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Motivation: Discrimination statistics describe the ability of a survival model to assign higher risks
to individuals who experience earlier events: examples are Harrell’s C-index and Royston and
Sauerbrei’s D, which we call the D-index. Prognostic covariates whose distributions are controlled
by the study design (e.g. age and sex) influence discrimination and can make it difficult to compare
model discrimination between studies. Although covariate adjustment is a standard procedure for quan-
tifying disease-risk factor associations, there are no covariate adjustment methods for discrimination
statistics in censored survival data. Objective: To develop extensions of the C-index and D-index that
describe the prognostic ability of a model adjusted for one or more covariate(s). Method: We define
a covariate-adjusted C-index and D-index for censored survival data, propose several estimators, and
investigate their performance in simulation studies and in data from a large individual participant data
meta-analysis, the Emerging Risk Factors Collaboration. Results: The proposed methods perform well
in simulations. In the Emerging Risk Factors Collaboration data, the age-adjusted C-index and D-index
were substantially smaller than unadjusted values. The study-specific standard deviation of baseline age
was strongly associated with the unadjusted C-index and D-index but not significantly associated with
the age-adjusted indices. Conclusions: The proposed estimators improve meta-analysis comparisons,
are easy to implement and give a more meaningful clinical interpretation.
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1 Introduction

A fundamental property of a prognostic marker is its ability to discriminate high from low risk patients
(Hlatky et al., 2009). Markers that do not improve discrimination are also unlikely to improve other
measures of clinical performance (Mihaescu et al., 2010). The discrimination performance of a marker
and its incremental value can vary significantly across different studies. Variation beyond chance can
be attributed to differences between studies either in the strength of association between the marker
and the outcome or in the marker’s distribution (Pepe et al., 2004), or to a range of other possible biases
that relate to the conduct and recording in a study (Lijmer et al., 2002). In practice, markers are often
used in combination, so interest lies in evaluating the discrimination of a prognostic model including
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one or more markers together with demographic variables. Other important aspects of prognostic
ability include calibration.

For a binary outcome, the standard description of discrimination is the receiver operating charac-
teristic (ROC) curve, which displays the trade-off between specificity (the probability that a control
marker value is below the cut-off) and sensitivity (the probability that a case marker value is above
the cut-off) for different marker cut-offs. The ROC curve is often summarized by the area under the
curve (AUC), also called the C-statistic, which can be interpreted as the probability that the marker
will correctly classify a randomly chosen pair of patients as case and noncase (Hanley and McNeil,
1982). The AUC ranges from 0 (when all predictions are wrong) and 1 (perfect predictions) with 0.5
representing the average discriminative ability of random predictions. Values below 0.5 are rarely seen
other than due to small sample variation.

For a survival outcome, many measures of prognostic ability have been proposed (Choodari-Oskooei
et al., 2012a, 2012b). The C-statistic can be used to measure discrimination in this setting, taking the
binary outcome to be survival to a fixed follow-up time (Chambless and Diao, 2006). The C-index
(Harrell et al., 1982) extends the C-statistic and avoids specifying a fixed follow-up time: it estimates
the probability that given two randomly drawn patients, the patient who has an event first is predicted
a higher risk. Royston and Sauerbrei (2004) proposed an alternative measure, D, which we call the
D-index: it is based on a proportional hazards model and has the interpretation of an average log
hazard ratio between an individual in the upper half of the risk distribution and an individual in the
lower half (Pennells et al., 2014). We use the C-index because it is the most widely used measure in
practice (Mallett et al., 2010), and the D-index because it adapts well to the purposes of this paper;
the two measures give similar conclusions when used to evaluate the discrimination added by a new
marker (Fibrinogen Studies Collaboration, 2009).

Covariate adjustment is necessary for correct assessment of disease-risk factor associations in ob-
servational studies, but its importance is rarely acknowledged in assessing discrimination. A particular
issue is that covariates that form part of the study design such as age and sex can impact substantially
on the prognostic ability of a model (Janes and Pepe, 2008; Kerr and Pepe, 2011): for example, the
prognostic ability of a cardiovascular risk model (which includes age, sex, clinical covariates, and
biomarkers) is likely to be substantially larger in a study that recruited men and women aged 40–80
than in a similar study that only recruited men aged 55–65. Janes and Pepe (2008), writing in the context
of ROC curves, identify three cases in which covariates Z influence the discrimination performance of
a risk score R:

(1) The covariate Z is associated both with R and with disease risk. A common example is when
Z is age. Janes and Pepe (2008) show that stratifying by categorical Z reduces the discrimination
of R. This reduction is greater if R and Z are highly correlated.

(2) A different issue arises if the covariates Z are associated with R but not with disease risk.
Ignoring this type of covariate effect may underestimate discrimination (Janes and Pepe, 2008).
In cardiovascular disease, R might be a function of C-reactive protein, a cardiovascular risk
factor, and Z might be acute infection, which strongly raises C-reactive protein. Allowing for
Z in the analysis could remove a source of noise in R and hence improve discrimination.

(3) The discrimination of R may vary across levels of Z, which is analogous to effect modification.
This situation arises if the hazards associated with various levels of Z vary: for example,
associations with blood pressure measurements are attenuated with increasing age (Prospective
Studies Collaboration, 2002). It also arises when associations remain constant but the spread
of the distribution of X varies with Z.

Covariate adjustment for measures of discrimination has been tackled in the context of diagnostic
tests using ROC curves based on binary outcomes (Janes et al., 2009). However, there are currently no
methods to adjust the discrimination performance of prognostic markers for covariates for censored
survival data. In this paper, we propose definitions of the C-index and D-index for censored survival
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data allowing adjustment for one or more binary or continuous covariates, and ways to estimate them.
Although we primarily aim to adjust for age and sex, the methods are presented for a general covariate
adjustment.

