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ABSTRACT: Ultra High Pressure Liquid Chromatography coupled to mass spectrometry (UHPLC-MS) 

has become a widespread analytical technique in metabolomics investigations, however the benefit of high 

performance chromatographic separation is often blunted due to insufficient mass spectrometric accuracy. A 

strategy that allows for the matching of UHPLC-MS data to highly accurate Direct Infusion Electrospray 

Ionization (DI-ESI) Fourier Transform Ion Cyclotron Resonance / Mass Spectrometry (FT-ICR/MS) data is 

developed in this manuscript. Mass difference network (MDiN) based annotation of FT-ICR/MS data and 

matching to unique UHPLC-MS peaks enables the consecutive annotation of the chromatographic dataset. A 

direct comparison of experimental m/z values provided no basis for the matching of both platforms. The 

matching of annotation-based exact neutral masses finally enabled the integration of platform specific 

multivariate statistical evaluations, minimizing the danger to compare artifacts generated on either platform. 

The approach was developed on a Non-Alcoholic Fatty Liver disease (NAFLD) dataset.  

Metabolomics can be performed using a 

multitude of analytical instruments each with 

different sensitivities, specificities and 

frameworks for feature identification
1-4

. FT-

ICR/MS offers high mass accuracy and resolution; 

the ion cyclotron resonance enables a highly 

sensitive, semi-quantitative detection of thousands 

of metabolites at the same time 
5
. UHPLC-MS 

offers more quantitative mass spectrometric 

results with medium sensitivity and comparably 

low mass accuracy and resolution, along with the 

possibility to characterize features on the retention 

time level
5
. Within multi-platform approaches, 

comparability of the data produced by different 

techniques is crucial. Along these lines, data 

fusion can be used for the validation of findings 

and the improvement of feature identification. A 

multitude of papers suggest procedures for the 

fusion of LC-MS/GC-MS data 
6,7

, LC-MS/NMR 

data 
8
 or GC-MS/NMR data 

9
. Fusion of DI-ESI-
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FT-ICR/MS data to other metabolomics data is 

poorly described and complicated by the intrinsic 

semi-quantitative nature of this technique. 

Independent of their level, fusion techniques 

require a certain level of comparability in terms of 

quantification-capability and sources of artefacts. 

For example, if one technique is more strongly 

afflicted by matrix effects than the other technique 

(which is the case once direct infusion data and 

LC-MS data are compared) fusion approaches 

cannot work properly, since they are commonly 

based on correlation or covariance. Hence, feature 

matching and separate comparison of their 

statistics would be a more appropriate strategy. 

However, such a strategy requires high confidence 

sum formula annotations and most time of flight 

mass spectrometers used for UHPLC-MS do not 

deliver a high level of mass accuracy. High 

resolution/accuracy mass spectrometric scans 

require sampling rates < 1 Hz, for which reason 

they do not support ultra high chromatographic 

resolution 
5
. Furthermore, most features that are 

detected via classical non-targeted metabolomics 

using full scan (UHPLC-)MS are too small for 

their isotopologues to be detected. The same is 

true for their tractability to tandem MS. Despite 

the advantageous retention time (RT) information 

of LC-MS, there are no useful RT-databases as the 

requirements of applied columns, gradients and 

solvents for different tasks and sample types are 

too divers to be covered by some proposed 

standard method. In consequence, a method that 

enables high confidence sum formula annotation 

for low accuracy LC-MS data, beyond the 

framework of classical methods that use available 

chemical standards, is required.  

The aim of this work is the introduction of an 

effective solution to annotate low mass accuracy 

mass spectrometric data. The data are generated 

via DI-ESI-FT-ICR/MS (high mass accuracy) and 

Reversed-Phase (RP)-UHPLC-MS (low mass 

accuracy). In order to accomplish this task we 

resort to a mass difference network algorithm
10

 

based strategy for the annotation of the UHPLC-

MS data. The first crucial step is the selection of 

high confidence starting points. They can be 

determined through multiple ways: combinatorial 

assignment (employing senior rules and isotopic 

patterns recognition), database matching, an 

internal standard database matching (when the 

samples are spiked prior analysis) and annotated 

data matching (when the annotated data derived 
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from a different platform acquisition). The latter 

case describes our choice, where high mass 

accuracy annotated data from DI-ESI-FT-ICR/MS 

allowed us to determine the starting points to 

generate a MiDN based on the experimental 

UHPLC-MS data. The second crucial step is the 

integration of the retention time of detected 

features into MDiN reconstruction to increase 

annotation performance for UHPLC-MS data. 

