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Abstract 15 

Incorporation of plant litter is a frequent agricultural practice to increase nutrient availability in soil and 16 

heavily relies on the activity of cellulose degrading microorganisms. Here we address the question how 17 

different tillage treatments affect soil microbial communities and their cellulose degrading potential in a long-18 

term agricultural experiment. To identify potential differences in microbial taxonomy and functionality, we 19 

generated six soil metagenomes of conventional (CT) and reduced (RT) tillage-treated topsoil samples, which 20 

differed in their potential extracellular cellulolytic activity as well as microbial biomass. 21 

Taxonomic analysis of metagenomic data revealed few differences between RT and CT and a dominance of 22 

Proteobacteria and Actinobacteria, whereas eukaryotic phyla were not prevalent. Prediction of cellulolytic 23 

enzymes revealed glycoside hydrolase families 1, 3, 5, 94, auxiliary activity family 8 and carbohydrate 24 

binding module 2 as the most abundant in soil. These were annotated mainly to the phyla of Proteobacteria, 25 

Actinobacteria and Bacteroidetes.   26 
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These results suggest that the observed higher cellulolytic activity in RT soils can be explained by a higher 27 

microbial biomass or changed expression levels but not by shifts in the soil microbiome. Overall this study 28 

reveals stability of soil microbial communities and cellulolytic gene composition under the investigated 29 

tillage treatments. 30 

 31 

Introduction 32 

The most abundant organic polymer on earth is cellulose. As a key component of plant cell walls it is highly 33 

abundant in all plants mostly in combination with hemicellulose and xylan (Varner & Louis 1989). The 34 

degradation of cellulose is an essential ecosystem service and it is of key value to gain more quantitative and 35 

qualitative understanding of the role of cellulose breakdown within the carbon cycle and in a changing 36 

environment. Cellulases are in general hydrolytic and divided into three major types: β-1,4-endoglucanases 37 

(EC3.2.1.4), β-1,4-exoglucanases and β-glucosidases (EC3.2.1.21) (Lynd et al. 2002). Exoglucanases are 38 

further divided into cellobiohydrolases or, cellobiosidases (EC3.2.1.91, EC3.2.1.176) and cellodextrinases 39 

(EC3.2.1.74). These cellulases differ in their binding and cutting sites on the cellulose fibers or oligomers. 40 

Besides hydrolysis, other catalytic modes of action to cut cellulose chains have been identified, namely 41 

oxidoreduction, mediated by the enzyme cellobiose dehydrogenase (CBH, EC 1.1.99.18, (Langston et al. 42 

2011)) or induced by a quinone- or glycopeptide-mediated Fenton reaction (Baldrian & Valášková 2008), and 43 

phosphorolytic degradation (EC 2.4.1.20, EC 2.4.1.49, (Reichenbecher et al. 1997)). Cellulases generally 44 

consist of a catalytic module, classified into glycoside hydrolase- (GH-) families, and often harbour a 45 

carbohydrate binding module (CBM), whereas cellulases with oxidoreductive catalytic modules are classified 46 

as auxiliary activities- (AA-) family of proteins. The classification into modules is based on amino acid 47 

sequence similarity (Henrissat 1991) and a comprehensive description of these module families can be found 48 

in the CAZy database (Carbohydrate-active enzymes database; www.cazy.org, (Lombard et al. 2014)).  49 

Different agricultural practices like tillage and fertilization strategies influence world-wide carbon cycles 50 

in soil (Lal 2004; Schimel 1995; Schlesinger & Andrews 2000). Tillage, a key component of modern 51 

agriculture, disperses added nutrients throughout the soil and aerates the soil, but also affects soil aggregates 52 
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(Abdollahi et al. 2014). There is a strong ongoing debate on how different tillage treatments impact not only 53 

yields, but also soil nutrients and diversity and activity of soil microbial communities. To clarify this question 54 

several long term agricultural experiments have been established to assess the adaptation of soils to different 55 

tillage treatments. In this context it was shown that  reduced tillage (RT) leads to a higher carbon content and 56 

higher microbial biomass in the topsoil compared to conventional tillage (CT) (van Groenigen et al. 2011; 57 

Küstermann et al. 2013; Alvarez et al. 1995; Kandeler et al. 1999). 58 

However, it is currently unclear how different tillage treatments influence the phylogenetic structure of 59 

the soil microbial community, in particular those which drive the degradation of polymers, like cellulose, 60 

which are major constituents of plant residues used to improve soil quality. Only a few studies have 61 

compared conventional tillage to no-tillage systems and these studies have detected several differences in 62 

taxonomy and functionality of the associated microbial communities (Souza et al. 2013; Carbonetto et al. 63 

2014). For example in a long-term (26 years) experiment, deep tillage practice led to a lower microbial 64 

diversity in the top 10 cm of the soil (Silva et al. 2013). However, no in-depth analysis focussing on microbes 65 

catalysing carbohydrate degradation has been performed so far in agricultural systems. 66 

Thus, in this study we assess the impact of different tillage treatments on microbial communities which 67 

drive cellulose degradation in soil. Samples were taken from the topsoil (0-10 cm) of a long-term field 68 

experiment, where a split plot-based study has been established with conventional (CT; 25 cm working 69 

depth) and reduced tillage (RT; 8 cm working depth) treatments (Meyer-Aurich et al. 2009; Küstermann et al. 70 