The paper is arranged as follows. In Section 2 we describe the data which motivated our methods,
and we define the model used to generate risk predictions. In Section 3, we review unadjusted measures
of discrimination. In Section 4, we propose definitions of adjusted measures of discrimination, and our
new estimators. In Section 5, we examine the performance of the proposed estimators in a simulation
study. In Section 6 we apply the proposed methods to data from a large set of epidemiological cohort
studies. We conclude in Section 7 with a discussion of our results, recommendations for when our
proposed estimators might be appropriate, desirable extensions and limitations.

2 Data

The Emerging Risk Factors Collaboration (ERFC) has collated and harmonized individual participant
data from population-based prospective studies of cardiovascular disease (CVD) (Emerging Risk
Factors Collaboration, 2007). In May 2011 the data set comprised 1.9 million individuals in 108 studies
with an average of 15.5 years follow-up. We used these data to model time to first fatal/nonfatal
CVD event, which includes coronary heart disease and stroke. Our main dataset was restricted to
prospective cohorts and clinical trials that provide information on Framingham risk factors, that
is age, smoking status (current/ex vs. never), systolic blood pressure (SBP), total cholesterol (TC),
high-density lipoprotein (HDL) cholesterol and history of diabetes at the baseline survey. Individual
participant data were further restricted to subjects aged at least 40 years at baseline with the above risk
factors recorded, no known history of CVD at the baseline survey, no recorded history of diabetes,
and not known to be under statin treatment. Thus, our analysis data comprised 349,137 individuals
from 82 studies (of which eight were clinical trials), of whom 24,369 experienced a CVD event.

The model fitted to these data was the Cox proportional hazards model stratified by study and sex.
Studies that were randomized trials were additionally stratified by trial arm. Thus, for individual i in
stratum s, the hazard at time t is

hsi(t) = h0s(t) exp (βxi), (1)

where xi is the vector of covariates (age, smoking status, SBP, TC, and HDL cholesterol) for individual
i, β is a vector of corresponding regression coefficients (assumed constant across strata), and h0s(t) is
the baseline hazard at time t for individuals of stratum s. Table 1 summarizes the data from these 82
studies and the fitted Cox model.

The within-study distribution of baseline age and sex is determined by a study design and hence
differs between studies. This may affect measures of discrimination. Model (1) is stratified by sex, so
standard calculations automatically stratify measures of discrimination for sex. We therefore focus on
the effect of baseline age. The left-hand panel in Fig. 1 plots the C-index for each study (computed
as described in Section 6) against the within-study standard deviation (SD) of baseline age. Studies
with more variation in baseline age tend to have substantially larger C-indices. The age-adjusted C-
index, introduced in Section 4 below, is plotted in the right-hand panel, and shows no association with
variation in baseline age.

3 Measures of discrimination in the absence of covariate adjustment

3.1 Notation

We initially work in a single dataset of n individuals. For each individual i = 1, . . . , n, we assume that
the model covariates are xi (scalar or vector), the true event time (in the absence of censoring) is t∗

i , and
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Table 1 ERFC data: variable summaries and selected model.

Variable Mean Within- Between- Fitted model

studies SD studies SD Coef. Std. Err.

Baseline variables
Age (years) 55.92 7.57 6.78 0.0771 0.0009
Smoking (0 = no, 1 = yes) 0.30 0.43 0.15 0.563 0.014
SBP (mm Hg) 133.30 18.51 7.70 0.0146 0.0003
Total cholesterol (mmol/L) 5.87 1.07 0.46 0.168 0.006
HDL cholesterol (mmol/L) 1.35 0.37 0.15 −0.512 0.020
Sex (0 = male, 1 = female) 0.42 0.40 0.29 (stratifier)

Outcome variables
Follow-up (years) 10.64 3.65 4.87
CVD event (0 = no, 1 = yes) 0.07 0.24 0.07

Figure 1 ERFC data: unadjusted and age-adjusted C-index for a model including baseline age,
smoking, SBP, TC, and HDL, plotted for each study against the SD of baseline age in that study.
Analyses are stratified by sex and trial arm. Each point represents one study.

censoring time is ci, so the event indicator is di = 1(t∗
i ≤ ci) and the observed time is ti = min (t∗

i , ci).
The observed data are (xi, di, ti). Censoring is assumed to be noninformative.

We also assume that the risk score is (scalar) r(xi), which is typically (but not necessarily) the linear
predictor β̂xx from fitting a survival model such as h(t) = h0(t) exp (βxx) where βx are coefficients
and h0(t) is the baseline hazard. Our aim is to evaluate the discrimination of r(xi).
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3.2 C-index

Harrell et al. (1982) defined the C-index as a statistic measuring the degree to which sample pairs are
concordant, where concordance occurs if the individual of higher predicted risk has the first event
in the pair. This statistic is affected by censoring (see Section 3.2.1). The underlying estimand was
defined by Heagerty and Zheng (2005) and Uno et al. (2011) as C = P(r(xi) > r(x j )|t∗

i < t∗
j ). Gonen

and Heller (2005) instead stated the estimand K = P(t∗
i < t∗

j |r(xi) ≥ r(x j )).
These estimands are equivalent in the absence of ties in r(xi) (i.e., if all individuals have different

values of r(xi)). We believe that ties in r(xi) are important, since poorly discriminating models may have
many ties, so it is important to account for them. Heagerty and Zheng’s C counts pairs tied on r(xi) as
discordant, while K double-counts them (because they satisfy both r(xi) ≥ r(x j ) and r(x j ) ≥ r(xi)).
Instead, we make the natural definition of the C-index as

C = E
[
Ci j

]
where Ci j =

⎧⎨
⎩

1(t∗
i < t∗

j ) if r(xi) > r(x j )

0.5 if r(xi) = r(x j )

1(t∗
i > t∗

j ) if r(xi) < r(x j )

(2)

for a random pair (i, j), where 1(a) = 1 if a is true and 0 if a is false.
Pairs with tied event times are excluded from all calculations based on Ci j , so that the estimand

becomes E[Ci j |t∗
i �= t∗

j ]. For simplicity, however, we ignore tied event times in the notation throughout
this article.