Here, both techniques are applied for the analysis 

of human blood plasma samples of individuals 

that suffer from Non-alcoholic fatty liver disease 

(NAFLD). NAFLD is a disease of our generation 

that belongs to the metabolic syndrome and it is 

related to obesity and diabetes mellitus. The rate 

of NAFLD is very high in industrialized countries; 

it was shown to involve 10-20% of the population 

11-14
. The development and the progression of 

NAFLD can trigger cardiovascular disease (CVD) 

disorders and type 2 Diabetes, if they are not 

already affected by the latter. Fatty liver strongly 

correlates with insulin resistance, an important 

predictor of type 2 Diabetes and cardiovascular 

disease 
11

. The condition of subjects that are 

affected by fatty liver disease without showing an 

insulin resistance pattern 
15,16

 is of high relevance, 

because this condition may support the 

identification of markers and mechanisms  that are 

essential for insulin sensitivity. The proposed 

strategy enables high confidence sum formula 

assignment to low mass accuracy (UHPLC-)MS 

features, which is the fundamental prerequisite for 

a compound class-based comparison of multiple 

metabolomic platforms. Users of low resolution 

mass spectrometry in non-targeted metabolomics 

can initiate the workflow by either comparing 

their data to one high mass accuracy spectrum of a 

quality control or by any other means of high 

confidence formula assignment supported by 

careful isotopic pattern recognition. 

EXPERIMENTAL SECTION 

Metabotyping via FT-ICR/MS. The analyses 

of the samples were performed on a Brucker 

APEX Qe FT-ICR/MS with a TRiVersa 

Nanomate chip electrospray ionization system 

(Advion Ithaca, USA). The resolving power was 

120,000 at m/z 400 in positive mode. The 

ionization was applied in positive mode within a 

mass range of 147 m/z to 2,000 m/z and with a 

time domain of 1 MW. 1,024 scans were acquired 

for each spectrum.  
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Metabotyping via UHPLC-QTOF/MS. LC-

MS sample analyses were performed using a 

Waters Aquity UHPLC system coupled to a 

Synapt HDMS oa-Q-TOF mass spectrometer 

(Waters, Milford) equipped with an electrospray 

(ESI) ion source operating in positive mode. The 

chromatographic separation was performed by a 

C18 Vision HT-HL UHPLC column (2 x 150 mm, 

1.5 µm, Alltech Grom GmbH, Germany). Elution 

buffer A was water containing 0.1% formic acid 

and elution buffer B was acetonitrile. The flow 

rate was set to 0.300 ml/min. The linear gradient 

method consisted in 5 % of B over 0-1.12 

minutes, 5% to 100 % of B over 1.1-22.3 minutes 

and held at 100% B until 29.5 minutes, returned to 

5% of B at 29.6 minutes. In order to equilibrate 

the column with the initial mobile phase, 5% B 

was kept until 35 minutes. The column oven was 

set to 40 ºC and the sample manager temperature 

to 4 ºC. A solution of leucine enkephalin 

(556.2771 m/z, 400 pg/µl) in MeOH/H2O:1/1 

containing 0.1 % of formic acid was infused as 

lockmass compound at a flow rate of 5 µl/min. 

The lock mass correction is applied on the 

experimental masses following the calibration 

curve generated during the instrument calibration. 

The samples were measured in random triplicates 

within three different batches, where one batch 

included all samples measured one time. The 

spectra were acquired in centroid mode within a 

range of 50-1000 m/z, the detection parameters are 

described in table S2.  

Sample analysis was performed in the following 

order: 3 blanks at the beginning, 16 quality control 

plasma (QC) for column conditioning. A standard 

mix, diluted in 20 % acetonitrile was injected after 

QC plasma column conditioning. Subsequently, 

the three randomized batches were analyzed. 

Additional standard mixes inserted in the middle 

and the end of the entire study (each standard at 

the concentration of 1 mg/L). Quality control 

plasma (QC) were injected every 10
th

 

measurement. Plasma blank solutions (i.e. water 

collected in plasma Sarstedt tubes and treated as 

plasma, see supplementary material) were 

randomly injected in order to examine a possible 

presence of carry-over and of contaminants 

coming from the sample preparation. Details on 

the standards chosen during the study are 

described in table S3 and table S4. 

Treatment of FT-ICR/MS data. Mass spectra 

were externally calibrated on clusters of arginine 
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(1mg/ml in methanol /water: 80/20). The internal 

calibration was based on data base matching using 

the web server MassTRIX (http://masstrix.org) 
17

. 

