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Abstract

Background: External stimulations of cells by hormones, cytokines or growth factors activate signal transduction
pathways that subsequently induce a re-arrangement of cellular gene expression. The analysis of such changes is
complicated, as they consist of multi-layered temporal responses. While classical analyses based on clustering or
gene set enrichment only partly reveal this information, matrix factorization techniques are well suited for a
detailed temporal analysis. In signal processing, factorization techniques incorporating data properties like spatial
and temporal correlation structure have shown to be robust and computationally efficient. However, such
correlation-based methods have so far not be applied in bioinformatics, because large scale biological data rarely
imply a natural order that allows the definition of a delayed correlation function.

Results: We therefore develop the concept of graph-decorrelation. We encode prior knowledge like transcriptional
regulation, protein interactions or metabolic pathways in a weighted directed graph. By linking features along this
underlying graph, we introduce a partial ordering of the features (e.g. genes) and are thus able to define a graph-
delayed correlation function. Using this framework as constraint to the matrix factorization task allows us to set up
the fast and robust graph-decorrelation algorithm (GraDe). To analyze alterations in the gene response in IL-6
stimulated primary mouse hepatocytes, we performed a time-course microarray experiment and applied GraDe. In
contrast to standard techniques, the extracted time-resolved gene expression profiles showed that IL-6 activates
genes involved in cell cycle progression and cell division. Genes linked to metabolic and apoptotic processes are
down-regulated indicating that IL-6 mediated priming renders hepatocytes more responsive towards cell
proliferation and reduces expenditures for the energy metabolism.

Conclusions: GraDe provides a novel framework for the decomposition of large-scale ‘omics’ data. We were able
to show that including prior knowledge into the separation task leads to a much more structured and detailed
separation of the time-dependent responses upon IL-6 stimulation compared to standard methods. A Matlab
implementation of the GraDe algorithm is freely available at http://cmb.helmholtz-muenchen.de/grade.

Background
With the availability of high-throughput ‘omics’ data,
more and more methods from statistics and signal pro-
cessing are applied in the field of bioinformatics [1].
Direct application of such methods to biological data
sets is essentially complicated by three issues, namely
(i) the large-dimensionality of observed variables (e.g.

transcripts or metabolites), (ii) the small number of
independent experiments and (iii) the necessity to take
into account prior information in the form of e.g. inter-
action networks or chemical reactions. While (i) may be
tackled by targeted analysis, feature selection or efficient
dimension reduction methods, the issue of low number
of samples (experiments) may hinder the transfer of
methods. For example, with cDNA microarrays, the
number of genes (p) is usually much larger than the
experiment size n (number of arrays). Quantitative data
from experiments are often classified as ‘small-n-large-p’
problems [2] and algorithms that are currently being
developed are tailored for such kind of data. Detailed
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prior information is in general best handled by Bayesian
methods [3], which are however not straight-forward to
formulate in small-n-large-p problems.
Here, we focus on the unsupervised extraction of

overlapping clusters in data sets exhibiting properties
(i-iii). If applied to gene expression profiles acquired by
microarrays or metabolic profiles from mass spectrome-
try, we can interpret these clusters as jointly acting spe-
cies (cellular processes). While partitioned clustering
based on k-means [4] or hierarchical clustering [5] has
been successful in some domains and is often the initial
tool of choice for data grouping, overlapping clusters
are better described by fuzzy techniques [6] or linear
models [7]. Focusing on the latter, we can essentially
summarize these techniques as matrix factorization
algorithms. Constraining the factorization using e.g. dec-
orrelation, statistical independence or non-negativity
then leads to algorithms like principal component analy-
sis (PCA), independent component analysis [8] and non-
negative matrix factorization [9], respectively. Although
such methods are successfully applied in bioinformatics
[10-12], they partially run into issues (i-iii) as described
above. In particular, it is not clear how to include prior
knowledge, which has been a quite successful strategy in
other contexts [13]. A first step towards this direction is
network component analysis (NCA) [14,15]. It integrates
prior knowledge in form of a multiple-input motif to
uncover hidden regulatory signals from the outputs of
networked systems, a task also covered in [16]. Hence, it
focuses on the estimation of single gene’s expression
profiles, not in a linear decomposition of a data set into
overlapping clusters. NCA poses strict assumptions on
the topology of this predefined network, which makes it
hardly applicable to mammalian high-throughput ‘omics’
data. Moreover, feedbacks from the regulated species
back to the regulators are treated only as ‘closed-loops’,
without explicitly modeling the feedback structure.
To overcome these constraints, this contribution pro-

vides a novel framework for the linear decomposition of
data sets into expression profiles. We present a new
matrix factorization method that is computationally effi-
cient (i), able to deal with the low number of experi-
ments (ii) and includes as much prior information as
possible (iii). In order to achieve computational effi-
ciency coupled with robust estimation, we use delayed
correlations instead of higher-order statistics. In signal
processing, this strategy has been shown to be advanta-
geous [17,18] for two reasons: such methods use more
information from the data without over-fitting it and
they can be formulated as second order techniques. This
is crucial for the application to microarray data, since
dimensionality tends to be high in this environment.
However, delayed correlations can usually not be com-

puted in the case of biological high-throughput experiments

such as in microarray samples. While time-resolved experi-
ments may provide correlations, the number of temporal
observations is commonly too small (<10) for the estima-
tion of time-delayed correlations.
Hence, we instead pose factorization conditions along