We now consider various estimators of C in Eq. (2).

3.2.1 Harrell’s estimator

Estimation of C is complicated by the presence of censoring, because we do not know whether t∗
i < t∗

j
for pairs where the first event time is censored. Harrell et al. (1996) proposed estimating C as the mean
of Ci j over informative pairs, where pair (i, j) is informative if t∗

i < t∗
j and di = 1 or t∗

i > t∗
j and d j = 1:

that is, if the first event in the pair is observed. Harrell’s estimator is often written as

ĈHar = #concordant + 1
2 #tied

#concordant + #discordant + #tied

where #concordant counts pairs with t∗
i < t∗

j and r(xi) > r(x j ), or t∗
i > t∗

j and r(xi) < r(x j ); #tied
counts pairs with r(xi) = r(x j ); and #discordant counts pairs with t∗

i < t∗
j and r(xi) < r(x j ), or

t∗
i > t∗

j and r(xi) > r(x j ). However, the informative pairs are not representative of all pairs—for
example, a pair of low-risk individuals is likely to have no event and hence be noninformative—and
this can cause bias in ĈHar (Gonen and Heller, 2005).

3.2.2 Gonen and Heller’s estimator

Gonen and Heller (2005) proposed an alternative estimator to avoid bias due to censoring. To present
the idea in greater generality, suppose r∗(xi) is a linear predictor from a correctly specified proportional
hazards model. Then r∗(xi) − r∗(x j ) represents the log hazard ratio between individuals i and j,
and the probability that individuals i and j are concordant is expit {r∗(xi) − r∗(x j )} if r(xi) > r(x j )

where expit(η) = 1/(1 + exp (−η)). (Similarly it is expit {r∗(x j ) − r∗(xi)} if r(xi) < r(x j ), and 0.5 if
r(xi) = r(x j )). Then the estimator is the average of this concordance probability, which can be written
as

Ĉind = 1
n(n − 1)

∑
i, j

expit
{

[r∗(xi) − r∗(x j )]sign
[
r(xi) − r(x j )

]}
. (3)
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Gonen and Heller (2005) considered the special case r∗(xi) = r(xi) (that is, they assumed that r(xi) is a
linear predictor from a correctly specified proportional hazards model) giving the simpler expression

Ĉind = 1
n(n − 1)

∑
i, j

expit
(
|r(xi) − r(x j )|

)
. (4)

Ĉind is an indirect measure, since it does not use the event times and relies on correct model specification.

3.2.3 Restricted C-index

Let τ = maxi ti be the longest follow-up time observed. The study only gives information about
discrimination at time t ≤ τ , and C can only be estimated by (implicitly) extrapolating to times t > τ :
for example, Ĉind assumes that the proportional hazards model continues to hold at times beyond τ .
To avoid extrapolation, Heagerty and Zheng (2005) proposed the restricted C-index

Cτ = P(r(xi) > r(x j )|t∗
i < t∗

j , t∗
i < τ )

which is estimable without extrapolation in a study with follow-up at least up to time τ . They and
Uno et al. (2011) proposed estimators of Cτ to account for censoring before time τ : that of Uno
et al. (2011) involves a weighted mean of Ci j over informative pairs, where the weight for pair (i, j) is

Ĝ(min (ti, t j ))
−2 and G(t) = P(ci ≥ t).

3.3 D-index

Royston and Sauerbrei (2004) proposed a measure, D, which we also call the D-index, with the
interpretation of the log hazard ratio between two equal-sized prognostic groups. It is estimated in
a two-stage procedure. In stage 1, the values of r(xi) are ranked, converted to normal scores, and
multiplied by

√
π/8. In stage 2, a proportional hazards regression is performed on the scaled normal

scores, and D is the regression coefficient.
As in the work of Harrell et al. (1982), the estimand is not immediately clear. A possible estimand

is based on pairs: still assuming that r∗(xi) − r∗(x j ) is the true log hazard ratio between individuals
i and j, the estimand D can be defined as the average of this log hazard ratio when i is drawn randomly
from the upper half of the risk distribution and j is drawn randomly from the lower half (Pennells
et al., 2014): that is,

D = E
[
r∗(xi) − r∗(x j )|r(xi) > r̄ > r(x j )

]
(5)

where r̄ is the mean of the r(xi). The algorithm above clearly estimates this estimand consistently when
the proportional hazards model is correctly specified and r(xi) is normally distributed, but it may be
biased when r(xi) is skewed (Choodari-Oskooei et al., 2012a).

4 Measures of discrimination with covariate adjustment

Let zi be covariates, which may or may not form part of xi. We aim to evaluate the risk score r(xi)

while adjusting for the covariates zi. Conceptually, we want to estimate C and D if we had a sample
with a common value of z, or by restricting attention to pairs with equal values of z. In the ERFC
data of Section 2, r(xi) is a cardiovascular risk prediction while zi is age.
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4.1 Adjusted C

4.1.1 Estimand

Covariate adjustment can be defined by considering pairs that match exactly on Z, so that

C(z) = E
[
Ci j |zi = z j = z

]

is a z-specific C. For situations where C(z) is roughly constant over z, or where a summary measure of
discrimination is required, the z-adjusted C

Cad j = E
[
Ci j |zi = z j

]

is the natural measure when a risk model is stratified by z, and can be applied more widely.
Note that for continuous z with density f (z), pairs matching on z have density proportional to

f (z)2, so that

Cad j =
∫

C(z) f (z)2dz
∫

f (z)2dz. (6)

It is natural to consider weighting by f (z) rather than f (z)2 in (6), so we also define

Cad j,w =
∫

C(z) f (z)dz
∫

f (z)dz

although other choices of weights are also possible. Of course, Cad j,w = Cad j if C(z) is constant.

