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ABSTRACT 

Genome-wide association studies with metabolomics (mGWAS) identify genetically 

influenced metabotypes (GIMs), their ensemble defining the heritable part of every human’s 

metabolic individuality. Knowledge of genetic variation in metabolism has many applications 

of biomedical and pharmaceutical interest, including the functional understanding of genetic 

associations with clinical endpoints, design of strategies to correct dysregulations in metabolic 

disorders, and the identification of genetic effect modifiers of metabolic disease biomarkers. 

Furthermore, it has been shown that GIMs provide testable hypotheses for functional 

genomics and metabolomics and for the identification of novel gene functions and metabolite 

identities. mGWAS with growing sample sizes and increasingly complex metabolic trait 

panels are being conducted, allowing for more comprehensive and systems based downstream 

analyses. The generated large data sets of genetic associations can now be mined by the 

biomedical research community and provide valuable resources for hypothesis driven studies. 

In this review, we provide a brief summary of the key aspects of mGWAS, followed by an 

update of recently published mGWAS. We then discuss new approaches of integrating and 

exploring mGWAS results and finish by presenting selected applications of GIMs in recent 

studies. 
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INTRODUCTION 

Homeostasis of blood metabolites and excretion of metabolites through urine are crucial for 

maintaining human health. Therefore, dysregulations of metabolite levels often indicate 

critical physiological states, a fact that is widely used in clinical chemistry for the diagnosis of 

common metabolic diseases, such as diabetes and chronic kidney disease, but also of rare 

metabolic disorders, including inborn errors of metabolism, such as phenylketonuria and 

medium-chain acyl-CoA dehydrogenase deficiency. The number and variety of metabolites 

that are detectable and quantifiable in biological samples in a single experiment largely 

increased through the advent of modern metabolomics techniques, which are mainly based on 

nuclear magnetic resonance spectroscopy or mass spectrometry coupled to gas or liquid 

chromatography (1). As a consequence, blood and urine levels of a broad range of metabolites 

can be determined on an epidemiological scale from bio samples of thousands of individuals, 

opening new avenues to study human metabolism and its variation in health and disease based 

on large population studies (2).  

 

Metabolite levels and their variation in the human body are influenced by various factors, 

specifically environmental conditions (day light, exposure to xenobiotics, …), lifestyle 

(nutrition habits, smoking and alcohol consumption, physical activity, …), and genetics. The 

genetic control of metabolite levels and its impact on human health is apparent in inborn 

errors of metabolism, where rare genetic variants disrupt a single gene that then leads to 

extreme, eventually toxic levels of related metabolites. Availability of population scale 

metabolomics and genotype data now allows to systematically investigate also the less 

apparent influences of more common and less deleterious genetic variants on human 

metabolism by conducting genome-wide association studies with metabolomics (mGWAS). 

This has been demonstrated in the first mGWAS by Gieger et al. (3), in which the authors 
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performed a genome-wide scan for associations of common single nucleotide polymorphisms 

(SNPs) with the levels of more than 350 metabolites and all pairwise ratios thereof. Despite 

the relatively small sample size of this first mGWAS (n=284), they identified four common 

SNPs that significantly alter functionally related metabolic traits. Moreover, they found that 

ratios between metabolites can serve as proxies for the biochemical conversion of metabolites 

and thereby significantly strengthen the associations, a concept that has been helpful in many 

subsequent studies (4).  

 

SNP-metabolite trait associations (mQTLs) identified in mGWAS typically cluster in groups 

of SNPs in high linkage disequilibrium (LD) that are associated with the same and/or 

biochemically related metabolites. Each of these groups of mQTLs defines a distinct 

genetically influenced metabotype (GIM). Many GIMs identified so far share most of the 

following properties (2): (i) The variance explained by the common genetic variants in the 

observed metabolic traits is often large, exceeding 10%, and the effect sizes are strong, with 

minor allele homozygotes sometimes displaying 50% differences in their estimated enzymatic 

throughput compared to major allele homozygotes. (ii) For the majority of GIMs, the 

metabolic traits can be functionally linked to an enzyme, a transporter, or a regulator of 

metabolism that is encoded at the genetic locus (e.g. the associated metabolites being 

substrates or products of the encoded enzyme).  (iii) Associations found in GWAS with 

clinical endpoints are enriched in GIMs, and the related metabotypes are candidate 

intermediate traits on the pathway to the disease (for details on the concept of the intermediate 

phenotype see (5)). For instance, Ried et al. (6) demonstrated the potential of mGWAS results 

to infer asthma-related metabolic markers by the identification of potentially deregulated 

phospholipids that associate with asthma and asthma risk alleles. 
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RECENT GWAS WITH METABOLIC TRAITS 

