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Section S1. Step 1 — Data collection

E data from the METI database (METI, 2014) were transformed from relative binding affinity (RBA) to
ICs by normalizing each chemical’s RBA with the reference endogenous ligand 17B-estradiol (E2)(eq.
1).

ICcy Of E
5of2><

RBA 100

ICs of ligand =

The A data includes both 25 and 50% (IC,5s and ICs) inhibition of androgen-induced activity.
Development of QSAR models using both responses have recently been successfully applied by
Jensen et al.,, 2011 and Vinggaard et al., 2008. The inclusion of both IC,5and ICso data enlarges the
applicability domain of the A model by increasing the number of chemicals in the model but it also

adds chemicals with weak A response and thus increases the sensitivity of the model.

All data can be found in a separate file (EAT data.xls).
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Section S2. Step 2 — Chemical Variation Analysis

PCA is a well-established and powerful tool for pattern recognition in large datasets. It identifies a
few uncorrelated linear combinations (principal components) in the original data. Each principal
component captures as much variation as possible and is defined by a score and a loading vector.
Scores show variance among objects, whereas loadings describe the contribution of individual
descriptors to a given component. Descriptors on which PCA was built described mostly topological
information about the molecules including connectivity, atom type, charge, hydrophobic and
hydrophilic surface, weight, hydrogen bond donors/acceptors, structure flexibility and other.
Detailed information on the descriptors was given previously (Rannar and Andersson, 2010; Rybacka
et al., 2014); see also Table S1. The chemical structures were washed and optimized with a 94x
Merck Molecular Force Field (MMFF) prior to chemical descriptor calculations. The washing
procedure included a number of operations such as hydrogen correction, salt and solvent removal,
and adjustment and enumeration of protonation states. Prior to PCA, the descriptors were
autoscaled and if needed log-transformed (if they were not already logarithmic values). For log-
transformation we used a function for variable transformation implemented in SIMCA where the
base value (and sometimes also a multiplication) of the logarithm is adjusted automatically

depending on the skewness of descriptor’s probability distribution.

PCA based on every training set and the high- and low-production volume chemicals (H&LPVCs)
clearly showed that the compounds used to develop the A model (the A set) represented a large
portion of the chemical variation of the entire H&LPVC set (Figure S1B). The same pattern was seen
for compounds with available data depicting binding potency to the estrogen receptor (the E set).
These compounds were structurally diverse (similar to the A set) albeit with fewer examples of small
polar compounds, as seen in the left lower corner of Figure S1A. In contrast, the compounds that
bind to transthyretin (the T set) showed very little structural variation and clustered into two groups
in the PCA score plot (Figure S1C). One cluster included halogenated aromatic compounds such as

polyhalogenated biphenyls and diphenylethers (upper group in Figure S1C), whereas a second cluster
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consisted of per- and poly-fluorinated compounds (lower group in Figure S1C). Since no compounds
with MW > 960 g/mol were present in any of the three training sets, and H&LPVCs range up to 2104

g/mol in MW, no compounds were found on the right side of Figures S1A-C.
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Section S3. Steps 3 and 4 — Model Development and metabolite simulation

Five different descriptor sets were used for QSAR modelling calculated using the Online Chemical
Database (OCHEM (Sushko et al., 2011)). These included: electro-topological state indices (Hall and
Kier, 1995; Kier and Hall, 1999); Estate that combined electronic and graph-topological information;
ISIDA fragments (Varnek et al., 2008) that used 2D Lewis graph representations of the compounds;
GSFragments (Skvortsova et al., 1999) that calculated the frequencies of certain special fragments;
CDK descriptors (Steinbeck et al., 2003) that captured electronic, constitutional, topological and
geometrical information; and Dragon descriptors (Todeschini and Consonni, 2000; version 6) that
consisted of 20 different descriptor blocks. Additionally the octanol-water partition coefficient and
water solubility were added as calculated by the ALOGPS program (Tetko and Tanchuk, 2002)
implemented in the OCHEM software. More details about the descriptor sets can be found in the

OCHEM user manual (http://docs.ochem.eu/display/MAN). The models built to aid the interpretation

of the EAT models were based on the functional group counts including from 12 to 18 Dragon
descriptors, depending on the model. The chemical structures from the EAT sets were standardized,
neutralized, and optimized with Corina (Sadowski and Gasteiger, 1993) in OCHEM. Descriptors with a
variance below 0.01 were excluded. If highly correlated (pair-wise Pearson’s correlation coefficient R

> 0.95), descriptors were used as groups in further modelling.

For finding covariance between calculated chemical descriptors (X-data) and E-, A- or T- data (Y-
data), seven regression algorithms were studied. Linear correlations were searched using the
following algorithms: multiple linear regression (MLR), Fast Stepwise (Stagewise) Multivariate Linear
Regression (FSMLR), and Partial Least Squares (PLS) regression. In brief, FSMLR iteratively builds
linear regression models and excludes highly correlated descriptors by means of so-called greedy
algorithm (Cormen, 2001), and with PLS, X-data are transformed into a few latent variables aiming
for the smallest squared difference between original and predicted objects. Apart from associative
neural network (described in materials and methods section 2.3) three additional non-linear models

were also used, including k-nearest neighbor (k-NN) regression, random forest exported from the
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Weka 3 software (Waikato, 2014); WEKA-RF), and support vector machine using the open source
library for support vector machines (LIBSVM). In brief, k-NN classifies a sample according to k-closest
objects using voting/average values; WEKA-RF constructs a multitude of decision trees which outputs
a class; and LIBSVM produces linear boundaries between object groups in a transformed space,
where vector representation of the data is replaced with similarities to other data points (Chang and
Lin, 2011). More details about the modelling algorithms can be found in the OCHEM user manual

(http://docs.ochem.eu/display/MAN).

