrast to the similarity between metagenomes, microbial biomass, fungal and bacterial signature
gene copies and cellulase enzyme activity, which were determined per gram soil, were clearly lower in CT
than RT topsoil. In agreement with these observations, a higher fungal biomass in reduced compared to
conventionally tilled soil has been previously reported (Murugan et al. 2013; van Groenigen et al. 2010). Due
to a difference in microbial biomass, a higher bacterial 16S- and fungal ITS-abundance and enzymatic
activity in RT compared to CT soils might be an indirect result of tillage. Alternatively, the higher enzymatic
activity might be due to a higher abundance of cellulase enzymes in RT soil.

Several other explanations for the discrepancy between the enzyme activity measurements and the
metagenomic analysis exist. One potential explanation is that the soil microbiome might primarily react on
differences in tillage treatments on a transcriptional level. The metagenomic approach does not reveal the
active members of a given microbial community and it is likely that these will be different under
conventional and reduced tillage practice. A metatranscriptomic or metaproteomic approach would be
required to reveal the effect of tillage on the expression or translation of specific cellulase genes. The
advantage of these approaches is that the active organisms are addressed directly, but the disadvantage is that
such measurements can fluctuate considerably over time. Furthermore, it is known that sequencing depth
influences the detection of rare or abundant species (Wooley et al. 2010), so it is conceivable that in this
study many rare microbial species have been missed that contribute to cellulose degradation. However, if
these species have a very low abundance, it is unlikely that their role in degradation is ecologically
significant.

Another explanation for the observed discrepancy is the sampling time. The incorporation of plant
litter leads to a high input of carbon into the soil. It is conceivable that at the time of sampling after one
month, the whole microbial community might be profiting from an increased labile carbon pool and there
would be little competition between microorganisms. This is in agreement with findings in a field study by
Fu et al., which showed that soil respiration was still increasing after 30 days of crop residue incorporation,

both under no-tillage and conventional tillage (Fu et al. 2000). Sampling at a later time point (e.g. half a year)
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might reveal stronger differences between degradation potential of microbial communities of CT and RT

soils due to the lower amount of carbon left in the topsoil of CT compared to RT.

Outlook

Cellulose degradation replenishes the labile carbon pool in soil and is an important ecosystem service. In this
study we addressed the question how different tillage treatments affect cellulose degrading communities in
soil in an agricultural setting. As expected, we identified a high diversity of cellulases in soil and several
glycoside hydrolase families with high abundances, but did not find evidence that tillage treatment strongly
influences cellulose degrading communities at the level of DNA.

We detect only few differences in the microbial communities of conventionally versus reduced
tillage-treated soils as well as in the abundance of cellulolytic genes. The differences observed in potential
enzymatic activities could not be explained by changes in diversity and might be driven by the increased
microbial biomass present at RT sites or different expression patterns. However, as the present study is purely
based on functional predictions, a confirmation of the results by more targeted methods that confirm the
cellulolytic activities are needed, e.g. by using isotopic labelled cellulose as substrate and subsequent stable
isotope probing analysis, or a transcriptomic approach further combined with degenerate primer-gene
capture. Finally, further quantification of genomic or transcribed cellulases in response to different biotic and
abiotic factors, as well as studies that improve our understanding on the dynamics of these microbial
communities in time and space, will be a crucial step to better understand to what extent the large diversity of

cellulolytic enzymes is relevant for efficient cellulose degradation.
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576  Figure 1: Reduced tillage increases microbial carbon and potential cellobiohydrolase and p-glucosidase
577  activities in the topsoil: a) Depicted is the amount of microbial carbon detected in soils with conventional
578  and reduced tillage treatments, in mg per gram dry weight soil. b,c) Shown is the amount of produced

579  methylumbelliferone (MU) in nmol per hour and gram dry weight soil, that has been released by the

580  enzymatic degradation of MU-p-cellobioside (b) or MU-B-D-glucoside (c). Significant differences between
581  conventional and reduced tillage were determined by unpaired t-test statistics (* = P<0.05, n=3).
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Figure 2: Rarefaction curves for the metagenomes of conventional and reduced tillage-treated soil:
Depicted is the number of detected orders (Blastx (Diamond) of all filtered metagenome reads against the
NCBI non-redundant protein database, e-value cut-off = 10™, assignment of taxonomic rank with MEGANS5)
as a function of the sequencing depth, i.e. a randomly chosen amount of reads from the metagenomes for each

replicate.
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Figure 3: Prediction of cellulases and carbohydrate binding modules from metagenomes of
conventional and reduced tillage-treated soil: Depicted is the percentage of reads multiplied by 1000
annotated to catalytic and carbohydrate binding modules found in the metagenomes of conventional and
reduced tillage-treated soil using HMM modules and after an additional quality control using a curated
database. Significant differences between conventional and reduced tillage were determined by unpaired t-

test statistics (* <0.05, n=3).
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596  Figure 4:Taxonomic analysis of predicted catalytic and carbohydrate binding modules: Shown is the
597  number of reads annotated to different phyla a) or orders b) (Blastx (Diamond) against NCBI non-redundant
598  protein database, assignment of taxonomic ranks using MEGANS) for each catalytic or carbohydrate binding
599  module. Presented are the most abundant taxa.
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Supplementary Figure Captions
Figure S1: Taxonomic analysis of metagenomes of conventional and reduced tillage-treated soil:
Depicted are the percentage of reads of the thirty most abundant phyla (a) and orders (b), according to the

NCBI non-redundant protein database (n=3).Taxonomic ranks were assigned using MEGANS.

Figure S2: Principal component analysis of metagenomes of conventional and reduced tillage- treated
soil: Depicted are the first two components of the principle component analysis based on the relative
abundance of orders identified by Blastx (Diamond) against the NCBI non-redundant protein database and
assignment of taxonomic ranks using MEGANS. There is no clear clustering of the metagenomes indicating

no strong differences between the metagenomes at this global level.

Figure S3: Functional analysis of metagenomes of conventional and reduced tillage-treated soil: Shown
is the percentage of reads annotated (Blastx (Diamond) against the KEGG database, e-value cut-off=10 and
assignment of functionality using MEGANS) to different KEGG-pathways, from metagenomes of

conventional and reduced tillage-treated soil (n=3). Presented are the thirty most abundant pathways.

Figure S4: Taxonomic analysis of most abundant catalytic and carbohydrate binding modules: For the
six most abundant HMM families from Figure 3, a detailed taxonomic annotation with the most abundant
phyla is shown. Significant differences between conventional and reduced tillage were determined by

unpaired t-test statistics.
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