Recent mGWAS have extended previous studies in samples size, variety of metabolic traits, 

and depth of genetic analysis (Table 1). As a result, the number of known GIMs largely 

increased. At the same time, most previously reported associations could be replicated in 

various cohorts, often using different metabolomics platforms and sometimes also different 

biofluids. Moreover, the functional interpretation of GIMs remarkably improved as recent 

studies started to systematically combine GIMs with additional data, such as expression 

quantitative trait loci and metabolic pathway information. Thus, mGWAS published in recent 

years did not only lead to a more comprehensive and refined view on the inherited part of 

human metabolic individuality, but also facilitated establishing potential links of this 

individuality to disease.  

 

The largest leap in increasing the number of GIMs in the last two years has been achieved in 

the recent study by Shin et al. (7). The authors reported 145 GIMs (Figure 1), 84 of which 

were new. This mGWAS was based on relative quantification from LC-MS and GC-MS for 

486 metabolites in blood samples of 7,824 participants from two European cohorts. The 

metabolites and their associated genetic loci broadly cover representatives of all major 

metabolic pathways, providing the most comprehensive picture of how genetic variation 

affects homeostasis in blood metabolism to date. To facilitate further exploration and 

functional interpretation of the findings by the biomedical research community, all GIMs have 

been embedded into the metabolic network, which was reconstructed from the metabolomics 

data (Figure 2). This network as well as a rich set of additional information (including 

mapped eQTLs, GWAS hits to clinical phenotypes, and drug-target information) are available 

at http://gwas.eu/si.  
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Recent mGWAS with similar or even larger sample sizes include the study by Draisma et al. 

(8), who analyzed 129 mostly lipid related metabolites in 7,478 individuals from seven 

European cohorts. They identified GIMs at 31 genomic loci, although only four of them were 

new. Nonetheless, the study refined patterns of associations of related lipid traits at already 

known loci and provide new insights into the complexity of lipid metabolism. Another 

example is the recent mGWAS by Rhee et al. (9), who identified specific patterns in the 

genetic associations of 46 triacylglycerols with different lengths of the fatty acid chain and 

degree of desaturation. Some of their loci have been previously linked to total triglyceride 

levels in blood, namely variants in GCKR, FADS1-3 and APOA1/C3/A4/A5. While variants 

in GCKR showed stronger associations to triacylglycerols with shorter fatty acid chains, 

associations of variants in FADS1-3 were stronger with longer fatty acid chain lengths and a 

higher degree of desaturation, which is in line with the fatty acid desaturase function of the 

proteins encoded at the FADS1-3 locus. 

 

While most early mGWAS were based on samples from individuals of European ancestry, 

Rueedi et al. (10) recently analyzed genetic associations of NMR derived metabolic traits in 

urine samples from 835 Europeans and replicated their findings in 601 samples from a 

Brazilian population with a diverse ethnic background. Another recent study by Yu et al. (11) 

performed an mGWAS in serum samples from almost 2,000 individuals of African American 

descent and thereby confirmed the robustness of various GIMs across different ethnicities, but 

also found novel independent variants at the same loci and even new GIMs, which have not 

been observed in Europeans before.  

 

In addition to fully metabolome-wide mGWAS, many GWAS with smaller and more 

specialized sets of metabolic traits have been conducted. For instance,  Stiles et al. (12) report 

genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels, Ng 
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et al. (13) analyzed genetic influences on blood levels of polychlorinated biphenyls, and  Xie 

et al. (14) conducted a GWAS focused on metabolites related to insulin sensitivity. The 

CHARGE Consortium (15) reported novel loci associated with plasma concentrations of four 

fatty acids in the de novo lipogenesis pathway. Further studies identified and refined 

associations with single metabolic traits, including disease relevant markers, such as bilirubin 

(16-19), uric acid (20-23), dimethylarginine (24), homoarginine (25), and creatinine (26). 