4.1.2 Direct estimation for categorical Z

We describe an estimator as direct (like ĈHar) if it uses actual event times, and indirect (like Ĉind ) if
instead it uses risks predicted under a model. Direct estimation is tricky with continuous z, as there may
be few or no matching pairs (Section 4.1.3). We therefore first consider the case with categorical z. Sim-
ple estimators are Ĉ(z) = { ∑

(i, j):zi=z j=z Ci j

}
/
{ ∑

(i, j):zi=z j=z 1
}
, Ĉad j = {∑

(i, j):zi=z j
Ci j

}
/
{ ∑

(i, j):zi=z j
1
}

and Ĉad j,w = {∑
z f̂ (z)Ĉ(z)

}
/
{ ∑

z f̂ (z)
}
, where f̂ (z) = ∑

i:zi=z 1. In the presence of censoring, these
sums are restricted to informative pairs, and the weighting scheme of Uno et al. (2011) may be used to
handle random censoring.

4.1.3 Direct estimation for continuous or multivariate Z

For some methods, it is helpful to decompose

r(xi) = m(xi, zi) + r̂(zi) (7)

where m(xi, zi) is uncorrelated with zi. This is easily done by fitting a suitable regression for r(xi) on
zi, and defining r̂(zi) = E[r(xi)|zi] as the fitted value and m(xi, zi) as the residual. Conceptually, we
want to estimate the discrimination that is due to m(xi, zi). The methods proposed in this section do
not assume that m(xi, zi) is independent of zi, unlike the methods proposed in Section 4.1.4.

We propose direct estimation by plotting Ci j against r̂(z j ) − r̂(zi) or |r̂(z j ) − r̂(zi)|, fitting a suitable

model (parametric or nonparametric), and taking Ĉad j
smooth1 as the fitted value at r̂(z j ) − r̂(zi) = 0. In

order to automate the procedure, we use a logistic regression of Ci j on (r̂(z j ) − r̂(zi))
2 with weights

w1(zi, z j ) = exp
(
−λ[r̂(z j ) − r̂(zi)]

2
)

(8)
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where λ controls the amount of smoothing. Ĉad j
smooth1 is then the inverse logit of the estimated intercept.

The procedure is illustrated in Supporting Information Fig. S1.
Again, in the presence of censoring, the sums are restricted to informative pairs, and the weighting

scheme of Uno et al. (2011) may be used to handle random censoring.
We estimate Ĉad j,w using the same logistic regression but with weights w1(zi, z j )w2(zi, z j ) where

w2(zi, z j ) = { f̂ (zi) f̂ (z j )}−1/2 (9)

since this weight approximates 1/ f (z) when zi ≈ z j . Here, f̂ (z) might be a kernel estimate of the
density of z.

The above method is based onCi j which represents whether two events occur in the order predicted by
r(x). An alternative is to explore whether events occur in the order predicted by m(x, z). We define “m-
concordance” Cm

i j by replacing conditions r(xi) > r(x j ) etc. in Eq. (2) with m(xi, zi) > m(x j, z j ) etc.

Again, fitted values of the mean of Cm
i j at r̂(z j ) − r̂(zi) = 0 give an estimator of Ĉad j , which we denote

by Ĉad j
smooth2.

Comparing the two estimators Ĉad j
smooth1 and Ĉad j

smooth2 may help to detect an unsuitable value of λ.
Too small a value causes bias by giving too much weight to mismatched pairs, while too large a
value causes large variance by reducing the effective number of pairs used. We used the ERFC data
to compare Ĉad j

smooth1 with Ĉad j
smooth2 (Supporting Information Fig. S2) and to compare their standard

errors (Supporting Information Fig. S3), for 0 ≤ λ ≤ 10. Values λ < 1 tended to give large differences
between the two estimators, but values in the range 1–10 seemed broadly reasonable: later work uses
λ = 3.

4.1.4 Indirect estimation of an approximate estimand

Now we use the correctly specified linear predictor r∗(x), which we decompose as r∗(xi) = m∗(xi, zi) +
r̂∗(zi) as in (7). Recall that P(Ci j = 1|xi, x j ) = expit {r∗(xi) − r∗(x j )} when r(xi) > r(x j ), etc. Hence for
pairs that match on z, P(Ci j = 1|xi, x j ) = expit (m∗(xi, zi) − m∗(x j, z j )) when m(xi, zi) > m(x j, z j ),
etc. This suggests defining a new estimand

Cad j∗ = E
[
expit

{[
m∗(xi, zi) − m∗(x j, z j )

]
sign

[
m(xi, zi) − m(x j, z j )

]}]
. (10)

Cad j∗ = Cad j if m(xi, zi) is independent of zi. Appendix B and the simulation study demonstrate that
Cad j∗ �= Cad j in general, but differences are not large.

Analogous to (3), we propose the indirect estimator in the correctly specified case m∗(x, z) = m(x, z):

Ĉad j∗
ind = 1

n(n − 1)

∑
i, j

expit
(
|m(xi, zi) − m(x j, z j )|

)
. (11)

Like Ĉind , this estimator is unaffected by censoring, but requires correct model specification.

