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Abstract. The accurate segmentation of lesions in magnetic resonance
images of stroke patients is important, for example, for comparing the
location of the lesion with functional areas and for determining the opti-
mal strategy for patient treatment. Manual labeling of each lesion turns
out to be time-intensive and costly, making an automated method de-
sirable. Standard approaches for brain parcellation make use of spatial
atlases that represent prior information about the spatial distribution of
different tissue types and of anatomical structures of interest. Different
from healthy tissue, however, the spatial distribution of a stroke lesion
varies considerably, limiting the use of such brain image segmentation ap-
proaches for stroke lesion analysis, and for integrating brain parcellation
with stroke lesion segmentation.

In this study, we propose to amend the standard atlas-based generative
image segmentation model by a spatial atlas of stroke lesion occurrence
by making use of information about the vascular territories. As the ter-
ritories of the major arterial trees often coincide with the location and
extensions of large stroke lesions, we use 3D maps of the vascular terri-
tories to form patient-specific atlases combined with outlier information
from an initial run, following an iterative procedure. We find our ap-
proach to perform comparable to (or better than) standard approaches
that amend the tissue atlas with a flat lesion prior or that treat lesion
as outliers, and to outperform both for large heterogeneous lesions.

1 Introduction

The accurate segmentation of anatomical structures and of lesions that are visi-
ble in magnetic resonance image (MRI) of stroke patients has been a somewhat
neglected topic in the development of automated brain image segmentation algo-
rithms until very recently [1]. Most algorithms for segmenting structures of the
brain in MRI use prior knowledge on the location and the appearance of white
matter, gray matter, etc. On the one hand, there are discriminative approaches
using, for example, random forests together with local image features [2, 3], that
often have a high accuracy, but that can only be applied to images acquired with
the exact same MR imaging sequences as the training data. Generative models,
on the other hand, describe the intensity distribution in a more informative
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and flexible fashion: Seghier et al. [4] proposed a method that constructs a le-
sion atlas using fuzzy clustering. However, in the clinical workflow often other
modalities have to be taken into account. Dalca et al. [5] proposed a method
based on the intensity distribution which differentiates between stroke patholo-
gies and leukariosis lesions. However, the stroke segmentation bases only on the
intensity model and ignores spatial information according to the cerebral vascu-
lar territories [6]. Some approaches consider lesions as clearly distinct outliers of
a Gaussian Mixture Model (GMM) whose parameters µ and Σ are optimized by
an Expectation-Maximization (EM) algorithm. An early attempt for automated
model outlier detection using a GMM was proposed by Van Leemput et al. [7]
for multiple sclerosis lesions which are in most cases rather small and therefore
more likely to be homogeneous in their intensity. Probabilistic atlases of healthy
tissue classes provide a mapping from location to intensity. However, in partic-
ular for extensive stroke lesions this is not the case: lesion and healthy tissue
intensities might overlap, leading to an improper separation of those classes.

We propose a fully automated method for stroke lesion segmentation in MR
images that is using GMMs as a generative model by taking into account both
cerebral vascular territories (CVT) [6] and model outlier information [7]. Similar
efforts have been undertaken by [8] for brain tumor segmentation which used
pre/post T1-weighted contrast images to calculate a patient-specific lesion prior.
By contrast, our method does not require such specific modalities, making it
more flexible to available data. Further, [9] proposed a latent atlas which is
inferred from the given data through an alternating optimization procedure.

In the following we describe the overall model and the resulting iterative ap-
proach (Sec. 2), we present experiments (Sec. 3), and offer conclusions (Sec. 4).
More specifically, our paper provides as contributions the usage of cerebral vas-
cular territories as additional prior spatial information (Sec. 2.3) for iterative
lesion atlas construction (Sec. 2.4).

2 Methods

Our overall approach relies on a two-steps procedure: First, the algorithm set-
ting tries to fit a robust GMM of the intensity distribution using healthy tissue
atlases. It first identifies lesion candidates according to [7]. Then, these outliers
provide spatial hints used as a separate lesion atlas which makes them inliers
in a second EM run where they are an additional component of the GMM in
a standard non-robust EM segmenter. We therefore consider the method an
outlier-inlier approach. The calculated outlier-atlases are further enhanced by
incorporating contextual knowledge using the information of CVT. Territories
are weighted proportionally to the number of lesion candidates found in their
spatial region. In each EM iteration, this lesion atlas gets optimized until the best
model parameters with respect to the likelihood of the data are found. Further
postprocessing is applied in the form of Conditional Random Fields and morpho-
logical operators to eliminate false positives resulting from the intensity-based
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estimation. In this paper, we will mainly analyze ischemic stroke lesions since
they occur most often in practice, accounting for up to 87% of all strokes [10].