These studies could identify new loci due to their much larger sample sizes, in some cases 

over 100,000 individuals, while using less expensive biochemistry-based methods.  

 

Interestingly, most conclusions from mGWAS in humans also apply to animals and plants. 

Ghazalpour et al. (27) studied the genetic regulation of mouse liver metabolite levels. By 

analyzing 283 metabolites in 104 inbred and recombinant inbred mouse strains, they 

identified 240 loci, the majority of which accounted for 20–40% of total metabolite variation. 

Remarkably, more than one third of the loci that regulate liver metabolites in mice also 

correspond to human GIMs, supporting the similarity in genetic regulation of metabolites 

between mice and humans. Chen et al. (28) conducted an mGWAS in rice, covering 840 

metabolites and 6.4 million SNPs obtained from 529 diverse accessions of Oryza sativa. This 

study identified hundreds of common variants influencing numerous secondary metabolites 

with large effect sizes, and reported 36 candidate genes that modulate levels of metabolites of 

potential physiological and nutritional importance. The authors concluded that mGWAS 

provide a powerful tool for large-scale interactive gene-metabolite annotation and 

identification, pathway elucidation and knowledge about crop improvement. 

 

NEW CONCEPTS 

Identification of non-targeted metabolic traits. Many of the more recent mGWAS were 

based on non-targeted metabolomics approaches, which record all metabolite signals 
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detectable by the specific NMR or MS method, including signals that could not be assigned to 

a specific biochemical molecule (unknown metabolite). In contrast to targeted approaches that 

use optimized methods for the quantification of a set of predefined metabolites, non-targeted 

approaches usually provide less precise (relative) quantifications, but this for a biochemically 

broader range of metabolites. While less biological information can be gained from GIMs 

with signals of unknown identify, it has been shown that genetic association of data for 

unknown metabolites may allow metabolite identification in MS (29) and NMR (10, 30). 

Often both known and unknown signals were considered in mGWAS to explore the entire 

breadth of the metabolite data from these non-targeted approaches. In 2013, Raffler et al. (30) 

reported an mGWAS with non-targeted NMR traits in blood plasma. While the concept of 

testing NMR signal intensities has already been introduced in previous mGWAS (31, 32), this 

study was the first where the concept of testing ratios between NMR signals at different 

spectral positions was applied, resulting in the identification of four additional loci that 

displayed genome-wide significant association signals. To elucidate the chemical identity of 

the metabolites that underlay the genetically associated NMR signals, the authors used 

pseudo-spectra to visualize either the strength of genetic associations of NMR signals 

(“association spectra”) or the correlation between NMR signals and traits determined on 

complementary metabolomics platforms, such as MS and clinical biochemistry measurements 

(“correlation spectra”). In 2014, Rueedi et al. (10) presented an NMR-based mGWAS in urine 

where such pseudo-spectra were automatically annotated. There, the authors introduced the 

“metabomatching” approach that compares association spectra with pure compound spectra 

derived from the Human Metabolome Database (HMDB) (33). Using this metabomatching 

approach, Rueedi et al. (10) could identify the metabolic nature of the signals in 6 out of 11 

loci reported in their study. Hence, several methods are now available that allow to deduce the 

biochemical identity of non-targeted metabolic traits using genetic association data. 
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Exome sequencing and imputation. Identification of causative variants in GWAS is always 

a major challenge. Intermediate phenotypes with large effect sizes, as obtained from 

metabolomics, may be useful to figure out the causative variants of associations with complex 

clinical endpoints when the genetic structure of the association with the intermediate trait and 

the disease endpoint are the same. For the first time, exome-sequencing based metabolomics 

associations were reported by Demirkan et al. (34). The authors first performed an NMR-

based mGWAS in serum using microarray genotype data of 2,118 individuals. Following the 

mGWAS, they selected a subset of the GWAS cohort (n=921) and performed exome 

sequencing on candidate genes within eight candidate loci. They identified seven variants in 

or near four genes that modulate metabolite levels independently of the GWAS hits. For 

instance, the common SNP rs1047891 is a missense variant in CPS1 that was tagged by the 

genotyped SNP rs715. Interestingly, the association of rs1047891 to glycine was also 

previously reported by Shin et al. (7) using a fine-mapping approach of candidate loci using 

based on 1,000 Genomes Project data imputed genetic variants (see Supplemental Table 8 in 

