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Abstract

Background: The polycystic ovary syndrome (PCOS), a common endocrine disorder in women of child-bearing
age, mainly characterised by chronic anovulation and hyperandrogenism, is often associated with insulin resistance
(IR) and obesity. Its etiology and the role of IR and obesity in PCOS are not fully understood. We examined the
influence of validated genetic variants conferring susceptibility to obesity and/or type 2 diabetes mellitus (T2DM)
on metabolic and PCOS-specific traits in patients with PCOS.

Methods: We conducted an association study in 386 patients with PCOS (defined by the Rotterdam-criteria) using
single nucleotide polymorphisms (SNPs) in or in proximity to the fat mass and obesity associated gene (FTO),
insulin-induced gene-2 (INSIG2), transcription factor 7-like 2 gene (TCF7L2) and melanocortin 4 receptor gene
(MC4R). To compare the effect of FTO obesity risk alleles on BMI in patients with PCOS to unselected females of
the same age range we genotyped 1,971 females from the population-based KORA-S4 study (Kooperative
Gesundheitsforschung im Raum Augsburg, Survey 4).

Results: The FTO risk allele was associated with IR traits and measures of increased body weight. In addition, the
TCF7L2 SNP was associated with body weight traits. For the SNPs in the vicinity of INSIG2 and MC4R and for the
other examined phenotypes there was no evidence for an association. In PCOS the observed per risk allele effect
of FTO intron 1 SNP rs9939609 on BMI was +1.56 kg/m2, whereas it was +0.46 kg/m2 in females of the same age
range from the general population as shown previously.

Conclusion: The stronger effect on body weight of the FTO SNP in PCOS might well have implications for the
etiology of the disease.

Background
The polycystic ovary syndrome (PCOS) is a common
endocrinopathy affecting about 6% of women of child-
bearing age [1]. It is classically characterised by chronic
anovulation, hyperandrogenism and polycystic ovarian
morphology on ultrasonography [2]. In addition, a close
relationship exists between obesity, insulin resistance
(IR) and PCOS [3,4]. Despite a growing body of

evidence demonstrating a substantial heritability of
PCOS and the intrinsic impact of IR on the develop-
ment of PCOS, its etiology and underlying pathophysiol-
ogy still remains elusive.
To date, multiple genetic studies in PCOS have been

performed examining genes coding for enzymes of ster-
oid biosynthesis like CYP11, CYP17, CYP19, androgen
receptor, insulin, insulin receptor and enzymes in the
post-receptor signal cascade of insulin. However, a var-
iant contributing substantially to the development of the
PCOS phenotype was not detected [5-8]. Genome-wide
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association studies (GWAS) offer a new approach to gene
discovery unbiased with regard to the presumed function
of causal variants. Up to one million single nucleotide
polymorphisms (SNP) that are distributed evenly across
the whole genome are commonly used for this approach.
In the field of human body weight regulation these stu-
dies already had a major impact on the identification of
relevant polygenes. For instance, common variants in the
fat mass and obesity associated gene (FTO) predispose to
an elevated body mass index (BMI) with an increase of
0.36 kg/m2 BMI units per risk allele. Homozygous risk
allele carriers weighed about three kilograms more and
had 1.67-fold higher odds for obesity compared to adults
not inheriting the risk allele [9]. This robust association
was also detectable in the first GWAS for early onset
extreme obesity [10]. With regard to insulin sensitivity, a
recent British study in healthy adults indicated an asso-
ciation between polymorphisms of the FTO gene and a
decrease in insulin sensitivity, which was presumably
BMI mediated [11]. Barber et al. additionally demon-
strated an association between PCOS status and FTO
obesity risk SNPs in a case-control study [12]. Using a
similar approach, Attaoua et al. discussed the potential
role of FTO variants for the glucose intolerance compo-
nent of the metabolic syndrome in patients with PCOS
[13]. Association with increased risk of obesity has also
been demonstrated for SNP rs7566605 located ~10 kb
upstream of the insulin-induced gene-2 (INSIG2), which
was detected in the first population-based GWAS for
body weight [14]. Results concerning the influence of this
SNP on obesity risk are conflicting, as not all studies
detected the association with obesity [15-18]. However,
in a meta-analysis of case-control and family-based
approaches comprising about 17,000 individuals a mar-
ginal effect of rs7566605 on obesity was still present [19].
Recently, Reinehr et al. showed a lower success rate of a
lifestyle intervention for obese children homozygous for
the risk allele C [20]. A solidly validated gene for type
two diabetes mellitus (T2DM) is the transcription factor
7-like 2 gene (TCF7L2). Identified via a conventional gen-
ome wide linkage scan for T2DM and subsequent fine
mapping [21], it had convincingly been confirmed in
numerous studies including GWAS [22-24]. The gene
codes for a stimulating regulator of proglucagon gene
expression [25]. The proglucagon gene is post-transla-
tionally processed to produce GLP-1, a stimulator of
insulin secretion and biosynthesis and it is an inhibitor of
glucagon release [26]. GWAS reported association of a
SNP in TCF7L2 with T2DM and IR in Caucasians
[21,27,28] but a negative association to body weight
[21,28-30]. In PCOS patients, using a sample size and
design similar to their FTO study [12], a case-control
comparison did not provide evidence for an association
of TCF7L2 variants with disease status [31]. A further