2.1 Generative Model for Stroke Lesion Segmentation

We first revisit important concepts from [7, 11] upon which our method is based.
Images are given by maps from a finite D-dimensional coordinate space to the
intensity space which may be one-dimensional for gray-scale images. We denote
MR images as flattened, i.e., 1-dimensional vectors v = {v1, v2, . . . , vN} where
I = {1, . . . , N} is the index set of all voxels and vi is the intensity (as gray-
value) of voxel i. The segmentation is described by labels c = {c1, c2, . . . , cN}
mapping a voxel to a tissue class, possibly including stroke lesion. For a voxel i,
ci indicates to which tissue type it belongs. C is a finite set of tissue classes, e.g.,
{WM ,GM ,CSF} or {WM ,GM ,CSF ,LES}. The latent segmentation l has to
be inferred from the observed intensities v. We optimize the model parameters
Θ = (µc, Σc)c∈C to find the Θ∗ that yields the maximal likelihood with respect
to the data set v using, e.g. the EM algorithm. Recall that the PDF of a GMM
with respect to C is given by:

p(x) =
∑
c∈C αc ·

1

(
√
2π)D
√
|Σc|

exp(− 1
2 (x− µc)TΣ−1c (x− µc)) (1)

where
∑
c∈C αc = 1, ∀c ∈ C, αc ≥ 0. The individual Gaussian PDFs correspond-

ing to c ∈ C are also referred to as components or classes. Each component c
consists of a centroid (or mean) µc, a covariance Σc and a given weight αc.

2.2 Robust Model Outlier Detection

Standard GMM model parameter optimization assumes that each data point is
indeed generated by at least one class. Outliers in the data set are therefore hard
to explain by only considering a GMM, in particular, if a point does not seem
to fit any of the classes. To illustrate this, recall that in GMMs, our goal is to
maximize the log-likelihood of the observed data.

Q(Θ) =
∑
i∈I

∑
c∈C p(c | vi) log fc(vi | Θ), (2)

where p(c | vi) denotes the probability of i belonging to c and fc refers to the
PDF of the component c of the GMM spanned by Θ.

Maximizing Θ with respect to (2) is however not robust to significant outliers
as those occurring in lesions [7]. In particular, consider a voxel i with intensity
vi that does not fit well to any class c ∈ C. Since a probability distribution
p(c | vi) has to normalize to 1, the voxel cannot show small probability for all
classes at the same time. Consequently, the algorithm has to consider very high
covariances to include outliers which severely affects the results. Additionally,
outliers having small probabilities strongly negatively influence the likelihood of
the model in (2). This can be seen since log fc(x | Θ)→ −∞ as fc(x | Θ)→ 0.



4 Alexandra Derntl, Bjoern Menze, and Claudia Plant

This problem is alleviated by means of robust statistics [11]. Instead of fitting
standard Gaussian PDFs, a contaminated variant is proposed where each data
point is either generated by a Gaussian N (µ,Σ) with probability 1− ε or by a
unknown uniform outlier distribution δ with probability ε. The density function
converges to a standard Gaussian density by setting ε = 0. The question upon
seeing vi is whether it stems from N (µ,Σ) or from δ. A perfect classification
separates data points vi into a set G of “good” samples drawn from N (µ,Σ)
(inliers) and a set B of “bad” samples (outliers) originating from δ.

G = {vi generated by N (µ,Σ) | i ∈ I} (3)

B = {vj not generated by N (µ,Σ) | j ∈ I} (4)

Since G and B cannot be perfectly restored from the observed data, a prac-
tical classification method is needed. Therefore, we want to classify a data
point as outlier if it exceeds a certain distance threshold κ to the distribu-
tions spanned by our model. The distance between a data point vi and the
calculated mean µc of one class c is estimated by the Mahalanobis-Distance

d2c(xi) = (xi − µc)Σ(−1)
c (xi − µc).