2013).  One month before sampling, corn had been harvested and the remaining plant litter had been 71 

incorporated into the soil with the different tillage treatments. Due to the different tillage depths the amount 72 

of plant residues and consequently the amount of straw in the topsoil differed between the two treatments 73 

(Tebrügge et al. 1999). To assess the influence of different tillage treatments on the enzymatic activity of key 74 

cellulolytic enzymes in the soil, the potential enzymatic activities of β-glucosidase and cellobiohydolase were 75 

measured using methylumbeliferone-labeled substrates. 76 

We explored the influence of long-term conventional and reduced tillage on the taxonomic and functional 77 

diversity of soil microbial communities, which are involved in cellulose degradation. As it is well accepted 78 
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that cellulases occur ubiquitously in all kingdoms (http://www.cazy.org, Lombard et al. 2014) and show a 79 

high genetic diversity, we employed a shotgun sequencing approach to identify the different cellulases 80 

present and the microbes harbouring these genes in a qualitative (diversity) and semi-quantitative manner. 81 

The analysed top soils differed in their  amount of total organic carbon (Küstermann et al. 2013). Therefore, 82 

we hypothesized to find a higher relative abundance and diversity of genes coding for cellulases in soil 83 

samples from RT compared to CT. 84 

 85 

Experimental Procedures 86 

Site description and soil sampling 87 

Soil was sampled from an agricultural field experiment, established in 1992 at a research farm in Scheyern, 88 

40km north of Munich (Germany) (Meyer-Aurich et al. 2009; Küstermann et al. 2013). From this field 89 

experiment, two tillage treatments were analysed: conventional tillage with moldboard plough (25 cm 90 

working depth) and reduced tillage with rotary harrow (8 cm working depth). The experiment has been set up 91 

with three independent replicates (split plot design). Ten-year-average precipitation and temperature are 92 

respectively 792.3 mm and 8.3 °C (2000-2010). The soil is a Luvisol with a pH of 6.3, consisting of 2.2% 93 

coarse sand, 17.0% fine sand, 55.4% silt and 25.4% clay.  94 

The soil was sampled in November 2012, one month after corn harvest and incorporation of the plant 95 

residues into the soil. Of every plot a composite sample of five soil cores to a depth of 10 cm was taken with 96 

a soil auger of 5 cm diameter, and sieved with a 3-mm sieve. Afterwards, a subset of the soil was mixed and 97 

immediately stored on dry ice and subsequently at -80 °C before DNA extraction. The remaining soil was 98 

stored at 4 °C.   99 

 100 

Enzymatic activity assays, biomass and chemical measurements 101 

Potential enzymatic activity was measured one day after sampling of soil stored at 4 °C. Potential cellulose 102 

degradation activity of the microbial community was assessed by adding methylumbeliferone-complexed 103 

(MU-)β-D-glucoside and MU-β-cellobioside to soil solutions (Pritsch et al. 2005). The optimum substrate 104 
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concentration (Copt) and incubation time (Topt) for degradation of both substrates were determined during a 105 

pilot experiment; Copt=800µM MU-ß-cellobioside and 500µM MU-ß-D-glucoside, Topt= 120 min for both. 106 

Fluorescence measurement after incubation of the substrate with soil solution was done with a 107 

spectrophotometer at excitation wavelength λ=365 nm and emission wavelength of λ=450 nm. Fluorescence 108 

values were corrected for soil-autofluorescence or fluorescence inhibition by soil particles (quenching) and 109 

background noise.   110 

For measurement of microbial carbon, water extractable organic carbon (WEOC) was determined 111 

before and after chloroform fumigation (Joergensen 1996). For determination of WEOC, soils were mixed 112 

with 0.01M CaCl2 in a 1:5 ratio, incubated in an overhead shaker for 40 min at room temperature, filtered, 113 

and stored at -20 °C until measurement with the Dimatoc 100 (DimatecAnalysentechnik GmbH, Germany).  114 

For measurement of total carbon (TC) and nitrogen (TN) soil was dried at 40 °C for ca. 5 days and 115 

ground to powder shaking in a tissue lyzer at 30 Hz for 3-9 min. 20-25 mg of ground soil powder was 116 

weighed in duplicate, wrapped in aluminium and subjected to elemental analysis using an Elementar Vario 117 

EL III instrument in combustion mode.  118 

 119 

DNA isolation & Pyrosequencing 120 

Soil DNA was extracted from 300 mg of frozen soil samples using the DNA-isolation kit ‘Genomic DNA 121 

from soil’ NucleoSpin Soil Kit (Macherey– Nagel, Germany) according to the protocol of the manufacturer. 122 

DNA was stored at -20 °C until further processing. Library preparation was performed according to the 123 

Roche protocol “Rapid Library Preparation Method Manual” using Roche Molecular Identifier (MID) 124 

adapters as barcodes. Amplification of DNA via emulsion PCR was done according to the Roche protocol 125 

“emPCR Method Manual - Lib-L Large Volume (LV)”. Pyrosequencing was carried out on the Genome 126 

Sequencing (GS) FLX+ instrument, using a GS FLX Titanium sequencing kit XL+. Image- and signal 127 

processing was performed by the provided Roche software. The sequences are deposited in SRA under the 128 

BioProject ID: PRJNA235154. 129 

 130 
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 131 

Real-time PCR assays 132 

Quantitative real-time PCR (qPCR) was performed using primers for amplification of the bacterial 16S 133 

ribosomal gene (Bach et al. 2002) and the fungal Internal Transcribed Spacer (ITS) regions (White et al. 134 