Shin et al. (7)). However, except for one variant, this fine-mapping approach did not 

significantly strengthen any association signal that was not already apparent using the 

genotyped SNPs. Fine-mapping of association signals using imputed or exome-sequenced 

variants may thus help single out potentially causative SNPs, but for the moment there is little 

evidence that it will help find truly novel association signals at the mGWAS level. This may 

change with larger sample numbers. 

 

Non-additive genetic models. In most mGWAS, association models between genotype and 

metabotype assume additive effects, which is intuitively supported by the observation that 

many GIMs are related to rate limiting steps in enzymatic reactions or transport processes, 

which suggests a dose-dependent response to genetic variability. Tsepilov et al. (35) 

investigated systematically non-additive effects on a large panel of serum metabolites and all 
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possible ratios (n=22,801) in a population based study (n=1,785). They found that most 

genetic effects on metabolite concentrations and ratios were indeed additive, with a few 

notable exceptions that may allow to understand the genetic control of these loci more deeply. 

However, with larger sample sizes rare variants with potentially larger effect sizes and 

recessive modes of inheritance may be detected. 

 

Epistasis and Mendelian randomization. Due to their large number and strong effect sizes, 

GIMs provide a test bed to identify and investigate more complex genetic and metabolic 

interactions. Shin et al. (36) provided an example of genetic interaction between two gene 

variants (epistasis), rs10469966 (NAT8) and rs4488133 (PYROXD2), and blood metabolite 

levels. The same study also reported an example of a Mendelian randomization analysis to 

establish causation, where expression of THEM4 was shown to mediate the association 

between rs6693388 and the ratio of linoleate (18:2n6) to 5,8-tetradecadien. However, it seems 

that as for now there were only few cases that display association signals that were strong 

enough to single out statistically significant cases of epistasis and Mendelian randomization. 

 

Multi-phenotype mGWAS. Strategies that combine several phenotypes in an mGWAS may 

potentially detect additional genetic loci and further their functional characterization. Inouye 

et al. (37) showed that association testing of multiple correlated phenotypes offers better 

power than univariate analysis of single traits. Ried et al. (38) applied phenotype set 

enrichment analysis (PSEA), a method that tests sets of metabolites for association 

enrichment at genetic loci. In addition to confirming previously reported GIMs, the authors 

identified and validated 12 new loci. 

 

Augmenting GIMs with functional information. A crucial step in the interpretation of 

mGWAS results is to put the identified associations into the context of results from other 
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association studies, including associations of genetic variants to traits at different phenotype 

layers. Most recently published mGWAS studies therefore go beyond the mere reporting of 

genetic associations by combining their results with additional -omics data sets (i.e. eQTLs) 

(34, 36), by linking individual associations in a systems level approach (29, 39), and by 

adding clinical association data to establish complex gene-to-disease networks (for an 

example see Figure 3). However, collecting and integrating publicly available association 

data still presents a major bottleneck in the evaluation of mGWAS results, in large part due to 

the fact that data from different sources is reported on different, but highly correlated SNP 

sets. To facilitate this task, Arnold et al. (40) recently established the SNiPA web service 

(http://www.snipa.org). SNiPA contains linkage disequilibrium information as well as 

functional annotations for almost all genetic variants of the latest 1000 Genomes Project data 

set. The functional annotations include regulatory elements, eQTLs, associations to clinical 

traits and also associations to metabolic traits as provided by the NHGRI-EBI GWAS catalog 

(http://www.ebi.ac.uk/gwas). SNiPA provides several user-friendly, interactive tools that are 

especially useful in the context of mGWAS, such as regional association plots and linkage 

disequilibrium plots that are enriched with functional annotations. In particular, links to the 

Metabolomics GWAS server (http://www.gwas.eu) allow direct access to association data 

from the Suhre et al. (41) and Shin et al. (36) mGWAS, including many unpublished 

associations below the conservative level of genome-wide significance, that may prove to 

represent true positive associations when combined with additional evidence from user-

provided studies (42). 

