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Section S1. Step 1 – Data collection 48 

E data from the METI database (METI, 2014) were transformed from relative binding affinity (RBA) to 49 

IC50 by normalizing each chemical’s RBA with the reference endogenous ligand 17β-estradiol (E2)(eq. 50 

1). 51 
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The A data includes both 25 and 50% (IC25 and IC50) inhibition of androgen-induced activity. 52 

Development of QSAR models using both responses have recently been successfully applied by 53 

Jensen et al., 2011 and Vinggaard et al., 2008. The inclusion of both IC25 and IC50 data enlarges the 54 

applicability domain of the A model by increasing the number of chemicals in the model but it also 55 

adds chemicals with weak A response and thus increases the sensitivity of the model.  56 

All data can be found in a separate file (EAT data.xls). 57 
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Section S2. Step 2 – Chemical Variation Analysis 59 

PCA is a well-established and powerful tool for pattern recognition in large datasets. It identifies a 60 

few uncorrelated linear combinations (principal components) in the original data. Each principal 61 

component captures as much variation as possible and is defined by a score and a loading vector. 62 

Scores show variance among objects, whereas loadings describe the contribution of individual 63 

descriptors to a given component. Descriptors on which PCA was built described mostly topological 64 

information about the molecules including connectivity, atom type, charge, hydrophobic and 65 

hydrophilic surface, weight, hydrogen bond donors/acceptors, structure flexibility and other. 66 

Detailed information on the descriptors was given previously (Rannar and Andersson, 2010; Rybacka 67 

et al., 2014); see also Table S1. The chemical structures were washed and optimized with a 94x 68 

Merck Molecular Force Field (MMFF) prior to chemical descriptor calculations. The washing 69 

procedure included a number of operations such as hydrogen correction, salt and solvent removal, 70 

and adjustment and enumeration of protonation states. Prior to PCA, the descriptors were 71 

autoscaled and if needed log-transformed (if they were not already logarithmic values). For log-72 

transformation we used a function for variable transformation implemented in SIMCA where the 73 

base value (and sometimes also a multiplication) of the logarithm is adjusted automatically 74 

depending on the skewness of descriptor’s probability distribution. 75 

PCA based on every training set and the high- and low-production volume chemicals (H&LPVCs) 76 

clearly showed that the compounds used to develop the A model (the A set) represented a large 77 

portion of the chemical variation of the entire H&LPVC set (Figure S1B). The same pattern was seen 78 

for compounds with available data depicting binding potency to the estrogen receptor (the E set). 79 

These compounds were structurally diverse (similar to the A set) albeit with fewer examples of small 80 

polar compounds, as seen in the left lower corner of Figure S1A. In contrast, the compounds that 81 

bind to transthyretin (the T set) showed very little structural variation and clustered into two groups 82 

in the PCA score plot (Figure S1C). One cluster included halogenated aromatic compounds such as 83 

polyhalogenated biphenyls and diphenylethers (upper group in Figure S1C), whereas a second cluster 84 



consisted of per- and poly-fluorinated compounds (lower group in Figure S1C). Since no compounds 85 

with MW > 960 g/mol were present in any of the three training sets, and H&LPVCs range up to 2104 86 

g/mol in MW, no compounds were found on the right side of Figures S1A-C.  87 
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Section S3. Steps 3 and 4 – Model Development and metabolite simulation 89 

Five different descriptor sets were used for QSAR modelling calculated using the Online Chemical 90 

Database (OCHEM (Sushko et al., 2011)). These included: electro-topological state indices (Hall and 91 

Kier, 1995; Kier and Hall, 1999); Estate that combined electronic and graph-topological information; 92 

ISIDA fragments (Varnek et al., 2008) that used 2D Lewis graph representations of the compounds; 93 

GSFragments (Skvortsova et al., 1999) that calculated the frequencies of certain special fragments; 94 

CDK descriptors (Steinbeck et al., 2003) that captured electronic, constitutional, topological and 95 

geometrical information; and Dragon descriptors (Todeschini and Consonni, 2000; version 6) that 96 

consisted of 20 different descriptor blocks. Additionally the octanol-water partition coefficient and 97 

water solubility were added as calculated by the ALOGPS program (Tetko and Tanchuk, 2002) 98 

implemented in the OCHEM software. More details about the descriptor sets can be found in the 99 

OCHEM user manual (http://docs.ochem.eu/display/MAN). The models built to aid the interpretation 100 

of the EAT models were based on the functional group counts including from 12 to 18 Dragon 101 

descriptors, depending on the model. The chemical structures from the EAT sets were standardized, 102 

neutralized, and optimized with Corina (Sadowski and Gasteiger, 1993) in OCHEM. Descriptors with a 103 

variance below 0.01 were excluded. If highly correlated (pair-wise Pearson’s correlation coefficient R 104 

> 0.95), descriptors were used as groups in further modelling. 105 

For finding covariance between calculated chemical descriptors (X-data) and E-, A- or T- data (Y-106 

data), seven regression algorithms were studied. Linear correlations were searched using the 107 

following algorithms: multiple linear regression (MLR), Fast Stepwise (Stagewise) Multivariate Linear 108 

Regression (FSMLR), and Partial Least Squares (PLS) regression. In brief, FSMLR iteratively builds 109 

linear regression models and excludes highly correlated descriptors by means of so-called greedy 110 

algorithm (Cormen, 2001), and with PLS, X-data are transformed into a few latent variables aiming 111 

for the smallest squared difference between original and predicted objects. Apart from associative 112 

neural network (described in materials and methods section 2.3) three additional non-linear models 113 

were also used, including k-nearest neighbor (k-NN) regression, random forest exported from the 114 



