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ORIGINAL ARTICLE

Genetically Determined Height
and Coronary Artery Disease

C.P. Nelson, S.E. Hamby, D. Saleheen, }.C. Hopewell, L. Zeng, T.L. Assimes,
S. Kanoni, C. Willenborg, S. Burgess, P. Amouyel, S. Anand, S. Blankenberg,
B.O. Boehm, R . Clarke, R. Collins, G. Dedoussis, M. Farrall, P.W. Franks,
L. Groop, A.S. Hall, A. Hamsten, C. Hengstenberg, G. Kees Hovingh,
E. Ingelsson, S. Kathiresan, F. Kee, I.R. Kénig, J. Kooner, T. Lehtimaki, W. Mirz,
R. McPherson, A. Metspalu, M.S. Nieminen, CJ. O'Donnell, C.N.A. Palmer,
A. Peters, M. Perola, M.P. Reilly, S. Ripatti, R. Roberts, V. Salomaa, $.H. Shah,
S. Schreiber, A. Siegbahn, U. Thorsteinsdottir, G. Veronesi, N. Wareham,
C.J. Willer, P.A. Zalloua, J. Erdmann, P. Deloukas, H. Watkins, H. Schunkert,
J. Danesh, J.R. Thompson, and N.J. Samani, for the CARDIoGRAM+C4D Consortium®*

ABSTRACT

BACKGROUND
The nature and underlying mechanisms of an inverse association between adult
height and the risk of coronary artery disease (CAD) are unclear.

METHODS

We used a genetic approach to investigate the association between height and CAD,
using 180 height-associated genetic variants. We tested the association between a change
in genetically determined height of 1 SD (6.5 c¢m) with the risk of CAD in 65,066
cases and 128,383 controls. Using individual-level genotype data from 18,249 per-
sons, we also examined the risk of CAD associated with the presence of various
numbers of height-associated alleles. To identify putative mechanisms, we analyzed
whether genetically determined height was associated with known cardiovascular
risk factors and performed a pathway analysis of the height-associated genes.

RESULTS

We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1;
P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height.
There was a graded relationship between the presence of an increased number of
height-raising variants and a reduced risk of CAD (odds ratio for height quar-
tile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that
we studied, we observed significant associations only with levels of low-density lipo-
protein cholesterol and triglycerides (accounting for approximately 30% of the as-
sociation). We identified several overlapping pathways involving genes associated
with both development and atherosclerosis.

CONCLUSIONS

There is a primary association between a genetically determined shorter height and
an increased risk of CAD, a link that is partly explained by the association between
shorter height and an adverse lipid profile. Shared biologic processes that deter-
mine achieved height and the development of atherosclerosis may explain some of
the association. (Funded by the British Heart Foundation and others.)

N ENGL ) MED 372,17 NEJM.ORG APRIL 23, 2015
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GENETICALLY DETERMINED HEIGHT AND CORONARY ARTERY DISEASE

4HERE IS A WELL-ESTABLISHED ASSOCIA-
tion between a shorter adult height and an
increased risk of coronary artery disease
(CAD).* Shorter stature is also associated with
risk factors for CAD, including high blood pres-
sure, high levels of low-density lipoprotein (LDL)
cholesterol, and diabetes.2® An individual-level
meta-analysis showed that a decrease of 1 SD
(approximately 6.5 cm) in height was associated
with a relative increase of 8% (95% confidence
interval [CI], 6 to 10) in the risk of fatal or non-
fatal CAD.2 The effect was largely unchanged af-
ter adjustment for smoking status, systolic blood
pressure, history of diabetes, body-mass index,
lipid markers, alcohol consumption, education
level, and occupation.? Therefore, the precise
mechanisms linking shorter height with an in-
creased risk of CAD remain unclear.

Genetic variants that affect a trait provide a
means of exploring the relationship between
the trait and the disease and to identify puta-
tive mechanisms. In a genomewide association
study, Lango Allen et al.* identified a large num-
ber of independent genetic variants associated
with adult height, which is a highly heritable
trait. Large-scale genomewide association stud-
ies have also been undertaken to determine
genetic variants associated with CADS7 and
several cardiovascular risk factors.225 Here, we
used the 180 single-nucleotide polymorphisms
(SNPs) that explain about 10% of the variation
in height, as identified by Lango Allen et al.,*
and leveraged CAD-association data for the same
variants for up to 193,449 persons to examine
the association between genetically mediated
variation in height and the risk of CAD. We
also examined the association between the
height-associated variants and several cardiovas-
cular risk factors and performed bioinformatics
analyses of the height-associated variants to iden-
tify other potential biologic mechanisms that
could link a shorter height with an increased
risk of CAD.