All the input masses were assigned to the closest 

reference mass found in the database, within 1ppm 

error. Consequently a new calibration list was 

created performing a regression through the error 

distribution of these MassTRIX annotations. The 

standard deviation of mass relative to the 

calibration masses within the m/z range of interest 

was always below 100 ppb. The calibrated spectra 

were exported at signal-to-noise-ratio of 4. The 

peaks of all exported spectra were aligned and 

stored in a matrix using in-house software at an 

error tolerance of ± 1 ppm. Data were then filtered 

for mass defects and screened for isotopic peaks 

and artifacts within an error range of 1 ppm. Peaks 

were removed if their Pearson correlation 

coefficients with their adjacent mono-isotopic 

peak were higher than 0.95. M/z values were then 

used for mass-difference network [MDiN] 

reconstruction. MDiNs consist of source nodes 

(m/z values or features of substrates) and target 

nodes (products) which are connected by edges 

(m/z differences that are equivalent to a 

compositional difference of a biochemical raction; 

Reaction Equivalent Mass Differences [REMDs]). 

Edges between nodes were assigned if the mass 

difference of two nodes matched a pre-selected 

REMD within an error range of ± 0.2 ppm. As 

MDiNs are likewise compositional difference 

networks, it is possible to assign a sum formula to 

any node that is available starting from a known 

node (with defined sum formula). After defining 

the sum formula of a starting node, the sum 

formulas of adjacent non-annotated nodes are 

updated by the combination of the information 

carried by the adjacent known node and the 

incident edge. After each iteration, all assigned 

sum formulas and edges are tested for consistency 

of the relationships between the source-formulas, 

the REMDs and the target-formulas. An 

assignment is removed if the information of 

‘source node’ + ‘edge’ = ‘target node’ does not 

match. The result of the algorithm is a maximally 

self-consistent network. The final sum formula 

annotation error was set to ± 10 ppm, while the 

majority of annotations were found within an error 

range of ± 0.4 ppm and 0.22 ppm standard 

deviation; no assignment showed an error larger 

than 1 ppm. 
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Treatment of UHPLC-QTOF/MS data. 

External calibration was based on clusters of 

sodium formate. Internal calibration of the spectra 

was performed via lock mass correction, by 

orthogonal infusion of leucine enkephaline. The 

data acquired through UHPLC-QTOF/MS were 

aligned using MarkerLynx software (Waters, 

Milford) within a mass range of 0.02 Da and RT 

window of 0.1 minutes. The chromatograms 

acquired were processed using ApexTrack peak 

integration to detect chromatographic peaks. The 

masses were aligned and normalized with total 

area peak normalization to the sum of 10,000. 

Data were then treated in the same way as the 

FT-ICR/MS data. Edge assignment errors were set 

to ± 0.5 ppm and the final annotation error 

tolerance was set to ± 20 ppm. The majority of 

annotations self-assembled within a range of + 4 

ppm and – 4 ppm. 

Statistical evaluation. In order to reduce the 

impact of noise and to stabilize the variance 

among all the samples, various pre-processing 

steps have been applied. The total frequency 

threshold of m/z value occurrence across the 

samples was set to 30%. The variable’s zero 

values were counted across all samples and the 

signals appearing in less than 30% were excluded 

from further analysis To disclose valuable 

biological information from the data, several 

multivariate analyses were performed. In addition, 

different visualization tools were applied for the 

interpretation of the results. Therefore, our 

analysis involves a sets of software such as 

SIMCA-P+12 (Umetrics, Umea, Sweden) and 

MATLAB R 2011 (The MathWorks, Inc., Natick, 

Massachusetts, United States). Several models 

were built and validated in order to reduce the 

data dimensionality (Principal Component 

Analysis) and to retrieve the discriminant 

metabolites via OPLS (Orthogonal PLS 

modeling). The dataset was UV scaled for 

UHPLC-MS data and ctr (centered but not scaled) 

for FT-ICR/MS data. Seven-fold cross validation 

was used to assess the internal validity. Different 

model parameters have been evaluated in order to 

assess the goodness of the model: R² and Q² 

which estimate the goodness of fit and prediction, 

respectively. Moreover, to determine the 

reliability of the OPLS model, the diagnostic tool 

CV-ANOVA (ANalysis Of VAriance testing of 

Cross-Validated predictive residuals) has been 

performed. 
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Data base annotation. All theoretical neutral 

masses or formulas of annotated data were 

matched to HMDB 3.5 (http://www.hmdb.ca/) 
18

 

for compound assignment.  

Detailed information on used chemicals, 

patients, plasma sample collection and treatment 

as well as details about the instrumental analytics 

are described in the supplementary material. 

RESULTS AND DISCUSSION 

Matching strategy preface. As elegantly 

shown by Vaughan et al.
19

, the comparison of 

different UHPLC-MS methods with similar 

column chemistry is facilitated by the availability 

of retention time data for the sets to be compared. 