Weka 3 software (Waikato, 2014); WEKA-RF), and support vector machine using the open source 115 

library for support vector machines (LIBSVM). In brief, k-NN classifies a sample according to k-closest 116 

objects using voting/average values; WEKA-RF constructs a multitude of decision trees which outputs 117 

a class; and LIBSVM produces linear boundaries between object groups in a transformed space, 118 

where vector representation of the data is replaced with similarities to other data points (Chang and 119 

Lin, 2011). More details about the modelling algorithms can be found in the OCHEM user manual 120 

(http://docs.ochem.eu/display/MAN).  121 

All models were validated internally and externally. Prior to modelling, every set was randomly split 122 

into training and test sets in 4:1 ratio. The seed random generator from Java was used. The seed 123 

number is provided for every model on OCHEM website hence models can be easily recalculated and 124 

reproduced. The training set was used in model development, whereas the test set was left for 125 

external validation. For internal validation, 5-fold cross-validation or stratified bagging was used. In 5-126 

fold cross-validation, the original sample is randomly partitioned into five equal-sized subsamples— 127 

one subsample is retained as the validation data for testing the model whereas the remaining 4 128 

subsamples are used as training data. This procedure is then repeated 5 times. Stratified bagging 129 

involves training multiple models based on randomly selected training sets which are created from 130 

the original set by sampling with replacement (Breiman, 1996). We used 64-times sampling for this 131 

study since the statistical parameters already reached plateau at this level. 132 

For each model, we calculated the number of correctly predicted binders and non-binders (true 133 

positives (TPs) and negatives (TNs) respectively), binders incorrectly predicted to be non-binders 134 

(false negatives, FNs), and non-binders incorrectly predicted to be binders (false positives, FPs). 135 

These measures were used to calculate commonly used statistics by QSAR modellers for model 136 

evaluation (eq. 1-4). 137 
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Section S4. Step 5 – Applicability domain method 143 

The applicability domain consists of the chemical properties and features characterising the 144 

compounds that a model was trained with. If a query chemical is too structurally different from 145 

compounds in the training set then that chemical’s prediction can be non-reliable and would 146 

therefore fall outside of the domain.  147 

The assessment of applicability domain is crucial for assuring high reliability of obtained predictions. 148 

Many different approaches for AD assessment were studied (Sahigara et al., 2012; Sushko et al., 149 

2010) yet still no method is ideal (Tetko et al., 2014). According to a number of recent studies 150 

accuracy of predictions practically depends neither on the used descriptors nor the used QSAR 151 

method but rather on the similarity of queried compounds to the training set molecules (Sheridan et 152 

al., 2004; Tetko et al., 2008; Sahigara et al., 2012). This implies also that some compounds tend to 153 

yield large errors in their predictions for every model due to their unique chemical and structural 154 

properties that may not be captured by descriptors used in the modelling. For this reason, in the AD 155 

assessment we have used a set of carefully chosen MOE descriptors that represent universal and 156 

interpretable properties related to e.g. connectivity, charge, and hydrophobicity (see Table S1 for 157 

detailed description of every used descriptor and section S2 for details). To highlight the most 158 

significant information and decrease correlation among descriptors we built PCA models for the E-, 159 

A-, and T-training set compounds. Every PCA model included only principal components with 160 

eigenvalues higher than 2. Compounds with chemical characteristics that differed significantly from 161 

the chemical variation presented by E-, A- or T-data received a high distance-to-the-model (DModX) 162 

value. New compounds (not present in the training set) can be predicted into the PCA (and hence 163 

have their DModX values calculated). A DModX value larger than around 2.5 usually defines 164 

compounds that fell outside of the domain (Wold et al., 2001). Herein we used a more cautious 165 

approach where chemicals with DModX > 2 were considered as outside of the applicability domain. 166 



Section S5. Model interpretation with PLS 167 

The EAT models presented in the main manuscript developed using associative neural network, were 168 

complemented with  PLS models to ease interpretation of critical chemical factors for studied 169 

endpoints. The PLS models were built based on simple constitutional descriptors related to e.g., 170 

functional group counts. This procedure was recently applied by Vorberg and Tetko, 2014. These PLS 171 

models performed slightly worse than other models (4-9% lower balanced accuracy) but were 172 

valuable in increasing our understanding of the most critical chemical properties related to modelled 173 

response (Table S4). In brief, E- and T-binders are mostly lipophilic compounds with aromatic rings 174 

containing hydroxyl groups attached to an aromatic ring (nArOH). These compounds have frequently 175 

high numbers of N and O atoms that can function as H-bond donors (nHDon). Their features suggest 176 

that binders are easily polarizable which, together with information about molecular complexity and 177 

degree of substitution of the compounds, has proven to exert a significant impact on estrogenic 178 

activity (Liu et al., 2008). Additionally, the presence of the nHDon descriptor confirms observations 179 

by Papa et al. (2013) that information describing the frequency of C-O fragments at a topological 180 

distance of 7 – which identifies the length of the molecules and the presence of oxygen atoms – is 181 

relevant for T-binding (Papa et al., 2013). E-binders often contain the following functional groups: 182 

carbamates (nROCON), hydrazones (nC=N-N<) and sulphonamides (nSO2N); whereas T- and A-183 

binders are, more frequently, aromatic ethers. Like E- and T-binders, A-binders are lipophilic and 184 

have high numbers of aromatic carbons, but they also show structural characteristics that are 185 

atypical for E- or T-binders. These characteristics include the presence of nitro-groups and aliphatic 186 

secondary and tertiary amides, as also observed by Jensen et al. (Jensen et al., 2011). The structural 187 

characteristics of typical non-binders were reflected by negative PLS variable coefficients; it is very 188 

unlikely that E-binders: are ethers; or contain nitro-groups on aromatic rings; or are secondary 189 

aliphatic amines and ketones. Large counts of secondary and quaternary carbons can characterize 190 

non-binders to transthyretin. Likewise, non-binders to the estrogen receptor have high numbers of 191 



primary carbons in terminal positions. High numbers of secondary carbons were also frequently 192 

found among non-binders to the androgen receptor, along with aliphatic esters and furans. 193 