the set of genes or other biological variables. We link
these variables using prior knowledge e.g. in the form of
a transcription factor or protein-protein interaction
(PPI) network, metabolic pathways or via explicitly
given models. Using this information enables us to
define a graph-decorrelation algorithm that combines
prior knowledge with source-separation techniques, for
illustration see Figure 1. In case of gene expression ana-
lysis the input of GraDe are the expression data and an
underlying regulatory network. After applying GraDe,
we obtain two matrices, a mixing and a source matrix.
We interpret the sources as the biological processes and
the mixing coefficients as their time-dependent activ-
ities. Hereby, the extracted sources group the genes’
expression that can be explained by the underlying regu-
latory network, e.g. different responses of a cell to an
external stimulus.
The cytokine interleukin IL-6 mediates the produc-

tion of acute phase proteins by hepatocytes and pro-
motes liver regeneration [19]. In order to unveil the
multi-layered temporal gene responses in these pro-
cesses, we measure gene expression in IL-6 stimulated
mouse hepatocytes by a time-course microarray experi-
ment. Applying GraDe with a literature based gene
regulatory network, we are able to infer associated bio-
logical processes as well as the dynamic behavior of
IL-6 related gene expression. In addition, we find that
the estimated factors are robust against the high num-
ber of false positives contained in large-scale biological
databases.

Results and Discussion
The activation of gene regulatory processes upon exter-
nal stimulations induces a re-arrangement of cellular
gene expression patterns. Matrix factorization techni-
ques are currently explored in the analysis of such
multi-layered and overlapping temporal responses. In
the following, we propose an algorithm that incorpo-
rates prior knowledge as a constraint to the factorization
task (see Figure 1).

Algorithm: Matrix factorization incorporating prior
knowledge
In signal processing, various matrix factorization techni-
ques have been developed that employ intrinsic proper-
ties of data to decompose them into underlying sources
[17,18,20]. These methods are based on delayed correla-
tions that can be defined for data having a temporal or
spatial structure. For instance, the time-delayed
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correlation matrix of a centered, wide-sense stationary
multivariate random process x(t) is defined as

( ( )) : ( ( ) ( ) ),C x  ij i jE t t= +x x T (1)

where E denotes expectation. Here, off-diagonal ele-
ments detect time-shifted correlations between different
data dimensions. For τ = 0 this measure reduces to the
common cross-correlation. Given l features, e.g. genes,
aggregated in a data matrix X, e.g. mRNA expression
data, the cross-correlation matrix can be easily estimated
with the unbiased variance estimator:

C X =
−
1

1l
XX T. (2)

However, the experimentally generated quantitative
data sets we face in bioinformatics rarely imply a natural
order like which allows defining a generic kind of
delayed correlation. We therefore generalize this con-
cept by introducing prior knowledge that links features
(e.g genes) along a pre-defined underlying network. This
network may be large-scale, but can be also an explicitly

given small-scale process. Moreover, integrated informa-
tion may be of qualitative (e.g. interaction) as well as
quantitative nature (e.g. interaction strength, reaction
rates).
Graph-delayed correlation
We encode prior knowledge in a directed, weighted

graph G w: ( , , )=   defined on vertices  ∈ …{ , , }1 l

corresponding to our features. The edges ℰ are weighted
with weights w: ℰ ® ℛ. These are collected in a weight
matrix W Î ℛl×l, where wij specifies the weight of edge
i ® j. Note that our weights may be negative, and G
may contain self-loops. For any vertex i ∈ , we denote
by S(i) := {j|(i, j) Î ℰ} the set of successors of i, by P(i) :=
{j|(j, i) Î ℰ} its predecessors.
The graph G introduces a partial ordering on the l

features. We use the weight matrix W as propagator for
an activity pattern X Î ℛl of our features and define
the G-shift xG of x as the vector with components

x xi
G

ji
j P i

j: .
( )

=
∈
∑ W (3)

Figure 1 GraDe: Graph-decorrelation algorithm. In cells, various biological processes are taking place simultaneously. Each of these processes
has its own characteristic gene expression pattern, but different processes may overlap. A cell’s total gene expression is then the sum of the
expression patterns of all active processes, weighted by their current activation level. The GraDe algorithm combines a matrix factorization
approach with prior knowledge in form of an underlying regulatory network. The input of GraDe is the transcriptional expression data, where
observations can be different conditions or a time points, and the underlying regulatory network (prior knowledge). GraDe decomposes the
observed expression data into the underlying sources S and their mixing coefficients A. Analyzing time-course microarray data, we interpret
these sources as the biological processes and the mixing coefficients as their time-dependent activities. Observations indicate their expression
behavior either in the different conditions or time-points and activity their activation strength. We further filter process-related genes by taking
only the genes with the strongest contribution in each process. Finally, we test for enrichment of cellular processes (GO) and biological
pathways (KEGG).
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Recursively, we define any positive shift xG(τ) (see
Figure 2). For negative shifts we replace predecessors
P(i) by successors S(i), which formally corresponds to a
transposition of the weight matrix W. Using the conven-
tion of trivial weights for non-existing edges of G, we
can extend the above sum to all vertices. Gathering
available m experiments (rows) into a data matrix X Î
ℛm × l , we obtain the simple, convenient formulation
of a G-shifted data set

X
XW

X W
G( )

( )
.