(negative) correlation to weight status was robustly found
for a non-synonymous polymorphism Val103Ile in the
melanocortin-4 receptor gene (MC4R) [32-34]. Interest-
ingly, another genetic locus in the vicinity of the MC4R
was recently also detected by a large-scaled GWAS [35].
The respective SNP was associated with obesity; it is
located 188 downstream of the MC4R; its effect is pre-
sumably exerted by an influence on the expression of the
gene. Additionally, another SNP near the previously
described one, was shown to be associated with waist cir-
cumference and insulin resistance [36].
Given the high prevalence of obesity in PCOS and the

compelling evidence for a substantial genetic back-
ground of both PCOS and obesity, known obesity sus-
ceptibility genes emerge as eligible candidates that
might also be involved in the development of PCOS.
Therefore we examined the influence of the described
genetic variants on obesity and other endophenotypes in
patients with PCOS. We considered polymorphisms in
or near FTO, INSIG2, TCF7L2 and MC4R that are all
well supported by large data collections of GWAS or
meta-analyses for our analyses in patients with PCOS.

Methods
Patient Recruitment
The study was approved by the Ethics Committees of
the University of Essen and Munich. All subjects gave
written informed consent. The study was carried out
according to the Declaration of Helsinki.
Consecutive, currently untreated patients with PCOS