Section S6. Applicability domain analysis of EAT models 194 

In the fifth step of the study we analysed chemical variation of compounds outside the applicability 195 

domain (AD) (step five in Figure 1). A group of 389 chemicals was found to be outside the AD for all 196 

three EAT models. These chemicals did not encompass the chemical variation of the H&LPVCs. PCA 197 

showed that compounds outside the AD could be separated into three groups (Figure S3A-B). The 198 

first group consisted of large and hydrophobic structures with many single bonds (the upper right 199 

corner of Figure S3A), such as pentaerythritoltetraoleate. The second group comprised chemicals 200 

with a high number of hydrogen acceptors, double bonds and rings, often with sulphuric fragments 201 

(the left bottom side of Figure S3A). The third group included a vast range of compounds but among 202 

them relatively small and volatile structures, such as acetylene or trifluoromethane, were found (very 203 

left side of the plot). Some compounds, such as phosphate-substituted amino acids (found in the 204 

middle of Figure S3A) were studied in higher dimensional PCs (3-8) but no grouping was found 205 

among them.  206 
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Section S7. Structure comparison 208 

The analysis was done to investigate unique chemical properties of bioactivated E- and A-binders 209 

whereas the number of T-binders (50) was considered too few for the analysis. Among the 210 

bioactivated compounds, 18.2% were found to be nitro compounds and 16.9% aromatic nitro 211 

compounds; these portions were much greater than those of the active parent compounds (3.2 and 212 

2.6%, respectively; Table S5). In addition, bioactivated H&LPVCs included more tertiary amines 213 

(29.9%, versus 16.5% for parent compounds) and nitriles (5.5% versus 1%). Several structural 214 

features were only present among the bioactivated compounds, such as nitro-haloarenes (6.3%) and 215 

aliphatic secondary and tertiary amines (2.7%). The descriptors, including nitro aromatics (nArNO2) 216 

and secondary amines (nRNHR), have high negative coefficients in the PLS model for E-binders (Table 217 

S4A) and it is not surprising that these chemical features are unlikely to occur among active parent 218 

compounds. It is, however, likely that bioactivation leads to the reduction of these structural 219 

features, e.g. when compounds undergo deamination (a typical reaction catalysed by cytochrome 220 

P450 in phase I metabolism) and thus become E-binders. The same analysis was done for compounds 221 

that become A-binders after metabolism (Table S6), however no typical structural features could be 222 

identified. Notably, the number of bioactivated compounds (251 chemicals) was only slightly higher 223 

than the number of deactivated compounds (187 chemicals). Fewer E- (60) and T- binders (2) were 224 

detoxified. T-binders and T-non-binders include a large portion of polyhalogenated aromatics (more 225 

information in the first paragraph of Section 3); considering that hydroxylation is a common 226 

biotransformation pathway of aromatics, and that the descriptor with the highest positive PLS-227 

coefficient was the number of hydroxylated aromatics (nArOH) (Table S4C), it would not be surprising 228 

if bioactivation could lead to a significant increase in the number of T-binders (by 3-fold, as seen in 229 

this study). Such bioactivation was already proven to generate potential endocrine-disrupting 230 

metabolites for brominated aromatic flame retardants (Hamers et al., 2008). 231 
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Figure S1. PCA plots of training and test sets (blue) for estrogen (A), androgen (B), and 233 

transthyretin (C) models mapped with high and low production volume chemicals (grey). PC1 and 234 

PC2 explain 54% of the variance, and the model has in total 9 PCs (84% of the explained variance).  235 
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Figure S2. Ratios of predicted binders, non-binders, and compounds outside the applicability domains of the estrogen (A), androgen (B), and 

transthyretin (C) models for the 5 most likely (according to MetaSite) formed metabolites of high and low production volume chemicals (6,617 

chemicals). To the right of all the graphs, the final numbers of compounds that were binders (red) and non-binders/outside the domain (green dots/grey 

stripes) are given. 
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Figure S3. PCA score plot (A) and loading plot (B) of the 389 compounds identified as out of domain 

(OAD) by all three EAT models based on simple MOE descriptors. First two PCs explain 54% of 

variation (PC1 – 42% and PC2 – 12 %).  
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Table S1. The list of MOE descriptors used in PCA analysis 

Descriptor Description 

VDistEq If m is the sum of the distance matrix entries then VdistEq is defined to be the 

sum of log2 m - pi log2 pi / m where pi is the number of distance matrix entries 

equal to i. 

VDistMa If m is the sum of the distance matrix entries then VDistMa is defined to be the 

sum of log2 m - Dij log2 Dij / m over all i and j. 

b_1rotR Fraction of rotatable single bonds: b_1rotN divided by b_heavy. 

Weight Molecular weight (including implicit hydrogens) with atomic weights taken from 

[CRC 1994]. 

chi0 Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is 

calculated as the sum of 1/sqrt(di) over all heavy atoms i with di > 0. 

chi1 Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is 

calculated as the sum of 1/sqrt(didj) over all bonds between heavy atoms i and j 

where i < j. 

VAdjEq Vertex adjacency information (equality): -(1-f)log2(1-f) - f log2 f where f = (n
2
 -

 m) / n
2
, n is the number of heavy atoms and m is the number of heavy-heavy 

bonds. If f is not in the open interval (0,1), then 0 is returned. 