METHODS

HEIGHT-ASSOCIATED VARIANTS
To identify height-associated genetic variants,
Lango Allen et al.* (in the Genetic Investigation
of Anthropometric Traits [GIANT] Consortium)
analyzed 183,727 persons of European descent

and observed that variants at 180 loci showed an
association with height at a genomewide signifi-
cance level (P<5x1078). We used the lead SNP from
each locus (i.e., the SNP showing the strongest
association) in the current analysis. None of these
variants lie in loci implicated by genomewide as-
sociation studies in susceptibility to CAD.57

ASSOCIATION BETWEEN HEIGHT-ASSOCIATED

VARIANTS AND CAD

To examine the association between height-associ-
ated genetic variants and CAD, we extracted sum-
mary association statistics for these variants for the
cohorts that contributed to the meta-analyses of
genomewide association studies of CAD performed
by the Coronary Artery Disease Genomewide Rep-
lication and Meta-Analysis (CARDIoGRAM) Con-
sortium® and the Coronary Artery Disease (C4D)
Consortium.® Of the 180 SNPs, 112 were also
included on the Metabochip array, a customized
array containing 200,000 SNP markers.'¢ We
also extracted data for these 112 SNPs from the
Metabochip-array CAD meta-analysis performed
by the combined CARDIoOGRAM+C4D Consot-
tium for cohorts that were not included in the
previous CARDIOGRAM or C4D meta-analyses.”
Each of the studies that were included in these
meta-analyses adhered to a case—control design,
including some nested within cohorts.>”

The numbers of cases and controls that were
contributed by each consortium are provided in
Table S1 in the Supplementary Appendix, avail-
able with the full text of this article at NEJM.org.
The number of samples and SNPs that were
contributed by individual studies within each
consortium are provided in Table S2 in the Sup-
plementary Appendix. Details regarding the ascer-
tainment of samples for each study are provided
in the primary articles.>7 All cases were required
to have had a validated history of myocardial
infarction, coronary revascularization, or angio-
graphic coronary disease.

HEIGHT-ASSOCIATED VARIANTS
AND CARDIOVASCULAR RISK FACTORS

In parallel, to investigate potential explanatory
effects of genetically determined height on the
risk of CAD through known cardiovascular risk
factors, we extracted estimates of effect size for
each of the height variants from publicly avail-
able meta-analyses of data sets from genome-

N ENGLJ MED 372;17 NEJM.ORG APRIL 23, 2015
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wide association studies for systolic and diastolic
blood pressures, mean and pulse pressures,®°
LDL cholesterol level, high-density lipoprotein
(HDL) cholesterol level, triglyceride level,'® pres-
ence or absence of type 2 diabetes mellitus,**
body-mass index,'>'3 glucose and insulin levels,**
and smoking quantity.’> The maximum sizes of
these data sets ranged from 29,182 to 249,796
samples (Table 1).

STATISTICAL ANALYSIS

For each height-associated variant, we calculated
B3, values (the putative association between height
and CAD mediated through that variant) from
the direct measurements of 3, (the effect size of
the association between the variant and height)
and B, (the effect size of the association between

the variant and CAD), as described previously.???
(A more complete description of 8,, B8,, and B,
and the relationships among them and how §,
was calculated is provided in Fig. S1 in the Sup-
plementary Appendix.) The value for 8, can be
interpreted as the odds ratio for CAD per 1-SD
increase in genetically determined height. Because
the association between each SNP with height
and the association with CAD is very small, indi-
vidual B, values are likely to center around 1.0.
Combining the B, values from all SNPs provides
additional power to assess the overall association
between height and CAD (i.e., composite associa-
tion). We used inverse-variance-weighted ran-
dom-effects meta-analysis to combine individual
BB, estimates. We performed the same analysis in
a subgroup of patients with a history of myocar-