=

≥

<

⎧
⎨
⎪

⎩⎪

0

0T
(4)

After mean removal, we may assume that each row of
X is centered. Then, in analogy to the unbiased estima-
tor for cross-correlations in Equation 2, we define the
graph-delayed (cross)-correlation

CX
G G

l l
( ) : ( ) ( ).  =

−
=

−
1

1
1

1
X X XW XT T (5)

Note that our definition includes the standard time-
delayed correlation by shifting along the line graph 1 ®
2 ® ... ® l - 1 ® l.
The graph-delayed correlation is only symmetric if the

used graph shows this feature which is, for instance in
regulatory networks, rarely the case. For our following
derivations, a symmetric generalized correlation measure
however will turn out to be very convenient. In the
remainder of this work, we will therefore use the sym-
metrized graph-delayed correlation

C C CX X X
G G G( ) ( ( ) ( ) ).  = +1

2
T (6)

Enforcing the symmetry property is strategy has been
often applied in the case of temporally or spatially
delayed correlations. It has also been demonstrated
that symmetrization stabilizes the estimation of the
cross-correlations from data [8]. Moreover, it can be
shown that asymptotically using either normal or
symmetrized correlations end up giving the same
eigenvectors [17].
Factorization model
The linear mixing model for the input data matrix
X Î ℛm×l is given by

X AS= +  . (7)

Here, the matrix of source contributions A Î ℛm×n

(m ≥ n) is assumed to have full column rank. The
sources S Î ℛn×lare uncorrelated, zero-mean stationary
processes with nonsingular covariance matrix. We allow
for a noise term ε Î ℛm×l, which is modeled by a sta-
tionary, white zero-mean process with variance s2 . We

assume white unperturbed data X AS := (possibly after

whitening transformation). In other words, we interpret
each row of X as linear mixture of the n sources (rows
of S), weighted by mixing coefficients stored in A. With-
out additional restrictions, this general linear blind
source-separation problem is underdetermined.
Here, we assume that the sources have vanishing

graph-delayed cross-correlation with respect to some

Figure 2 Illustration of the G-shift. Illustration of the G-shift in the unweighted graph G shown in (a). We start with an initial node activity x
depicted in (b). We use the graph as propagator for the time evolution of this pattern: after one positive shift we achieve the activity pattern xG

(1) in (c).
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given graph G and all shifts τ. Formally, this means that

CS
G

( ) is diagonal. We observe

C
AC A I

AC A

S

S

X
G

G

G
( )

( ) ,

( )
.

  

 
=

+ =

≠

⎧
⎨
⎪

⎩⎪

T

T

2 0

0
(8)

Clearly, a full identification of A and S is not possible,
because Equation (7) defines them only up to scaling
and permutation of columns: Multiplication of a source
by a constant scalar can be compensated by dividing the
corresponding row of the mixing matrix by the scalar.
Similarly, the factorization implies no natural order of
the sources. We can take advantage of the scaling inde-
terminacy by requiring our sources to have unit var-

iance, i.e. C IS
G

( )0 = . With this, as we assumed white

data X , we see that AAT = I, i.e. A is orthogonal. Thus,

the factorization in Equation (8) represents an eigenva-

lue decomposition of the symmetric matrix C X
G

( ) . If

additionally we assume that CS
G

( ) has pairwise differ-

ent eigenvalues, the spectral theorem guarantees that A
- and with it S - is uniquely determined by X except for
permutation. The reason why we focused on the sym-
metrized instead of the simple graph-delayed correlation
matrix was precisely that we wanted to have a sym-
metric matrix, because then the eigenvalue decomposi-
tion is well defined and also simple to compute.
However, we have to be careful, because we cannot

expect C X
G

( ) to be of full rank. Obviously, we require

more features than obtained sources (l » m), hence in
general rank(X) = m. If G contains an adequate amount
of information, rank(W) is of order l and since l » m,

rank C X
G

( )( ) is essentially determined by (the upper

bound) m. Hence, when analyzing high-throughput bio-
logical data linked by underlying large-scale networks,
we can extract as many sources as observations are
available.
The GraDe algorithm
Equation (8) also gives an indication of how to solve the
matrix factorization task in our setting. The first step

consists of whitening the no-noise term X AS = of the

observed mixtures X. The whitening matrix can be
easily estimated from X by diagonalization of the sym-

metric matrix C C IX X
G G

( ) ( )0 0 2= − , provided that the

noise variance s2 is known or reasonably estimated. If
more signals than sources are observed, dimension

reduction can be performed in this step. Insignificant
eigenvalues then allow estimation of the noise variance,
compare [17]. Now, we may estimate the sources by
diagonalization of the single, symmetric graph-delayed

correlation matrix C X
G

( ) . Altogether, we subsume this

procedure as GraDe algorithm. In summary, the input
of GraDe is (i) a expression matrix X Î ℛm×l containing
m experiments and l genes and (ii) a weight matrix W Î
ℛl×l containing the prior knowledge. We obtain a mix-
ing matrix A Î ℛm×n (m ≥ n) and a source matrix S Î
ℛn×l . In the case of gene expression data analysis the
sources can be interpreted as biological processes and
the mixing coefficients as their time-dependent activ-
ities. A Matlab implementation is freely available at
http://cmb.helmholtz-muenchen.de/grade.
Including prior knowledge into the source-separation