All models were validated internally and externally. Prior to modelling, every set was randomly split
into training and test sets in 4:1 ratio. The seed random generator from Java was used. The seed
number is provided for every model on OCHEM website hence models can be easily recalculated and
reproduced. The training set was used in model development, whereas the test set was left for
external validation. For internal validation, 5-fold cross-validation or stratified bagging was used. In 5-
fold cross-validation, the original sample is randomly partitioned into five equal-sized subsamples—
one subsample is retained as the validation data for testing the model whereas the remaining 4
subsamples are used as training data. This procedure is then repeated 5 times. Stratified bagging
involves training multiple models based on randomly selected training sets which are created from
the original set by sampling with replacement (Breiman, 1996). We used 64-times sampling for this

study since the statistical parameters already reached plateau at this level.

For each model, we calculated the number of correctly predicted binders and non-binders (true
positives (TPs) and negatives (TNs) respectively), binders incorrectly predicted to be non-binders
(false negatives, FNs), and non-binders incorrectly predicted to be binders (false positives, FPs).
These measures were used to calculate commonly used statistics by QSAR modellers for model

evaluation (eq. 1-4).

TPsS+TNs
TPSs+TNs+FPs+FNs

(eq. 1) accuracy =
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(eq. 2)

(eq. 3)

(eq. 4)

TPs

sensitivity =
TPs+FNs
f e s TNs
specificity =
p f Y TNs+FPs

balanced accuracy =

sensitivity+specificity
2
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Section S4. Step 5 — Applicability domain method

The applicability domain consists of the chemical properties and features characterising the
compounds that a model was trained with. If a query chemical is too structurally different from
compounds in the training set then that chemical’s prediction can be non-reliable and would

therefore fall outside of the domain.

The assessment of applicability domain is crucial for assuring high reliability of obtained predictions.
Many different approaches for AD assessment were studied (Sahigara et al., 2012; Sushko et al.,
2010) yet still no method is ideal (Tetko et al.,, 2014). According to a number of recent studies
accuracy of predictions practically depends neither on the used descriptors nor the used QSAR
method but rather on the similarity of queried compounds to the training set molecules (Sheridan et
al., 2004; Tetko et al., 2008; Sahigara et al., 2012). This implies also that some compounds tend to
yield large errors in their predictions for every model due to their unique chemical and structural
properties that may not be captured by descriptors used in the modelling. For this reason, in the AD
assessment we have used a set of carefully chosen MOE descriptors that represent universal and
interpretable properties related to e.g. connectivity, charge, and hydrophobicity (see Table S1 for
detailed description of every used descriptor and section S2 for details). To highlight the most
significant information and decrease correlation among descriptors we built PCA models for the E-,
A-, and T-training set compounds. Every PCA model included only principal components with
eigenvalues higher than 2. Compounds with chemical characteristics that differed significantly from
the chemical variation presented by E-, A- or T-data received a high distance-to-the-model (DModX)
value. New compounds (not present in the training set) can be predicted into the PCA (and hence
have their DModX values calculated). A DModX value larger than around 2.5 usually defines
compounds that fell outside of the domain (Wold et al.,, 2001). Herein we used a more cautious

approach where chemicals with DModX > 2 were considered as outside of the applicability domain.
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Section S5. Model interpretation with PLS

The EAT models presented in the main manuscript developed using associative neural network, were
complemented with PLS models to ease interpretation of critical chemical factors for studied
endpoints. The PLS models were built based on simple constitutional descriptors related to e.g.,
functional group counts. This procedure was recently applied by Vorberg and Tetko, 2014. These PLS
models performed slightly worse than other models (4-9% lower balanced accuracy) but were
valuable in increasing our understanding of the most critical chemical properties related to modelled
response (Table S4). In brief, E- and T-binders are mostly lipophilic compounds with aromatic rings
containing hydroxyl groups attached to an aromatic ring (nArOH). These compounds have frequently
high numbers of N and O atoms that can function as H-bond donors (nHDon). Their features suggest
that binders are easily polarizable which, together with information about molecular complexity and
degree of substitution of the compounds, has proven to exert a significant impact on estrogenic
activity (Liu et al., 2008). Additionally, the presence of the nHDon descriptor confirms observations
by Papa et al. (2013) that information describing the frequency of C-O fragments at a topological
distance of 7 — which identifies the length of the molecules and the presence of oxygen atoms — is
relevant for T-binding (Papa et al., 2013). E-binders often contain the following functional groups:
carbamates (nROCON), hydrazones (nC=N-N<) and sulphonamides (nSO2N); whereas T- and A-
binders are, more frequently, aromatic ethers. Like E- and T-binders, A-binders are lipophilic and
have high numbers of aromatic carbons, but they also show structural characteristics that are
atypical for E- or T-binders. These characteristics include the presence of nitro-groups and aliphatic
secondary and tertiary amides, as also observed by Jensen et al. (Jensen et al., 2011). The structural
characteristics of typical non-binders were reflected by negative PLS variable coefficients; it is very
unlikely that E-binders: are ethers; or contain nitro-groups on aromatic rings; or are secondary
aliphatic amines and ketones. Large counts of secondary and quaternary carbons can characterize

non-binders to transthyretin. Likewise, non-binders to the estrogen receptor have high numbers of
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primary carbons in terminal positions. High numbers of secondary carbons were also frequently

found among non-binders to the androgen receptor, along with aliphatic esters and furans.