Table 1. Association between Genetically Determined Height and Coronary Artery Disease and Cardiovascular Risk Factors.*
Maximum No. of Estimated Association
Risk Factor Samples in Data Set {95% Ci)y P Value I
Coronary artery disease 65,066 cases, 0.88 (0.82 t0 0.95) <0.001 55.7
128,383 controls
Body-mass index§ 249,796 0.01 (-0.02 to 0.03) 0.74 14.7
Blood pressure
Systolic 69,899 0.34 (-0.31 to 1,00) 0.30 416
Diastolic ' 69,909 0.14 (-0.27 t0 0.56) 0.50 42.1
Mean arterial pressureq| 29,182 0.20 (-0.19 to 0.60) 0.32 41.6
Pulse pressure| 74,079 0.23 (-0.06 t0 0.52) 0.12 26.9
Cholesterol
Low-density lipoprotein 95,454 -0.06 (-0.09 to -0.04) <0.001 31.6
High-density lipoprotein 99,900 -0.02 {-0.05 t0 0.02) 0.44 54.0
Triglycerides 96,598 ~0.05 (-0.08 to ~0.03) <0.001 29.1
Type 2 diabetes 34,840 cases, 0.95 (0.83 to 1.07) 0.38 50.0
114,981 controls
Glucose 96,496 0.01 (-0.01 to 0.02) 0.48 31.0
Log-transformed plasma insulin 85,573 0.01 (-0.01 to 0.02) 0.29 373
Smoking quantity** 41,150 0.04 (-0.01 to 0.09) 0.11 15.8

*  Estimates of effect size for each of the height variants were extracted from publicly available meta-analyses of data

sets from genomewide association studies.

—_

The average effect estimates for a 1-SD increase in height are shown as odds ratios for categorical diseases (coronary

artery disease and diabetes). For quantitative traits, the B estimates are shown in either absolute values (systolic and
diastolic blood pressure, pulse pressure, mean arterial pressure, smoking quantity, glucose, and log insulin) or in SD
(body-mass index, high-density lipoprotein and low-density lipoprotein cholesterol, and triglycerides).

4 == e

1 indicates the percentage of total variation in study estimates because of heterogeneity in the meta-analysis.
The body-mass index is the weight in kilograms divided by the square of the height in meters.
Mean arterial pressure was defined as two thirds diastolic pressure plus one third systolic pressure.®
Pulse pressure was defined as systolic pressure minus diastolic pressure.
* Scores for smoking-quantity levels among smokers (cigarettes smoked per day) were 0 (1 to 10 cigarettes per day),

1 (11 to 20 cigarettes), 2 (21 to 30 cigarettes), and 3 (31 or more cigarettes).'”

N ENGL J MED 372,17 NEJM.ORG APRIL 23, 2015

Kopie von subito e.V., geliefert fir Helmholtz Zentrum Miinchen GmbH (SLS02X00668)



GENETICALLY DETERMINED HEIGHT AND CORONARY ARTERY DISEASE

dial infarction and in men and women separate-
ly, using sex-specific estimates of 8, released by
the GIANT Consortium (www.broadinstitute.org/
collaboration/giant/index.php/GIANT_consortium_
data_files).

For a subgroup of CAD cohorts in which we
had access to individual-level genotypes genome-
wide (Table S3 in the Supplementary Appen-
dix), we performed a weighted analysis of ge-
netic risk score to evaluate the effect of the
presence of an increasing number of height-
related variants on the risk of CAD. We calcu-
lated a value of O to 2 for every SNP for each
individual on the basis of the sum of the pos-
terior probabilities for the height-increasing
allele and multiplied by the effect size observed
for height. We then totaled these values across
all SNPs for each individual, and the individuals
were then grouped into quartiles. We used logis-
tic regression to assess the quartiles, after ad-
justment for study, to estimate combined odds
ratios for CAD.

To assess the association between height vari-
ants and cardiovascular risk factors, we combined
the B, estimates using a fixed-effects meta-
analysis, except in cases in which heterogeneity
was high (I, >40%), in which case we per-
formed a random-effects meta-analysis. For these
analyses, the B, values reflect the change in
measurement unit of the variable per 1-SD change
in height for quantitative variables (with a nega-
tive value reflecting an inverse association) or an
odds ratio for categorical variables. Because we
tested a total of 13 traits (including CAD), we
considered a P value of 0.003 to indicate statisti-
cal significance (Table 1).

To identify common biologic processes that
might explain the association between height
and CAD, we performed pathway analysis using
Ingenuity Pathway Analysis (IPA) software, ver-
sion 18488943 (Ingenuity Systems). Such an
analysis requires the assignment of each height-
associated SNP to a specific gene that is then
included in the pathway analysis. (Further de-
tails regarding the selection process for the
genes are provided in the Supplementary Appen-
dix; the full list of genes that are included in the
analysis is provided in Table S4 in the Supple-
mentary Appendix.) The IPA output includes
Benjamini~-Hochberg Q values for the false dis-
covery rate.'®

RESULTS

STUDY CASES AND CONTROLS

The maximum number of CAD cases and con-
trols available for analyses were 65,066 and
128,383, respectively (Table S1 in the Supplemen-
tary Appendix); 73.8% of the cases and 49.8% of
the controls were men. The average age was 57.3
years (range, 42.4 to 75.6), and 65% of the cases
reported a history of myocardial infarction.