task may introduce bias in the patterns that are pre-
defined and, in turn, the analysis and results obtained. It
is important to note that annotation of biological knowl-
edge is biased and under permanent change. Therefore,
when using gene regulatory networks as prior knowl-
edge one has to keep in mind that this information is
subject to annotation bias. Thus the density of connec-
tions in certain regions of the network might be higher
due to the fact that these parts are better explored. In
the case of classification problem, recent studies have
shown that methods can be improved in terms of classi-
fication accuracy by including prior knowledge into the
classification process [21]. These methods benefit from
the fact that genes are not treated as independent.
Hence, most of these methods are based on the hypoth-
esis that genes in close proximity, which are connected
to each other, should have similar expression profiles.
The same assumption may be transferred to source-
separation methods. Applying standard methods like
ICA or PCA, implies the assumption that all data points,
i.e. in our setting the expression levels of different genes
are sampled i.i.d. from an underlying probability density.
This assumption is obviously not fulfilled, since the
genes’ expression values are the read-outs of different
states of a complex dynamical system: Genes obey
dynamics along a transcription factor network. Instead
of ignoring the genes’ dependencies, we here proposed
to explicitly model them using prior knowledge given
within a gene-regulatory network. Therefore, one of the
key advantages of GraDe is to overcome the assumption
of the independencies. Applying GraDe to time-course
expression data (see section Validation of the time-
dependent signals), we will show that including prior
knowledge into the source separation task leads to an
improvement compared to fully-blind methods like
PCA. Finally, we believe that with increasing quality and
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amount of biological knowledge, methods incorporating
prior knowledge will increase in performance as well.

Illustration of GraDe
In order to illustrate GraDe, we analyze two toy exam-
ples. We first focus on a bifan structure shown in Figure
3a and assume to have six genes from the time-courses
of expression levels depicted in Figure 3b. For data gen-
eration, the system is simulated by ordinary differential
equations:

d
d
x t

t
x t f x ti

i i ji

j P i

j
( )

( ) ( ( )).
( )

= − +
∈
∑ (9)

where we model interactions by sigmoidal Hill func-
tions [22]. In this case, one input x1 is active until time-
point 10, when it is turned off and instead production
of x2 is switched on. Consequently, x3 peaks at time 10,
but also x4 shows an early activation due to low expres-
sion of its inhibitor. Applying GraDe (with the known
bifan topology, but without access to the underlying
ODE system), we find that three sources are sufficient
to explain the data (Figure 3b). From the extracted
sources and their time-courses (shown in Figure 3e and
3d) we see that the strongest source s1 represents the
externally controlled inputs and the network topology:
the source couples x1 and x3, and in opposite direction
x2 and x4. Therefore, GraDe is able to recover the two
processes. Source s2 has the lowest contribution to the
total expression values and is needed for fine-tuning the

combined dynamics, as we obtain an early activation of
x4 due to low expression of its inhibitor. Consequently,
the source s2 is active at time-points 2 and 4, i.e. imme-
diately after the switching operations. Source s3 again
reflects the crossover inhibitions, accordingly its time-
course is at. This source groups the input of the net-
work, which could be linked e.g. to pathway stimulation.
For our second example we use the funnel structure in
Figure 3f, where we defined the expression values for
three different input conditions (Figure 3g). Eigenvalues
and the factorization obtained by GraDe are visualized
in Figure 3h-j. Source s1 again reflects the network
topology, by grouping the cascade genes, while s2 allows
the reconstruction of the last condition. As we expect,
GraDe are able to recover the two independent inputs.
Applying GraDe to two different toy examples, we are
able to show that GraDe is applicable both time-course
as well as conditional experiments. In both cases, GraDe
identifies the different responses and inputs of the
system.

Application: IL-6 mediated responses in primary
hepatocytes
In liver, the cytokine interleukin IL-6 mediates two
major responses. First, it induces hepatocytes to produce
acute phase proteins upon infection-associated in
inflammation. These proteins include complement fac-
tors to destroy or inhibit growth of microbes. In addi-
tion, IL-6 promotes liver regeneration and protects
against liver injury [19]. IL-6 regulates several cellular
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Figure 3 Illustration of GraDe. For the bifan motif in a we take 6 genes (dots) from the simulated time-courses in b (for parameters see
Additional file 1) and apply GraDe: c shows the eigenvalues of the decomposition in GraDe. In d we plot the time-courses of the extracted
sources s1 ... s6, hence the curves are the columns of the mixing matrix. From c we see that only the first three sources are relevant, which are
visualized as heat-map e. For our second example f we assume to know expressions in different conditions as shown in g. The factorization by
GraDe is visualized in sub figures h to j.
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processes such as proliferation, differentiation and the
synthesis of acute phase proteins [23]. Upon binding to
its cell surface receptor, IL-6 activates the receptor asso-
ciated Janus tyrosine kinase (JAK) 1 - signal transducer
and activator of transcription (STAT) 3 - signal trans-
duction pathway. The latent transcription factor STAT3
is translocated to the nucleus after activation and subse-
quently alters gene expression.
To identify the biological responses to IL-6 in a time-

resolved manner, we stimulated primary mouse hepato-
cytes with 1 nM IL-6 up to 4 hours and analyzed the
changes in gene expression by microarray analysis. In a
first approach, we extracted all genes that were signifi-
cantly regulated compared to time point 0 h. In total,
we obtained 121 genes and applied k-means clustering
to detect groups within this set. Based on this approach,
we could not identify any time-resolved responses upon
IL-6 stimulation (see Additional file section Clustering of
significantly regulated genes). Due to the small number
of significantly regulated genes, we decided to employ a
genome-wide approach using GraDe to resolve the cel-
lular responses upon IL-6 in more detail.
GraDe discovers time-dependent biological processes upon
IL-6 stimulation
Using GraDe, we linked all 5709 expressed genes along
a gene regulatory network derived from the TRANS-
PATH database (see Methods). We obtained four graph-
decorrelated gene expression sources (GES), which we
labeled from 1 to 4 according to their decreasing eigen-
values (Figure 4b). We see that dimension reduction
and with it noise level estimation were not possible in
our case. The estimated mixing matrix is shown in Fig-
ure 4a. The matrix of source contributions contains