1990). The reaction mixtures (total volume 25 µl) for quantification of the 16S ribosomal gene consisted of: 135 

12.5 µl Power SYBR Green master mix (Life Technologies), 5 pmol of each primer, 0.5 µl 3% bovine serum 136 

albumin (BSA) and 2 µl soil DNA template. The reaction mixtures (total volume 25 µl) for quantification of 137 

the ITS gene consisted of: 12.5 µl Power SYBR Green master mix (Life Technologies), 10 pmol of each 138 

primer and 2 µl soil DNA template. For quantification, standard curves were calculated using serial dilutions 139 

(102 to 106 gene copies µl-1) of a plasmid containing Fusarium oxysporum DNA (for fungal qPCR) or 140 

Pseudomonas putida (for bacterial qPCR). PCR detection limit was assessed to 10 gene copies µl-1. In order 141 

to prevent PCR inhibition, the optimal dilution for each amplification assay was determined by dilution series 142 

of DNA extracts (data not shown). The qPCR assays were performed in 96-well plates. All PCR runs started 143 

with a hot start at 95˚C for 10 minutes, then either 40 cycles of 94˚C for 30 s, 55˚C for 30 s and 72˚C for 30 s 144 

for ITS samples or 40 cycles of 95°C for 45 s, 58°C for 45 s and 72°C for 45 s for 16S qPCR. Finally melting 145 

curve analyses were carried out for all samples by a final cycle of 95˚C for 15 s, 60˚C for 30 s and 95˚C for 146 

15 s. The amplification efficiency was calculated from the formula Eff = [10(-1/slope) -1]*100, and resulted in 147 

the following efficiencies: 16S: 102% and ITS: 87%.  148 

 149 

Analysis of sequencing data and prediction of cellulolytic enzymes 150 

Sff-files were separated by MID adapters, using 454/Roche SFF Tools. Trimming of reads was carried out 151 

using a modified DynamicTrim (Cox et al. 2010) as supplied by MG-RAST (Meyer et al. 2008) using the 152 

following settings: minimum Phred score= 15, maximum number of bases below minimum Phred score=5, 153 

minimum read length=50. Remnant adapter sequences and duplicated reads were removed using Biopieces 154 

(www.biopieces.org) and cd-hit (Fu et al. 2012), respectively. For taxonomic and functional annotation, 155 

filtered reads were blasted against both the National Center for Biotechnology Information (NCBI) non-156 
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redundant protein database and the Kyoto Encyclopedia of Genes and Genomes (KEGG)-database (June 157 

2011) using Diamond (Buchfink et al. 2014) as well as against  the Silva SSU-database using Blastn (expect 158 

(e)-value threshold= 10-4). Mapping of the top 25 blast results (i.e. hits with lowest e-value) to taxonomic and 159 

functional annotations was carried out with the MetaGenome ANalyzer (MEGAN, Version 5.2.3) software 160 

(http://ab.inf.uni-tuebingen.de/software/megan5/). During the MEGAN analysis the following settings were 161 

used: Min support=1, Min score=50, Top%=10, Min-Complexity Filter=0. Visualization of data  was 162 

performed  in R (R Core Team 2013). To obtain a relative abundance of reads, the number of reads was 163 

divided by the total number of filtered reads per sample and multiplied by 100.  164 

For prediction of catalytic modules (GH and AA) and carbohydrate binding modules (CBM) in the 165 

reads, protein open-reading frames were predicted using FragGeneScan (Rho et al. 2010) and translated to 166 

protein sequences. Different families of catalytic modules and CBMs harboured by the key enzymes in 167 

cellulose degradation β-1,4-endoglucanases, β-1,4-exoglucanases, β-glucosidases, cellodextrin 168 

phosphorylases and cellobiose dehydrogenases, were selected from the CAZy database (www.cazy.org 169 

(Lombard et al. 2014)).  Protein Hidden Markov Model (HMM)-logos can be used to scan protein sequences 170 

using hmmscan (Eddy 2011). For the selected families, several HMM-logos are available in the Protein 171 

family (Pfam) A 26.0 database (Punta et al. 2012) and in the DataBase for automated Carbohydrate-active 172 

enzyme Annotation (dbCAN, Yin Y et al., 2012), but can also be personally built using hmmbuild (which is 173 

contained within the HMMER version 3.0 (March 2010), packaged together with hmmscan; 174 

http://hmmer.org/) and an alignment-file with sequences containing the corresponding module domain as 175 

input (alignment files were generated using sequences from CAZy for each corresponding family).  176 