HEIGHT-ASSOCIATED VARIANTS AND CAD
The individual B, odds ratios for the 180 SNPs
that were analyzed to investigate the association
between height and CAD are shown in Figure 1.
In a random-effects meta-analysis, there was a
significant association between the height-asso-
ciated SNPs and CAD (odds ratio, 0.88; 95% CI,
0.82 to 0.95; P<0.001) (Table 1). This association
translated to a relative increase of 13.5% (95% CI,
5.4 to 22.1) in the risk of CAD per 1-SD decrease
in height.

As anticipated, most individual B, values cen-
tered around 1.0 and were nonsignificant (Fig. 1).
However, some values had a nominally signifi-
cant association (P<0.05) both above and below
1.0. Because 180 variants were tested, some of
these associations could reflect chance (only
3 survived Bonferroni correction), but they could
also represent pleiotropy — in other words, an
effect of these loci on the risk of CAD that was
independent of any effect through height. To
rule out the possibility that the observed genetic
association between height and CAD was being
driven by more extreme associations, we repeated
the meta-analysis with the exclusion of six SNPS
that showed an individual association at P<0.001.
The combined association between the remaining

Figure 1 (next pages). Forest Plot Showing the Effect
Size of Height on the Risk of Coronary Artery Disease
(CAD) for Each Height-Associated Genetic Variant.
Shown are odds ratios for each height-associated single-
nucleotide polymorphism (SNP) for B, values (i.e., the
putative association between height and CAD mediated
through that variant). The number of cases and con-
trols that were analyzed for each variant are shown.
The B; odds ratios are organized in ascending values
across two panels for ease of visualization. The overall
B estimate (shown in red) is from a random-effects
meta-analysis of all SNPs.

N ENGLJ MED 372;37 NEJM.ORG APRIL 23, 201§
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. . No. of Cases/
SNP B3 Odds Ratio (95% Cl) No. of Controls
15634552 L 3 | 0.12 (0.05--0.27) 36,461/75,388
rs10838801 B ! 0.22 (0.09-0.51) 38,298/78,547
rs9844666 h 0.25 (0.11-0.56) 63,511/124,732
rs6699417 ! 0.28 (0.12-0.65) 64, 667/1“5 366
157319045 h 0.30 (0.12-0.70)

154470914 : 0.30 (0.11-0.78)

rs3129109 h 0.32 (0.18-0.56)

rs6439167 ! 0.34 (0.16-0.71)

1s7332115 ) 0.35 (0.16-0.74)

152072153 - 0.37 (0.12-1.10)

151741344 . 0.39 {0.13-0.85)

rs5017948 : 0.40 (0.13-1.24)
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152066807 0.48 (0.24-0.93) 60,482/123,853
rs1173727 4 0.48 (0.25-0.89) 37,994778,279
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157532866 0.84 (0.36-1.96) 62,337/125,443
rs9969804 —— 0.85 (0.48-1,50) 63,129/125,386
rs3791675 — 0.86 (0.59-1.24) 64,901/128,102
51257763 | 1 , 086 (0.41-1.83) 51,788/89,641
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SNP B3 Odds Ratio {95% Cl)