VAdjMa Vertex adjacency information (magnitude): 1 + log2 m where m is the number of 

heavy-heavy bonds. If m is zero, then zero is returned. 

balabanJ Balaban's connectivity topological index [Balaban 1982]. 

PEOE_PC+ Total positive partial charge: the sum of the positive qi. Q_PC+ is identical to PC+ 

which has been retained for compatibility. 

PEOE_PC- Total negative partial charge: the sum of the negative qi. Q_PC- is identical to PC- 

which has been retained for compatibility. 

PEOE_RPC+ Relative positive partial charge: the largest positive qi divided by the sum of the 

positive qi. Q_RPC+ is identical to RPC+ which has been retained for 

compatibility. 

PEOE_RPC- Relative negative partial charge: the smallest negative qi divided by the sum of 

the negative qi. Q_RPC- is identical to RPC- which has been retained for 

compatibility. 

PEOE_VSA_FHYD Fractional hydrophobic van der Waals surface area. This is the sum of the vi such 

that |qi| is less than or equal to 0.2 divided by the total surface area. The vi are 

calculated using a connection table approximation. 

PEOE_VSA_FNEG Fractional negative van der Waals surface area. This is the sum of the vi such that 

qi is negative divided by the total surface area. The vi are calculated using a 

connection table approximation. 

PEOE_VSA_FPNEG Fractional negative polar van der Waals surface area. This is the sum of the vi 

such that qi is less than -0.2 divided by the total surface area. The vi are 

calculated using a connection table approximation. 

PEOE_VSA_FPOL Fractional polar van der Waals surface area. This is the sum of the vi such that 

|qi| is greater than 0.2 divided by the total surface area. The vi are calculated 

using a connection table approximation. 

PEOE_VSA_FPOS Fractional positive van der Waals surface area. This is the sum of the vi such that 

qi is non-negative divided by the total surface area. The vi are calculated using a 

connection table approximation. 



PEOE_VSA_FPPOS Fractional positive polar van der Waals surface area. This is the sum of the vi such 

that qi is greater than 0.2 divided by the total surface area. The vi are calculated 

using a connection table approximation. 

PEOE_VSA_HYD Total hydrophobic van der Waals surface area. This is the sum of the vi such that 

|qi| is less than or equal to 0.2. The vi are calculated using a connection table 

approximation. 

PEOE_VSA_NEG Total negative van der Waals surface area. This is the sum of the vi such that qi is 

negative. The vi are calculated using a connection table approximation. 

PEOE_VSA_PNEG Total negative polar van der Waals surface area. This is the sum of the vi such 

that qi is less than -0.2. The vi are calculated using a connection table 

approximation. 

PEOE_VSA_POL Total polar van der Waals surface area. This is the sum of the vi such that |qi| is 

greater than 0.2. The vi are calculated using a connection table approximation. 

PEOE_VSA_POS Total positive van der Waals surface area. This is the sum of the vi such that qi is 

non-negative. The vi are calculated using a connection table approximation. 

PEOE_VSA_PPOS Total positive polar van der Waals surface area. This is the sum of the vi such that 

qi is greater than 0.2. The vi are calculated using a connection table 

approximation. 

Kier1 First kappa shape index: (n-1)
2
 / m

2
 [Hall 1991]. 

Kier2 Second kappa shape index: (n-1)
2
 / m

2
 [Hall 1991]. 

Kier3 Third kappa shape index: (n-1) (n-3)
2
 / p3

2
 for odd n, and (n-3) (n-2)

2
 / p3

2
 for even 

n [Hall 1991]. 

KierFlex Kier molecular flexibility index: (KierA1) (KierA2) / n [Hall 1991]. 

logS Log of the aqueous solubility This property is calculated from an atom 

contribution linear atom type model [Hou 2004] with r
2
 = 0.90, ~1,200 molecules. 

apol Sum of the atomic polarizabilities (including implicit hydrogens) with 

polarizabilities taken from [CRC 1994]. 

bpol Sum of the absolute value of the difference between atomic polarizabilities of all 

bonded atoms in the molecule (including implicit hydrogens) with polarizabilities 

taken from [CRC 1994]. 

mr Molecular refractivity (including implicit hydrogens). This property is calculated 

from an 11 descriptor linear model [MREF 1998] with r
2
 = 0.997, RMSE = 0.168 on 

1,947 small molecules. 

vsa_acc Approximation to the sum of VDW surface areas of pure hydrogen bond 

acceptors (not counting acidic atoms and atoms that are both hydrogen bond 

donors and acceptors such as -OH). 

vsa_don Approximation to the sum of VDW surface areas of pure hydrogen bond donors 

(not counting basic atoms and atoms that are both hydrogen bond donors and 

acceptors such as -OH). 

vsa_hyd Approximation to the sum of VDW surface areas of hydrophobic atoms. 

vsa_other Approximation to the sum of VDW surface areas of atoms typed as "other". 

vsa_pol Approximation to the sum of VDW surface areas of polar atoms (atoms that are 

both hydrogen bond donors and acceptors), such as -OH. 



SlogP Log of the octanol/water partition coefficient (including implicit hydrogens). This 

property is an atomic contribution model [Crippen 1999] that calculates logP 

from the given structure; i.e., the correct protonation state (washed structures). 

Results may vary from the logP(o/w) descriptor. The training set for SlogP was 

~7000 structures. 

SMR Molecular refractivity (including implicit hydrogens). This property is an atomic 

contribution model [Crippen 1999] that assumes the correct protonation state 

(washed structures). The model was trained on ~7000 structures and results may 

vary from the mr descriptor. 