We classify a voxel as outlier if and only if dc(xi) > κ, leading to the sets Gκ
and Bκ; the smalller κ the more lesion candidates are detected. Letting κ→∞
results in a standard (outlier-free) EM segmenter [7]:

Gκ = {i : ∃c ∈ C : dc(vi) ≤ κ | i ∈ {1, . . . , N}} (5)

Bκ = {j : ∀c ∈ C : dc(vj) > κ | j ∈ {1, . . . , N}} (6)

The best values for κ are determined experimentally as done in Section 3.

2.3 Cerebral Vascular Territories

In spite of spatial information given by an atlas, we search for adequate replace-
ments in stroke lesions. It turns out that radiologists use common patterns about
cerebral vascular territories that specify the area which is covered by one of the
main vessel trees to diagnose strokes since the extensions of large stroke lesions
often follow the outlines of the territory the blocked artery is feeding [12].

Figure 4 shows the spatial appearance of the three territories which are cov-
ered by one of the three main vessel trees. Following [12], we particularly man-
ually label anterior cerebral artery (ACA), posterior cerebral artery (PCA) and
middle cerebral artery (MCA) territories for our evaluation. A recent study on
2213 patients [13] has shown that most of the stroke lesions appear in the MCA
territory. Incidentally, large and heterogeneous lesions tend to occur in this par-
ticular territory, as we will also discuss in Section 3.

2.4 Construction of the Personalized Lesion Atlas

Based on estimated model outliers and the 3D CVT atlas we construct a new
patient-specific lesion prior (see Fig. 3). We assume the set of outliers Bκ to be
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Fig. 1. Dorsal Fig. 2. Lateral Fig. 3. Reweighting of one slice.

Fig. 4. Cerebral Vascular Territories drawn in 3D with ITKSNAP from a 2D template
depicted by [6]. Yellow denotes MCA, turquoise ACA and violet PCA for the right
hemisphere. The left hemisphere was labeled equivalently.

determined by the first EM run using only healthy tissue classes. Suppose I =
{1, . . . , N} let v : I → [0, 1] be an image mapping voxel indices to MR intensity
values (we write vi for the intensity at voxel i) and V be the set of all images. The
lesion atlas is a particular image l ∈ V where li can be interpreted as proportional
to the probability of i being part of a lesion. We write t ∈ T = {ACA,MCA, . . .}
for a vascular territory. Each vascular territory is characterized by its included
voxels It ⊆ I (see Fig. 2.4).

For each vascular territory t, we estimate an atlas by setting voxels in It∩Bκ
to 1 and smoothing this image. Formally, we first obtain images v(t) : I → [0, 1]
by setting v(t)(i) = 1 if i ∈ It∩Bκ and 0 otherwise. We smooth this image using
a Gaussian filter in 3D. We denote the smoothed image as ṽ(t) = smooth(v(t)).
Then, we estimate a normalized voting coefficient proportional to the probability

of the lesion occurring in t by vCoeff t =
∑
i∈It

ṽ(t)(i)

|Bκ| .

Finally, we obtain the voted territory by v̂(t)(i) = v(t)(i) · vCoeff t. Each
territory consequently gets reweighted as can be seen in Fig. 3. The overall lesion
atlas used for the second EM-run is finally obtained by the image l̂(i) ∈ V,

defined by l̂(i) =
∏
t∈T v̂

(t)(i) to achieve a multiplicative, smoothing effect in

bordering regions. Care has to be taken if for a voxel i, either of v̂(t)(i) is 0,
effectively erasing all other values. We avoid this problem by substituting 0 by
1 in l̂(i) temporarily and replacing these artificially inserted ones by zeros later
on. Fig. 2.4 and 2.4 show the main approach we used to construct the lesion
prior out of the cerebral vascular territory atlas.3

3 Results

We applied our stroke lesion segmentation framework onto 13 different patient
datasets with 152 manually annotated ground truth slices (axial, coronal and

3 An important detail is to label left and right hemispheres individually, according to
their perfusion pattern. Otherwise, e.g., the large MCA region (including weak false
positives) is weighted disproportionally high.