153812163 0.83 (0.49-1.58)
152110001 0.89 (0.39-2.00)
151468758 0.89 {0.40-2.01)
rs6457821 — 0.90 (0.43-1.88)
rs955748 0.90 (0.39--2.06)
rs4072910 0.90 (0.40-2.03)
rs17346452 0.91 (0.49~1.66)
rs788867 0.91 (0.52~1.59)
110863936 0.91 (0.41-2.00)
1511958779 0.92 (0.39-2.14)
rs13177718 . 0.95 (0.42-2.16)
152145998 : 0.95 (0.42-2.15)
159967417 0.96 (0.51-1.82)
rs143384 L 0.97 (0.71-1.31)
rs13088462 0.97 (0.45-2.10)
rs12534093 0.97 (0.47-2.03)
1512694997 — 0.97 (0.39-2.43)
rs6714546 - 0.98 (0.32-2.94)
1526368 1.00 {0.47-2.14}
153118905 4 1.01 (0.64-1.58)
154800452 1.01 (0.67-1.52)
110748128 L 1.02 (0.61-1.69)
152154319 1.02 (0.13-8.27)
151047014 L 1.05 (0.42-2.58)
rs4605213 1.07 (0.36-3.22)
156959212 L 1.07 (0.51~2.27)
15889014 1.08 (0.60-1.95)
15822552 . 1.09 (0.45-2.62)
157763064 1.09 (0.74-1.60}
rs11107116 . 1.09 (0.74-1.61)
rs17806888 1.09 (0.50-2.41)
157155279 -t~ 1.10 {0.45-2.69)
rs17391694 1.10 (0.51-2.34)
rssgg794 — 1.10 (0.76-1.59)
156684205 1.12 (0.53-2.35
rs12470505 '——'-E 112 o.se-z.ze;
15793489 — 1.15 (0.76-1.74)
152145272 L 117 (0.74-1.83)
110010325 1.17 (0.55-2.51)
rs7909670 L 1.18 (0.46-3.00
152341459 —_— 1.18 (0.55-2.51)
17639420 = 1.18 {0.86-1.62)
rs2638953 — 1.19 (0.65-2.19)
rs11259936 - 1.20 {0.81-1.77)
15543650 — 1.21 (0.69-2.12)
rs4282339 —_— 1.22 (0.68-2.18)
157274811 —] 1.23 (0.75-2.02)
1512474201 . 1.24 {0.55-2.80)
rs7567851 - 1.25 (0.43~3.57)
15654723 — 1.29 (0.61-2.76)
15862034 — 1.30 {0.60-2.81)
157466269 — 131 (0.75-2.27)
rs11684404 —_— 1.32 (0.61-2.85)
156470764 - 1.33 (0.89-1.99)
891088 —] 1.34 (0.69-2.59)
152665838 — 1.34 (0.74-2.44)
rs11648796 1.35 (0.54-3.40)
rs10152591 —_— 1.37 (0.67-2.79}
rs10037512 — 1.40 (0.72-2.72)
1510799445 —] 1.41 (0.65-3.08)
152279008 141 (0.58-3.47)
rs473902 —~ 1.43 (0.80--2.55)
152580816 —t 1.48 {0.85~2.56)
rs720390 — 1.51 (0.80-2.85}
159456307 1.56 (0.61-3.96)
152597513 T 1.57 (0.69-3.54)
151046934 : 1.62 (1.07-2.45)
rs1330 T 1.63 (0.73-3.66)
rs1351164 . 1.64 (0.81-3.31)
rs4821083 —~ 1.69 (0.79-3.65)
rs3782089 1 1.70 (0.95-3.02)
1511205277 X 1.70 (1.12-2.59)
19835332 1.76 {0.76-4.08)
152780226 . 1.77 (1.13-2.77)
rs751543 o 1.81 (0.84~3.92)
151046943 T 1.85 (0.64~-5.30)
15422421 = 1.86 (0.90-3.84)
159360921 - 1.89 (0.84-4.26)
15961764 — 1.91 (0.78~4.66)
157507204 = 1.93 (0.92-4.08)
157567288 ' 1.95 {0.99~3.83)
152856321 T 1.97 (0.45-8.57)
r$1708299 ' 2.02 (1.22-3.34)
151582931 T 2.11 (0.84-5.31)
15227724 : 2.12 (0.90~5.01)
rs17782313 I 2.87 (1.37~5.99)
17926971 ' 3.16 (1.27~7.86)
rs1570106 ) 3.18 (1.08-9.39)
rs17081935 ! — e 3.73 (1.87~7.43)
15178318596 . ————— 461 (2.53~3.40)
Overall - : 0.88 (0.82~0.95}