positive and negative components. We partitioned a
source into submodes that contain either the negative
signals or the positive signals, respectively. We selected
all genes in the positive submodes by choosing a thresh-
old ≥2 as well as all genes in the negative submodes
with a threshold ≤-2, respectively. These sets were
subsequently used for GO enrichment analysis using a
p-value < 0.05 after correction by False Discovery Rate.
Differentially expressed genes within GES 1 display an

immediate strong increase in expression following IL-6
stimulation. After peaking at one hour, expression
decreases to elevated levels compared to untreated sam-
ples. Significantly enriched GO-Terms within this GES
correspond to responses triggered by external stimuli
and in ammation (see Table 1, for a complete list of bio-
logical processes see Additional file 1). In liver, upon
infection- or injury-associated in inflammation IL-6
mediates production of acute phase proteins (APP) by
hepatocytes as represented by the GO-Term “(acute) in
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Figure 4 Result of GraDe. This figure illustrates the decomposition of the time-course microarray experiment on IL-6 stimulated hepatocytes
with GraDe. As underlying network we used interactions from the TRANSPATH database (see Methods). (a) shows the time-courses of the four
extracted sources, centered to time point 0 h. The x-axis shows the measured time-points and the y-axis the contribution of the mixing matrix.
In (b), we plot the strength of the eigenvalues (EV) of the resulting sources. All four extracted sources have significant contributions.

Table 1 Main biological processes in response to IL-6

Source Mode Biological process

1 positive (external) stimulus, inflammatory response

negative (fructose) metabolic process

2 positive early cell cycle and division

negative metabolic process, apoptosis

3 positive late cell cycle and division

negative -

4 positive translation, coagulation

negative (protein) metabolic process

Summary of the main biological processes in hepatocytes regulated as
response to IL-6. Mode indicates genes with significant positive (≥2) or
negative (≤-2) contribution to the source. The main biological processes found
for the corresponding group of genes are given in the last column.

Kowarsch et al. BMC Bioinformatics 2010, 11:585
http://www.biomedcentral.com/1471-2105/11/585

Page 7 of 14



ammatory response “ (e.g Saa4, Fgg, Pai1 ). Angptl4 is a
positive acute phase protein [24] showing a strong
increase in expression during the first hour after stimu-
lation followed by a decrease after two hours (see Figure
S4). GraDe reconstruct the expression pattern by the
mixing of the four different source time-patterns GES 1
to 4. We identify Angptl4 in GES 1 and 3 having a
source contribution ≥2. The combination of both GESs
showing perfectly the strong increase after IL-6 (GES 1)
and the induced decreased after 2 hours (GES 3). The
GO-Term “(external) stimulus” includes genes of the
JAK-STAT signaling pathway like STAT3 as well as sev-
eral genes encoding for signaling components such as
Hamp, Cepbd and Osmr. These entities represent regu-
latory processes like negative feedbacks as well as sec-
ondary signaling events. Genes with negative
contribution in GES 1 were associated with metabolic
processes like “L-serine biosynthesis” or “fructose meta-
bolic processes”. This is in line with the function of IL-6
as a priming factor, mediating the conversion of quies-
cent hepatocytes from G0 to G1 phase of the cell cycle
during liver regeneration [19]. It can be argued that
down-regulation of genes associated with metabolic pro-
cesses is due to the transformation of differentiated
metabolically active hepatocytes into proliferative cells.
The down-regulated metabolic functions at least par-
tially take place in mitochondria. Accordingly, parts of
the glycolysis pathway were down-regulated in primary
hepatocytes.
GES 2 shows a slight decrease after stimulation fol-

lowed by a late-phase increase in expression. We iden-
tify several biological processes associated with “cell
cycle and division” within this GES. A representative
gene of GES 2 is the cell cycle inhibitor Cdkn1b. Its
reduction of expression corresponds to the induction of
cell cycle progression and in particular to the transfer
from G0 to G1. These characteristics are further sup-
ported by the negative contribution of Cdkn1b in GES
3. Analyzing genes with a positive contribution in GES
2 only, we found, in addition to involvement in early
cell cycle events, genes showing an association with
(programmed) cell death and apoptosis. It was already
indicated that IL-6 promotes liver regeneration and pro-
tects against liver injury by inducing anti-apoptotic and
survival genes [19,25]. GO-Terms corresponding to
genes found in GES 2 having a negative contribution are
more heterogeneous. Within the top GO-Terms we
identified several biological functions associated with the
IL-6 stimulus. Based on the induction of the acute in
ammatory response, coagulation factors were activated.
Moreover, several genes associated with gene translation
were found. In addition, genes associated with metabolic
processes are represented by this GES.