TPSA Polar surface area calculated using group contributions to approximate the polar 

surface area from connection table information only. The parameterization is 

that of Ertl et al. [Ertl 2000]. 

density Molecular mass density: Weight divided by vdw_vol. 

vdw_area Area of van der Waals surface calculated using a connection table approximation. 

vdw_vol van der Waals volume calculated using a connection table approximation. 

logP(o/w) Log of the octanol/water partition coefficient (including implicit hydrogens). This 

property is calculated from a linear atom type model [LOGP 1998] with 

r
2
 = 0.931, RMSE=0.393 on 1,827 molecules. 

diameter Largest value in the distance matrix [Petitjean 1992]. 

radius If ri is the largest matrix entry in row i of the distance matrix D, then the radius is 

defined as the smallest of the ri [Petitjean 1992]. 

wiener Path Wiener path number: half the sum of all the distance matrix entries as defined in 

[Balaban 1979] and [Wiener 1947]. 

wiener Pol Wiener polarity number: half the sum of all the distance matrix entries with a 

value of 3 as defined in [Balaban 1979]. 

a_aro Number of aromatic atoms. 

b_1rotN Number of rotatable single bonds. Conjugated single bonds are not included 

(e.g., ester and peptide bonds). 

b_ar Number of aromatic bonds. 

b_double Number of double bonds. Aromatic bonds are not considered to be double 

bonds. 

rings The number of rings. 

zagreb Zagreb index: the sum of di
2
 over all heavy atoms i. 

b_double/b_count Number of double bonds. / Number of bonds (including implicit hydrogens). This 

is calculated as the sum of (di/2 + hi) over all non-trivial atoms i. 

b_ar/b_count Number of aromatic bonds / Number of bonds  

b_single/b_count Number of single bonds  / Number of bonds  

a_aro/a_count Number of aromatic atoms /  Number of atoms 

a_don/a_count Number of hydrogen bond donor atoms / Number of atoms 

a_acc/a_count Number of hydrogen bond acceptor atoms (not counting acidic atoms but 

counting atoms that are both hydrogen bond donors and acceptors such as -OH) 

/ Number of atoms 

a_hyd / a_count Number of hydrophobic atoms / Number of atoms 

nX Number of halogen atoms 



nX/a_count Number of halogen atoms / Number of atoms 

rings/a_count The number of rings / Number of atoms 

 

  



Table S2. Balanced accuracies of all QSAR models built for estrogen (A), androgen (B), and transthyretin (C) binding. The abbreviations in the first row 

stand for the following machine learning methods: Partial Least Squares (PLS), Associative Neural Networks (ASNN), k-Nearest Neighbour (k-NN), Supporting 

Vector Machine using the LibSVM, Fast Stepwise (Stagewise) Multivariate Linear Regression (FSMLR), Multilinear Regression Analysis (MLRA), and Random 

Forest method implemented in Weka software (WEKA-RF)
1
. For every machine learning method an internal validation procedures were used: cross-

validation (CV) or bagging procedure (bag). Statistics of the models chosen for further modelling are bolded. 

A 

Descriptors/machine learning method ASNN k-NN LibSVM FSMLR MLRA PLS WEKA-RF 

CV bag CV bag CV bag CV bag CV bag CV bag CV bag 

CDK
2
  Training set 84% 86% 82% 81% 84% 84% 77% 73% 82% 84% 79% 83% 80% 83% 

Test set 88% 92% 88% 87% 82% 90% 88% 87% 83% 87% 84% 87% 83% 89% 

Dragon6 (blocks: 1-29) Training set 86% 87% 82% 81% 85% 87% 83% 85% 79% 85% 82% 84% 82% 83% 

Test set 89% 88% 86% 88% 92% 92% 85% 75% 80% 84% 84% 86% 85% 90% 

ALogPS, OEstate Training set 84% 85% 79% 81% 83% 84% 80% 83% 82% 82% 81% 83% 84% 84% 

Test set 84% 85% 83% 86% 87% 85% 81% 86% 84% 82% 83% 87% 90% 90% 

Fragmentor (Length 2 – 4) Training set 84% 85% 75% 76% 83% 84% 80% 83% 79% 81% 81% 82% 81% 83% 

Test set 85% 83% 79% 83% 84% 89% 80% 85% 81% 81% 83% 82% 87% 89% 

GSFrag Training set 83% 84% 77% 78% 77% 82% 77% 79% 78% 79% 77% 78% 80% 81% 

Test set 87% 88% 81% 83% 82% 89% 79% 81% 81% 80% 83% 80% 79% 85% 

 



B 

Descriptors/machine learning method ASNN k-NN LibSVM FSMLR MLRA PLS WEKA-RF 

CV bag CV bag CV bag CV bag CV bag CV bag CV bag 

CDK
2
  Training set 77% 76% 73% 74% 74% 77% 65% 66% 70% 73% 64% 67% 70% 72% 

Test set 78% 77% 80% 78% 81% 80% 65% 71% 75% 73% 71% 74% 75% 78% 

Dragon6 (blocks: 1-29) Training set 77% 77% 75% 73% 74% 76% 64% 72% 69% 72% 64% 76% 71% 72% 

Test set 79% 75% 77% 74% 79% 81% 71% 76% 62% 75% 61% 77% 72% 77% 

ALogPS, OEstate Training set 74% 76% 73% 72% 75% 76% 64% 70% 69% 72% 67% 72% 73% 73% 

Test set 79% 78% 76% 79% 74% 77% 65% 76% 74% 73% 68% 71% 78% 78% 

Fragmentor (Length 2 – 4) Training set 75% 75% 70% 68% 75% 78% 68% 71% 70% 72% 64% 72% 73% 73% 

Test set 79% 78% 74% 76% 78% 74% 64% 72% 69% 69% 72% 73% 78% 76% 

GSFrag Training set 74% 75% 71% 69% 74% 74% 62% 66% 71% 72% 63% 66% 71% 72% 

Test set 80% 81% 75% 77% 78% 79% 70% 71% 74% 76% 64% 69% 74% 76% 

 