Because the selected module families also contain a varying amount of enzymes other than 177 

cellulases, we decided to validate the specificity of these HMM-logos for cellulases by scanning them against 178 

a list of positive or negative cellulase sequences. These lists have been assembled by downloading CAZy 179 

entries for all glycoside hydrolase, carbohydrate binding and auxiliary activity families that contain 180 

cellulolytic proteins. A list of 1283 entries was then classified as positive, having a matching EC number (as 181 

mentioned in the introduction) and a list of 1390 entries as negative where the EC number did not match. Of 182 
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the positive sequences, 662 were eukaryotic. For the families AA8 and AA9, entries that mentioned activity 183 

on cellulose in the name were included in the positive list. Taking all Genbank Ids for these positive and 184 

negative entries, the corresponding protein sequences were downloaded from NCBI. Finally, these lists were 185 

scanned with the three sets of HMM-logos (from Pfam A, dbCAN or personally built) and the HMM-logos 186 

that annotated most of the positive sequences (see supplementary Table S1 in bold) were used to scan the 187 

translated protein sequences from the metagenomes (e-value threshold= 10-4). 188 

To limit the number of false positive predictions we refined the search for cellulases by performing 189 

an additional quality control step, i.e. blasting all HMM-annotated protein sequences against the above-190 

mentioned positive sequences database using blastp (e-value threshold= 10-5).  To obtain a relative abundance 191 

of reads, the number of reads was divided by the total number of filtered reads per sample and multiplied by 192 

100,000.  193 

For taxonomic annotation, all reads with a predicted cellulolytic module, i.e. after scanning against 194 

the HMM-logos and the positive sequences database, were blasted against the NCBI non-redundant protein 195 

database  using Diamond (minscore=50) and mapped with MEGAN5 (parameters as previously announced).  196 

 197 

Statistical analysis of sequencing data and diversity analysis 198 

To detect global differences between the metagenomes, principal component analysis was performed on the 199 

relative order count data of metagenomic reads annotated to the NCBI non-redundant protein database and 200 

the KEGG database and analysed with MEGAN5. Significant differences of soil measurements and annotated 201 

read counts between CT and RT soils were determined by unpaired t-test statistics, and adjusted using the 202 

Bonferroni correction for metagenomic data, using R (R Core Team 2013). Before testing for differences 203 

between soil parameter-measurements, QQ-plots and Shapiro-Wilk tests for normal distribution were 204 

performed. For the PCA-plot, the data was square-root transformed, as the QQ-plot showed no normal 205 

distribution.  Differences were regarded significant when the adjusted p-value was smaller than 5 % 206 

(P<0.05). In addition, only taxa or pathways with a relative abundance of at least 0.05% in one of the 207 

replicates were included. Due to the low amount of predicted cellulases, no abundance cut-off was used to 208 
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detect possible differences between tillage treatments. Shannon indices were calculated using the vegan 209 

package in R (Oksanen et al. 2013).  210 

 211 

Results  212 

Microbial biomass and enzymatic activities 213 

As expected, we found higher total soil carbon and nitrogen contents under conditions of reduced tillage 214 

(C=1.62 ± 0.13%, N= 0.17 ± 0.01%) compared to conventional tillage treatment (C=1.08 ± 0.07%, N= 0.12 ± 215 

0.01%, P=0.004 respectively P=0.004). In addition, reduced tillage leads to significantly higher microbial 216 

biomass compared to soil under conventional tillage, as measured by carbon analysis (0.28 ± 0.03 217 

respectively 0.16 ± 0.02 mg g-1 dry weight (DW), P=0.004, Fig. 1a) and by qPCR of both bacterial (8.37  ± 218 

0.49 x 1010 respectively 6.82 ± 0.19 x 1010 copies g-1 DW, P=0.007) and fungal DNA (5.58 ± 1.03 x 108 219 

respectively 3.40 ± 0.40 x 108 copies g-1 DW, P=0.027). The high ratio of bacterial 16S rRNA genes to fungal 220 

ITS genes was not influenced by the treatments. Potential extracellular enzyme activity measurements 221 

showed that CT results in a lower activity than RT for both β-glucosidase (278.7 ± 40.9 respectively 545.1 ± 222 

86.1nmol MU h-1 g-1 DW,P=0.049) and cellobiohydrolase (5.0 ± 1.6 respectively 28.8 ± 2.7nmolMU h-1 g-1 223 

DW, P=0.002) (Fig. 1b and 1c).  224 

 225 

Taxonomic and functional annotation of metagenomes 226 

Shotgun sequencing of the six DNA libraries (3 independent replicates per tillage treatment) resulted in an 227 

overall amount of 0.5 Gigabases of data, which corresponds to a mean of 157,106 filtered reads per replicate 228 

with an average length of 410 bps (Table S2).To account for the different number of reads between the 229 

biological replicates, relative abundances per replicate were calculated. Taxonomic annotation of the 230 

metagenomes was performed by blasting all filtered reads against the Silva SSU database and assigning the 231 

taxonomic rank with MEGAN5. Due to the low amount of ribosomal sequences in the metagenomes (0.12%), 232 

only a classification at kingdom level was performed and revealed a dominance of Bacteria (86.15%) 233 

followed by Eukaryota (13.39%) and Archaea (0.45%) (data not shown). 61% of the reads could be 234 
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taxonomically annotated to at least super-kingdom level with the NCBI non-redundant protein database. 235 

Therefore, all further taxonomic annotations refer to the NCBI database. At super-kingdom level the majority 236 

of reads was mapped to Bacteria (98.03%) followed by Eukaryota (1.08%), Archaea (0.73%) and Viruses 237 

(0.05%). Exploratory rarefaction analysis at each taxonomic level revealed an acceptable coverage of 238 

diversity on the order level for all six samples (Fig. 2). Taxonomic analysis showed that all soil metagenomes 239 

are dominated by Proteobacteria and Actinobacteria that together make up for 26.3% of all reads (Fig. S1a). 240 

Further prevalent bacterial phyla were Bacteroidetes (3.3%), Acidobacteria (3.3%), Verrucomicrobia (1.7%), 241 