Section S6. Applicability domain analysis of EAT models

In the fifth step of the study we analysed chemical variation of compounds outside the applicability
domain (AD) (step five in Figure 1). A group of 389 chemicals was found to be outside the AD for all
three EAT models. These chemicals did not encompass the chemical variation of the H&LPVCs. PCA
showed that compounds outside the AD could be separated into three groups (Figure S3A-B). The
first group consisted of large and hydrophobic structures with many single bonds (the upper right
corner of Figure S3A), such as pentaerythritoltetraoleate. The second group comprised chemicals
with a high number of hydrogen acceptors, double bonds and rings, often with sulphuric fragments
(the left bottom side of Figure S3A). The third group included a vast range of compounds but among
them relatively small and volatile structures, such as acetylene or trifluoromethane, were found (very
left side of the plot). Some compounds, such as phosphate-substituted amino acids (found in the
middle of Figure S3A) were studied in higher dimensional PCs (3-8) but no grouping was found

among them.
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Section S7. Structure comparison

The analysis was done to investigate unique chemical properties of bioactivated E- and A-binders
whereas the number of T-binders (50) was considered too few for the analysis. Among the
bioactivated compounds, 18.2% were found to be nitro compounds and 16.9% aromatic nitro
compounds; these portions were much greater than those of the active parent compounds (3.2 and
2.6%, respectively; Table S5). In addition, bioactivated H&LPVCs included more tertiary amines
(29.9%, versus 16.5% for parent compounds) and nitriles (5.5% versus 1%). Several structural
features were only present among the bioactivated compounds, such as nitro-haloarenes (6.3%) and
aliphatic secondary and tertiary amines (2.7%). The descriptors, including nitro aromatics (nArNO2)
and secondary amines (nRNHR), have high negative coefficients in the PLS model for E-binders (Table
S4A) and it is not surprising that these chemical features are unlikely to occur among active parent
compounds. It is, however, likely that bioactivation leads to the reduction of these structural
features, e.g. when compounds undergo deamination (a typical reaction catalysed by cytochrome
P450 in phase | metabolism) and thus become E-binders. The same analysis was done for compounds
that become A-binders after metabolism (Table S6), however no typical structural features could be
identified. Notably, the number of bioactivated compounds (251 chemicals) was only slightly higher
than the number of deactivated compounds (187 chemicals). Fewer E- (60) and T- binders (2) were
detoxified. T-binders and T-non-binders include a large portion of polyhalogenated aromatics (more
information in the first paragraph of Section 3); considering that hydroxylation is a common
biotransformation pathway of aromatics, and that the descriptor with the highest positive PLS-
coefficient was the number of hydroxylated aromatics (nArOH) (Table S4C), it would not be surprising
if bioactivation could lead to a significant increase in the number of T-binders (by 3-fold, as seen in
this study). Such bioactivation was already proven to generate potential endocrine-disrupting

metabolites for brominated aromatic flame retardants (Hamers et al., 2008).
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Figure S1. PCA plots of training and test sets (blue) for estrogen (A), androgen (B), and
transthyretin (C) models mapped with high and low production volume chemicals (grey). PC1 and
PC2 explain 54% of the variance, and the model has in total 9 PCs (84% of the explained variance).




Figure S2. Ratios of predicted binders, non-binders, and compounds outside the applicability domains of the estrogen (A), androgen (B), and
transthyretin (C) models for the 5 most likely (according to MetaSite) formed metabolites of high and low production volume chemicals (6,617
chemicals). To the right of all the graphs, the final numbers of compounds that were binders (red) and non-binders/outside the domain (green dots/grey

stripes) are given.
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Figure S3. PCA score plot (A) and loading plot (B) of the 389 compounds identified as out of domain
(OAD) by all three EAT models based on simple MOE descriptors. First two PCs explain 54% of
variation (PC1 —42% and PC2 — 12 %).
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Table S1. The list of MOE descriptors used in PCA analysis

Descriptor Description

VDistEq If mis the sum of the distance matrix entries then VdistEq is defined to be the
sum of log, m - p; log, p; / m where p; is the number of distance matrix entries
equal toi.

VDistMa If m is the sum of the distance matrix entries then VDistMa is defined to be the
sum of log, m - D log, D; / m over all i and j.

b_1rotR Fraction of rotatable single bonds: b_1rotN divided by b_heavy.

Weight Molecular weight (including implicit hydrogens) with atomic weights taken from
[CRC 1994].

chio Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. This is
calculated as the sum of 1/sqrt(d,) over all heavy atoms i with d; > 0.

chil Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. This is
calculated as the sum of 1/sqrt(did;) over all bonds between heavy atoms jand j
where j <.

VAdjEq Vertex adjacency information (equality): -(1-f)log,(1-f) - f log, f where f = (n2 -
m)/ n’, n is the number of heavy atoms and m is the number of heavy-heavy
bonds. If fis not in the open interval (0,1), then 0 is returned.

VAdjMa Vertex adjacency information (magnitude): 1 + log, m where m is the number of
heavy-heavy bonds. If m is zero, then zero is returned.

balaban) Balaban's connectivity topological index [Balaban 1982].

PEOE_PC+ Total positive partial charge: the sum of the positive gi. Q_PC+ is identical to PC+
which has been retained for compatibility.

PEOE_PC- Total negative partial charge: the sum of the negative g;. Q_PC- is identical to PC-
which has been retained for compatibility.

PEOE_RPC+ Relative positive partial charge: the largest positive g; divided by the sum of the
positive g;.. Q_RPC+ is identical to RPC+ which has been retained for
compatibility.