 

 

 

 



C 

Descriptors/machine learning method ASNN k-NN LibSVM FSMLR MLRA PLS WEKA-RF 

CV bag CV bag CV bag CV bag CV bag CV bag CV bag 

CDK
2
  Training set 82% 86% 81% 83% 81% 87% 83% 84% 80% 82% 80% 84% 86% 88% 

Test set 90% 86% 85% 84% 82% 87% 79% 76% 76% 77% 82% 79% 78% 85% 

Dragon6 (blocks: 1-29) Training set 88% 89% 82% 88% 87% 89% 80% 87% 78% 65% 85% 88% 85% 88% 

Test set 89% 89% 86% 82% 87% 89% 79% 86% 84% 76% 80% 89% 85% 83% 

ALogPS, OEstate Training set 85% 84% 79% 80% 81% 85% 79% 81% 77% 74% 79% 79% 88% 88% 

Test set 82% 79% 79% 79% 81% 80% 65% 69% 70% 73% 69% 69% 64% 85% 

Fragmentor (Length 2 – 4) Training set 82% 81% 84% 79% 83% 81% 81% 80% 79% 77% 81% 79% 87% 85% 

Test set 76% 80% 68% 82% 79% 82% 66% 67% 62% 64% 80% 72% 82% 79% 

GSFrag Training set 84% 88% 75% 78% 81% 89% 78% 89% 79% 78% 80% 84% 83% 87% 

Test set 82% 84% 79% 79% 78% 91% 66% 69% 69% 77% 71% 76% 78% 85% 

1
 more details at www.cs.waikato.ac.nz/ml/weka/ 

2
 constitutional, topological, geometrical, electronic and hybrid descriptors



Table S3. Statistics of selected estrogen, androgen, and transthyretin Associative Neural Networks 

models.  

Predicted endpoint Number of 

compounds 

Balanced 

accuracy 

Sensitivity Specificity 

Estrogen 

receptor binding 

Training set 743 87% 86% 87% 

Test set 186 91% 94% 88% 

Androgen 

receptor binding  

Training set 744 77% 68% 86% 

Test set 186 81% 74% 88% 

Transthyretin 

binding 

Training set 162 89% 86% 92% 

Test set 41 89% 83% 94% 

  



Table S4. Lists of descriptors and coefficients for PLS models of estrogen (A), androgen (B), and 

transthyretin (C) binding. 

A 

Coefficient Descriptor Description Coefficient Descriptor Description 

+0.186 nArOH Number of aromatic 

hydroxyls 

-0.0954 ALogPS_logS Water solubility 

+0.11 ALogPS_logP Octanol/water 

coefficient 

-0.0912 nRCO Number of ketones 

(aliphatic) 

+0.0992 nCrs Number of ring 

secondary C(sp3) 

-0.0671 nCp Number of 

terminal primary 

C(sp3) 

+0.0666 nR#CH/X Number of terminal 

C(sp) 

-0.0635 nArX Number of X on 

aromatic ring 

+0.0656 nROCON 

 

Number of (thio-) 

carbamates (aliphatic) 

-0.0599 nArOR Number of ethers 

(aromatic) 

+0.0617 nHDon Number of donor 

atoms for H-bonds (N 

and O) 

-0.0317 nArNO2 Number of nitro 

groups (aromatic) 

+0.0303 nC=N-N< Number of hydrazones -0.0304 nRNHR Number of 

secondary amines 

(aliphatic) 

+0.0276 nCb- Number of substituted 

benzene C(sp2) 

-0.0178 nArCHO Number of 

aldehydes 

(aromatic) 

+0.024 nSO2N Number of 

sulfonamides (thio-

/dithio-) 

-0.0176 nR=CX2 Number of nR=CX2 

 

B 

Coefficient Descriptor Description Coefficient Descriptor Description 

+0.0559 nRCONHR Number of secondary 

amides (aliphatic) 

-0.0761 ALogPS_logS Water solubility 

+0.0505 ALogPS_logP Octanol/water 

coefficient 

-0.0393 nCs Number of total 

secondary C(sp3) 

+0.0481 nCrq Number of ring 

quaternary C(sp3) 

-0.0355 nR=CHX Number of 

R=CHX 



+0.0428 nR=Cs Number of aliphatic 

secondary C(sp2) 

-0.0334 nRCOOR Number of esters 

(aliphatic) 

+0.0398 nCb- Number of substituted 

C(sp2) in benzenes 

-0.0324 nR=CRX Number of 

R=CRX 

+0.037 nArNO2 Number of nitro 

groups (aromatic) 

-0.0305 nFuranes Number of 

furanes 

+0.0344 nCar Number of aromatic 

C(sp2) 

   

+0.0322 nCHRX2 Number of CHRX2    

+0.0318 nRCONR2 Number of 

tertiaryamides 

   

 

C 

Coefficient Descriptor Description Coefficient Descriptor Description 

+0.18 nArOH Number of 

aromatic 

hydroxyls 

-0.113 nCq Number of total 

quaternary 

C(sp3) 

+0.132 nHDon Number of 

donor atoms for 

H-bonds (N and 

O) 

-0.0781 nCp Number of 

terminal 

primary C(sp3) 

+0.0882 nCb- Number of 

substituted 

benzenes C(sp2) 

-0.0655 nCs Number of total 

secondary 

C(sp3) 

+0.0783 nCRX3 Number of CRX3 -0.0593 nCbH Number of 

unsubstituted 

benzenes 

+0.066 nCH2RX Number of 

CH2RX 

   

+0.0571 ALogPS_logP Water/octanol 

coefficient 

   

+0.0548 nArOR Number of 

ethers 

(aromatic) 

   

+0.0514 nCrq Number of ring 

quaternary 

C(sp3) 

   



Table S5. Structural features comparisons (with the use of SetCompare utility in OCHEM software) 

of predicted estrogen receptor binders among high and low production volume chemicals (E 

binders) with predicted non-binders whose metabolites are predicted binders (E metabolites). The 

estrogen binding was predicted by the ASNN model. 