Gemmatimonadetes (1.4%), Planctomycetes (1.3%) and Chloroflexi (1.1%). At the order level 242 

Actinomycetales, Rhizobiales, Myxococcales, Burkholderiales and Planctomycetales accounted for 13.5% of 243 

all annotated reads (Fig. S1b). 244 

The principal component analysis performed on the relative order count data from the metagenome 245 

reads (Fig. S2) revealed no clear clustering of replicates from conventional and reduced tilled soils. In 246 

accordance, no significant change in alpha-diversity (Shannon indices: conventional tillage: 3.58±0.02, 247 

reduced tillage: 3.55±0.04) between the metagenomes was detected. Significantly different abundances of 248 

taxonomically annotated metagenome reads between CT and RT soils are shown in Table S3. Genes 249 

annotated to originate from the order Ktedonobacteraceae were more abundant in conventional tillage-treated 250 

soil compared to reduced tillage-treated soil (P=0.003). 251 

For functional annotation, the metagenomes were mapped to the KEGG database, to which 35.21 % 252 

of the reads could be annotated, and visualized with MEGAN5. Two-component system, Purine metabolism, 253 

ABC transporters, Nitrogen metabolism and Pyrimidine metabolism were among the most abundant 254 

pathways and account for 6.14 % of all reads (Fig. S3). Soils under conventional tillage contained 255 

significantly more genes involved in Carbohydrate metabolism (P=0.008), Xenobiotics Biodegradation and 256 

metabolism (P=0.0006), Arachidonic acid metabolism (P=0.006), Tyrosine Metabolism (P=0.010) and Drug 257 

Metabolism (P=0.0006, Table S3). 258 

 259 

 260 
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Prediction of cellulolytic enzymes from metagenomes of conventional and reduced tillage-treated soils 261 

When focusing on the enzymes involved in cellulose degradation within the starch and sucrose metabolism 262 

pathway of KEGG, the β-glucosidase (EC 3.2.1.21) and endoglucanase (EC 3.2.1.4) were most abundant, 263 

with 270 reads (mean relative abundance 0.071% ± 0.008) for conventional and 410 reads (mean relative 264 

abundance 0.073% ± 0.003) for reduced tillage annotated to β-glucosidase. 123 reads (mean relative 265 

abundance 0.032% ± 0.004) for conventional and 186 reads (mean relative abundance 0.033% ± 0.001) for 266 

reduced tillage were annotated to endoglucanase. These numbers revealed no significant difference between 267 

conventional and reduced tillage. Much fewer reads were annotated to exoglucanase (EC 3.2.1.91, CT: 268 

0.001%±0.0006 and RT: 0.002%±0.0018) and cellobiose phosphorylase (EC 2.4.1.20, CT: 0.002%±0.0014 269 

and RT: 0.001%±0.0005) and none to cellobiose dehydrogenase (EC 1.1.99.18). In the KEGG database there 270 

is no reference KEGG Orthology groups for cellobiosidase (EC 3.2.1.176) or cellodextrinase (EC 3.2.1.74). 271 

More extensive screening of the metagenomes for cellulases was performed using hmmscan. To 272 

identify the most sensitive HMMs for cellulolytic proteins we benchmarked publically available as well as 273 

personally built HMMs against a set of positive and negative CAZy proteins (see Experimental Procedures). 274 

This revealed that most HMMs detected also many negative CAZy proteins. Using the most sensitive HMMs 275 

(Table S1 in bold), 5,906 reads could be annotated to a catalytic or carbohydrate binding module. To reduce 276 

the number of false positive predictions using hmmscan, an additional filtering step was performed by 277 

scanning the predicted cellulases against the same set of positive CAZy proteins (Table S4). After this 278 

quality control step 2,021 reads remained with a predicted catalytic or carbohydrate binding function, which 279 

corresponds to 0.214 % of the total amount of metagenome reads. The percentage of total annotated 280 

cellulases was not different between treatments. A large variety of catalytic modules and CBMs that are 281 

involved in cellulose degradation were found in the metagenomes of this agricultural soil; 18 glycoside 282 

hydrolases, 4 auxiliary activities and 14 carbohydrate binding modules (Fig. 3). After quality control, most 283 

hits were found for GH1, GH3, GH94, AA8 and CBM2. Statistical analysis revealed significantly more reads 284 

annotated to CBM11 in conventional tillage-treated soil than in reduced tillage-treated soil (P=0.020). 285 
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Conversely, reduced tillage-treated soil contained more reads annotated to GH48 than conventionally tilled 286 

soil (P=0.032). 287 

The taxonomic affiliation of the pooled cellulase-annotated sequences (from Figure 3) is shown in 288 

Fig. 4 on phylum and order level, and reflects the overall abundance of phyla in the metagenomes (Fig. S1a). 289 

18.56% of all cellulase reads mapped to the Proteobacteria, 11.23% to Actinobacteria and fewer to 290 

Bacteroidetes (8.61%), Cyanobacteria (2.23%), Gemmatimonadetes (2.18%), Verrucomicrobia (2.13%), 291 

Acidobacteria (1.73%), Firmicutes (1.53%) and Chloroflexi (1.53%). Actinobacteria, Bacteroidetes, 292 