6 Alexandra Derntl, Bjoern Menze, and Claudia Plant

Fig. 5. Qualitative Comparison of the manual ground truth segmentation (blue line),
Model Outlier Detection (red line) and our proposed method (green line) presented
for FLAIR MRI of patient 1 (left) and 13 (right) using morphological operators as
post-processing.

sagittal) including a variety of stroke types and shapes. All datasets where co-
registered onto a T1-weighted reference image such that the input images are
aligned with the tissue atlases. We drew the CVT altas with ITK-SNAP.4 To
make sure that the atlas is aligned with all the other images (i.e., MRI im-
ages and atlases), we drew the vascular territories onto the above-mentioned
T1-weighted reference image. We first did a quantitative assessment of the seg-
mentation results by computing the DICE score (also known as F1-score) with
different post-processing techniques (morphological operator and Conditional
Random Fields) and parameter settings (different flat priors and κ values) as
denoted in Figure 6, 7, 8 and 9. It became clear that simply adding an additional
class with a flat prior is not competitive to Model Outlier Detection or CVT-
Outlier-Inlier (compare Fig. 7). Furthermore, with the best setting we applied a
paired student t-test to compare those methods statistically in order to obtain
a valid comparison we applied all the methods on the same datasets and used
the best configuration we could obtain from them.
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Fig. 6. Model outlier detection
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Fig. 7. Lesion class with flat prior.

Even though the Model Outlier Detection works better on average over all
patients, we could show that our approach performs better on patients with ex-
tensive lesions at a significance level of α = 0.005. This subgroup of patients was

4 http://www.itksnap.org
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selected prior to the evaluation. All results are presented in Table 1. Qualitative
results from patient 1 and 13 are shown in Figure 5. Admittedly, the CVT-based
approach has difficulties with very small lesions (e.g., patient 5, 8, or 11) where
model outlier detection is more robust but it provides much more confidence
with large lesions (e.g., patient 13 or 7).
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Fig. 8. Outlier-inlier with morph. oper.
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Fig. 9. Outlier-inlier with CRF

Table 1. Patient overview for different segmentation algorithms with different post-
processing approaches

Patient Id MO Open/Close CVT Open/Close MO CRF CVT CRF

Patient 1 0.54 0.61 0.55 0.51
Patient 2 0.62 0.67 0.72 0.64
Patient 3 0.41 0.37 0.19 0.34
Patient 4 0.47 0.5 0.35 0.42
Patient 5 0.39 0.01 0.3 0.0
Patient 6 0.61 0.62 0.65 0.4
Patient 7 0.51 0.72 0.46 0.62
Patient 8 0.51 0.0 0.1 0.0
Patient 9 0.53 0.56 0.08 0.42
Patient 10 0.19 0.06 0.13 0.01
Patient 11 0.57 0.01 0.43 0.0
Patient 12 0.6 0.5 0.4 0.44
Patient 13 0.62 0.81 0.42 0.77

Average 0.51 0.42 0.37 0.35
Stdev 0.12 0.29 0.2 0.26

4 Conclusion

We investigated an automated method for stroke lesion segmentation that could
prove to be useful, e.g., in the analysis of images acquired in clinical studies. Our
method extends previous work in model outlier detection for lesions, first applied
to multiple sclerosis patients using a GMM. Using robust statistics, outliers can
be detected and classified as lesion. However, for large and heterogeneous lesions
this is not enough, as a lesion spans a spectrum of intensity values which can
better be captured by a dedicated Gaussian component in the mixture model.
Drawing inspiration from the way radiologists perform stroke detection, we in-
corporated knowledge about cerebral vascular territories that is combined with
outlier information to form a lesion atlas. This lesion atlas is then reweighted
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proportionally to the incurred outliers of each territory in each iteration until
maximum likelihood model parameters are found. Several approaches to con-
struct this atlas were examined and compared to a flat prior as a baseline.

Our evaluation showed that the outlier-inlier approach on average performs
comparable to the model outlier detection for an overall set of 13 patients and
significantly better than a uniform prior for a lesion class. The performance was
enhanced by the postprocessing methods: conditional random fields and mor-
phological operators. Considering large stroke lesion patients alone, our method
dominates the other approaches evaluated in this paper.

In future work, we consider additional features and disease patterns to im-
prove clustering. One way would be to enhance the EM optimizing a GMM (or a
similar clustering method) with a so-called minimal description length (MDL).
MDL is a well-known information theoretical concept that leads to reduced over-
fitting. Based on this criterion, one could algorithmically decide whether to use
model outlier detection or the outlier-inlier approach. The right parameter set-
ting for κ can be done automatically with respect to MDL.
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