The same is not possible when UHPLC-MS data 

needs to be compared to DI-ESI-FT-ICR/MS data, 

which have ultra-high mass accuracy, resolution 

and sensitivity but no time dimension. MS 

hyphenation to UHPLC can achieve 

isobaric/isomeric separation; however the lower 

mass accuracy and resolution of TOF/MS does not 

immediately support the differentiation between 

isobaric and isomeric patterns if isotopologue 

peaks of one compound merge with the 

monoisotopic peak of another compound. For this 

reason, database matching of LC-TOF/MS 

features prior to accurate data annotation has to be 

taken with care. On the other hand, due to the 

absence of a time dimension and due to the semi-

quantitative nature of FT-ICR/MS, data 

comparison with UHPLC-MS can only be 

performed on the m/z dimension. It is erroneous to 

assume that m/z data is free of error after 

calibration, because calibration merely removes 

systematic error. The remaining random error 

commonly has a spread of ±0.2 ppm in FT-

ICR/MS data, and ±1 to ±5 ppm (or more) are 

typical errors for TOF/MS. Often, error 

distributions are not centered around 0 ppm, 

which makes comparison even more difficult. 

The investigation of the optimal matching 

strategy started with the assessment of the FT-

ICR/MS data acquired in positive ionization 

mode, where 17,934 ions were detected. After a 

10% cut off in frequency of masses over samples 

sum formula assignment was conducted on 9,442 

masses. MDiN-based annotation using 176 

REMDs resulted in 2855 (30%) mono-isotopic 

sum formulas. From these putatively assigned 

formulas, 859 were found in HMDB 3.5.  

Using UHPLC-MS in positive ionization mode 

13,268 ion features were recorded on the same 
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plasma samples. Features were accepted if at least 

3 out of 39 triplicates were populated with at least 

2 non-zero values. After this cut off, the 

assignment and the statistical analysis were 

performed on 11,639 features. The first MDiN 

reconstructed using 176 REMDs encompassed 

25,355 edges over 7,606 nodes.  

Low mass accuracy UHPLC-MS annotation 

workflow. In order to understand whether the 

relative m/z peak positions between both datasets 

have a functional relation, both data sets were 

matched using a ± 10 ppm error window and the 

mass deviation between the matched pairs was 

plotted over their m/z values (Figure S1). No 

reasonable error distribution could be 

approximated when the entire sets of experimental 

m/z features were matched (Figure S1). Any 

variation of the matching error window would not 

have improved this result. Matching the 2,855 

theoretical m/z values of the FT-ICR/MS-set 

against the UHPLC-MS features revealed a more 

detailed error over m/z distribution at ±4 ppm 

(Figure 1A). Overall, 1,616 FT-LC feature-pairs 

were found within the ± 10 ppm error window. 

306 FT-MS features and 1,438 LC-MS features 

were found to be unique (not occurring multiply), 

and 242 feature pairs were found to be biunique. 

136 pairs were located within the observed ± 4 

ppm error distribution and 125 paired LC-MS 

features were part of the above created FT-

ICR/MS-MDiN. For reasons of resolution 

dependent annotation impairment, we decided to 

use MDiN-based sum formula assignment on the 

UHPLC-MS dataset. Figure 1A) highlights the 

reasoning behind the appropriate selection of 

starter masses for MDiN-based LC-MS data 

annotation. If FT-ICR/MS and UHPLC-MS 

features are not connected in a biunique manner, it 

is more probable for isobaric UHPLC-MS features 

to be annotated as being of isomeric nature. 

Consequently, already the initiation of the MDiN-

based LC-MS data annotation would be leveraged 

towards inappropriate isobaric spaces. 

MDiN-based annotation was initiated with the 

formulas of the 125 biunique LC-MS – FT-MS 

pairs. The ±0.5 ppm error window that was 

applied for network reconstruction leaves many 

degrees of freedom for the false positive 

assignment of REMDs. It was therefore to be 

expected, that MDiN-annotation would converge 

to several locally optimal solutions. In 
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consequence, 100 repetitions of MDiN-annotation 

were performed and compared.  

The next step illustrated in Figure 1B) 

highlights the frequency distribution of isobaric 

annotation counts per feature and the obtained 

error over m/z distribution of the stably annotated 

features. In order to underline the goodness of this 

result, the LC-MS data set was annotated with a 

combinatorial in-house written software. Within a 

±2 ppm error window 572,689 Senior-valid 

formulas were found. The average amount of 

isobaric annotations per feature was calculated to 

be 109.8 and only 259 features received a unique 

annotation (Figure S2). Nonetheless, 4,574 out of 

5,564 MDiN-annotated features (81.7%) remained 

inappropriate for a comparison of annotation 

based theoretical LC-MS features with the 

theoretical FT-ICR/MS data. Especially features 

of the higher mass range received multiple 

isobaric annotations. To improve this result RT-

information needed to be included into the 

annotation procedure. 