(n = 386) were recruited between 2/2001 and 1/2007 at
the outpatient clinic of the Department of Endocrinol-
ogy and Division of Laboratory Research, University of
Duisburg-Essen, Germany. Some patients were also
attracted by the PCOS homepage of the clinic http://
www.pco-syndrom.de. PCOS was defined according to
the 2003 Rotterdam criteria, so diagnosis of PCOS was
established, if two of the three criteria chronic anovula-
tion, clinical and/or biochemical hyperandrogenism and
polycystic ovaries (PCO) were fulfilled and other pitui-
tary, adrenal or ovarian diseases could be excluded [2].
Clinical Characterization of Patients
Participants were carefully characterized with regard to
medical history, clinical and socio-demographic variables
using questionnaires, interview, and physical examina-
tions, as previously described in detail [37]. Free andro-
gen index (FAI) was calculated as total testosterone
[nmol/l] × 100/SHBG [nmol/l]. Bioavailable testosterone
concentration was calculated based on measured testos-
terone, SHBG and albumin levels [38]. Variables of IR
and b-cell function were evaluated using a 3-h oral glu-
cose tolerance test. After an overnight fast of 12 h
patients ingested 75 g glucose and had their glucose and
insulin levels determined at baseline and at 30, 60, 90,
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120 and 180 min. IR was defined by the homeostasis
model assessment (HOMA) model [39] and hyperinsuli-
nemia by calculating the area under the curve of insulin
response (AUCI).
Females from the population-based sample (KORA-S4)
KORA (Kooperative Gesundheitsforschung im Raum
Augsburg, Survey 4; ‘Cooperative Health Research in the
Region of Augsburg’) is an epidemiological study group
including 4,261 German adults representative of the
population within the age range of 25-74 years in the
city and region of Augsburg (Bavaria, Germany); pro-
bands were recruited between 1999-2001 [40]. FTO
(rs9939609) genotypes as well as phenotype data were
available for 1,971 females (mean BMI 26.96 ± 5.28 kg/
m2, mean age 48.85 ± 13.69 years).
Biochemical Analyses
Automated chemiluminescence immunoassay systems
were used for the determination of LH, FSH, TSH, tes-
tosterone, estradiol, cortisol, free thyroxine, prolactin,
blood glucose (ADVIA Centaur, Siemens, Germany),
ACTH, dehydroepiandrosterone sulfate, androstene-
dione, sex hormone-binding globulin, insulin and insu-
lin-like growth factor (IMMULITE 2000, Siemens,
Germany). Measurement of blood glucose was per-
formed by photometric determination (ADVIA 2400,
Siemens, Germany). Intraassay variation was < 5% and
interassay variation was < 8% for all measured variables.
17-hydroxyprogesterone was measured by the BIO-
SOURCE 17-alpha-OH-RIA-CT kit (Biosource Interna-
tional, California, USA) (analytical sensitivity 0.02 ng/
ml) provided by IBL Hamburg (IBL, Gesellschaft für
Immunchemie und Immunbiologie, Hamburg, Ger-
many). The intra- and interassay coefficients of variation
were 5.6 and 7.2% respectively. Except for amenorrhoic
women, all laboratory variables were determined in the
early follicular phase of the menstrual cycle.
Genotyping
Genomic DNA was isolated from EDTA-anticoagulated
blood using standard procedures. Genotyping of FTO
SNP rs9939609 was performed by matrix-assisted laser
desorption ionization-time of flight mass spectrometry
(MALDI-TOF MS) analysis of allele-dependent primer
extension products as described elsewhere [41]. For
MC4R Val103Ile (rs2229616), DNA samples were geno-
typed as described previously. MC4R SNPs rs17782313
and rs12970134 were genotyped using TaqMan® assays
(Applied Biosystems, Foster City, CA, USA). All Taq-
Man® probes and primers were purchased from Applied
Biosystems (assays on demand; http://www.appliedbio-
systems.com). For the TCF7L2 rs79031746, genotyping
was performed by allele-specific PCR reactions (tetra-
ARMS PCR; primers were as follows: (forward inner
primer (C allele): 5’-TAGAGAGCTAAGCACTTTTTA-
GAGAC-3’; reverse inner primer (T allele): 5’-

CTCATACGGCAATTAAATTATAGAA-3’; forward
outer primer: 5’-AATTTTTTCACATGTGAAGACA-
TAC-3’; reverse outer primer: 5’-AAGAGATGAAATG-
TAGCAGTGAAG-3’. The C allele is detected by a 202
bp amplicon and the T allele by a 272 bp amplicon.
The product size of two outer primers is 424 bp.
Genotyping of INSIG2 SNP rs7566605 was carried out