 

Descriptor E-binders (620 

compounds) 

E parent-

metabolites (804 

compounds) 

Enrichment factor p-Value 

Aromatic nitro

 

16 (2.6%) 136 (16.9%) 6.6 -1.09E-20 

 

20 (3.2%) 146 (18.2%) 5.6 -1.65E-20 

Alcohols (R – OH) 262 (42.3%) 176 (21.9%) 1.9 1.3E-16 

Alcohols or phenols 284 (45.8%) 201 (25.0%) 1.8 1.76E-16  

Nitro-haloarenes

 

0 51 (6.3%) Inf. -1.07E-13 

Secondary 

aromatic amines

 

86 (13.9%) 28 (3.5%) 4.0 5.78E-13 

Contains metals 

 

46 (7.4%) 5 (0.6%) 11.9 1.57E-12 



 

42 (6.8%) 4 (0.5%) 13.6 6.04E-12 

Secondary amines 

 

131 (21.1%) 71 (8.8%) 2.4 3.93E-11 

Organo metallic 

compounds 

 

28 (4.5%) 0 Inf. 5.44E-11 

 

28 (4.5%) 0 Inf. 5.44E-11 

 

26 (4.2%) 0 Inf. 3.02E-10 

Phenols 

 

165 (26.6%) 111 (13.8%) 1.9 1.16E-9 

Tertiary amine 

 

102 (16.5%) 240 (29.9%) 1.8 -2.0E-9 



Ortho- or 

paraalkylphenols 

66 (10.6%) 24 (3.0%) 3.6 3.27E-9 

tioesthers

 

26 (4.2%) 2 (0.2%) 16.9 3.98E-8 

dithiocarbamates

 

23 (3.7%) 1 (0.1%) 29.8 5.56E-8 

Nitriles 

 

6 (1%) 44 (5.5%) 5.7 -1.08E-6 

Aliphatic secondary 

and teriary amines

 

0 22 (2.7%) Inf. -3.04E-6 

Quaternary salts 

(including N-

oxides)

 

13 (2.1%) 58 (7.2%) 2.4 -4.01E-6 

Teriary mixed 

amines (aryl alkyl) 

38 (6.1%) 107 (13.3%) 2.2 -4.25E-6 



 

Azo-type (general) 

 

50 (8.1%) 128 (15.9%) 2.0 -4.41E-6 

Aromatic azo 

 

47 (7.6%) 119 (14.8%) 2.0 -1.33E-5 

 

  



Table S6. Structural features comparisons  (with the use of SetCompare utility in OCHEM software) 

of predicted androgen receptor binders among high and low production volume chemicals (A 

binders) with predicted non-binders whose metabolites are predicted binders (A metabolites). The 

androgen binding was predicted by the ASNN model. 

Descriptor A-binders (610 

compounds) 

A-metabolites 

(251 compounds) 

Enrichment factor p-Value 

 

545 (89.3%) 133 (53.0%) 1.7 5.82E-30 

Aromatic nitro

 

104 (17.0%) 2 (0.8%) 21.4 1.01E-14 

 

105 (17.2%) 2 (0.8%) 21.6 6.89E-15 

Halogen derivatives 

(alkyl or aryl) 

 

207 (33.9%) 37 (14.7%) 2.3 2.89E-9 

Aryl halide 

 

178 (29.2%) 29 (11.6%) 2.5 6.67E-9 

 

149 (24.4%) 23 (9.2%) 2.7 6.52E-8 



 

82 (13.4%) 6 (2.4%) 5.6 6.54E-8 

 

158 (25.9%) 26 (10.4%) 2.5 9.01E-8 

 

209 (34.3%) 43 (17.1%) 2.0 1.74E-7 

Aromatic amines 

precursors

 

78 (12.8%) 6 (2.4%) 5.3 2.26E-7 

Aromatic N groups

 

141 (23.1%) 23 (9.2%) 2.5 5.05E-7 

Nitro-haloarenes

 

39 (6.4%) 0 Inf. 1.01E-6 

 

179 (29.3%) 36 (14.3%) 2.0 1.31E-6 



 

51 (8.4%) 2 (0.8%) 10.5 1.76E-6 

 

173 (28.4%) 35 (13.9%) 2.0 2.52E-6 

Alcohols or phenols 186 (30.5%) 41 (16.3%) 1.9 7.64E-6 

alcohols 191 (31.3%) 44 (17.5%) 1.8 1.67E-5 

Carboxylic acid 

amines

 

76 (12.5%) 9 (3.6%) 3.5 1.68E-5 

H-N-C=O 60 (9.8%) 7 (2.8%) 3.5 1.38E-4 

  



Table S7. Selected potential endocrine disruptors and reproductive toxicants among high and low 

production volume chemicals based on their presence on the lists of potential endocrine disruptors 

or classification as reproductive toxicant according to CLP regulation (No 1272/2008). Results from 

EAT models are given in columns ‘E’ (estrogen binding model), ‘T’ (transthyretin binding model), and 

‘A’ (androgen antagonistic model). Compounds predicted as binders are marked with ‘yes’, non-

binders with ‘no’ and compounds outside the domain of a model with ‘OAD’ (in ‘E’, ‘A’ and ‘T’ 

columns). References on phase I metabolism data are provided (‘reference’ column).  