4.1.5 Recalibrating

To be useful in practice, a risk score must be well calibrated. Ideally, this is ensured by recalibrating
the model in an external validation set. However, sometimes miscalibrated risk scores are evaluated,
and in this case we want to be sure that the miscalibration does not distort the C-index.

The advantage of a direct method is that it should give correct results if the risk score is miscalibrated.
The indirect methods above are very susceptible to miscalibration. However, even the direct methods
of Section 4.1.3 are slightly affected by miscalibration, because the weights in (8) are affected. We
therefore propose preceding all the above methods, except for Harrell’s method (which is unaffected
by miscalibration), by a recalibration step.
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For the unadjusted indirect method, we assume r∗(x) = γrr(x) and estimate γr by fitting the Cox
model

hi(t) = h0(t) exp
{
γrr(xi)

}
.

If r(x) is well calibrated, then γ̂r ≈ 1. The recalibrated estimate is

Ĉind,recal = 1
n(n − 1)

∑
i, j

expit
(
γ̂r|r(xi) − r(x j )|

)
. (12)

For the adjusted methods, we assume m∗(x, z) = γmm(x, z) and r̂∗(x) = γr̂ r̂(x) and estimate γm and
γz by fitting the Cox model

hi(t) = h0(t) exp
{
γmm(xi, zi) + γzr̂(zi)

}

with fixed m(xi, zi) and r̂(zi). The recalibrated estimate is

Ĉad j∗
ind,recal = 1

n(n − 1)

∑
i, j

expit
(
γ̂m|m(xi, zi) − m(x j, z j )|

)
. (13)

Definitions (12) and (13) allow for negative values of γ̂r and γ̂m, which could arise with a very poorly
calibrated model, and would correctly give estimates less than 0.5.

If r(x) is the linear predictor from fitting a Cox model to the data, then recalibration as proposed
above is pointless: if done, it yields γ̂m = γ̂z = 1. However, the values of γr and γm in (12) and (13) could
instead be estimated by shrinkage methods (Copas, 1983; van Houwelingen and Le Cessie, 1990).

4.2 Adjusted D

We define covariate-adjusted D by extending estimand (5) proposed in Section 3. First, z-specific D is

D(z) = E
[
r∗(xi) − r∗(x j ) | r(xi) > r̂(z) > r(x j ), zi = z j = z

]

recalling that r̂(z) is the z-specific mean of the r(xi). We can also write D(z) as

E
[
m∗(xi, zi) − m∗(x j, z j ) | m(xi, zi) > 0 > m(x j, z j ), zi = z j = z

]

and so it is natural to define adjusted D as

Dad j = E
[
m∗(xi, zi) − m∗(x j, z j ) | m(xi, zi) > 0 > m(x j, z j ), zi = z j

]
.

That is, Dad j is the average log hazard ratio between individuals matched on z who are above-average
and below-average for their value of z.

We propose the following modification to the estimation algorithm for Dad j given in Section 3.3.
In stage 1, instead of ranking the r(xi), we rank the m(xi, zi) across the whole sample, form normal
scores, and scale by

√
π/8. In stage 2, the proportional hazards regression on the scaled normal scores

is adjusted for z to avoid bias from omitting a prognostic covariate (Ford et al., 1995). D̂ad j is the
coefficient of the scaled normal scores in the stage 2 model.
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4.3 Stratification

A stratified version of Cad j may be computed by restricting attention to pairs within strata. For
stratified versions of Cad j∗ and Dad j we replace m(xi, zi) and r̂(zi) above with m(xi, zi, si) and r̂(zi, si)

where si is the stratum of individual i, r̂(zi, si) = E[r(xi)|zi, si] and r(xi, si) = m(xi, zi, si) + r̂(zi, si).
This decomposition is performed by regressing r(xi, si) on zi within strata. In estimating Dad j , the stage
2 proportional hazards regression is stratified by s.

5 Simulation study

We next explore the performance (bias and precision) of the proposed estimators as we vary the
strengths of association of the outcome with x and z. We first consider an ideal setting where r(x) is
the linear predictor from a correctly specified Cox model, and m(xi, zi) is independent of zi so that
Cad j = Cad j∗. We then consider a nonideal setting where var(m(xi, zi)) depends on zi, so that estimands
Cad j , Cad j,w, and Cad j∗ potentially differ.

5.1 Data generating model

Data sets of size n = 1000 were generated with covariates x = (v, z). This relatively large sample size
was designed to make optimism negligible without excessively increasing computing time for C (which
is roughly proportional to n2).

Covariate z represents age at baseline. A fraction 1 − φ of individuals belong to age group 1 and
have z ∼ U (40, 50), the uniform distribution from 40 to 50. The remaining fraction φ of individuals
belong to age group 2 and have z ∼ U (50, 60). Covariate v represents the biomarker of interest and
was drawn as v = α(z − 50) + u with u ∼ N(0, σ 2

g ) for an individual whose value of z places them in
age group g. Settings for σg are given below. We chose α to make corr(v, z) = 0.25: changing corr(v, z)
to 0 or 0.5 affected the unadjusted results for both C and D, but had negligible effect on the adjusted
results (results not shown).

Survival times were drawn from the Gompertz distribution

h(t) = h0 exp
{
βvv + βz(z − 50 + t)

}

where t is time in years from baseline. We took βv = 0, 0.5, 1, and βz = 0, 0.1, 0.2. Follow-up was
for 15 years, and h0 was chosen to give 50–70% censoring. With this data generating model, r(x) =
βvv + βz(z − 50), r̂(z) = (βvα + βz)(z − 50) and m(x, z) = βv[v − α(z − 50)].