PEOE_RPC- Relative negative partial charge: the smallest negative g; divided by the sum of

PEOE_VSA_FHYD

PEOE_VSA_FNEG

PEOE_VSA_FPNEG

PEOE_VSA_FPOL

PEOE_VSA_FPOS

the negative g;. Q_RPC- is identical to RPC- which has been retained for
compatibility.

Fractional hydrophobic van der Waals surface area. This is the sum of the v; such
that | g;| is less than or equal to 0.2 divided by the total surface area. The v; are
calculated using a connection table approximation.

Fractional negative van der Waals surface area. This is the sum of the v; such that
g; is negative divided by the total surface area. The v; are calculated using a
connection table approximation.

Fractional negative polar van der Waals surface area. This is the sum of the v;
such that g; is less than -0.2 divided by the total surface area. The v; are
calculated using a connection table approximation.

Fractional polar van der Waals surface area. This is the sum of the v; such that
|gi| is greater than 0.2 divided by the total surface area. The v; are calculated
using a connection table approximation.

Fractional positive van der Waals surface area. This is the sum of the v; such that
g;is non-negative divided by the total surface area. The v; are calculated using a
connection table approximation.




PEOE_VSA_FPPOS

PEOE_VSA_HYD

PEOE_VSA_NEG

PEOE_VSA_PNEG

PEOE_VSA_POL

PEOE_VSA_POS

PEOE_VSA_PPOS

Kierl

Kier2
Kier3

KierFlex

logS

apol

bpol

vsa_acc

vsa_don

vsa_hyd

vsa_other

vsa_pol

Fractional positive polar van der Waals surface area. This is the sum of the v; such
that g; is greater than 0.2 divided by the total surface area. The v; are calculated
using a connection table approximation.

Total hydrophobic van der Waals surface area. This is the sum of the v; such that
| gi| is less than or equal to 0.2. The v; are calculated using a connection table
approximation.

Total negative van der Waals surface area. This is the sum of the v; such that g; is
negative. The v; are calculated using a connection table approximation.

Total negative polar van der Waals surface area. This is the sum of the v; such
that g; is less than -0.2. The v; are calculated using a connection table
approximation.

Total polar van der Waals surface area. This is the sum of the v; such that | g;]| is
greater than 0.2. The v; are calculated using a connection table approximation.

Total positive van der Waals surface area. This is the sum of the v; such that g; is
non-negative. The v; are calculated using a connection table approximation.

Total positive polar van der Waals surface area. This is the sum of the v; such that
g;is greater than 0.2. The v; are calculated using a connection table
approximation.

First kappa shape index: (n-1)2 / m’” [Hall 1991].
Second kappa shape index: (n-l)2 / m* [Hall 1991].

Third kappa shape index: (n-1) (n-3)* / ps” for odd n, and (n-3) (n-2)* / ps° for even
n [Hall 1991].

Kier molecular flexibility index: (KierA1) (KierA2) / n [Hall 1991].

Log of the aqueous solubility This property is calculated from an atom
contribution linear atom type model [Hou 2004] with = 0.90, ~1,200 molecules.

Sum of the atomic polarizabilities (including implicit hydrogens) with
polarizabilities taken from [CRC 1994].

Sum of the absolute value of the difference between atomic polarizabilities of all
bonded atoms in the molecule (including implicit hydrogens) with polarizabilities
taken from [CRC 1994].

Molecular refractivity (including implicit hydrogens). This property is calculated
from an 11 descriptor linear model [MREF 1998] with r= 0.997, RMSE = 0.168 on
1,947 small molecules.

Approximation to the sum of VDW surface areas of pure hydrogen bond
acceptors (not counting acidic atoms and atoms that are both hydrogen bond
donors and acceptors such as -OH).

Approximation to the sum of VDW surface areas of pure hydrogen bond donors
(not counting basic atoms and atoms that are both hydrogen bond donors and
acceptors such as -OH).

Approximation to the sum of VDW surface areas of hydrophobic atoms.

Approximation to the sum of VDW surface areas of atoms typed as "other".

Approximation to the sum of VDW surface areas of polar atoms (atoms that are
both hydrogen bond donors and acceptors), such as -OH.




SlogP

SMR

TPSA

density
vdw_area
vdw_vol

logP(o/w)

diameter

radius

wiener Path

wiener Pol

a_aro

b_1rotN

b_ar

b_double

rings

zagreb

b_double/b_count

b_ar/b_count

b_single/b_count
a_aro/a_count
a_don/a_count

a_acc/a_count

a_hyd /a_count

nX

Log of the octanol/water partition coefficient (including implicit hydrogens). This
property is an atomic contribution model [Crippen 1999] that calculates logP
from the given structure; i.e., the correct protonation state (washed structures).
Results may vary from the logP(o/w) descriptor. The training set for SlogP was
~7000 structures.

Molecular refractivity (including implicit hydrogens). This property is an atomic
contribution model [Crippen 1999] that assumes the correct protonation state
(washed structures). The model was trained on ~7000 structures and results may
vary from the mr descriptor.

Polar surface area calculated using group contributions to approximate the polar
surface area from connection table information only. The parameterization is
that of Ertl et al. [Ertl 2000].

Molecular mass density: Weight divided by vdw_vol.
Area of van der Waals surface calculated using a connection table approximation.
van der Waals volume calculated using a connection table approximation.

Log of the octanol/water partition coefficient (including implicit hydrogens). This
property is calculated from a linear atom type model [LOGP 1998] with
= 0.931, RMSE=0.393 on 1,827 molecules.

Largest value in the distance matrix [Petitjean 1992].