Cyanobacteria and Firmicutes show a high abundance here, whereas they are not so abundant in the total 293 

metagenome (respectively 7.1%, 3.3%, 0.7% and 0.8%of total reads, Fig. S1a). Results on order level 294 

support the importance of the role which Actinobacteria (Actinomycetales), Proteobacteria (Rhizobiales (α), 295 

Burkholderiales (β), Xanthomonadales (γ), Myxococcales (δ)), Bacteroidetes (Cytophagales, 296 

Sphingobacteriales) and Verrucomicrobia (Verrucomicrobiales) play in cellulose degradation.Of the reads 297 

that were predicted to contain cellulolytic modules 0.71% mapped to fungi (Ascomycota and Basidiomycota).  298 

Finally, the taxonomic affiliation for the individual most abundant cellulolytic families (GH1, 3, 5, 299 

94, AA8 and CBM2) and the difference between conventional and reduced tillage is shown separately in 300 

Figure S4. The low number of reads leads to a high variation in the amount of annotated reads among 301 

replicates and treatments.  302 

 303 

Discussion 304 

Relative abundance and diversity of genes coding for cellulolytic enzymes  305 

We predicted a multitude of cellulolytic enzymes in our study, which reflects the complex nature of cellulose 306 

degradation in soil. The functional annotation of cellulase genes  agrees with other studies searching for 307 

catalytic modules and CBMs in aerobic environments, where also genes of GH family 3, 5 and 9 have been  308 

identified (DeAngelis et al. 2010; Anderson et al. 2012; Duan & Feng 2010; Nyyssönen et al. 2013). This is 309 

also true for their taxonomic annotation, as cellulolytic microorganisms have been found in the phyla of 310 

Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria (Woo et al. 2013; Anderson et al. 2012; 311 



13 
 

Nyyssönen et al. 2013; Berlemont & Martiny 2013).  Also the order of Actinomycetales contains well known 312 

cellulose degraders (Větrovský et al. 2014; Solans & Vobis 2003), as does the order of Myxococcales 313 

(Reichenbach et al. 2006). 314 

To our knowledge, a similar refining analysis on HMM-annotated reads as presented here (Fig. 3) 315 

has not previously been done. We find a highly variable specificity of each HMM-motif for cellulolytic 316 

function, which ranges from 0.0 to 100.0 % of specificity (Table S4). Our results show that such an analysis 317 

is necessary to get a more exact prediction of gene function, as results can depend heavily on the nature of the 318 

HMM. However, sequence similarity scoring may not be the optimal method to annotate diverging protein-319 

coding sequences. To define the actual activity of the predicted cellulases, other approaches like cloning and 320 

subsequent functional characterization, transcriptomics and proteomics are necessary in addition. 321 

To further assess the question what percentage of predicted cellulases can be more reliably annotated, 322 

we compared the sequences predicted to harbour cellulolytic domains (GH and AA) to the sequences that 323 

mapped to KEGG modules. This revealed that 19.5% of all sequences predicted by the HMMs before 324 

filtering and 28.8% after filtering with the curated database were annotated by the KEGG database as well. 325 

This indicates that at least a part of the identified sequences is potentially functional in the soil.  326 

In the overall metagenome, 1.08 % (NCBI nucleotide database) or 13.39 % (Silva SSU database) was 327 

annotated to eukaryotes. Indeed, the qPCR on the soil DNA showed a very low abundance of fungal ITS 328 

sequences, especially compared to bacterial 16S sequences. These results are comparable to earlier measured 329 

ITS-sequence abundance in agricultural soil (Ng et al. 2012). In accordance with the overall metagenome, 330 

0.93% of the predicted cellulases in the metagenome were annotated to eukaryotes (0.71% was annotated to 331 

fungi) when using the NCBI non-redundant protein database. However, 12% of the predicted cellulases were 332 

annotated to a CAZy module which contain mostly eukaryotic sequences (GH7, CBM1 and 49, AA3, 8 and 333 

9). Discrepancies between the annotation results of different databases (NCBI versus Silva or NCBI versus 334 

CAZy) clearly show the database biases towards sequences from often-studied organisms. In a high-335 

throughput approach, numbers of reads annotated to taxa or functions are only realistic if a sufficient 336 

database-representation of the corresponding genes exists. Unfortunately, this is not the case, as databases are 337 
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biased towards culturable bacteria (Wooley et al. 2010) and care should be taken when assessing results 338 

based on similarity to database contents. In addition, the discrepancy between the annotated abundance of 339 

fungi by the Silva SSU database and the qPCR results presented here, might be explained by the detection of 340 

a different fungal sequence (i.e. 18S in the Silva SSU database, and ITS by the PCR assay). Besides database 341 

annotation biases, fungal genes contain many intronic sequences, which require long reads for accurate 342 

annotation. A transcriptomic approach might resolve the hidden contribution of fungi in the soil metabolic 343 

function, as is evidenced by other studies targeting soil transcripts (Kellner et al. 2010; Baldrian et al. 2012).   344 