by PCR-RFLP with Bsp143I (digests the C-allele; pri-
mers: 5’-TGAAGTTGATCTAATGTTCTCTCTCC-3’
and 5’-AAACCAAGGGAATCGAGAGC-3’). PCR pro-
ducts were run on ethidium bromide-stained 2.5% agar-
ose gels. Positive controls for the variant alleles and a
negative control (water) were run on each gel. To vali-
date the genotypes, allele determinations were rated
independently by at least two experienced individuals.
Discrepancies were resolved unambiguously either by
reaching consensus or by retyping. Missings were
retyped.
Statistical Analyses
All genotype distributions were tested for deviations
from Hardy Weinberg equilibrium (HWE) using the
PLINK software (Version 1.06 [42]) and no evidence for
such deviations was detected (all p >> 0.4). All endophe-
notypes were analysed by either linear or logistic regres-
sion analyses using age in years as a covariate. Each
SNP was analyzed under an (log-) additive genetic
model, except for MC4R (rs2229616), where a dominant
mode of inheritance was assumed. Nominal two-sided
p-values, genetic effect sizes estimates and 95% confi-
dence intervals (CI) for the estimates were derived. To
address, the problem of testing multiple hypotheses, we
also derived multiplicity-adjusted p-values for our stron-
gest association signals (see Table three) using a method
of described in [43]. As secondary analyses, robust linear
regressions were used for the comparison of the PCOS
patients with the population-based females and for an
exploration of joint or interaction effects of FTO and
TCF7L2 SNPs; model assumptions were checked
graphically.
Power calculations were done with the software

QUANTO (Version 1.2.3, http://hydra.usc.edu/gxe). 386
PCOS patients were estimated to yield a power > 0.80
to detect a standardized additive genetic effect size of
0.5 (a = 0.05; two-sided) assuming a minor allele fre-
quency (MAF) of 5% and a standard normally distribu-
ted phenotype. For larger MAFs like 46.2%, smaller
effect sizes of 0.2 will be detectable with a similar
power. For comparison, standardized effect sizes like 0.1
have for example been reported for markers in FTO or
TCF7L2 in unselected or control individuals for quanti-
tative traits [9,44]. A standardized effect size of e.g. 0.1
in the additive genetic model implies that the distribu-
tions for the three genotypes are shifted by 1/10 of as
standard deviation for the respective quantitative trait.
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Thus, except for rs2229616 with its low allele frequency
(1.6%, Table 1), the study was well powered to detect
strong to moderate genetic effects which might be pre-
sent in our highly selected sample of PCOS patients.

Results
The clinical and phenotypical characteristics of the
investigated patients with PCOS as well as the estimated
minor allele frequencies (MAFs) are given in Table 1.
Table 1 also includes subgroup distributions according
to the Rotterdam criteria (hyperandrogenism (HA),
oligo-anovulation (OA) and polycystic ovaries (PCO)) as
metabolic differences between theses subgroups have
been described [45-48].
Exploration of associations between genotypes and

metabolic/obesity related variables in patients with

PCOS revealed some evidence for an association of var-
iants in FTO and TCF7L2, whereas no indication of
association was observable for SNPs in INSIG2 and
MC4R (see Table 2). We estimated that each risk allele
of the polymorphism rs9939609 of FTO increased the
body weight by ~4.6 kg, whereas the BMI was increased
by ~1.6 kg/m2 and the waist circumference increased by
~3.5 cm. Of note, the effect size of rs9939609 on BMI
in PCOS was larger than in unselected females from the
general population in the same age range (see Figure 1).
For the TCF7L2 polymorphism rs7903146 the per risk
allele effect was ~4.2 kg body weight, ~1.4 kg/m2 BMI
and ~3.4 cm waist circumference, respectively (for
details see Table 2). There was no evidence for a poten-
tially strong interaction or a correlation between the
FTO (adjusted effect 1.35 kg/m2 in robust linear regres-
sion) and the TCF7L2 locus (adjusted effect 1.45 kg/m2).
Moreover, FTO variant rs9939609 was associated with
variables of insulin resistance (see Table 3). As an exam-
ple, the estimated per risk allele effect was 3.25 mU/l for
fasting insulin, which changed to 1.88 mU/l (95%CI 0.22
mU/l; 3.54 mU/l, p-value = 0.03), if BMI was added as a
covariate to the regression model. Thus, even after cor-
recting for BMI, a genetic effect of rs9939609 on fasting
insulin levels was observed. By contrast, there was no
evidence for an association of SNPs in INSIG2, TCF7L2
and MC4R with variables of insulin resistance (for
details see Table 3).
Finally, we investigated the relationship between the