Recently, Morreel et al.
20

 proposed to use 

candidate substrate-product pairs (CSPP), which 

are equivalent to the REMDs in this manuscript. 

CSPPs are supposed to be used only if the sign of 

the RT-difference between two m/z features is the 

same as an priori specified CSPP-RT shift. 

Screening the stable UHPLC-MS annotations of 

the present NAFLD data set for REMDs of 100% 

specificity for RT shifts (positive or negative 

exclusively), revealed that REMDs (which carry a 

hypothesis in regard to their chemical 

functionality) are inappropriate for the 

performance of a RT supported MDiN-annotation. 

Hexadecanoic acid condensation was found to 

occur 110 times with increasing RT (RT
+
) and 8 

times with decreasing RT (RT
-
). Considering the 

amount of possible isobaric annotations, nothing 

else than a proportion of RT
+
:RT

-
 = X:0 or 0:Y is 

to be accepted for an RT-supported network 

annotation. Only 3 REMDs were found in 

proportions of X>20:0 and none was found to be 

uniquely RT
—

specific. Only 12 out of 176 

REMDs were found to be specific at all. As the 

assignment of RT shifts to REMDs did not match 

pre-specified expectations (e.g. condensation with 

Glucose yielded: RT
+
: 21; RT

-
: 36), all stably 

annotated features were screened for any positive 

mass differences that showed 100% RT-

specificity (Figure 1C)). The screening resulted in 

876 RT-specific mass differences (RTMDs) for 
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RT
+
 and 162 RTMDs for RT

-
 (observed for at 

least 20 pairs). The maximum observed RTMD 

frequency was 106 for RT
+
 and 71 for RT

-
. The 

formation of sodium adduct ions was defined to 

occur at the same RT as their protonated 

equivalents.  

 

Figure 1. Convolution of the RT-supported UHPLC-TOF-MS annotation strategy. A) Error over m/z plot of 

theoretical FT-ICR/MS ion masses to UHPLC-TOF-MS data matching and reasoning behind the selection of 
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biunique Hits for MDiN annotation. The isomeric annotation of possible isobars may project multiple false 

starting points into the MDiN. B) Summary of 100 repetitive MDiN annotations. More than 80% of all 

features obtain multiple isobaric annotations. The error over m/z distribution of the stable annotations is well 

centered. Features with m/z > 500 are poorly annotated. C) The stable annotations, their RTs and Formulas 

are screened for RT-specific mass differences. Only mass differences with absolute RT+/--specificity (at 

least 20 vs. zero observations) are considered for MDiN reconstruction. D) Summary of 100 repetitive RT-

MDiN annotations. The number of stable annotations is increased more than 3-fold; the proportion of 

unstable annotation is decreased. The corresponding error over m/z distribution is well centered and features 

with m/z > 500 are well addressed. 

The 1,038 found RTMDs were used to 

reconstruct an RT-directed MDiN and their 

corresponding formula differences were used for 

feature annotation. As shown in Figure 1D), 100 

repetitive annotations revealed a 3-fold increase of 

unique isobaric annotations and a decrease in the 

count of features with multiple isobaric 

annotations. Ultimately, 4,564 annotations which 

had at maximum 3 isobaric assignments of which 

the most abundant isobar was found in at least 66 

out of 100 repetitions were chosen to be 

transferred to the LC-MS data set. 

The initial matching of theoretical FT-ICR/MS 

data contained 1,616 feature pairs among which 

984 pairs were found within a ± 4 ppm error 

window. After UHPLC-MS annotation, 424 of 

these pairs were confirmed. 57% of all pairs 

turned out to be false assignments. This result 

emphasizes the importance of careful feature 

annotation prior to any (database) matching. The 

authors use MDiN based annotation approaches, 

as they use the compositional context of a data set 

to navigate through different isobaric annotations. 

Naturally, any other means of reliable feature 

annotation can be used. Likewise, it is obligatory 

to validate assignments when m/z-matching to 

databases is used as a means of feature annotation. 

Statistical analysis of FT-ICR/MS data. Data 

that went through the multivariate analysis 

pipeline were treated with a stricter feature 

frequency cutoff (30%). PCA analysis did not 

provide a good separation among the two classes 

(data not shown). Therefore, more sophisticated 

techniques were applied. An OPLS model (Figure 
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S3) could differentiate the two phenotypic classes. 

The model had one predictor component with 

(R²Y(cum)=0.5) for the model fit, (Q²(cum)=0.4) 

for the predictiveness in cross-validation and 

p<0.05 for CV-Anova. Outliers were not 

considered for further analysis. Covariance and 

correlation between the features and the model 

was  inspected (not shown) by the S-Plot 
21

.  