T
0.05 0.10 0.50 1.00 5.00 10.00

No. of Cases/
No. of Controls

38,536/78,461
31,551/69,455
59,452/120,922
50,381/107,521
61,812/123,710
30,793/65,085
37,793/78,047
35,070/71,248
63,618/127,398
41,285/78,135
62.068/125,149
38.472/78,657
29,883/66,201
52,379/111,487
63,037/126,346
37,180/76,829
60,702/121,258
28,949/67,447
26,701/64,555
38,108/78,204
63,045/125,889
51,715/112,989
35,863/58,295
32,164/68,490
39,279/78,985
63,159/125,930
63.435/124,525
56.784/115,758
63.802/127,434
64,858/128,350
63,348/126,927
38,169/78,443
57,490/117,820
60,157/121,815
50,854/101,131
63,804/127,055
63.387/127,077
63.211/124,361
53,808/106,468
44,857/88,274
63,990/124,796
63,812/127.674
57,768/116,031
62,259/125,634
51,008/106,454
60,664/124,305
62,001/121,092
39,607/79,305
37,655/77,308
56,993/117,045
38,302/78,405
62,625/123,091
39.076/78.917
63.623/127,095
58,626/121,249
37,913/78,070
22,443/36,289
62,903/126,569
37,941/77,501
38,124/78,327
50,144/110,221
49,013/108.877
38,614/78,896
58.710/119,957
34,786/70,910
58,732/120,916
55,827/116,298
59,251/119,351
38,885/78,701
58,329/119,389
60,750/106,580
49,820/107,049
38,147/78,355
58.829/117,793
60,748/121.737
38,340/78,548
60,141/11,9775
38,530/78,795
38242/78,534
32,833/68,047
62,523/125,564
38,195/78,682
55,597/108,745
30.346/78,997
32,887/51,730
52.068/103,071
38.338/78,650
35.934/71,660
63,588/127,349
53,159/107,769
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variants and CAD was largely unchanged (odds
ratio, 0.88; 95% CI, 0.82 to 0.94; P<0.001).

The association between genetically deter-
mined height and CAD remained significant in
the subgroup of cases with a history of myocar-
dial infarction (odds ratio, 0.88; 95% CI, 0.80 to
0.96; P=0.003). In sex-specific analyses, the as-
sociation between the variant and CAD was
significant in men (odds ratio, 0.88; 95% CI,
0.81 to 0.95; P=0.001) but not in women (odds
ratio, 0.96; 95% CI, 0.86 to 1.07; P=0.46). How-
ever, in an interaction test, the difference be-
tween the sexes was not significant (P=0.19).

GENETIC RISK SCORE AND RISK OF CAD

Individual-level data were available for 18,249
persons (including 8240 cases) from six cohorts
(Table S3 in the Supplementary Appendix). The
risk of CAD among individuals, as partitioned
into quartiles carrying an increasing number of
height-raising alleles, is shown in Figure 2. Those
with an increased number of heightraising al-
leles had a reduced risk of CAD, with an odds
ratio for quartile 2 vs. quartile 1 of 0.90 (95% CI,
0.83 to 0.98; P=0.02), an odds ratio for quartile 3
vs. quartile 1 of 0.88 (95% CI, 0.81 to 0.96;
P=0.003), and an odds ratio for quartile 4 vs.
quartile 1 of 0.74 (95% CI, 0.68 to 0.80; P<0.001).

HEIGHT-ASSOCIATED VARIANTS
AND CARDIOVASCULAR RiSK FACTORS
The findings from the analyses of the composite
association between height-associated variants
and specific cardiovascular risk factors are pro-
vided in Table 1. For most of the risk factors, the
analyses did not identify any evidence of an as-
sociation between genetically determined height
and the risk of CAD. The two exceptions were
LDL cholesterol and triglyceride levels, for which
there were small but significant associations.
For both LDL cholesterol and triglycerides, the
associations were in a direction that could have
contributed to the observed association between
a shorter genetically determined height and an
increased risk of CAD. To investigate this find-
ing further, we evaluated the quantitative asso-
ciations between LDL cholesterol and triglycer-
ides and the risk of CAD that were reported in
observational studies,’® taking into account re-
gression dilution.?’° We determined that for each
1-SD increase, the risk of CAD was raised on
average by 45% (log odds ratio, 0.37) for the LDL
cholesterol level and by 32% (log odds ratio,

10— @ — = mm oo

0.9 4

0.8+

Risk of CAD {odds ratio)

0.74

0.6

0.0 T T T
1 2 3 4

Height Quartile of GRS

Figure 2. Analysis of the Association between the Pres-
ence of an Increasing Number of Height-Related Al-
leles and the Risk of CAD, According to Quartile of Ge-
netic Risk Score (GRS).

The analysis was performed in 18,249 samples (including
8240 obtained from patients with CAD) with the use of
individual-level genotype data. Shown are odds ratios
and 95% confidence intervals. Participants were divided
into quartiles on the basis of the number of height-
increasing alleles that were present, with quartile 1
(reference quartile) carrying the fewest.