The time course behavior of GES 3 shows a delayed
activation subsequent to stimulation with IL-6. We iden-
tified several GO-Terms associated with “cell cycle” and
“cell division” similar to GES 2. However, GES 3
includes mainly genes related to late events in the cell
cycle, i.e. during G2 and M phase (e.g. Gmnn, Mcm2,
Plk2 ). Wee1 as a main regulator of Cdc2 displays a
negative contribution to GES 3, hence indicating Wee1
down-regulation and subsequent progression through
the G2-M check point. In addition, we identify Ccnb2 a
late cell cycle genes, which repression leads to cell cycle
arrest in the G2 phase. The time-course expression pat-
tern, shows a strong increase after IL-6 stimulation fol-
lowed by a decrease after two hours (see Figure S5). We
identify Ccnb2 in GES 1 and GES 3 perfectly reconstruct
the strong increase after the stimulation and the inacti-
vation after two hours. The IL-6 -induced priming phase
is characterized by the activation of the latent transcrip-
tion factor STAT3. This immediate response induces the
expression of early responsive genes like the transcrip-
tion factor AP-1 [26] subsequently inducing a secondary
gene response leading to transcription of cyclins A-E,
p53, and the cyclin dependent kinase P34-cdc2 [27].
Applying KEGG pathway enrichment, we found the

cell cycle, with DNA replication in particular, and p53
pathway enriched within this GES. Interestingly, IL-6 sti-
mulation alone is not sufficient to efficiently induce pro-
liferation of primary mouse hepatocytes in vitro. Hence,
despite the persistent re-organization of the induced
gene expression profile and the induction of early cell
cycle players such as cyclin A, additional stimuli may be
necessary to initiate a strong proliferative response of
primary mouse hepatocytes. GES 4 shows the lowest
eigenvalue. It has a strong increase in expression follow-
ing the IL-6 stimulus. GO-Term enrichment reveals sev-
eral biological processes found in GES 1 - 3 like
coagulation, translation, acute phase, and response of
the stimulus. Genes having a negative contribution in
GES 4, indicating a decrease in expression after the sti-
mulus, are again associated with metabolic processes.
Both, GES 3 and 4 imply that hepatocytes stimulated
with IL-6 show affection for division causing a down-
regulation of genes associated with the metabolic
processes.

Validation of the time-dependent signals
In order to evaluate our findings, we compared the out-
come of GraDe with standard methods. As there is no
established matrix factorization technique that incorpo-
rates prior knowledge, we employed PCA [28], k-means
clustering [29] and FunCluster [30], a clustering method
that incorporates Gene Ontology information into the
clustering task.
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To test the biological findings obtained by GraDe, we
applied a similar approach as proposed by Teschendor
et al. [12]. We first asked how well biological pathways
can be mapped to the inferred submodes or clusters.
For GraDe and PCA, we selected in each submode the
genes having an absolute source contribution above 2
standard-deviations. The average number of selected
genes in each submode ranges from 75 to 280. For k-
means clustering, we infer 8 clusters on a subset of the
top 15% most variable genes to ensure that the average
number of selected genes is comparable to GraDe and
PCA.
To evaluate the mapping of pathways to submodes or

clusters we applied the pathway enrichment index (PEI).
For each submode or cluster we evaluated significantly
enriched pathways by using a hypergeometric test (see
Methods). The PEI is then defined as the fraction of sig-
nificant pathways mapped to at least one submode or
cluster. The PEI for each method is shown in Figure 5.
We find that the PEI is higher for GraDe compared to
PCA, k-means clustering or FunCluster indicating that
GraDe maps submodes closer to biological pathways.
In addition, we validated the time-dependent

responses upon IL-6 stimulation in more detail by
searching for enriched GO-Terms. Applying PCA, we
found that the first principle component (PC) contains
99% of data variance (see Figure S1). GO-Term enrich-
ment analysis revealed that PC 1 contains genes linked
to (blood) coagulation and hemostasis (see Additional
file 1). A second major response after IL-6 is the activa-
tion of cell cycle or cell division. We found an

enrichment of these biological processes in PC 2 and
PC 4. PC 2 shows a decreased time-course behavior
after the stimulation. Genes linked to cell cycle and cor-
responding pathways have a negative contribution in PC
2 indicating an increased time-course expression pattern
after IL-6 stimulation. This finding is analogous to
GraDe, where we find cell-cycle pathways in GES 1 and
3 showing also an increasing expression pattern after
the stimulation. With GraDe we identified several genes
that are associated with metabolic processes showing a
down-regulation after stimulus. PCA covers these biolo-
gical processes by two components PC 2 and PC 3,
where PC 3 shows a strong increase and PC 2 a
decrease of expression after the stimulus (see Figure 6a).
The direct response of IL-6 was found in PC 4, but we
identified only acute in ammatory response. Moreover,
PCA grouped cell cycle (negative mode) and the direct
response (positive mode) into PC 4 and was not able to
separate the cell cycle processes into the early (e.g.
Cdkn1b) and late (e.g Mcm2 ) responses after IL-6
stimulation.
Focusing on the results of the k-means clustering, we