variants and PCOS specific characteristics (for details see
Tables 4 and 5). There was no association to chronic
anovulation, hirsutism, acne, alopecia or androgen levels
for any of the variants. Interestingly, we observed that the
obesity risk allele A of the FTO variant rs9939609 was
less frequently observed in patients with polycystic ovar-
ian morphology (PCO) compared to PCOS patients with-
out PCO (OR = 0.57, 95%, CI 0.36;0.88, p-value = 0.01)
and even after correction for BMI this relationship was
still present (OR = 0.60, 95%CI 0.37;0.93, p-value = 0.02).

Discussion
The influence of FTO intron 1 variation on body weight
related phenotypes in patients with PCOS is under-
scored. In population-based GWAS the estimated per
risk allele effect ranged between 0.36 kg/m2 [9] and 0.66
kg/m2 [49] for statistical models with a slightly different
set of covariates. In our PCOS sample, we estimated an
average effect of the FTO risk allele of 1.56 kg/m2 (95%
CI 0.34 kg/m2; 2.78 kg/m2) including age as a quantita-
tive covariate. Thus, the impact of the FTO variants on
BMI is larger in PCOS patients than in the general
population with an average effect of the FTO risk allele
of 0.46 kg/m2 (95%CI 0.17 kg/m2; 0.75 kg/m2) as shown
in Figure 1. Of note, our finding is surprisingly similar

Table 1 Characteristics of the investigated samples of the
patients with PCOS (means and standard deviations or
percent).