The final OPLS model contained 5,655 features, 

1888 of which obtained a CHNOPS formula via 

MDiN annotation. The annotated features within 

the OPLS model were queried against the HMDB 

3.5 database in order to assess their probable 

compound classes. 771 sum formulas (40.8%) 

were successfully matched against the HMDB 

database. In the spirit of gene set enrichment 

analysis 
22

, it was of interest to gain insights upon 

each compound classes’ general location on the 

discriminating latent variable. In order to avoid 

the dominant behavior of single features with 

extreme weights, the variables were ranked from 1 

to N and the ranks were then centered according 

to the central rank of the weights. Afterwards, the 

sum of ranks of each compound class with more 

than 5 observations was determined. Positive rank 

sums indicated compound class overrepresentation 

in IS and negative average ranks indicated 

otherwise. The rank sums were then normalized 

on the maximum norm (Figure S4).  

Statistical analysis of UHPLC-QTOF/MS 

data. The UHPLC-QTOF/MS data set was 

evaluated via multivariate statistics 
23,24

 in order to 

obtain insights on the data. Partial least squares 

discriminant analysis (PLS-DA) was performed 

on the two classes of observations: IR (class1) and 

IS (class2). The model was unable to separate the 

two groups of observations. OPLS modeling was 

applied in order to define features with 

discriminative power. The model consisted of one 

predictor component, and two orthogonal 

components. The generated model gave a good 

value for the model fit (R
2
Y(cum)=0.98) and  for 

the predictiveness in cross-validation 

(Q2(cum)=0.4),  with the CV-Anova p<0.001 

(Figure S5). The detected outliers were not 

considered for further analysis. Centered ranks 

were calculated based on the predictor component 

(Figure S6). 

The final model encompassed 4,048 variables, 

1,965 of which could be annotated with a 

CHNOPS formula.  The sum formula annotation 

of each feature was then queried against HMDB, 
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which resulted in a successful compound class 

assignment of 485 features (293 sum formulas). 

Positive maximum normalized rank sums 

indicated a tendency for IS-specific behavior, 

negative rank sums indicated otherwise.  

Figure S7 and Figure S8 describe the classes of 

compounds which are up- and down-regulated in 

the insulin sensitive class, respectively. The 

different classes of metabolites are depicted as 

function of retention time (RT). Sizes of the single 

dots in Figures S7 and S8 are proportional to the 

amount of isomers stored in HMDB. The class of 

glycerophosphocholines is the most abundant 

among the up-regulated metabolites that separated 

at the end of the RP-chromatographic gradient. 

These results confirm the findings of the 

published targeted analysis of the same sample 

set
16

. Among the down- regulated features, more 

hydrophilic classes of compounds such as 

monosaccharides, glycosyl-compounds and amino 

acids occur during the first part of the RP-

gradient. 

Data matching. Different analytical techniques 

(e.g. DI-FT-ICR/MS and UHPLC-TOF/MS) 

provide data of inherently different quality. The 

best FT-ICR/MS data quality can be achieved by 

superimposing multiple (hundreds of) scans 

acquired using DI-ESI. In this case, high 

sensitivity is accompanied by well defined, almost 

linear error over m/z distributions, which cannot 

be obtained via LC-FT-ICR/MS coupling. An 

appropriate description of UHPLC 

chromatographic peaks, with higher per-scan 

sensitivity, can be obtained via TOF/MS coupling. 

However, even if higher order polynomials are 

used for UHPLC-MS spectral calibration, the 

error distribution per mass can (i) not be 

guaranteed to be centered to zero at any time and 

at any m/z and (ii) the standard deviation of error 

distributions is unequally broader than that of FT-

ICR/MS. Within the standard deviations of error 

distributions, each isobaric annotation is equally 

probable.  

The problem that arises from multi-platform 

data matching is that the attempt to integrate such 

inherently different error distributions results in a 

multitude of equally probable matches, even if the 

systemic deviations in both data sets are perfectly 

calibrated (which cannot always be guaranteed in 

terms of the TOF/MS). Matching quality further 

impairs, when one (or both) of the peaks to be 

matched is (are) not centered at an error of 0 ppm.  
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As described above, both datasets were 

annotated by means of formula propagation 

through MDiNs 
10

, which reconstructs an MDiN 

over m/z data and performs formula assignment 

until all nodes in the network attain formulas that  

 

Figure 2. MDiN of annotated UHPLC-TOF-MS features in three different layouts: A) RT-gradient from 

blue over green to red. B) Glycerophospholipids (red), Prenol Lipids (brown), Carboxylic Acids (dark 

purple), Glycosyl Compounds (green), Amino Acids (orange), Fatty Alcohols (purple), Fatty Acids and 

Conjugates (pink), Fatty Acid Esters (olive), Fatty Amides (violet), Steroids and Derivateves (blue), 

Monosaccharides (yellow), Eicosanoids (light blue). Compound Classes with lower frequency or missing 

HMDB annotation are grey. 

are consistent with their mass differences (and 

retention times). 