If r;is the largest matrix entry in row i of the distance matrix D, then the radius is
defined as the smallest of the r; [Petitjean 1992].

Wiener path number: half the sum of all the distance matrix entries as defined in
[Balaban 1979] and [Wiener 1947].

Wiener polarity number: half the sum of all the distance matrix entries with a
value of 3 as defined in [Balaban 1979].

Number of aromatic atoms.

Number of rotatable single bonds. Conjugated single bonds are not included
(e.g., ester and peptide bonds).

Number of aromatic bonds.

Number of double bonds. Aromatic bonds are not considered to be double
bonds.

The number of rings.
Zagreb index: the sum of d? over all heavy atoms i.

Number of double bonds. / Number of bonds (including implicit hydrogens). This
is calculated as the sum of (di/2 + hi) over all non-trivial atoms i.

Number of aromatic bonds / Number of bonds

Number of single bonds / Number of bonds

Number of aromatic atoms / Number of atoms

Number of hydrogen bond donor atoms / Number of atoms

Number of hydrogen bond acceptor atoms (not counting acidic atoms but
counting atoms that are both hydrogen bond donors and acceptors such as -OH)
/ Number of atoms

Number of hydrophobic atoms / Number of atoms

Number of halogen atoms




nX/a_count Number of halogen atoms / Number of atoms

rings/a_count The number of rings / Number of atoms




Table S2. Balanced accuracies of all QSAR models built for estrogen (A), androgen (B), and transthyretin (C) binding. The abbreviations in the first row
stand for the following machine learning methods: Partial Least Squares (PLS), Associative Neural Networks (ASNN), k-Nearest Neighbour (k-NN), Supporting
Vector Machine using the LibSVM, Fast Stepwise (Stagewise) Multivariate Linear Regression (FSMLR), Multilinear Regression Analysis (MLRA), and Random
Forest method implemented in Weka software (WEKA-RF)®. For every machine learning method an internal validation procedures were used: cross-
validation (CV) or bagging procedure (bag). Statistics of the models chosen for further modelling are bolded.

A

Descriptors/machine learning method ASNN k-NN LibSVM FSMLR MLRA PLS WEKA-RF
CV bag CV bag CV bag CV bag CV bag CV bag CV Dbag

CDK? Training set | 84% 86% 82% 81% 84% 84% 77% 73% 82% 84% 79% 83% 80% 83%

Test set 88% 92% 88% 87% 82% 90% 88% 87% 83% 87% 84% 87% 83% 89%

Dragon6 (blocks: 1-29) Training set | 86% 87% 82% 81% 85% 87% 83% 85% 79% 85% 82% 84% 82% 83%

Test set 89% 88% 86% 88% 92% 92% 85% 75% 80% 84% 84% 86% 85% 90%
ALogPS, OEstate Training set | 84% 85% 79% 81% 83% 84% 80% 83% 82% 82% 81% 83% 84% 84%
Test set 84% 85% 83% 86% 87% 85% 81% 86% 84% 82% 83% 87% 90% 90%

Fragmentor (Length 2 —4) Trainingset | 84% 85% 75% 76% 83% 84% 80% 83% 79% 81% 81% 82% 81% 83%
Test set 85% 83% 79% 83% 84% 89% 80% 85% 81% 81% 83% 82% 87% 89%
GSFrag Trainingset | 83% 84% 77% 78% 77% 82% 77% 7% 78% 7% 77% 78% 80% 81%

Test set 87% 88% 81% 83% 82% 89% 79% 81% 81% 80% 83% 80% 79% 85%




B

Descriptors/machine learning method

CDK?

Dragon6 (blocks: 1-29)

ALogPS, OEstate

Fragmentor (Length 2 — 4)

GSFrag

Training set
Test set
Training set
Test set
Training set
Test set
Training set
Test set
Training set