variables 386 patients with PCOS

age [years] 28.0 ± 6.5

body weight [kg] 88.3 ± 25.8

BMI [kg/m2] 31.4 ± 8.7

waist [cm] 98.8 ± 62.4

eumenorrhea [%] 8.7

oligomenorrhea [%] 65.7

amenorrhea [%] 25.5

hirsutism-Score [F/G] 8.9 ± 6.6

hirsutism [%] 54.0

acne [%] 47.8

alopecia [%] 27.3

PCO [%] 82.8

HA + OA [%] 92.3

HA + OA with PCO [%] 57.5

HA + OA without PCO [%] 12.2

HA + OA, PCO unknown [%] 30.3

HA + PCO [%] 5.2

OA + PCO [%] 2.5

testosterone [nmol/l] 2.8 ± 2.8

FAI 20.3 ± 83.9

bioavailable testosterone [ng/ml] 0.4 ± 0.8

HOMA-IR [μmol/lxmmol/l2] 3.7 ± 3.3

AUCI [mUxh/l] 262.6 ± 184.1

FTO (rs9939609; MAF A allele) 46.2

INSIG2 (rs7566605; MAF C allele) 33.8

TCF7L2 (rs7903146; MAF T allele) 28.4

MC4R (rs2229616; MAF T allele) 1.6

MC4R (rs17782313; MAF C allele) 29.0

MC4R (rs12970134; MAF A allele) 31.7

BMI = body mass index; F/G = hirsutism-score by Ferriman/Gallwey; FAI = free
androgen index; PCO = polycystic ovary; HA = hyperandrogenism; OA =
oligo-/amenorrhea; HOMA-IR = homeostasis model assessment for insulin
resistance; AUCI = area under the curve of insulin response; MAF = minor
allele frequency
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to those of other studies [12,50]. Barber et al. report a
per risk allele effect of 1.1 kg/m2 (95%CI -0.9 kg/m2; 3.2
kg/m2) in their PCOS cases and only 0.5 kg/m2 (95%CI
-0.1 kg/m2; 1.3 kg/m2) in their controls [12]. Moreover,
this study is, to our knowledge, the first to describe a
correlation between FTO rs9939609 and insulin resis-
tance or hyperinsulinemia in PCOS patients reflected in
fasting insulin, HOMA-IR as well as in AUCI levels
After strictly controlling for the multiple statistical tests
performed here (multiple phenotypes and multiple
SNPs) the adjusted p-value for FTO rs9939609 and fast-
ing insulin was 0.062 and the related effect, though
weaker, was still present even after statistically correct-
ing for BMI. Other study groups could not demonstrate
an association between FTO and IR in obese and T2DM
patients, respectively [51,52]. In PCOS, FTO variation
seems to be a key marker for IR, either directly i.e. to
some degree independent of BMI/obesity or secondary
due to its impact on body weight which in turn has an
impact on glucose intolerance and diabetes. Barber et al.
at first demonstrated an association between FTO and
PCOS status and hypothesized a mediation of this asso-
ciation by adiposity. However, in this British sample, no
IR data were available. In a French sample FTO was
associated with both glucose intolerance and metabolic
syndrome [13] without finding an association to IR. The
greater effect on BMI and association to IR in PCOS

possibly reflects a pathogenetic function of the FTO
gene in the development of PCOS. This study and the
data from Barber et al. demonstrated, that the FTO gene
does not influence any of the PCOS defining traits
neither directly nor indirectly via an effect on obesity or
IR. In this German cohort, it is even less frequently
associated with PCO. In case of a pathogenetic role of
FTO in PCOS, it seems to be limited to determine only
the metabolic phenotype.
As second strongest signal, we found association

between the T2DM susceptibility gene TCF7L2 risk
allele and obesity related traits in patients with PCOS.
The TCF7L2 obesity association was stochastically inde-
pendent of the FTO association if assessed in a multiple
regression analysis. While some did not find an influ-
ence on body weight [29,30,53-56], others have reported
analogous associations of TCF7L2 and obesity related
traits [28,43,57]. Despite possible effects related to dif-
ferences in ascertainment schemes, multiple explana-
tions for this conflicting findings are possible [57]. One
possible explanation by Cauchi and collegues [43] is that
the risk for T2DM related to TCF7L2 seems to be
modulated by the obesity status of an individual with
stronger effects in the obese. It is possible that our
study picked-up this BMI-related effect of TCF7L2. As
we observed no evidence for an association of TCF7L2
with IR or other PCOS specific symptoms, common

Figure 1 Relationship between the FTO SNP rs9939609, BMI and age in females for the general population and in patients with PCOS.
Each dot represents one observation; the lines are derived from a robust linear regression on the complete data set of females with BMI as
outcome and age (linear), group, genotype in the logadditive model and the interaction group x genotype as predictors.
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variants of TCF7L2 most likely influence T2DM sus-
ceptibility through impairment of insulin secretion
rather than IR [56,58]. Interestingly, this observation is
consistent with the PCOS data of Barber et al. [12] who
failed to detect association of TCF7L2 variation but who
do not report on the genotype dependent BMI-
distribution.
Finally, our data on rs7566605 located ~10 kb

upstream of INSIG2 and on markers in proximity to
MC4R provided no evidence for an involvement in the
development of PCOS or related endophenotypes.