In simulation 1, we take φ = 0.5, so that z ∼ U (40, 60) and weighting does not affect the estimands.
We also take σ1 = σ2 = 1, so that r̂(z) and m(x, z) are independent, and the estimands Cad j and Cad j∗
are equal. In simulation 2, we take φ = 2/3, in order to explore weighting, and σ1 = 1 and σ2 = 2, so
that var(m(x, z)|z) depends on z and the estimands differ.

5.2 Methods considered

For C, the unadjusted methods considered were Harrell’s ĈHar (“Harrell”) and Gonen and Heller’s
Ĉind (“indirect”). The adjusted methods considered were Ĉad j

smooth1 (“smooth 1 unweighted”) and Ĉad j
smooth2

(“smooth 2 unweighted”) with weights w1(zi, z j ); Ĉad j,w
smooth1 (“smooth 1 weighted”) and Ĉad j,w

smooth2 (“smooth

2 weighted”) with weights w1(zi, z j )w2(zi, z j ); and Ĉad j∗
ind (“indirect”). Weight w1(zi, z j ) was computed

using (8) with λ = 3, and w2(zi, z j ) was computed using (9) and estimating f̂ (z) in one-unit bins for z.
Estimation was restricted to informative pairs without the weighting of Uno et al. (2011).

For D, we used unadjusted D̂ and adjusted D̂ad j . The methods are summarized in Table 2 and the
top half of Table 3.
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Table 2 Summary of methods for unadjusted measures of discrimination.

C-index D-index

Harrell’s C Indirect

Notation ĈHar Ĉind D̂
Description Mean concordance

among informative
pairs

Mean expected
concordancea)

Cox model on
scaled rankit of risk
score

Quantity estimated C C D
Recalibration No impact Needed Implicit in method

a) Expected concordance is computed assuming that r(x) is the linear predictor in a correctly specified Cox model.

5.3 Simulation scheme

A total of 1000 datasets were drawn for each combination of parameters. For each combination
of parameters and each method, we computed C̄ and sC , the mean and standard deviation of Ĉ,
and we present a forest-type plot showing C̄ with an interval constructed as C̄ ± 1.96sC . We com-
puted the true values of C and D using the exact methods described in appendices C and D.
Source code to reproduce the results is available as Supporting Information on the journal’s web
page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400061/suppinfo).

5.4 Results for simulation 1

Figure 2 shows results with corr(v, z) = 0.25: the five panels show different combinations of βv and βz.
Considering the unadjusted results, ĈHar has a slightly larger mean than Ĉind in all panels, indicating

small bias due to censoring.
Comparing the unadjusted and adjusted estimates, we see that they are similar in the second panel

where βz = 0 (i.e., where there is no covariate effect to adjust for), but markedly different in the other
panels where βz > 0.

We now compare the different adjustment methods in the first panel where βv = 0 so that the true
value is Cad j = 0.5. The “smooth 1” methods (unweighted and weighted) show substantial bias. This
is likely to have arisen because concordance Ci j is strongly related to r̂(z j ) − r̂(zi) and the smoothing
method inadequately allows for this association. The other adjusted methods show small positive bias.
This is attributable to optimism, since the models are fitted and evaluated in the same data; however,
optimism is small because of our large sample size. We therefore suggest that “smooth 2” may be
preferable to “smooth 1”.

In the other panels where Cad j > 0.5, the indirect estimator appeared unbiased (suggesting the bias
from optimism is negligible), while the smoothing estimators had small positive bias, presumably due
to censoring.

Results for adjusted D similarly suggest small optimism when βv = 0 and little or no bias elsewhere
(Fig. 3).

5.5 Results for simulation 2

Results for C are shown in Fig. 4. When βv = 0 (top panel), the results are very similar to simulation 1.
In the other panels, the estimands Cad j (estimated by the unweighted methods), Cad j,w (estimated by
the weighted methods), and Cad j∗ (estimated by the indirect method) are unequal and are shown by
three vertical lines. These estimands differ by up to 0.014, with Cad j,w < Cad j∗ < Cad j .
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Table 3 Summary of methods for adjusted measures of discrimination.

C-index Adjusted

Smooth 1 Smooth 2 Indirect D-index

Notation Ĉad j
smooth1, Ĉad j,w

smooth1 Ĉad j
smooth2, Ĉad j,w

smooth2 Ĉad j
ind D̂ad j

Description Mean concordance
(Smooth 1) or
m-concordance
(Smooth 2) among
informative pairs
with similar values
of adjustment
variable

Mean expected
concordancea)

after removing
difference in
adjustment
variable

Covariate-
adjusted Cox
model on
scaled rankit
of risk score

Options Choice of weights;
choice of smoothing
parameter λ

– –

Quantity estimated Cad j or Cad jw Cad j∗ Dad j

Recalibration Little impact Little impact Needed Implicit in
method

Properties
Must lie between 0 and 1 � � � N/A
Has value 1 if all pairs are

concordant
� � ✕ N/A

Has value 0 if all pairs are
discordant

� � ✕ N/A

Reduces to unadjusted
estimate if there is no Z

� � � �

Direct – unaffected by
miscalibration

� � ✕ (✕)

Free of tuning parameter λ ✕ ✕ � �
Fast to compute ✕ ✕ ✕ �
Unaffected by optimism ✕ ✕ ✕ ✕
Unaffected by censoring ✕ ✕ � �
Unbiased in simulation

after accounting for
optimism and censoring

✕ � � �

a) Expected concordance is computed assuming that r(x) is the linear predictor in a correctly specified Cox model. (✕) means
only slightly affected.

Ĉad j
ind remains unbiased for Cad j∗. The smoothing estimators are all positively biased, with weighted

estimators on average slightly smaller than unweighted estimators. In the second panel, where
unadjusted and adjusted C-indices are equal, the bias in the smoothing estimators is slightly
smaller than that in Harrell’s estimator: this suggests that all the bias observed is attributable to
censoring.