Test set

ASNN

cv

bag

k-NN

cv

bag

LibSVM

cv

bag

FSMLR

cv

bag

MLRA

cv

bag

PLS

cv

bag

WEKA-RF

cv

bag

77%

78%

77%

79%

74%

79%

75%

79%

74%

80%

76%

77%

77%

75%

76%

78%

75%

78%

75%

81%

73%

80%

75%

77%

73%

76%

70%

74%

71%

75%

74%

78%

73%

74%

72%

79%

68%

76%

69%

77%

74%

81%

74%

79%

75%

74%

75%

78%

74%

78%

77%

80%

76%

81%

76%

77%

78%

74%

74%

79%

65%

65%

64%

71%

64%

65%

68%

64%

62%

70%

66%

71%

72%

76%

70%

76%

71%

72%

66%

71%

70%

75%

69%

62%

69%

74%

70%

69%

71%

74%

73%

73%

72%

75%

72%

73%

72%

69%

72%

76%

64%

71%

64%

61%

67%

68%

64%

72%

63%

64%

67%

74%

76%

77%

72%

71%

72%

73%

66%

69%

70%

75%

71%

72%

73%

78%

73%

78%

71%

74%

72%

78%

72%

77%

73%

78%

73%

76%

72%

76%



C

Descriptors/machine learning method

CDK? Training set
Test set

Dragon6 (blocks: 1-29) Training set
Test set

ALogPS, OEstate Training set
Test set

Fragmentor (Length 2 —4) Training set
Test set
GSFrag Training set

Test set

ASNN

cv

bag

k-NN

cv

bag

LibSVM

cv

bag

FSMLR

cv

bag

MLRA

cv

bag

PLS

cv

bag

WEKA-RF

cv

bag

82%

90%

88%

89%

85%

82%

82%

76%

84%

82%

Y more details at www.cs.waikato.ac.nz/ml/weka/

2 constitutional, topological, geometrical, electronic and hybrid descriptors

86%

86%

89%

89%

84%

79%

81%

80%

88%

84%

81%

85%

82%

86%

79%

79%

84%

68%

75%

79%

83%

84%

88%

82%

80%

79%

79%

82%

78%

79%

81%

82%

87%

87%

81%

81%

83%

79%

81%

78%

87%

87%

89%

89%

85%

80%

81%

82%

89%

91%

83%

79%

80%

79%

79%

65%

81%

66%

78%

66%

84%

76%

87%

86%

81%

69%

80%

67%

89%

69%

80%

76%

78%

84%

77%

70%

79%

62%

79%

69%

82%

77%

65%

76%

74%

73%

77%

64%

78%

77%

80%

82%

85%

80%

79%

69%

81%

80%

80%

71%

84%

79%

88%

89%

79%

69%

79%

72%

84%

76%

86%

78%

85%

85%

88%

64%

87%

82%

83%

78%

88%

85%

88%

83%

88%

85%

85%

79%

87%

85%



Table S3. Statistics of selected estrogen, androgen, and transthyretin Associative Neural Networks
models.

Predicted endpoint Number of Balanced Sensitivity Specificity
compounds accuracy

Estrogen Training set 743 87% 86% 87%
receptor binding | oot set 186 91% 94% 88%
Androgen Training set 744 77% 68% 86%
receptor binding

Test set 186 81% 74% 88%
Transthyretin Training set 162 89% 86% 92%
binding Test set 41 89% 83% 94%




Table S4. Lists of descriptors and coefficients for PLS models of estrogen (A), androgen (B), and

transthyretin (C) binding.

A

Coefficient

+0.186

+0.11

+0.0992

+0.0666

+0.0656

+0.0617

+0.0303

+0.0276

+0.024

B

Coefficient

+0.0559

+0.0505

+0.0481

Descriptor

nArOH

ALogPS_logP

nCrs

nR#CH/X

nROCON

nHDon

nC=N-N<

nCb-

nSO2N

Descriptor

NRCONHR

ALogPS logP

nCrq

Description

Number of aromatic
hydroxyls

Octanol/water
coefficient

Number of ring
secondary C(sp3)

Number of terminal
C(sp)
Number of (thio-)

carbamates (aliphatic)

Number of donor
atoms for H-bonds (N
and O)

Number of hydrazones

Number of substituted
benzene C(sp2)

Number of
sulfonamides (thio-
/dithio-)

Description

Number of secondary
amides (aliphatic)

Octanol/water
coefficient

Number of ring
quaternary C(sp3)

Coefficient

-0.0954

-0.0912

-0.0671

-0.0635

-0.0599

-0.0317

-0.0304

-0.0178

-0.0176

Coefficient

-0.0761

-0.0393

-0.0355

Descriptor

ALogPS logS

nRCO

nCp

nArX

nArOR

nArNO2

NRNHR

nArCHO

nR=CX2

Descriptor

ALogPS logS

nCs

nR=CHX

Description

Water solubility

Number of ketones
(aliphatic)

Number of
terminal primary
C(sp3)

Number of X on
aromatic ring

Number of ethers

(aromatic)

Number of nitro
groups (aromatic)

Number of
secondary amines
(aliphatic)

Number of
aldehydes
(aromatic)

Number of nR=CX2

Description

Water solubility

Number of total
secondary C(sp3)

Number of
R=CHX



+0.0428

+0.0398

+0.037

+0.0344

+0.0322

+0.0318

C

Coefficient

+0.18

+0.132

+0.0882

+0.0783

+0.066

+0.0571

+0.0548

+0.0514

nR=Cs

nCb-

nArNO2

nCar

nCHRX2

NRCONR2

Descriptor

nArOH

nHDon

nCb-

nCRX3

nCH2RX

ALogPS_logP

nArOR

nCrq

Number of aliphatic
secondary C(sp2)

Number of substituted
C(sp2) in benzenes

Number of nitro
groups (aromatic)

Number of aromatic
C(sp2)

Number of CHRX2

Number of
tertiaryamides

Description

Number of
aromatic
hydroxyls

Number of
donor atoms for
H-bonds (N and
0)

Number of
substituted
benzenes C(sp2)

Number of CRX3

Number of
CH2RX

Water/octanol
coefficient

Number of
ethers
(aromatic)

Number of ring
quaternary
C(sp3)

-0.0334

-0.0324

-0.0305

Coefficient

-0.113

-0.0781

-0.0655

-0.0593

nRCOOR

nR=CRX

nFuranes

Descriptor

nCq

nCp

nCs

nCbH

Number of esters
(aliphatic)

Number of
R=CRX

Number of
furanes

Description

Number of total
quaternary
C(sp3)

Number of
terminal
primary C(sp3)

Number of total
secondary
C(sp3)

Number of
unsubstituted
benzenes



Table S5. Structural features comparisons (with the use of SetCompare utility in OCHEM software)
of predicted estrogen receptor binders among high and low production volume chemicals (E
binders) with predicted non-binders whose metabolites are predicted binders (E metabolites). The
estrogen binding was predicted by the ASNN model.