 

APPLICATION OF GIMS FOR HYPOTHESIS GENERATION 

mGWAS results are more and more used as starting hypothesis for deeper functional research. 

The great potential of mGWAS as hypothesis generating tool is demonstrated when mGWAS 

'rediscover' - sometimes decades-old - findings from biochemical experiments in the setting of 
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modern genomic and metabolomic studies (43). One interesting example is SNP rs37369, 

which is a non-synonymous variant (Val140Ile) in the coding region of alanine-glyoxylate 

aminotransferase 2 (AGXT2). Several mGWAS linked this variant to changes in homeostasis 

of plasma beta-aminoisobutyrate (BAIB) (9), serum symmetric/asymmetric dimethylargine 

(24), and serum homoarginine (25). Furthermore, SNP rs37369 was associated to elevated 

urinary excretion of BAIB (10, 31, 44) with BAIB concentrations more than ten times higher 

in urine of homozygotes for the minor SNP allele. Since BAIB of is one of AGXT2’s 

substrates (45), it was hypothesized that rs37369 is causative for hyper-beta-aminoisobutyric 

aciduria (31, 44), a heritable trait first described in the early 1950s (46, 47). This mGWAS-

generated hypothesis was recently validated by Kittel et al. (48) by in vitro studies where the 

authors demonstrated that the rs37369 polymorphism results in a significantly lower AGXT2 

enzyme activity when compared to the wild-type. These studies, inspired by a single mGWAS 

result, rejuvenated research interest in AGXT2, indicating that altered AGXT2 activity may 

contribute to the pathogenesis of cardiovascular, renal, neurological, and hematological 

diseases, and highlighted the unique role of AGXT2 at the intersection of key mitochondrial 

pathways, and even as a potential drug target (43). Inspired by an observed co-association of 

BAIB and certain triglyceride levels at the AGXT2 locus in their mGWAS, Rhee et al. (9) 

further set out investigate the relationship between BAIB metabolism and lipid homeostasis. 

Using a morpholino knock-down of agxt2 in zebrafish, the authors could indeed establish a 

functional link between BAIB, cholesterol ester and TAG metabolism, concluding that their 

data “provides an example how the breadth of gene, metabolite, and phenotype data [..] can 

provide a springboard for research in metabolism”. 

 

Another example where mGWAS data could have helped to formulate a hypothesis on a 

solute transporter's specificity has just been published by Nguyen et al. (49). Among the 12 

novel loci reported by Ried et al. (38) was MFSD2A, a member of the major facilitator 
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superfamily. The mouse homologue (Mfsd2a) was identified by Nguyen et al. (49) as a 

transporter for the essential omega-3 fatty acid docosahexaenoic acid. The authors showed 

that this previously orphan transporter transports lysolipids, writing: "Unexpectedly, cell-

based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine 

(LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a 

transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC 

palmitate, but not LPCs with less than a 14-carbon acyl chain." This finding was reflected in 

Ried et al.’s study data, which associated this locus with acyl-bound LPCs with side chain 

lengths C16:0, C17:0, C18:1, C20:4, and C18:0. This finding was further replicated by 

Draisma et al. (8), who found an association of SNP rs7529794 with these same LPCs, the top 

association at a p-value of 2.8x10-13. Thus, had this information been available to the Nguyen 

et al., they might actually have expected that Mfsd2a transports PUFAs and have designed 

their experiments accordingly. 

 

Pharmaceutical companies are exploring innovative ways of drug development from 

candidate selection to clinical proof of concept (50). One compelling application of GWAS 

for the validation of therapeutic targets through human genetics has been suggested by Plenge 

et al. (51). The authors describe the concept of using dose-response curves based on multiple 

functional variants in genes of pharmaceutical interest in order to prioritize molecular targets 

in drug development. However, for such an approach to be applicable, the target gene is 

required to harbor a causal variant that is unequivocally associated with a medical trait of 

interest, the biological function of the causal gene and causal variant needs to be known, and 

the gene has to harbor multiple causal variants of known biological function, thereby enabling 

the generation of genotype–phenotype dose–response curves. These criteria are unfortunately 

rarely met by genetic associations with clinical endpoints, especially in the case of complex 

disorders. However, when a GIM is overlapping such a locus, then, due to its generally much 
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stronger effect size and its more direct link to the genetic variant, this GIM can provide 

intermediate and functionally relevant readouts (5) that allow for the identification of multiple 

causal variants in order to satisfy the criteria lain out by Plenge et al. (51). 