0.28) for the triglyceride level. Then, from the
respective changes from a 1-SD change in geneti-
cally determined height, we estimated that the
risk of CAD would increase by 2.3% (95% CI,
1.9 to 2.8) because of the increase in the LDL
cholesterol level and by 1.5% (95% CI, 1.2 to 1.8)
because of the increase in the triglyceride level.
This suggests that approximately 19% of the
observed association between a genetically deter-
mined decrease in height and an increased risk
of CAD could be explained by the effect of
shorter height on LDL cholesterol and approxi-
mately 12% by an effect on triglycerides. To
confirm that the majority of the genetic asso-
ciation of height with CAD was not mediated by
lipid levels, we tepeated our analysis of the as-
sociation between height variants and the risk of
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Table 2. Biologic Pathways Identified by Means of IPA of Height-Associated Variants.*

Canonical Pathways in IPA Q Valuef Ratio: Proteins in Pathway

Factors promoting cardiogenesis 0.003 0.07 NKX2-5, BMP2, TGFB2, MEF2C, BMP6, PRKCZ, NOG
in vertebrates

Growth hormone signaling 0.03 0.06 SOCS2, IGF1R, GH1, SOCSS, PRKCZ

Axonal guidance signaling 0.03 0.06 FGFR4, SOCS2, IGF1R, INSR, SOCS5

STAT3 pathway 0.03 0.03 SLIT3, PAPPA2, PAPPA, RHOD, ADAM28, GNA12,

BMP2, PTCH1, HHIP, NFATC4, BMP§, PRKCZ

BMP signaling pathway 0.03 0.06 NKX2-5, RUNX2, BMP2, BMP6, NOG

TGF-8 signaling 0.04 0.05 NKX2-5, AMH, RUNX2, BMP2, TGFB2

IGF-1 signaling 0.049 0.05 SOCS2, IGF1R, IGFBP7, SOCSS5, PRKCZ

* BMP denotes bone morphogenetic protein, IGF-1 insulin-like growth factor 1, IPA Ingenuity Pathway Analysis, STAT3
signal transducer and activator of transcription 3, and TGF-8 transforming growth factor B.

T The Q value was calculated with the use of the Benjamini-Hochberg method for determining the false discovery rate.

£ The ratio is the proportion of the genes in the IPA that were part of the input list for the height-related genes.

CAD with the exclusion of 60 SNPs that were
associated with a lipid trait at P<0.05. An analy-
sis of the remaining SNPs resulted in an odds
ratio of 0.89 (95% CI, 0.81 to 0.98; P=0.01).

PATHWAY ANALYSIS

Biologic pathways (incorporating genes at the
height loci) with a Q value of less than 0.05 for
the false discovery rate, as identified on the IPA
analysis, are provided in Table 2. Also shown are
the genes within each pathway that were present
on the input list and also the proportion of genes
in each pathway formed by them. Pathways in IPA
software have a hierarchical organization, and
many of the pathways that are identified are
overlapping and, in some cases, are subsets of
each other. For example, the pathway that is iden-
tified as “factors affecting cardiogenesis” is an
amalgam of other pathways and overlaps with sig-
naling pathways for bone morphogenetic protein
(BMP) and transforming growth factor 8 (TGF-f),
and all three of these pathways share genes with
other pathways. Likewise, there is overlap be-
tween the signaling pathways for growth hor-
mone and insulin-like growth factor 1 (IGF-1).

DISCUSSION

In this study, we found an association between a
genetically determined decrease in height and an
increased risk of CAD. Our finding validates the
epidemiologic observation of an inverse associa-
tion between height and CAD.»?

A key advantage of using a genetic approach
over a traditional epidemiologic approach to in-

vestigate an association such as that between
height and CAD is that genotypes (because they
are randomly distributed at birth) are unlikely to
be confounded by lifestyle or environmental fac-
tors. Regardless of whether such factors are
known (e.g., poor nutrition or socioeconomic
conditions during childhood) or unknown, they
can independently affect achieved height and the
risk of CAD and lead to a spurious association
between them (Fig. 3). It is nonetheless possible
that the genetic variants themselves affect height
and CAD risk through entirely different mecha-
nisms. However, given the large number of vari-
ants that we included in the analysis, all of
which were selected only because of their asso-
ciation with height, it is likely that at least some
of the processes are shared. This hypothesis is
supported by the finding from the individual-
level analysis of genetic risk score showing a
direct correlation between the presence of an
increasing number of height-related alleles and a
reduction in the risk of CAD (Fig. 2).

