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Abstract

Introduction

Skeletal muscle cell differentiation is impaired by elevated levels of the inflammatory cyto-

kine tumor necrosis factor-α (TNF-α) with pathological significance in chronic diseases or

inherited muscle disorders. Insulin like growth factor-1 (IGF1) positively regulates muscle

cell differentiation. Both, TNF-α and IGF1 affect gene and microRNA (miRNA) expression in

this process. However, computational prediction of miRNA-mRNA relations is challenged

by false positives and targets which might be irrelevant in the respective cellular transcrip-

tome context. Thus, this study is focused on functional information about miRNA affected

target transcripts by integrating miRNA and mRNA expression profiling data.

Methodology/Principal Findings

Murine skeletal myocytes PMI28 were differentiated for 24 hours with concomitant TNF-α or

IGF1 treatment. Both, mRNA and miRNA expression profiling was performed. The data-

driven integration of target prediction and paired mRNA/miRNA expression profiling data

revealed that i) the quantity of predicted miRNA-mRNA relations was reduced, ii) miRNA

targets with a function in cell cycle and axon guidance were enriched, iii) differential regula-

tion of anti-differentiation miR-155-5p and miR-29b-3p as well as pro-differentiation miR-

335-3p, miR-335-5p, miR-322-3p, and miR-322-5p seemed to be of primary importance

during skeletal myoblast differentiation compared to the other miRNAs, iv) the abundance
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of targets and affected biological processes was miRNA specific, and v) subsets of miRNAs

may collectively regulate gene expression.

Conclusions

Joint analysis of mRNA and miRNA profiling data increased the process-specificity and

quality of predicted relations by statistically selecting miRNA-target interactions. Moreover,

this study revealed miRNA-specific predominant biological implications in skeletal muscle

cell differentiation and in response to TNF-α or IGF1 treatment. Furthermore, myoblast dif-

ferentiation-associated miRNAs are suggested to collectively regulate gene clusters and

targets associated with enriched specific gene ontology terms or pathways. Predicted

miRNA functions of this study provide novel insights into defective regulation at the tran-

scriptomic level during myocyte proliferation and differentiation due to inflammatory stimuli.

Introduction
Adult skeletal myoblast differentiation is important for muscle repair after injury and involves
a multistep process including proliferation, exit from the cell cycle, migration, and cell fusion
into multinuclear myotubes [1–3]. Most of the progressive muscle disorders are associated
with ineffective or burn-out regenerative potential of muscle tissue [2]. In muscle disorders or
other chronic diseases pro-inflammatory cytokines, such as TNF-α are elevated. TNF- α can
impair myoblast differentiation [4] by inhibiting the initiation of differentiation [5] as myo-
blasts could not exit the cell cycle as efficiently as controls [6]. Adversely, IGF1 can facilitate
myoblast differentiation at certain concentrations [7,5]. Besides, post-transcriptional regulators
such as microRNAs (miRNAs) have been shown to be powerful regulators in the process of
skeletal muscle cell differentiation [8–10]. Moreover, many muscular disorders, which involve
inflammation and impaired muscle regeneration [11], show miRNA deregulation at various
levels [12]. Interestingly, the precise impact of TNF-α or IGF1 on the miRNA and mRNA tran-
scriptome of differentiating skeletal muscle cells remains to be elucidated. We aimed at under-
standing the impact of TNF-α and IGF1 exposure on predicted miRNA-target interactions of
murine skeletal muscle differentiation. As prediction of miRNA-mRNA relations solely based
on computational approaches bears high numbers of false positive predictions [13] we pro-
posed the simultaneous interpretation of real experimental expression data together with target
prediction. For this approach we assumed that miRNAs mainly inversely regulate mRNAs by
promoting mRNA destabilization [14]. In this mode, we assessed results and data interpreta-
tions derived from inversely associated miRNA and mRNA expression profiling data of differ-
entiating murine skeletal muscle cells and the effect of TNF- α or IGF1 treatment. We
evaluated results from joint miRNA-mRNA analysis by taking into account the number of tar-
gets, specifically transcription factors, co-expression of mRNAs and miRNAs, functional
enrichment, as well as concerted and redundant target regulation following the guidelines sug-
gested by Meyer et al. [15] with slight modifications and extensions. It had been suggested that
coordinated post-transcriptional regulation by miRNAs [16] and cooperativity of miRNA-tar-
get interaction was a widespread phenomenon that may play an important role in miRNA-
mediated gene regulation [17]. We identified miRNA specific biological implications, gene
ontology and pathway enrichments of differentiation-associated miRNAs, as well as regulation
of functionally related transcription factors, and indications for a coordinated function of
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differentiation-associated miRNAs. Moreover, we showed a strategy how to reduce the com-
plexity of possible miRNA-mRNA interactions to predict physiologically relevant associations
more accurately.