 

CONCLUSION AND OUTLOOK 

With the era of GWAS with single clinical endpoints reaching maturation in meta-analyses 

that basically include all cohorts available world-wide for any given disease, what will the 

future bring for GWAS with metabolic traits? Meta-analyses of mGWAS are certainly the 

next big step. However, merging data from different metabolomics platforms may require 

additional efforts in developing statistical methods that allow to combine phenotype 

information that match only partially (e.g. some platforms can differentiate between 

isoleucine and leucine, others only report their sum; some platforms resolve lipid traits to a 

high degree of detail, while other methods provide access to aggregated traits; MS or NMR 

peaks may be machine specific and hard to match between studies). Larger cohorts shall be 

phenotyped by multiple platforms in samples from the same donors. Moreover, samples from 

multiple biofluids are being collected in current population studies, allowing to study 

metabolic correlations between them, including possible genotype dependent interactions with 

the human gut or saliva microbiome. A number of GWAS with other disease-relevant -omics 

phenotypes have also been conducted, including genome-wide gene expression (52), 

proteomics (53), and protein glycosylation (54). Furthermore, epigenome-wide association 

studies between DNA methylation and metabolomics (55) and studies on transcriptome-

metabolome associations (56). We thus expect to see an exciting new series of GWAS in 

deeply omics-phenotyped cohorts, where the combination of multiple disease relevant 

quantitative traits may allow the identification of functionally relevant genotype-pathway 

associations. In order to leverage the full potential of the multi-omics GWAS, new 

computational approaches for systems biology and network-based association tests need to be 
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developed. We hope that the resulting growing number of GIMs will lead to a significant 

increase of our functional understanding of genetic variation in human metabolism and its 

pathologies, knowing that every single newly discovered GIM holds to potential to reveal an 

exciting and potentially health-relevant story. 
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TABLES 

 

Table 1: List of published mGWAS in humans and selected GWAS with multiple metabolic traits (in order of publication date). 

Biofluid Metabolic Trait(s) Traits (N) Platform Study Population 

Cohort Size 

(N) 

Loci (N) Reference 

Serum Targeted MS 363 + all ratios MS German 284 4 

Gieger et 

al. (3) 

Plasma 

and 

Serum 

sphingolipids 33 + 43 ratios MS European 4,400 5 

Hicks et al. 

(57) 

Serum mainly phospholipids 

163 + 26,406 

ratios 

MS German, British 1,809+422 9 

Illig et al. 

(58) 

Urine 

NMR derived 

metabolites 

59 + 1,661 

ratios 

NMR German 862+992 5 

Suhre et al. 

(44) 

Serum 

Non-targeted MS, 

knowns  

276 + 37,179 

ratios 

MS 

German and 

British 

1,768+1,052 37 

Suhre et al. 

(41) 
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Urine 

and 

Plasma 

urine: NMR peaks, 

plasma: mainly 

phospholipids 

urine: 512 

peaks plasma: 

163 + ratios 

NMR+MS British 211 3 

Nicholson 

et al. (31) 

Serum mainly lipid traits 117 + 99 ratios NMR Finnish 8,330 31 

Kettunen et 

al. (59) 

Plasma 

phospholipids + 

sphingolipids 

153 MS European 4,034 35 

Demirkan 

et al. (60)  

Serum mainly lipid traits 117 + 99 ratios NMR Finnish 8,330 30 

Tukiainen 

et al. (61) 

Serum 

mainly lipid traits and 

low-weight metabolites  

130 NMR Finnish, British 1,905+4,703 34 

Inouye et 

al. (37) 

Serum 

Non-targeted MS, 

unknowns 

517 MS German 1,768 34 

Krumsiek 

et al. (29) 

Urine NMR peaks 2,425 NMR Brazil 265 2 

Montoliu et 

al. (32) 

Plasma NMR peaks 8,600 + NMR German 1,757 7 Raffler et 
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124,750 ratios al. (30) 

Serum MS peaks 6,138 MS Swedish 402+489 7 

Hong et al. 