obtained an enrichment of cell cycle processes in cluster
3 (see Figure 6b). This cluster shows only a marginal
increase in expression after the stimulus and therefore
does not reflect the strong activation of cell cycle found
by GraDe and PCA. Genes associated with metabolic
processes are grouped in cluster 5, which has a constant
expression level after IL-6 stimulus. Hence, k-means
clustering failed to infer a cluster associated to the
downregulation of metabolic processes upon IL-6.
Cluster 4 shows a characteristic time-course pattern after
IL-6 stimulation, but we were not able to reveal any sig-
nificant biological processes associated to IL-6. Alto-
gether, k-means clustering neither identifies the direct
response upon IL-6 nor the separation between early and
late cell cycle genes. Comparing the result of FunCluster,
we also identify a set of co-regulated genes associated
with cell cycle (Cluster 3; see Figure 6c). Genes grouped
in this cluster show an increase in expression after the
stimulus. However, FunCluster was also not able to sepa-
rate the early and late cell cycle processes, observed by
GraDe. Genes associated with metabolic processes are
grouped in cluster 5, showing a decreasing expression
pattern after one hour of stimulation. Therefore,
FunCluster also identifies the downregulation of meta-
bolic processes indicating that IL-6 reduces expenditures
for the energy metabolism. However, FunCluster was not
able to identify the primary response of IL-6 mediating
the production of acute phase proteins (APP) by hepato-
cytes. Moreover, FunCluster also did not find any signifi-
cant processes related to the JAK-STAT related genes,
such as Stat3, Hamp, Cepbd and Osmr, showing an
increased expression pattern.
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Figure 5 Pathway enrichment. Result of the pathway enrichment
analysis. For each method applied to our data set, we plotted the
pathway enrichment index (PEI). This index gives the fraction of
KEGG pathways found enriched in at least one submode or cluster
(see Methods). GraDe obtained a much higher PEI than PCA, k-
means clustering or FunCluster. This indicates that sources obtained
by GraDe map much closer to biological pathways.
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These results show that the decomposition obtained
by GraDe provided much more detailed biological
insights than PCA, k-means clustering or FunCluster.
PCA was able to identify three main biological processes
upon IL-6 stimulus. However, it failed to give a correct
time-resolved pattern of these biological processes,
whereas sources from GraDe reproduce the characteris-
tic time-course behavior of the IL-6 response. Moreover,
GraDe reveals a much more structured and time-
resolved result, which allows assigning each source to a
different main process.

Robustness analysis
Detailed knowledge about gene regulation is often not
available and far from complete. Therefore, the quality

of a large-scale gene regulatory network is not perfect.
In order to test the effect of network errors on the out-
put of GraDe, we performed two robustness analyses.
Starting with our TRANSPATH network, we generated
randomized versions by either shuffling the network
content or adding random information (see Methods).
By shuffling edge information of the gene regulatory
network between 0.1 and 100% of all original edges, we
simulated a loss of information. To quantify robustness,
we employed the Amari-index, which measures the
deviation between two mixing matrices. We obtained
significantly low Amari-indices for up to 3% reshuffled
edges within the gene regulatory networks (mean
Amari-index = 3.83, p = 0:034), whereas a complete ran-
domization of the network results in an Amari-index of

Figure 6 Result of PCA, k-means clustering and FunCluster. (a) illustrates the result of PCA for the time-course data of IL-6 stimulated
hepatocytes. The x-axis corresponds to the measured time-points and the y-axis gives the centered (to time point 0 h) contributions of the
mixing matrix. The result of the k-means clustering is shown in (b). The x-axis shows the measured time-points and the y-axis shows the fold-
change values of the centroids at that time-points. (c) shows the result of FunCluster. The plot shows the mean expression of the different
cluster and the bars indicates the standard deviation at a particular time-point. The x-axis shows the measured time-points and the y-axis shows
the relative expression at that time-points.

Kowarsch et al. BMC Bioinformatics 2010, 11:585
http://www.biomedcentral.com/1471-2105/11/585

Page 10 of 14



9.63 (see Figure 7a). This shows that the quality of the
regulatory network has of course a strong influence on
the output of the GraDe algorithm. It is obvious that
GraDe depends on the regulatory network, and repla-
cing gene interaction through random information will
lead to loss of the signals.
We ran a second robustness analysis by adding ran-

dom information to the existing gene regulatory net-
work. This is important because we expect large-scale
networks extracted from literature to contain many
false-positives. Significantly low Amari-indices were
obtained by adding up to 13% random information
(mean Amari-index = 3.94, p = 0:046) to the network
(see Figure 7b). This result shows that GraDe is able to
detect the signals even after adding a large amount of
probably wrong information to the network. The toler-
ance of the algorithm to the second randomization
strategy is much higher, as here no correct information
is destroyed. Overall, with both randomization proce-
dures we were able to prove that GraDe is robust
against a reasonable amount of both, false positives and
missing information.
In addition, we analyzed the noise effect of gene

expression data by randomly choosing between one
and three replicates for each time point. We found sig-
nificantly low Amari-indices (mean Amari-index = 4.16

p = 0:026) by comparing the 95% quantile of the result-
ing Amari-index with a random sampling. Thus, GraDe
is also robust against biological noise.