Descriptor E-binders (620 E parent- Enrichment factor  p-Value
compounds) metabolites (804
compounds)
Aromatic nitro 16 (2.6%) 136 (16.9%) 6.6 -1.09E-20
0
Ar—ﬁ//
N .
0
20 (3.2%) 146 (18.2%) 5.6 -1.65E-20
.. 0
R—N7 _
O
Alcohols (R — OH) 262 (42.3%) 176 (21.9%) 1.9 1.3E-16
Alcohols or phenols 284 (45.8%) 201 (25.0%) 1.8 1.76E-16
Nitro-haloarenes 0 51 (6.3%) Inf. -1.07E-13
Secondary 86 (13.9%) 28 (3.5%) 4.0 5.78E-13

aromatic amines

Contains metals 46 (7.4%) 5 (0.6%) 11.9 1.57E-12

Ru Rh Pd Sc Bi
Sb Ti V'
In Cr Sn Mn La Fe
Er Tm Yb Lu Hf Ta
W Re Co Os Ni Ir
Zn Ga Ge As Y

Zr Nb Ce Pr NdSm
Eu Gd Tb Dy Ho Pt
Tl Pb Ac Th

Pa Mo U TcTe Po At



Secondary amines

=T

Organo metallic

compounds

Cu £n

Hg Ag
Au Pb

Sb Sn
cd As

Post-transition
metals
Ga In Sn
Tl Pb Bi

Organotin

compounds

—Sn—_

Phenols

5

Tertiary amine

42 (6.8%)

131 (21.1%)

28 (4.5%)

28 (4.5%)

26 (4.2%)

165 (26.6%)

102 (16.5%)

4 (0.5%)

71 (8.8%)

111 (13.8%)

240 (29.9%)

13.6

2.4

Inf.

Inf.

Inf.

1.9

1.8

6.04E-12

3.93E-11

5.44E-11

5.44E-11

3.02E-10

1.16E-9

-2.0E-9



Ortho- or 66 (10.6%)
paraalkylphenols

tioesthers 26 (4.2%)

R)J\ /'R

dithiocarbamates 23 (3.7%)

ok

|
R

Nitriles 6 (1%)

R——=N

Aliphatic secondary 0
and teriary amines

Quaternary salts 13 (2.1%)
(including N-
oxides)

N°

R\;:I/R
R |
R

Teriary mixed 38 (6.1%)
amines (aryl alkyl)

24 (3.0%)

2 (0.2%)

1(0.1%)

44 (5.5%)

22 (2.7%)

58 (7.2%)

107 (13.3%)

3.6

16.9

29.8

5.7

Inf.

2.4

2.2

3.27E-9

3.98E-8

5.56E-8

-1.08E-6

-3.04E-6

-4.01E-6

-4.25E-6



R1
N

Rz

Azo-type (general) 50 (8.1%)

N=N

Aromatic azo 47 (7.6%)

128 (15.9%)

119 (14.8%)

2.0

2.0

-4.41E-6

-1.33E-5



Table S6. Structural features comparisons (with the use of SetCompare utility in OCHEM software)
of predicted androgen receptor binders among high and low production volume chemicals (A
binders) with predicted non-binders whose metabolites are predicted binders (A metabolites). The
androgen binding was predicted by the ASNN model.

Descriptor A-binders (610 A-metabolites Enrichment factor p-Value
compounds) (251 compounds)
545 (89.3%) 133 (53.0%) 1.7 5.82E-30
Chalcogens
Group 16: the oxygen family
0
Te Po Lv
Aromatic nitro 104 (17.0%) 2 (0.8%) 214 1.01E-14
0
Ar—ﬁ//
N .
0
105 (17.2%) 2 (0.8%) 21.6 6.89E-15
+.0
R—N7 _
O
Halogen derivatives 207 (33.9%) 37 (14.7%) 2.3 2.89E-9

(alkyl or aryl)

Aryl halide 178 (29.2%) 29 (11.6%) 2.5 6.67E-9

Ar—

149 (24.4%) 23 (9.2%) 2.7 6.52E-8



Br

Aromatic amines
precursors

o Ar

)LNH My

R

Y

Aromatic N groups

Ri +r,0
R—N,
o
R—NH;

R
-

Nitro-haloarenes

@NOZ

82 (13.4%)

158 (25.9%)

209 (34.3%)

78 (12.8%)

141 (23.1%)

39 (6.4%)

179 (29.3%)

6 (2.4%)

26 (10.4%)

43 (17.1%)

6 (2.4%)

23 (9.2%)

36 (14.3%)

5.6

2.5

2.0

53

2.5

Inf.

2.0

6.54E-8

9.01E-8

1.74E-7

2.26E-7

5.05E-7

1.01E-6

1.31E-6



Ar
/
N=N

Alcohols or phenols
alcohols

Carboxylic acid
amines

0

e

Ri |
Ra

H-N-C=0

51 (8.4%)

173 (28.4%)

186 (30.5%)
191 (31.3%)

76 (12.5%)

60 (9.8%)

2 (0.8%)

35 (13.9%)

41 (16.3%)
44 (17.5%)

9 (3.6%)

7 (2.8%)

10.5

2.0

1.9

1.8

3.5

3.5

1.76E-6

2.52E-6

7.64E-6

1.67E-5

1.68E-5

1.38E-4



Table S7. Selected potential endocrine disruptors and reproductive toxicants among high and low

production volume chemicals based on their presence on the lists of potential endocrine disruptors
or classification as reproductive toxicant according to CLP regulation (No 1272/2008). Results from
EAT models are given in columns ‘E’ (estrogen binding model), ‘T’ (transthyretin binding model), and

‘A’ (androgen antagonistic model). Compounds predicted as binders are marked with ‘yes’, non-

binders with ‘no’” and compounds outside the domain of a model with ‘OAD’ (in ‘E’, ‘A’ and ‘T’

columns). References on phase | metabolism data are provided (‘reference’ column).