The low amount of fungi annotated in the overall metagenome and the cellulase-annotated sequences 345 

is striking when one considers the role of fungi in biomass degradation. In forest soils, fungal cellulases are 346 

known to be important for cellulose degradation (Bailey et al. 2002; Buée et al. 2009). It is however known 347 

that agricultural soils harbour lower amounts of fungi than undisturbed soils, as tillage disrupts soil fungal 348 

communities (Miller & Lodge 1997). Furthermore, the yearly application of mineral fertilizers and fungicides 349 

negatively influences the amount of fungi in the sampled soil.   350 

 351 

Influence of tillage treatment on soil metagenomes 352 

We hypothesized to find a higher abundance and diversity of cellulase genes in RT soil compared to CT soil, 353 

based on the assumption of higher substrate availability under RT. Few significant differences were found 354 

between the metagenomes, e.g. genes related to GH48 were exclusively found in RT soil, whereas CT soil 355 

harboured more CBM11 genes (Fig. 3). GH48-family proteins are generally harboured by bacteria and 356 

anaerobic fungi, and are always present in cellulosomes. Furthermore, GH48 cellulases are considered the 357 

key component of various cellulolytic systems (Devillard et al. 2004; Olson et al. 2010; Izquierdo et al. 358 

2010). CBM11-family proteins are only known to be present in bacterial cellulases. However, so far not 359 

much is known of the function of cellulase diversity or specific groups of cellulases in the degradation 360 

process in soil. Future research will have to elucidate the specific contribution of each family. Another 361 

finding is that more reads were annotated to the class Ktedonobacteria in CT soil than in RT soil (Table S3). 362 

Ktedonobacteria are gram-positive, aerobic organisms that produce branched vegetative mycelia (Yokota et 363 
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al. 2012). However, not much is known of their physiology and growth conditions or ecological importance.   364 

Using the KEGG database for functional annotation of the metagenomes we detect significantly more reads 365 

for carbohydrate metabolism and biodegradation of xenobiotics in CT soil compared to RT soil. This is an 366 

interesting finding but difficult to interpret as there are many downstream pathways and none of them differ 367 

between tillage treatments.  368 

Most detected differences were however based on low read counts, questioning their ecological 369 

relevance. For this a metagenomic assessment with higher resolution or more biological replicates can be 370 

helpful to perform more powerful statistics. In general, this in-depth analysis of soil metagenomes from RT 371 

and CT soils reveals no global differences in taxonomic and functional content, and none in alpha-diversity.  372 

This is to our knowledge the first metagenomic analysis of the same agricultural soils under different 373 

tillage practices. It is therefore plausible that a change in tillage practice has far less impact on a functioning 374 

microbial community than a comparison of tillage versus no-tillage, for which several differences in 375 

microbiome structure and taxonomic composition were detected (Carbonetto et al. 2014; Souza et al. 2013). 376 

In this respect we can hypothesize that conditions below 10 cm in the RT soil in this study might resemble 377 

conditions under no-tillage. Indeed, Angers et al. showed that the surface layer and deeper soil layers can be 378 

differentially affected  by tillage treatment (Angers et al. 1997). In the subsoil of RT, no extra carbon is 379 

incorporated. Accordingly, no differences in soil organic carbon between CT and RT were observed at deeper 380 

soil levels (18-25 cm) at this experimental site (Küstermann et al. 2013). To confirm whether the subsoil of 381 

RT is affected in a similar way as no-tillage soil, future research is required. 382 

Our results indicate that tillage intensity does not strongly influence microbial community structure 383 

in the timeframe of 20 years, and implies that these microbial communities in agricultural soils are stable to 384 

some extent in response to long-term differences in tillage treatments. The impact of different tillage 385 

treatments might prove less selective for soil microbial community members than other environmental factors 386 

such as the regional climate. This theory is in agreement with a recent meta-analysis of reduced tillage 387 

systems in organic farming (Cooper, personal communication). 388 
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In contrast to the similarity between metagenomes, microbial biomass, fungal and bacterial signature 389 

gene copies and cellulase enzyme activity, which were determined per gram soil, were clearly lower in CT 390 

than RT topsoil. In agreement with these observations, a higher fungal biomass in reduced compared to 391 

conventionally tilled soil has been previously reported (Murugan et al. 2013; van Groenigen et al. 2010). Due 392 

to a difference in microbial biomass, a higher bacterial 16S- and fungal ITS-abundance and enzymatic 393 

activity in RT compared to CT soils might be an indirect result of tillage. Alternatively, the higher enzymatic 394 

activity might be due to a higher abundance of cellulase enzymes in RT soil.  395 

Several other explanations for the discrepancy between the enzyme activity measurements and the 396 

metagenomic analysis exist. One potential explanation is that the soil microbiome might primarily react on 397 

differences in tillage treatments on a transcriptional level. The metagenomic approach does not reveal the 398 

active members of a given microbial community and it is likely that these will be different under 399 

conventional and reduced tillage practice. A metatranscriptomic or metaproteomic approach would be 400 

required to reveal the effect of tillage on the expression or translation of specific cellulase genes. The 401 

advantage of these approaches is that the active organisms are addressed directly, but the disadvantage is that 402 

such measurements can fluctuate considerably over time. Furthermore, it is known that sequencing depth 403 

influences the detection of rare or abundant species (Wooley et al. 2010), so it is conceivable that in this 404 

study many rare microbial species have been missed that contribute to cellulose degradation. However, if 405 

these species have a very low abundance, it is unlikely that their role in degradation is ecologically 406 

significant. 407 

Another explanation for the observed discrepancy is the sampling time. The incorporation of plant 408 

litter leads to a high input of carbon into the soil. It is conceivable that at the time of sampling after one 409 

month, the whole microbial community might be profiting from an increased labile carbon pool and there 410 

would be little competition between microorganisms. This is in agreement with findings in a field study by 411 