Materials and Methods

Cell culture
The murine skeletal myoblast cell line PMI28 [18] was cultured in a growth medium composed
of Ham’s F10 (PAA Laboratories GmbH, Pasching, Austria), supplemented with 20% fetal
bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 2 mM L-glutamine (PAA Laboratories),
and Penicillin (100 I.U./ml) / Streptomycin (100 μg/ml, PAA Laboratories). 24 hours after
seeding of the cells the growth medium was replaced by a differentiation medium containing
DMEMmedium with 2% horse serum (Gibco, Life Technologies GmbH, Darmstadt, Ger-
many), 2 mM L-glutamine (PAA Laboratories), and Penicillin (100 I.U./ml) / Streptomycin
(100 μg/ml) (PAA Laboratories). The differentiation medium of the treatment groups addi-
tionally contained 2 x 103 U/ml murine recombinant TNF-α (Roche Diagnostics, Rotkreuz,
Switzerland) or 5 ng/ml murine recombinant IGF1 (Sigma-Aldrich). The control and treat-
ment media were replenished twice a day to ensure cytokine and growth factor activity.
Murine PMI28 cells were harvested 24 h after the induction of fusion by serum withdrawal for
RNA analyses. Cells were propagated and differentiated at 37°C in 80% relative humidity and
5% CO2.

RNA extraction and quality control
About 2 x 106 cells per sample were harvested in 1.5 ml Trizol (Life Technologies GmbH,
Darmstadt, Germany), homogenized and mixed with 0.45 ml chloroform. Phases were sepa-
rated by centrifugation. For RNA precipitation the upper aqueous phase was aspirated and
1.25 ml isopropanol were added, mixed and centrifuged. Subsequently the pellet was washed
with 75% ethanol, then dried and finally dissolved in water. The total RNA concentration of
individual samples was determined photometrically using the NanoDrop 1000 ND-1000 (Peq-
lab, Erlangen, Germany). Overall RNA quality was assessed by gel electrophoresis using a 1%
agarose gel with a 1 KB molecular weight marker separated in parallel.

Gene expression profiling by hybridization microarrays
Gene expression profiling was performed for triplicate samples with GeneChip Mouse Gene
1.0 ST Arrays (901169/901171, Affymetrix, Santa Clara, CA, USA) following the manufactur-
er’s instructions. For cDNA synthesis 250 ng total RNA were used applying the GeneChip
Poly-A RNA Control Kit (900433, Affymetrix) and Ambion WT Expression Kit (Ambion, Life
Technologies GmbH, Darmstadt, Germany) according to the manufacturer’s instructions.
After analysis of cDNA yield and size distribution the purified cDNA was fragmented, labeled
and hybridized applying the GeneChip WT Terminal Labeling and Controls Kits (Affymetrix)
following the manufacturer’s instructions. Washing and staining was carried out by utilizing
the GeneChip Hybridization, Wash, and Stain Kit (Affymetrix) according to the manufactur-
er’s instructions. The array was scanned and data were acquired with the GACC Scan Control
Software. Affymetrix CEL files were read, normalized and summarized using the RMAmethod
[19] as implemented in the Affymetrix apt package. Probe sets were filtered for having at least
two ‘detected above background’ present calls in at least one experimental group. GeneChip
Mouse Gene 1.0 ST Array data was MIAME [20] compliant and were submitted to the
ArrayExpress database (www.ebi.ac.uk/arrayexpress) [21], a publicly available repository
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consistent with the MIAME guidelines. Data are available with the ArrayExpress accession
number E-MTAB-3474.