CAS number

name

refere
nce

refere
nce
agree
2
ment

1836-75-5

Nitrofen

no

yes

no

yes

yes

yes

(Brown
and
Manso
n,
1986)

yes

108-73-6

Phloroglucinol

no

no

no

yes

OAD

yes

(Mong
eetal,
1984)

no

1675-54-3

BADGE

no

no

no

yes

yes

OAD

(Bingh
am et
al.,

2001)

no

92-52-4

Biphenyl

OAD

no

OAD

yes

yes

OAD

(Meyer
,1977)

yes

569-64-2

Machite green

no

no

OAD

yes

yes

OAD

(Culp
etal.,
1999)

yes

1091-93-6

3-methoxyestra-2,5(10)-
dien-17beta-ol

no

no

OAD

yes

yes

OAD

no
data
found

60628-96-8

bifonazole

no

no

no

yes

yes

OAD

no
data
found

439-14-5

diazepam

no

yes

no

yes

yes

OAD

(Umez
awa et
al.,
2008)

yes

50-48-6

amitriptyline

no

yes

OAD

yes

yes

OAD

(Olese
n and
Linnet,
1997)

yes

7681-93-8

natamycin

no

yes

OAD

yes

yes

OAD

(EFSA,
2009)

no

117-81-7

Bis(2-ethylhexyl)
phthalate

no

no

no

yes

OAD

OAD

(JRC,
2008)

no

121-75-5

malathion

no

no

OAD

yes

OAD

OAD

(Buratt
ietal.,
2005)

yes

15087-24-8

Benzylidene camphor

no

no

no

yes

OAD

OAD

(SCCS,
2013)

no

19044-88-3

Oryzalin

no

no

OAD

yes

OAD

OAD

(U.S.EP
A,
1994)

yes




101-20-2

Triclocarban

no

no

OAD

yes

OAD

OAD

(Scheb
b et
al.,
2011)

yes

57-68-1

Sulfadimidine

no

no

OAD

yes

OAD

OAD

(Paulso
n et
al.,
1987)

yes

81-11-8

4,4'-diaminostilbene-
2,2'-disulphonic acid

no

no

OAD

yes

OAD

OAD

no
data
found

88-30-2

Alpha,alpha,alpha-
trifluoro-4-nitro-m-
cresol

no

no

no

yes

OAD

OAD

(Lech,
1971;
Lech
and
Costrin
i,

1972)

no

91-53-2

Ethoxyquin

no

no

OAD

yes

OAD

OAD

(Burka
etal.,
1996;
Skaare
and
Solhei
m,
1979)

yes

1689-99-2

2,6-dibromo-4-
cyanophenyl octanoate

no

no

no

yes

OAD

OAD

(Rober
ts et
al.,
1998)

no

3861-47-0

4-cyano-2,6-
diiodophenyl octanoate

no

OAD

no

yes

OAD

OAD

(Rober
ts et
al.,
1998)°

525-66-6

propranolol

no

no

OAD

yes

OAD

OAD

(Masu
buchi
etal.,
1994)

yes

66357-35-5

ranitidine

no

no

OAD

yes

OAD

OAD

(Cross
etal.,
1995)

yes

35554-44-0

imazalin

no

yes

no

OAD

yes

yes

(Mann
ens et
al.,
1993
(Unpu
blished
work))”

66246-88-6

penconazole

no

yes

no

OAD

yes

yes

(EFSA,
2008)

94-82-6

4-(2,4-
dichlorophenoxy)butyri
c acid

no

no

no

OAD

yes

yes

(EC,
2002)

yes

59-50-7

Chlorocresol

no

yes

no

OAD

OAD

yes

6

no

118-74-1

Hexachlorobenzene

no

no

no

OAD

OAD

yes

(To-
Figuer

yes




as et
al.,
1997)

87-65-0 2,6-dichlorophenol

no

no

no

OAD

OAD

yes

(Minist
ry of
Econo
my)

no

1570-64-5 4-chloro-o-cresol

no

yes

no

OAD

OAD

yes

no
data
found

3,5-dibromo-4-

1689-84-5
hydroxybenzonitrile

no

no

no

OAD

OAD

yes

(Rober
ts et
al.,
1998)

no

Diphenylether,
pentabromoderivative
(BDE-99)

32534-81-9

OAD

OAD

no

OAD

OAD

yes

(Erratic
oet
al.,
2011;
Staplet
on et
al.,
2009)

yes

106-48-9 4-chlorophenol

no

no

no

OAD

OAD

yes

(Ahlbo
rg et
al.,
1980;
Call et
al.,
1980)

no

(4-chloro-2-
94-74-6 methylphenoxy)acetic
acid

no

no

no

OAD

OAD

yes

(Lappi
n et
al.,
2002)

no

95-50-1 1,2-dichlorobenzene

no

no

no

OAD

OAD

yes

(Hissin
k etal.,
1996)

yes

4'-

99-93-4 hydroxyacetophenone

no

no

no

OAD

OAD

yes

no
data
found

Diphenylether,

32536-52-0 L
octabromoderivative

OAD

OAD

no

OAD

OAD

yes

no
data
found

Alpha,alpha,alpha,4-

5216-25-1
tetrachlorotoluene

no

no

no

OAD

OAD

yes

(U.S.EP
AI
2013)

no

'results for metabolites

’data agrees between experimental observations, see indicated reference, and MetaSite

3 .
authors speculates on metabolism

*three major metabolites were identified but the compounds were metabolized into at least 25 metabolites

5non-binding metabolite was correctly simulated

®data taken from registration dossier available at echa.europa.eu with the help of echemportal.org
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