Corresponding results for D are shown in Fig. 5. Small positive bias is found for all parameter
values. Because no bias was seen in simulation 1, this is likely to arise from model mis-specification.
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Figure 2 Simulation study 1: comparison of various unadjusted and adjusted estimates ofC. Intervals
show C̄ ± 1.96sC where C̄ and sC are the mean and standard deviation of Ĉ. Vertical lines indicate the
true value of adjusted C. Panels show simulated data with different values of βv and βz, but all have
corr(v, z) = 0.25 (see text).
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Figure 3 Simulation study 1: comparison of various unadjusted and adjusted estimates of D. Intervals
show D̄ ± 1.96sD. Vertical lines indicate the true value of adjusted D.

6 ERFC results

To illustrate the differences between methods and the effects of recalibration, we used the single Cox
proportional hazards model fitted to all the ERFC studies, stratifying by study, sex, and trial arm, as
displayed in Table 1. The linear predictor from the resulting model was evaluated using unweighted
methods in each study separately, stratifying by sex and trial arm.

We first explore the effect of recalibration. The model is guaranteed to be well calibrated in the whole
ERFC data, but it is likely to be miscalibrated in individual studies. Figure 6 plots, for each method
considered, the difference between the C-indices after recalibration and before recalibration against
their mean, as proposed by Bland and Altman (1986). Harrell’s method is unaffected by recalibration
and so is not shown in Fig. 6. We see that recalibration has a large impact for the indirect methods
and very little impact for the smoothing methods.

We next compare the different methods after recalibration. Figure 7 shows Bland-Altman plots
comparing the two unadjusted methods and the three adjusted methods. The top panel shows that the
indirect method tends to give lower results than Harrell’s method, probably due to censoring (Gonen
and Heller, 2005). The four panels in the lower left-hand corner compare unadjusted and adjusted
methods and show large differences. The three panels in the lower right-hand corner compare the
adjusted methods. Again, the indirect method tends to give lower estimates than the other methods,
while the two smoothing methods give very similar results.

Finally, we revisit Fig. 1, which used the indirect method with recalibration. The strong association
of the unadjusted C-index with SD of baseline age (left-hand panel) is removed when we use the
age-adjusted C-index (right-hand panel). Covariate adjustment reduces C by up to 0.21 in 77 of the 82
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Figure 4 Simulation study 2: comparison of various unadjusted and adjusted estimates of C. Vertical
lines indicate (from L to R) true values of Cad j,w, Cad j∗, and Cad j .

studies; increases C by up to 0.03 in four studies (all of which are small); and leaves C unchanged for
one study where all participants have the same baseline age. Figure 8 shows the corresponding results
for the D-index.

Source code to analyze simulated data (like one ERFC cohort) is available as Supporting Information
on the journal’s web page (http://onlinelibrary.wiley.com/doi/10.1002/bimj.201400061/suppinfo).
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Figure 5 Simulation study 2: comparison of various unadjusted and adjusted estimates of D. Vertical
lines indicate the true value of adjusted D.

Figure 6 ERFC data: Bland-Altman plots exploring the effects of recalibration on various methods
for computing the adjusted C-index. Each point represents one study.
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Figure 7 ERFC data: Bland-Altman plots comparing different methods for computing the adjusted
C-index, after recalibration. Each point represents one study.

Figure 8 ERFC data: unadjusted and age-adjusted D-index for a model including baseline age,
smoking, SBP, TC, and HDL, plotted for each study against the SD of baseline age in that study.
Analyses are stratified by sex and trial arm. Each point represents one study.
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7 Discussion

We have proposed a number of methods for estimating an adjusted C-index. The lower part of
Table 3 lists a number of desirable properties of an adjusted measure of discrimination, and evaluates
the proposed adjusted C-indices and the adjusted D-index against these measures. Overall, the best
adjusted C-index appears to be the indirect estimator, although we caution that it is sensitive to model
mis-specification. The adjusted D-index is an excellent alternative which is easy to compute.

We have not discussed computation of standard errors in this paper: for the C-index, bootstrapping
could be used, while a standard error arises naturally in the calculation of the D-index.

Optimism (overfitting) is an issue whenever models are estimated and evaluated on the same dataset
(Harrell et al., 1996). It is not the focus of this paper, because the ERFC data set is large and optimism
is likely to be negligible. However, there were signs of optimism in the simulation studies with βv = 0.
In general, our methods should be applied after recalibrating the risk score r(x) to allow for optimism,
ideally in an external validation set, or otherwise by using internal corrections such as the bootstrap
(Harrell et al., 1996).

Censoring is another potential problem for our methods. It causes bias in direct methods if nonin-
formative pairs are simply excluded. Our simulation results show that moderate biases due to censoring
do occur, especially in larger C-indices (e.g., in the bottom two panels of Fig. 4). Typically, studies have
both a limit τ to the length of follow-up and random censoring before that time. The method of Uno
et al. (2011) can be used to correct for the random censoring, but it estimates Cτ not C. Currently the
only way to estimate C with data censored by end of follow-up is the indirect method.

Model mis-specification is a further potential problem, especially with the indirect methods which
assume a correctly specified proportional hazards model. We have proposed a recalibration step which
should remove bias due to miscalibration, but not necessarily other forms of model mis-specification.
The direct methods such as Smooth 1 and Smooth 2 should be much less sensitive to model mis-
specification, since they depend on observed concordance, not model-predicted concordance.