A genetic approach also offers novel methods
to explore potential mechanisms linking shorter
height with an increased risk of CAD (Fig. 3). In
this context, we performed two analyses. First,
we applied the same genetic approach to inves-
tigate the association between heightrelated
genetic variants and several established and po-
tential cardiovascular risk factors. Notable nega-
tive findings here include the lack of an overall
effect of height-associated SNPs on body-mass
index. This suggests that the association be-
tween shorter stature and an increased risk of
CAD is not mediated by an effect on obesity. On
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Figure 3. Interpreting the Association between Genetically Determined
Shorter Height and Increased Risk of CAD.

The main advantage of the genetic approach is that it reduces the likelihood
of known and unknown demographic, lifestyle, socioeconomic, or behavioral
confounders that have an independent effect on height and the risk of CAD
(solid black lines) and could give rise to a false association between the two
factors. it is possible that the association between the studied genetic vari-
ants and height and the association with CAD are through completely dif-
ferent mechanisms (dashed black lines). However, the more likely scenario
on the basis of our findings is that height variants affect biologic pathways,
which on the one hand determine achieved height and on the other hand
influence the risk of CAD (solid red lines). It is also possible that genetically
determined height itself alters lifestyle or behavior, which then affects the
risk of CAD (dashed red line).
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the other hand, there was a significant overall
association between height SNPs and LDL cho-
lesterol and triglycerides in a direction consis-
tent with their association with CAD. The asso-
ciation between shorter stature and increased
plasma LDL cholesterol and triglyceride levels
has also been observed in epidemiologic stud-
ies.2 The mechanisms by which height-associated
SNPs have an effect on LDL cholesterol and tri-
glyceride levels are not clear. In any case, these
effects in combination potentially explain less
than one third of the observed association be-
tween genetically determined shorter height and
an increased risk of CAD.

Second, we performed pathway analysis,
which identified a number of overlapping path-
ways linking height-associated SNPs that could
also have an effect on the risk of CAD, including
the BMP- and TGF-B-signaling pathways, axon-
guidance pathways, and the STAT3 and IGF-I
pathways, all of which have experimentally
documented roles in the development of athero-
sclerosis.?*2¢ The limitations of pathway analy-
sis included the need to assign a specific gene
for each height-associated locus and incomplete
knowledge regarding how such pathways are

constructed. (A fuller discussion of the pathways
is provided in the Supplementary Appendix.)
Taken together, these findings suggest that sev-
eral overlapping and complex biologic pathways
on the one hand influence development and
height and on the other hand influence the risk
of atherosclerosis through an effect on vascular
biology and function (Fig. 3).

In contrast to epidemiologic studies in which
a similar inverse association between height and
CAD was present in both men and women,? we
did not see a significant association in women.
Whether this represents a genuine difference in
the effect of genetically determined height on the
risk of CAD between men and women or simply
reflects the reduced power from the much small-
er sample size available for analysis in women is
unclear. Notably, the effect sizes that were ob-
served in men and women were not signifi-
cantly different in an interaction analysis.

Height and other measurements of body size
have a positive correlation with the diameter of
coronary arteries.?” Therefore, a potential simple
explanation for an increased risk of CAD in
shorter persons is that they have proportionally
smaller-caliber coronary arteries, so a similar
plaque burden could result in greater probability
of symptomatic disease. However, women also
have smaller-caliber arteries than men, indepen-
dent of body size and height.?” Reduced height
and female sex would therefore be expected to
have an additive effect if this was the mecha-
nism linking shorter height with an increased
risk of CAD. In this context, the finding of a
weaker association between genetically deter-
mined shorter height and CAD in women than
in men would argue against a structural expla-
nation on the basis of coronary-vessel caliber as
the main explanation for the inverse association
between height and CAD.

Although the genetic approach that we used
allows us to reduce the possibility of confound-
ing of any observed association by socioeconom-
ic, lifestyle, or environmental factors, it does not
rule out the possibility that the association be-
tween genetically determined shorter height with
an increased risk of CAD is due to lifestyle
choices or behavior adopted by such persons as
a direct consequence of being shorter (Fig. 3).
Indeed, in an exemplar exploration of this pos-
sibility, we examined whether the height-related
variants showed an association with the quantity
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of cigarettes smoked among smokers but found
no evidence for this hypothesis (Table 1). Other
relevant behavioral changes that could have an
effect on the risk of CAD that could be adopted
by persons of short stature include those related to
diet, physical activity, and alcohol consumption.

In conclusion, using a genetic approach, we
found an association between genetically deter-
mined shorter height and an increased risk of

ity of the relationship is likely to be determined
by shared biologic processes that determine
achieved height and atherosclerosis development.
More generally, our findings underscore the
complexity underlying the inherited component
of CAD.
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