To visualize whether HMDB compound class 

assignments associated with the reversed phase 

(RP) chromatographic regime, an MDiN over the 

statistical set of UHPLC-TOF/MS annotations 

was reconstructed using REMDs. Figure2A) 

shows a clear RT-gradient from blue to red (low 

RT to high RT) throughout the reconstructed 

MDiN. Figure 2B) shows the corresponding 

HMDB compound class assignments, which 

largely correspond to expectations given RP 

chemistry. The most prominent HMDB compound 

classes are highlighted in Figure 2B). Their 
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coloring follows the legends in Figures S7 and S8. 

While the amount of UHPLC-MS-HMDB formula 

matches was comparably low, known compound 

classes occur within clusters, which moreover 

match the RT-gradient in Figure 2A).  

 

Figure 3. A) Positioning of corresponding FT-ICR/MS-UHPLC-TOF-MS features (red). B) Compound 

class distribution of the combined statistics. Up-regulated in IS is blue and down-regulated in IS is red. 

 

Unknown classes and low abundance classes are 

colored in grey. 

The coherence of both, the annotations and the 

statistical results was visualized by coloring the 

above obtained MDiN for the presence of RP-

UHPLC-MS formulas in the DI-ESI-FT-ICR/MS 

dataset. The statistical feature ranks of both 

datasets were averaged and the corresponding 

compound class counts for correlation and inverse 

correlation with insulin sensitivity are shown as a 

bar chart (Figure 3).  

The red nodes in Figure 3A) mark neutral 

formulas that were found in FT-ICR/MS. A 

glance at Figure 2B) reveals that the most 

frequently annotated network regions are 

populated by glycerophospholipids, prenol lipids 

and fatty acid esters. The remainder is covered by 

amino acids, glycosides and other hydrophilic 

classes. The compounds which share the same 

formula as the FT-ICR/MS features are 

concentrated at the center of the network and can 

therefore be taken to be major compounds of 

human plasma. The outer regions of the network 
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indicates UHPLC-MS specificity, however, these 

features could not have been annotated with high 

confidence without the proper annotation strategy. 

The compound classes which are found in the 

intersection between UHPLC-MS and FT-

ICR/MS are at the same time the most influential 

classes for the statistics.  

Proper MS-data fusion was inappropriate with 

the given datasets. Using the sum formulas of 

matching features, their relevant normalized 

weights/loadings from the multivariate analyses 

could be combined by averaging.  The sum 

formula-based matching of FT-ICR/MS and 

UHPLC-MS statistical datasets revealed that 

overall 240 FT-ICR/MS peaks were matched to 

392 UHPLC-MS entries. 148 (67%) of the FT-

ICR/MS features were successfully matched 

against HMDB 3.5, while the same was true for 

257 (66%) UHPLC-MS features. 

The combination of the FT-ICR/MS weights 

and the UHPLC-MS loadings over all HMDB 

matched features showed (Figure3) that 

glycerophospholipids dominate the IS up-

regulated features. A comparison with the Figures 

S4 and S6 underlined the analogous behavior of 

the remaining compound classes. The compound 

classes associated to the IS down-regulated group 

of features encompass more polar compound 

classes such as amino acids, monosccharides and 

carboxylic acids. These findings confirm both, the 

results of the two separated statistics performed on 

FT-ICR/MS data and UHPLC-MS data, and the 

findings of Lehmann et al 
16

.  

The successful RT-supported matching of 

accurate FT-ICR/MS data to UHPLC-MS data 

enabled the correct annotation of isomers that 

were separated by liquid chromatography. This is 

of great importance since the amount of possible 

isobars within common UHPLC-MS error ranges 

is large. The use of FT-ICR/MS alone would 

necessitate the development of targeted separation 

strategies and the purchase of multiple chemical 

standard compounds in order to carry out 

compound identification. A direct matching of DI-

ESI-FT-ICR/MS data to the corresponding 

UHPLC-MS data has the following advantage: the 

RT-dimension of a feature that was successfully 

matched between both techniques and that has 

shown to be of statistical importance throughout 

these platforms, immediately discerns and locates 

the correct isomer to be isolated. In addition, RT 

information reveals the UHPLC-MS conditions 
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which need to be optimized in order to perform 

targeted analyte enrichment for either MS/MS-

based compound identification or NMR-based 

identification after preparative analyte fraction 

collection.  