To reduce sensitivity to model mis-specification, we tried using the difference between the direct
and indirect estimators of C (which may reflect the impact of model mis-specification) to correct the
indirect estimator of Cad j∗, defining Ĉad j∗

corr1 = ĈHar − Ĉind + Ĉad j∗
ind (or the equivalent on the logit scale).

However, because the impact of censoring is greater in unadjusted than adjusted estimators (Fig. 2),
the corrected estimator did not perform well in the simulation study and was not included in the results.

Covariate adjustment could be considered for other measures of discrimination. The net reclassi-
fication index (NRI) is a popular measure of the difference in discrimination between two models
(Pencina et al., 2008). Because the NRI is based on within-individual comparisons, it is neither nec-
essary nor possible to adjust it for covariates, although a covariate-specific NRI could be a useful
quantity. However, correct calibration is required to avoid misleading NRI results (Hilden and Gerds,
2014). Another way to evaluate the value of adding a new biomarker to a risk prediction model could
be to evaluate the discrimination of the new model, adjusting for the covariates in the original model.

Further extensions include ways to account for competing risks and to obtain time-dependent
measures of discrimination (Wolbers et al., 2009). A common feature of these approaches is that the
C-index needs to be computed for different time points which limit the comparability of different
studies that have different length of follow-up. An open question is which metric is more appropriate
for which data and whether these different approaches can produce different conclusions in some
scenarios. The methodology presented here could be extended to incorporate these extensions.

Our approach should not be confused with ROC regression (Tosteson and Begg, 1988). ROC
regression methods model the accuracy of a diagnostic test as a function of covariates, not how the
disease is associated with covariates. A possible use of such an approach might be to find subgroups
where the marker should not be used or to find optimal cutoffs. Here we assume predictions that have
been optimized with respect to disease risk and our aim is not (primarily) to explain which covariates
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affect accuracy but to adjust discrimination statistics for the confounding effect of the covariates that
do.

In summary, we have proposed covariate-adjusted measures of concordance. There are many benefits
to such measures (Pepe et al., 2008). In the meta-analysis setting, they facilitate comparisons between
studies with different covariate distributions (Figs. 1 and 8). They also enable matched case-control
studies nested within cohort studies to be compared with standard cohort studies, since the former can
only yield measures of discrimination adjusted for the matching variables. We advocate adjustment, at
least for study design variables such as age, sex, and study centre, whenever measures of discrimination
are to be compared between studies with different distributions of the design variables.
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B Comparison of estimands

We give an example where var(V |Z = z) does not depend on z and yet the estimands Cad j∗ and Cad j

are unequal.
Suppose X = (V, Z) where V and Z are binary with p(Z = 1) = 0.5, p(V = 1|Z = 0) = π0 =

0.2 and p(V = 1|Z = 1) = π1 = 0.8. Suppose hi(t) = h0(t) exp(V + Z) so r(X) = V + Z. We want
to adjust for Z so m(X, Z) = V − E[V |Z]. When Zi = Zj = z, |m(Xi, Zi) − m(X j, Zj )| is 1 with
probability 2πz(1 − πz) and 0 otherwise, and this distribution is independent of z since π1 = 1 − π0.
So C(z = 0) = C(z = 1) = Cad j = 0.574. But for pairs with Zi �= Zj , |m(Xi, Zi) − m(X j, Zj )| has a
different distribution (but the same SD). As a result, Cad j∗ = 0.598 �= Cad j .

C True values of C(z), Cadj, and Cadj∗ in the simulation study

For simplicity we assume βv ≥ 0. We also assume that the model is correctly specified. We first
compute C(z), for which the distribution of z is not needed. Define I(σ 2) = E[expit {|A|}] when
A ∼ N(0, σ 2). Then

I(σ 2) = 2
∫ ∞

0
expit (σu) φ(u)du

where φ(u) is the standard normal density function.
For two individuals r = 1, 2 with z1 = z2 = z, we can write vr = α(z − 50) + ur, so the probability

that they are concordant is expit(|βv(v2 − v1)|) = expit(|βv(u2 − u1)|). If z is in age group g then
ur ∼ N(0, σ 2

g ) so var(βv(u2 − u1)) = 2β2
v σ 2

g and

C(z) = I(2β2
v σ 2

g ). (A.1)

For simulation 1, we evaluate (A.1) with σg = 1. We then have Cad j = Cad j∗ = C(z) for all z.
For simulation 2, σ1 = 1 and σ2 = 2. Denote the corresponding values of C(z) from (A.1) as

C1 = I(2β2
v σ 2

1 ) and C2 = I(2β2
v σ 2

2 ). We can then derive Cad j = {(1 − φ)2C1 + φ2C2}/{(1 − φ)2 + φ2}
and Cad j,w = (1 − φ)C1 + φC2. Finally, we can write Cad j∗ as a weighted sum of E[expit {βv|u1 − u2|}]
terms over the possible groups for individuals 1 and 2:

Cad j∗ = (1 − φ)2I(2β2
v σ 2

1 ) + 2φ(1 − φ)I(β2
v (σ 2

1 + σ 2
2 )) + (1 − φ)2I(2β2

v σ 2
2 ).
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D True value of Dadj

We have D = E[r(xi) − r(x j )|zi = z j, m(xi, zi) < 0 < m(x j, z j )]. We again assume that the model
is correctly specified. Since m(xi, zi) = βvui, D = βv{E[ui|ui > 0] − E[ui|ui < 0]}. In simulation

1, E[ui|ui > 0] = √
2/π . In simulation 2, E[ui|ui > 0] = √

2/π{(1 − φ)σ1 + φσ2} = 5
3

√
2
π

. In both

cases, E[ui|ui < 0] = −E[ui|ui > 0]. Hence Dad j = βv
√

8/π in simulation 1 and Dad j = βv
5
3

√
8/π in

simulation 2.
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