Conclusion
IL-6 promotes liver regeneration and protects against
liver injury. In order to understand these effects in a
time-resolved manner, we performed a time-course
microarray experiment of IL-6 stimulated primary
mouse hepatocytes. Standard techniques applied to this
data set only partly revealed temporal gene expression
patterns following the stimulation. To resolve the inter-
action of IL-6 and the corresponding cellular responses
in more detail, we developed GraDe. It extracts overlap-
ping clusters from large-scale biological data by combin-
ing a matrix factorization approach with the integration
of prior knowledge. Applying GraDe to our experiment,
we identified the activation of acute phase proteins,
which are known to be one of the primary response
upon infection based in ammation. Moreover, we
observed that IL-6 activates cell cycle progression, as
well as the down-regulation of genes associated with
metabolic processes and programmed cell death. There-
fore, IL-6 mediated priming renders hepatocytes more
responsive towards cell proliferation and reduces expen-
ditures for the energy metabolism.
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Methods
IL-6 stimulated mouse hepatocytes
RNA probes from primary mouse hepatocytes were
assessed with the Bioanalyzer 2100 (Agilent) to ensure
that 28S/18S rRNA ratios were in the range of 1.5 to 2.0
and concentrations were comparable between probes.
For each time point, 4 g of total RNA were used for the
hybridization procedure using the One-Cycle Target
Labeling Kit (Affymetrix). Fluorescence intensities were
acquired with the GeneChip Scanner 3000 and the
GCOS software (Affymetrix). GeneChip Mouse Genome
430 2.0 Arrays (Affymetrix) were used in the analysis
comprising stimulations with 1 nM IL-6 for 1 h, 2 h,
4 h and an unstimulated control (0 h) each performed
in triplicates. As a probe level model (PLM) for microar-
ray data an additive-multiplicative error model was used.
Data processing was performed using the Limma tool-
box [31] provided by Bioconductor [32]. The RMA
approach was used for normalization and background
correction. Probe sets were filtered out by the genefilter
package. A gene was considered as expressed if the
signal was above 100 (unlogged data) for at least one
time point. Finally, we obtained a data set of 5709
genes. Significantly regulated genes compared to time
point 0 h were determined by using the LIMMA (Linear
Models for Microarray Data) method [33]. The Limma
toolbox uses the moderated t-statistics to identify signifi-
cant regulated genes. Moreover the moderated t-statistics
is advisable for a small number of arrays [33,34]. A gene
was determined as significant regulated if the p-value was
<0.05 after multiple testing correction by the Benjamini-
Hochberg procedure [35]. Raw data are available at GEO
with accession number GSE21031.

Gene Regulatory network
In order to link genes along an underlying network we
used the TRANSPATH database [36] that provides
detailed knowledge of intracellular signaling information
based on changes in transcription factor activity.
We searched for direct gene or protein interactions

within the TRANSPATH database using the terms:
transactivation, increase of abundance, expression, acti-
vation, DNA binding, increase of DNA binding, transre-
pression, decrease of abundance, decrease of DNA
binding, and inhibition.

Principle component analysis
For principle component analysis (PCA) we performed
an eigenvalue decomposition of the covariance matrix of
the data set X. Thereby we obtained a decomposition
into an orthonormal source matrix S and an orthogonal
mixing matrix A. We applied PCA to the same set of
expressed genes as GraDe and also inferred four
sources. We defined for each component two submodes

by grouping genes with a threshold ≥+2 standard-
deviations and a second set of genes having a source
weight of ≤-2 standard-deviations.

k-means clustering
In order to ensure a fair comparison of k-means cluster-
ing with GraDe and PCA, we first applied a gene selec-
tion step to provide that all methods selected an
approximately equal number of genes, as proposed in
[12]. We ranked all expressed genes according to their
expression variance across the time-course and then
selected the top 15% variable genes. Having the selected
genes, clustering was then performed using k-means
clustering [29], where k was set to 8 in order to match
the same number of submodes inferred by GraDe and
PCA.

FunCluster
In addition to k-Means clustering, we also include a
clustering method which incorporates Gene Ontology
information into the clustering task. We use the
FunCluster method, which performs functional analysis
of gene expression data [30,37]. FunCluster detects co-
regulated biological processes through a specially
designed clustering procedure involving biological
annotations (GO and KEGG) and gene expression
data. We apply the FunCluster implementation
provided within the R environment [38] and using
standard parameters.

Enrichment analysis
For gene sets grouped in sources obtained by GraDe
and PCA or k-means clusters we performed an enrich-
ment analysis to determine significantly enriched biolo-
gical processes and pathways. For biological processes
we performed a Gene Ontology (GO) [39] term enrich-
ment analysis, which was carried out with the R package
GOstats [32]. For pathway enrichment analysis we used
non-metabolic pathways that are manually curated by
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[40]. Pathway enrichment was also evaluated with the
GOstats package. To correct for multiple testing, we
used the Benjamini-Hochberg procedure [35] and called
an association significant if the p-value was less than
0.05. To evaluate the mapping of pathways to submodes
or clusters we applied the pathway enrichment index
(PEI), as proposed by [12]. For each submode or cluster
we evaluated the significance of enrichment of a set of
genes in a particular pathway by using a hypergeometric
test. A pathway association was considered as significant
if the p-value was below 0.05 after multiple testing cor-
rection using the Benjamini-Hochberg procedure. The
PEI was then defined as the fraction of significant path-
way mapped to at least one submode or cluster.
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Robustness analysis
Robustness analysis was performed by two network ran-
domizations. The gene regulatory network is interpreted
as a weighted bipartite graph, i.e. a graph with two sets
of nodes (regulators and regulated genes). Weighted
edges indicate interactions either activating or inhibiting.
First, we randomized existing edge information within
the network between 0.1 and 100%. In each step we
shuffled 10:000 times the corresponding amount of
edges using a degree-preserving rewiring [41,42]. Apply-
ing GraDe with the resulting networks we obtained new
factorizations. To compare the original and new results
in a quantitative way, we used the Amari-index [43]. For
each step we took the 95% quantile of the random sam-
pling and calculated a p-value by comparing this quan-
tile to Amari-indices obtained comparing normally
distributed random separating matrices and the original
mixing matrix. In a second randomization approach, we
added 10:000 times new information (edges) between
0.1 and 100% of the original network content and calcu-
lated the 95% quantile of the resulting Amari-indices.
Again, the p-value was calculated by comparing each
quantile with a random sampling.
For analysis of robustness against noise we randomly

chose between one and three replicates for each time
point and ran GraDe. For each run, we calculated the
Amari-index. Again, we compared the 95% quantile of
the resulting distribution with a random sampling to
obtain the corresponding p-value.
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supplementary information.
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