Fu et al., which showed that soil respiration was still increasing after 30 days of crop residue incorporation, 412 

both under no-tillage and conventional tillage (Fu et al. 2000). Sampling at a later time point (e.g. half a year) 413 
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might reveal stronger differences between degradation potential of microbial communities of CT and RT 414 

soils due to the lower amount of carbon left in the topsoil of CT compared to RT.  415 

 416 

Outlook 417 

Cellulose degradation replenishes the labile carbon pool in soil and is an important ecosystem service. In this 418 

study we addressed the question how different tillage treatments affect cellulose degrading communities in 419 

soil in an agricultural setting.  As expected, we identified a high diversity of cellulases in soil and several 420 

glycoside hydrolase families with high abundances, but did not find evidence that tillage treatment strongly 421 

influences cellulose degrading communities at the level of DNA. 422 

We detect only few differences in the microbial communities of conventionally versus reduced 423 

tillage-treated soils as well as in the abundance of cellulolytic genes. The differences observed in potential 424 

enzymatic activities could not be explained by changes in diversity and might be driven by the increased 425 

microbial biomass present at RT sites or different expression patterns. However, as the present study is purely 426 

based on functional predictions, a confirmation of the results by more targeted methods that confirm the 427 

cellulolytic activities are needed, e.g. by using isotopic labelled cellulose as substrate and subsequent stable 428 

isotope probing analysis, or a transcriptomic approach further combined with degenerate primer-gene 429 

capture. Finally, further quantification of genomic or transcribed cellulases in response to different biotic and 430 

abiotic factors, as well as studies that improve our understanding on the dynamics of these microbial 431 

communities in time and space, will be a crucial step to better understand to what extent the large diversity of 432 

cellulolytic enzymes is relevant for efficient cellulose degradation.  433 

 434 

 435 

 436 

 437 
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 573 
Figure Legends 574 

 575 

Figure 1: Reduced tillage increases microbial carbon and potential cellobiohydrolase and β-glucosidase 576 

activities in the topsoil: a) Depicted is the amount of microbial carbon detected in soils with conventional 577 

and reduced tillage treatments, in mg per gram dry weight soil. b,c) Shown is the amount of produced 578 

methylumbelliferone (MU) in nmol per hour and gram dry weight soil, that has been released by the 579 

enzymatic degradation of MU-β-cellobioside (b) or MU-β-D-glucoside (c). Significant differences between 580 

conventional and reduced tillage were determined by unpaired t-test statistics (* = P<0.05, n=3). 581 

582 
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 582 

Figure 2: Rarefaction curves for the metagenomes of conventional and reduced tillage-treated soil: 583 

Depicted is the number of detected orders (Blastx (Diamond) of all filtered metagenome reads against the 584 

NCBI non-redundant protein database, e-value cut-off = 10-4, assignment of taxonomic rank with MEGAN5) 585 

as a function of the sequencing depth, i.e. a randomly chosen amount of reads from the metagenomes for each 586 

replicate. 587 

588 
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 588 

Figure 3: Prediction of cellulases and carbohydrate binding modules from metagenomes of 589 

conventional and reduced tillage-treated soil: Depicted is the percentage of reads multiplied by 1000 590 

annotated to catalytic and carbohydrate binding modules found in the metagenomes of conventional and 591 

reduced tillage-treated soil using HMM modules and after an additional quality control using a curated 592 

database. Significant differences between conventional and reduced tillage were determined by unpaired t-593 

test statistics (* <0.05, n=3). 594 

595 



26 
 

 595 

Figure 4:Taxonomic analysis of predicted catalytic and carbohydrate binding modules: Shown is the 596 

number of reads annotated to different phyla  a) or orders b) (Blastx (Diamond) against NCBI non-redundant 597 

protein database, assignment of taxonomic ranks using MEGAN5) for each catalytic or carbohydrate binding 598 

module. Presented are the most abundant taxa.  599 

 600 

601 
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 601 

Supplementary Figure Captions  602 

Figure S1: Taxonomic analysis of metagenomes of conventional and reduced tillage-treated soil: 603 

Depicted are the percentage of reads of the thirty most abundant phyla (a) and orders (b), according to the 604 

NCBI non-redundant protein database (n=3).Taxonomic ranks were assigned using MEGAN5. 605 

 606 

Figure S2: Principal component analysis of metagenomes of conventional and reduced tillage- treated 607 

soil: Depicted are the first two components of the principle component analysis based on the relative 608 

abundance of orders identified by Blastx (Diamond) against the NCBI non-redundant protein database and 609 

assignment of taxonomic ranks using MEGAN5. There is no clear clustering of the metagenomes indicating 610 

no strong differences between the metagenomes at this global level. 611 

 612 

Figure S3: Functional analysis of metagenomes of conventional and reduced tillage-treated soil: Shown 613 

is the percentage of reads annotated (Blastx (Diamond) against the KEGG database, e-value cut-off=10-5 and 614 

assignment of functionality using MEGAN5) to different KEGG-pathways, from metagenomes of 615 

conventional and reduced tillage-treated soil (n=3). Presented are the thirty most abundant pathways. 616 

 617 

Figure S4: Taxonomic analysis of most abundant catalytic and carbohydrate binding modules: For the 618 

six most abundant HMM families from Figure 3, a detailed taxonomic annotation with the most abundant 619 

phyla is shown. Significant differences between conventional and reduced tillage were determined by 620 

unpaired t-test statistics. 621 
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