Conclusion
In summary, we explored (mainly) GWAS-derived can-
didate gene markers for obesity and T2DM in patients
with PCOS. We show that the impact of INSIG2,
TCF7L2 and MC4R SNPs on multiple endophenotypes
might either be rather weak or not present at all. For
genetic variation in intron 1 of FTO we provide evi-
dence for associations to metabolic aspects of PCOS
with some emphasis on IR. Interestingly, the estimated
effect on obesity seems to be larger than the effect
derived from population-based samples. This stronger

Table 2 Association analysis for the relationship between validated SNPs in the explored candidate genes and
quantitative metabolic/obesity related variables in PCOS with genetic effect sizes estimates derived for an additive
genetic (MC4R rs2229616 dominant genetic model) for the minor allele (see also Table 1).

body weight [kg] BMI [kg/m2] waist [cm]

gene (SNP) minor allele b 95% CI p b 95% CI p b 95% CI p

FTO (rs9939609) A 4.60 (0.97;8.22) 0.01 1.56 (0.34;2.78) 0.01 3.49 (0.62;6.37) 0.02

INSIG2 (rs7566605) C -1.38 (-5.23;2.48) 0.48 -0.35 (-1.66;0.95) 0.59 -1.89 (-4.92;1.15) 0.22

TCF7L2 (rs7903146) T -4.18 (-8.20;-0.15) 0.04 -1.35 (-2.71;0.01) 0.05 -3.43 (-6.63;-0,24) 0.04

MC4R (rs2229616) T -2.12 (-16.88;12.63) 0.78 -0.91 (-5.88;4.06) 0.72 1.14 (-10.01;12.29) 0.84

MC4R (rs17782313) C 0.33 (-3.75;4.42) 0.87 -0.01 (-1.36;1.39) 0.98 0.54 (-2.73;3.81) 0.75

MC4R (rs12970134) A 0.20 (-3.74;4.14) 0.92 -0.12 (-1.45;1.21) 0.86 0.52 (-2,64;3.69) 0.75

SNP = single nucleotide polymorphism; BMI = body mass index

Table 3 Association analysis for the relationship between validated SNPs in the explored candidate genes and
quantitative variables of insulin resistance in PCOS with genetic effect sizes estimates derived for an additive genetic
model (MC4R rs2229616 dominant genetic model) for the minor allele (see also Table 1).

fasting insulin [mU/l] HOMA-IR [μmol/lxmmol/l2] AUCI [mUxh/l]

gene (SNP) minor allele b 95% CI p b 95% CI p b 95% CI p

FTO (rs9939609) A 3.25 (1.32;5.18) 0.001* 0.76 (0.29;1.23) 0.002* 35.92 (9.63;62.21) 0.01

INSIG2 (rs7566605) C 0.85 (-1.21;2.90) 0.42 0.33 (-0.18;0.83) 0.21 12.92 (-14.83;40.68) 0.36

TCF7L2 (rs7903146) T -0.23 (-2.40;1.93) 0.83 -0.13 (-0.66;0.40) 0.63 -5.18 (-34.27;23.91) 0.73

MC4R (rs2229616) T 3.20 (-4.67;11.07) 0.43 -0.46 (-2.45;1.53) 0.65 -8.25 (-117.9;101.4) 0.88

MC4R (rs17782313) C 1.10 (-1.08;3.28) 0.32 0.17 (-0.36;0.70) 0.54 4.52 (-25.02;34.06) 0.76

MC4R (rs12970134) A 1.07 (-1.03;3.18) 0.32 0.20 (-0.31;0.71) 0.45 1.23 (-27.21;29.68) 0.93

SNP = single nucleotide polymorphism; HOMA-IR = homeostasis model assessment for insulin resistance; AUCI = area under the curve of insulin response
*both associations would have been “significant” at the alpha = 0.10 level if correction for multiple testing would have been applied resulting in adjusted p-
values of 0.062 for rs9939609 and fasting insulin and 0.099 for rs9939609 and HOMA-IR
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effect might well have implications for the etiology of
the disease requiring focussed functional studies.
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Table 4 Association analysis for the relationship between validated SNPs in the explored candidate genes and PCOS
symptoms (present/absent) with genetic effect sizes estimates derived for an log-additive genetic model (MC4R
rs2229616 dominant genetic model) for the minor allele (see also Table 1).