(62) 

Plasma 

Amino acids, amines, 

polar metabolites, lipids 

217 MS 

USA (European 

ancestry) 

2,076 31 

Rhee et al. 

(9) 

Urine NMR peaks 1276 NMR European, Brazil 835+601 11 

Rueedi et 

al. (10) 

Serum 

Non-targeted MS, 

knowns and unknowns 

308 MS African American 1,260 19 

Yu et al. 

(11) 

Serum 

Non-targeted MS, 

knowns and unknowns 

486 + 98,346 

ratios 

MS European 7,824 145 

Shin et al. 

(7) 

Serum 

targeted MS (mainly 

phospholipids) + non-

targeted MS (knowns) 

344 

(151+193) 

MS European 1,809+843 12 new 

Ried et al. 

(38) 

Serum 

NMR derived 

metabolites 

42 NMR European 2,118 8 

Demirkan 

et al. (34) 
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Serum mainly phospholipids 129 MS European 7,478+1,182 31 

Draisma et 

al. (8) 
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FIGURES LEGENDS 

 

Figure 1: Manhattan plot of the mGWAS by Shin et al. (7). Upward pointing P-values: 

TwinsUK cohort, downward pointing P-values: KORA population study. Only SNPs with 

association to raw metabolites (p<10−6) are displayed (no ratios). The green line indicates the 

genome-wide significance cutoff of (p<10−10). Loci that reach genome-wide significance in 

either cohort are indicated by a short vertical black line. Loci with P-values <10-30 are 

indicated with a red symbol. Loci that are further discussed in Figure 3 are highlighted and 

annotated [Figure adapted from Supplemental Figure 2 by Shin et al., Nature Genetics, 2014 

(7)].  

 

 

Figure 2: Network integrating gene-metabolite associations and metabolite-metabolite 

correlations. Individual metabolites are lumped by pathway (colored circles) and colored by 

their general metabolic properties (see legend). Genetic loci (grey diamonds) are annotated by 

the gene that is most likely affected by the variant. Green edges between loci and metabolites 

represent significant genetic associations with metabolic traits. Gray edges between 

metabolites represent significant partial correlations between metabolic traits. The highlighted 

sub-network (shaded box) is further discussed in Figure 3. The full network is freely 

accessible in digital format at http://gwas.eu/si [Figure adapted from Figure 2 by Shin et al., 

Nature Genetics, 2014 (7)]. 
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Figure 3: Example of the integration of mGWAS results in a biomedical context using 

data from different sources. This Figure display a “Cardiovascular disease and 

hypertension metabolic sub-network”, annotated based on correlations between molecular 

relationships and expert knowledge on blood pressure regulation, blood coagulation, and 

known molecular risk factors for cardiovascular disease and hypertension. Metabolites 

(circles) and genes (diamonds) of the fibrinogen cleavage (left) and the kininogen/kinin 

system (right) and their interconnections were derived from the Shin et al. (see shaded box in 

Figure 2) data. Grey nodes and edges display annotations of biochemical function based on 

expert knowledge (63). Colored nodes and edges correspond to reported associations based on 

genome-wide studies for blood pressure regulation (orange), blood coagulation (blue), and 

cholesterol levels (purple). This Figure was first published as Supplemental Figure 5 by Shin 

et al., Nature Genetics, 2014 (7). 

 at G
SF Forschungszentrum

 on July 15, 2015
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


31 

 

ABBREVIATIONS 

CVD  cardio-vascular disease 

eQTL  expression QTL 

GC-MS  mass spectrometry coupled to gas phase chromatography 

GIM  genetically influenced metabolic phenotype (metabotype) 

GWAS  genome-wide association study 

LC-MS  mass spectrometry coupled to liquid phase chromatography 

LD  linkage disequilibrium 

LPC   lysophosphatidylcholine 

mGWAS GWAS with metabolomics 

mQTL  metabolic QTL 

MS  mass spectrometry 

NMR  nuclear magnetic resonance spectroscopy 

PSEA  phenotype set enrichment analysis 

QTL  quantitative trait locus 

SNP  single nucleotide polymorphism 
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