CAS number name E A T E
1
 A

1
 T

1
 

refere

nce 

refere

nce 

agree

ment
2
 

1836-75-5 Nitrofen no yes no yes yes yes 

(Brown 

and 

Manso

n, 

1986) 

yes 

108-73-6 Phloroglucinol no no no yes OAD yes 

(Mong

e et al., 

1984) 

no 

1675-54-3 BADGE no no no yes yes OAD 

(Bingh

am et 

al., 

2001) 

no 

92-52-4 Biphenyl OAD no OAD yes yes OAD 
(Meyer

, 1977) 
yes 

569-64-2 Machite green no no OAD yes yes OAD 

(Culp 

et al., 

1999) 

yes 

1091-93-6 
3-methoxyestra-2,5(10)-

dien-17beta-ol 
no no OAD yes yes OAD 

no 

data 

found 

- 

60628-96-8 bifonazole no no no yes yes OAD 

no 

data 

found 

- 

439-14-5 diazepam no yes no yes yes OAD 

(Umez

awa et 

al., 

2008) 

yes 

50-48-6 amitriptyline no yes OAD yes yes OAD 

(Olese

n and 

Linnet, 

1997) 

yes 

7681-93-8 natamycin no yes OAD yes yes OAD 
(EFSA, 

2009)  
no 

117-81-7 
Bis(2-ethylhexyl) 

phthalate 
no no no yes OAD OAD 

(JRC, 

2008) 
no 

121-75-5 malathion no no OAD yes OAD OAD 

(Buratt

i et al., 

2005) 

yes 

15087-24-8 Benzylidene camphor no no no yes OAD OAD 
(SCCS, 

2013) 
no 

19044-88-3 Oryzalin no no OAD yes OAD OAD 

(U.S.EP

A, 

1994) 

yes 



101-20-2 Triclocarban no no OAD yes OAD OAD 

(Scheb

b et 

al., 

2011) 

yes 

57-68-1 Sulfadimidine no no OAD yes OAD OAD 

(Paulso

n et 

al., 

1987) 

yes 

81-11-8 
4,4'-diaminostilbene-

2,2'-disulphonic acid 
no no OAD yes OAD OAD 

no 

data 

found 

- 

88-30-2 

Alpha,alpha,alpha-

trifluoro-4-nitro-m-

cresol 

no no no yes OAD OAD 

(Lech, 

1971; 

Lech 

and 

Costrin

i, 

1972) 

no 

91-53-2 Ethoxyquin no no OAD yes OAD OAD 

(Burka 

et al., 

1996; 

Skaare 

and 

Solhei

m, 

1979) 

yes 

1689-99-2 
2,6-dibromo-4-

cyanophenyl octanoate 
no no no yes OAD OAD 

(Rober

ts et 

al., 

1998) 

no 

3861-47-0 
4-cyano-2,6-

diiodophenyl octanoate 
no OAD no yes OAD OAD

 

(Rober

ts et 

al., 

1998)
3
 

3 

525-66-6 propranolol no no OAD yes OAD OAD 

(Masu

buchi 

et al., 

1994) 

yes 

66357-35-5 ranitidine no no OAD yes OAD OAD 

(Cross 

et al., 

1995) 

yes 

35554-44-0 imazalin no yes no OAD yes yes 

(Mann

ens et 

al., 

1993 

(Unpu

blished 

work))
4
 

4
 

66246-88-6 penconazole no yes no OAD yes yes 
(EFSA, 

2008) 

5 

94-82-6 

4-(2,4-

dichlorophenoxy)butyri

c acid 

no no no OAD yes yes 

(EC, 

2002) yes 

59-50-7 Chlorocresol no yes no OAD OAD yes
 6 

no 

118-74-1 Hexachlorobenzene no no no OAD OAD yes 
(To-

Figuer
yes 



as et 

al., 

1997) 

87-65-0 2,6-dichlorophenol no no no OAD OAD yes 

(Minist

ry of 

Econo

my) 

no 

1570-64-5 4-chloro-o-cresol no yes no OAD OAD yes 

no 

data 

found 

- 

1689-84-5 
3,5-dibromo-4-

hydroxybenzonitrile 
no no no OAD OAD yes 

(Rober

ts et 

al., 

1998) 

no 

32534-81-9 

Diphenylether, 

pentabromoderivative 

(BDE-99) 

OAD OAD no OAD OAD yes 

(Erratic

o et 

al., 

2011; 

Staplet

on et 

al., 

2009) 

yes 

106-48-9 4-chlorophenol no no no OAD OAD yes 

(Ahlbo

rg et 

al., 

1980; 

Call et 

al., 

1980) 

no 

94-74-6 

(4-chloro-2-

methylphenoxy)acetic 

acid 

no no no OAD OAD yes 

(Lappi

n et 

al., 

2002) 

no 

95-50-1 1,2-dichlorobenzene no no no OAD OAD yes 

(Hissin

k et al., 

1996) 

yes 

99-93-4 
4'-

hydroxyacetophenone 
no no no OAD OAD yes 

no 

data 

found 

- 

32536-52-0 
Diphenylether, 

octabromoderivative 
OAD OAD no OAD OAD yes 

no 

data 

found 

- 

5216-25-1 
Alpha,alpha,alpha,4-

tetrachlorotoluene 
no no no OAD OAD yes 

(U.S.EP

A, 

2013) 

no 

1
results for metabolites 

2
data agrees between experimental observations, see indicated reference, and MetaSite 

3
authors speculates on metabolism 

4
three major metabolites were identified but the compounds were metabolized into at least 25 metabolites  

5
non-binding metabolite was correctly simulated 

6
data taken from registration dossier available at echa.europa.eu with the help of echemportal.org  
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