chronic anovulation hirsutism-score [F/G] > 7
hirsutism-score [F/G]

alopecia acne PCO

gene (SNP)
minor allele

OR 95% CI p OR b 95% CI p OR 95% CI p OR 95% CI p OR 95% CI p

FTO
(rs9939609) A

1.29 (0.70;2.37) 0.41 1.15
0.34

(0.87;1.54)
(0,59;1.28)

0.33
0.47

0.90 (0.65;1.24) 0.50 0.97 (0.73;1.30) 0.85 0.57 (0.36;0.88) 0.01

INSIG2
(rs7566605) C

1.02 (0.54;1.90) 0.96 1.03
-0.08

(0.76;1.38)
(1.06;0.90)

0.87
0.87

1.17 (0.83;1.64) 0.37 1.00 (0.74;1.35) 0.99 1.02 (0.65;1.60) 0.93

TCF7L2
(rs7903146) T

0.64 (0.35;1.18) 0.15 0.88
0.09

(0.64;1.21)
(0.95;1.12)

0.44
0.87

0.75 (0.51;1.08) 0.12 0.84 (0.61;1.15) 0.28 0.77 (0.48;1.21) 0.25

MC4R
(rs2229616) T

- - - 1.73
-0.39

(0.51;5.84)
(4.16;3.38)

0.38
0.84

0.91 (0.24;3.46) 0.89 0.54 (0.16;1.82) 0.32 1.48 (0.18;12.50) 0.71

MC4R
(rs17782313) C

1.01 (0.52;1.95) 0.98 0.85
0.16

(0.62;1.17)
(0.88;1.21)

0.33
0.76

1.01 (0.70;1.44) 0.98 1.04 (0.76;1.43) 0.81 0.95 (0.59;1.52) 0.82

MC4R
(rs12970134) A

0.74 (0.39;1.39) 0.34 0.97
0.40

(0.71;1.32)
(0.60;1.41)

0.83
0.43

1.09 (0.77;1.54) 0.62 1.06 (0.78;1.45) 0.70 1.03 (0.64;1.64) 0.71

SNP = single nucleotide polymorphism; F/G = hirsutism-score by Ferriman/Gallwey
Note that the hirsutism-score was also evaluated quantitatively similar to the other quantitative measures (in italics).

Table 5 Association analysis for the relationship between validated SNPs in the explored candidate genes and
quantitative variables of hyperandrogenemia in PCOS with genetic effect sizes estimates derived for a log-additive
genetic model (MC4R rs2229616 dominant genetic model) for the minor allele (see also Table 1).

testosterone [nmol/l] FAI bioavailable testosterone [ng/ml]

gene (SNP) minor allele b 95% CI p b 95% CI p b 95% CI p

FTO (rs9939609) A -0.01 (-0.41;0.39) 0.95 5.25 (-7.11;17.60) 0.41 0.03 (-0.09;0.15) 0.64

INSIG2 (rs7566605) C -0.16 (-0.58;0.26) 0.46 -6.33 (-19.36;6.71) 0.34 -0.07 (-0.20;0.05) 0.25

TCF7L2 (rs7903146) T 0.20 (-0.25;0.64) 0.38 7.93 (-5.90;21.77) 0.26 0.04 (-0.09;0.18) 0.50

MC4R (rs2229616) T -0.28 (-1.88;1.32) 0.73 -12.18 (-60.54;36.17) 0.62 -0.08 (-0.54;0.38) 0.73

MC4R (rs17782313) C -0.25 (-0.70;0.19) 0.27 -3.47 (-17.33;10.40) 0.62 -0.05 (-0.18;0.08) 0.46

MC4R (rs12970134) A 0.15 (-0.29;0.58) 0.51 7.26 (-5.97;20.49) 0.28 0.07 (-0.06;0.19) 0.30

SNP = single nucleotide polymorphism; FAI = free androgen index
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