 

CONCLUSION 

Classical annotation workflows that do not use 

authentic chemical standards, treat each detected 

m/z peak independently from all other detected 

m/z species. The coverage of annotation is thereby 

limited by ion abundance because such 

combinatorial methods require validation via 

isotopic patterns and/or MS/MS experiments. 

Workflows that employ authentic chemical 

standards are limited by the completeness of 

internal standard databases. Furthermore, 

chemical standards can suppress the actual 

analytes, which results in larger required sample 

size. The presented approach puts all detected 

features into a relational network that optimizes 

annotations for overall consistency of all mass 

differences and RT-differences. Stability of 

annotations can be assessed by means of multiple 

annotation cycles, which attributes each sum 

formula with a specific annotation probability that 

is independent of arbitrary definitions of 

‘sufficient’ mass accuracy. The presented 

approach is therefore a solution for high 

confidence feature annotation, prior to the 

matching of different metabolomics platforms.   

Despite of the lack of corresponding retention 

time data it is possible to compare FT-ICR/MS 

data and UHPLC-MS data on the basis of m/z and 

RT information. After sum formula assignment to 

high accuracy FT-ICR/MS data, it is possible to 

discern UHPLC-MS features that (i) are specific 

to the analyzed sample matrix and (ii) have a high 

probability to share the same composition as the 

corresponding FT-ICR/MS feature. These 

characteristic compositions in the UHPLC-MS 

dataset can be used as starting points for mass 

difference network-based UHPLC-MS feature 

assignment. This strategy provides a solid basis 

for correct data matching and consecutive 

comparison of multivariate statistics. The 

presented method is of particular benefit for low 

accuracy MS users, yet it is a useful tool for high 

accuracy MS as well. Naturally, any other 

classical method for high confidence feature 

annotation can be applied for the definition of the 

required starting points. The presented workflow 
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can be performed on any column chemistry and 

the data driven mining of RTMDs avoids the 

application of false rules if column chemistry is 

changed. The ultimate aim of metabolomics to 

detect, identify and quantify all metabolites of a 

sample, organism or cell is more likely to be 

achieved by multi-platform strategies. As 

demonstrated in this manuscript, the intersection 

between the metabolomes revealed by both 

investigated platforms was small relative to the 

overall amount of detected and annotated features. 

On one side, MS data matching can only be 

performed on the intersection of two different 

approaches, which intrinsically limits statistical 

metabolome coverage. On the other side, features 

that were successfully matched and validated in 

their statistical behavior are more tractable for 

targeted compound identification. The costs and 

time to be invested for the development of 

quantitative targeted detection methods for disease 

markers might drastically decrease as a result of 

platform matching. 
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Figure 1. Convolution of the RT-supported UHPLC-TOF-MS annotation strategy. A) Error over m/z plot of 
theoretical FT-ICR/MS ion masses to UHPLC-TOF-MS data matching and reasoning behind the selection of 
biunique Hits for MDiN annotation. The isomeric annotation of possible isobars may project multiple false 

starting points into the MDiN. B) Summary of 100 repetitive MDiN annotations. More than 80% of all 
features obtain multiple isobaric annotations. The error over m/z distribution of the stable annotations is 
well centered. Features with m/z > 500 are poorly annotated. C) The stable annotations, their RTs and 
Formulas are screened for RT-specific mass differences. Only mass differences with absolute RT+/--

specificity (at least 20 vs. zero observations) are considered for MDiN reconstruction. D) Summary of 100 
repetitive RT-MDiN annotations. The number of stable annotations is increased more than 3-fold; the 
proportion of unstable annotation is decreased. The corresponding error over m/z distribution is well 

centered and features with m/z > 500 are well addressed.  
183x201mm (150 x 150 DPI)  
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Figure 2. MDiN of annotated UHPLC-TOF-MS features in three different layouts: A) RT-gradient from blue 
over green to red. B) Glycerophospholipids (red), Prenol Lipids (brown), Carboxylic Acids (dark purple), 
Glycosyl Compounds (green), Amino Acids (orange), Fatty Alcohols (purple), Fatty Acids and Conjugates 
(pink), Fatty Acid Esters (olive), Fatty Amides (violet), Steroids and Derivateves (blue), Monosaccharides 

(yellow), Eicosanoids (light blue). Compound Classes with lower frequency or missing HMDB annotation are 
grey.  
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Figure 3. A) Positioning of corresponding FT-ICR/MS-UHPLC-TOF-MS features (red). B) Compound class 
distribution of the combined statistics. Up-regulated in IS is blue and down-regulated in IS is red.  
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