miRNA profiling by microarray technology
MiRNA expression profiling by microarray technology was performed using Mouse miRNA
Microarray Release 15.0 (8x15K, G4471A-029152, Agilent Technologies, Böblingen, Germany)
which contained probes for 696 miRNAs from Sanger miRBase release 15.0. Quadruplicate
samples of murine skeletal myoblasts, differentiated myotubes, and TNF-α or IGF1 treated
myotubes were profiled. We used 100 ng total RNA for Cy3-labeling of miRNAs by utilizing
the miRNA Complete Labeling and Hybridization Kit (Agilent Technologies) according to the
manufacturer’s instructions. The samples were hybridized to the microarray at 55°C for 20
hours. Subsequently, the microarrays were washed and scanned with the Agilent Microarray
Scanner G2505C in a single pass mode with a scan resolution of 3 μm, 20 bit mode. Preprocess-
ing of data included extraction of signal intensities and background by using Feature Extraction
Software 10.7.3.1 (Agilent Technologies). If a miRNA passed the filtering criterion “is well
above background” in at least two of the replicates within one group it was retained. MiRNA
microarray data was normalized by loessM normalization [22,23]. The Agilent microarray data
was MIAME [20] compliant. The miRNA microarray expression data were deposited in the
ArrayExpress database [21] and are accessible with the ArrayExpress accession number
E-MTAB-1114.

miRNA profiling by quantitative qPCR
TaqMan Rodent MicroRNA Arrays 2.0 (Life Technologies) were utilized for qPCR based
miRNA expression profiling. We performed three separate reverse transcription reactions per
sample using 150 ng total RNA each and Megaplex RT Primers Rodent Pool A and Rodent
Pool B (Life Technologies) following the manufacturer’s protocol. Subsequently, each reverse
transcription reaction was pre-amplified using the Megaplex PreAmp Primers Rodent Pool A
and Rodent Pool B (Life Technologies) according to the manufacturer’s instructions. For each
biological sample the three separate reverse transcription and preamplification reactions were
pooled. The qPCR reaction mix was prepared according to the manufacturer’s instructions.
The arrays were run on an Applied Biosystems 7900HT Fast Real-Time System with cycling
conditions according to the manufacturer’s protocol. SDS 2.3 software (Life Technologies) was
applied for obtaining raw expression data. The SDS files were loaded into the RQManager 1.2
software (Applied Biosystems, Life Technologies). Each amplification plot was reviewed manu-
ally. The threshold was set to 0.2 and adjusted for individual assays if necessary. We retained
miRNAs which showed Cq-values smaller than 32 in at least two of the corresponding tripli-
cates of a group for further data processing. We applied loessM normalization [22,23] using R
programming [24].

Statistics
MiRNA expression profiling data was tested for significant differences by applying significance
analysis of microarrays (SAM) [25] which uses permutation. We performed false discovery
rate (FDR) correction of p-values. Significance analysis and FDR correction were performed
within the R environment for statistical computing [24]. Differentially expressed genes withing
the mRNA profiling data set were determined with limma [26] using a factorial design with
treatment and time-point as factors. Pairwise comparisons were extracted for all combinations
of consecutive time points for the same treatment and between all treatments at the same time-
point. Expression profiles of all samples for all probesets that were called significantly different
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(fdr<0.01 and log2fold change>1) in at least one pairwise comparison were clustered with the
self-organizing tree algorithm (SOTA) method [27].

Bioinformatical analysis of data
We selected 21 miRNAs which were detected on both miRNA platforms, the microarray and
the qPCR array, for the joint analysis of miRNA and mRNA profiling data. We used miRNA
target predictions based on TargetScan (Release 6.2, June 2012) (http://www.targetscan.org/)
[28] and miRanda (release August 2010) (http://www.microrna.org/) [29]. Integrated analysis
of the inverse relations of expressed miRNAs and mRNAs in conjunction with target predic-
tions was done as follows: We set up an initial miRNA-mRNA target network by unifying the
predicted targets from TargetScan and miRanda. We then used the glmnet package [30] for the
R statistical environment [24] in order to fit a generalized linear model where the expression
profiles of the predicted miRNAs served as predictor variables and the mRNA expression pro-
file as response. This regression model was then used to perform a feature selection on the
miRNAs utilizing the elastic net penalty [31]. The penalty parameter was determined by
10-fold cross-validation. We furthermore introduced a negativity constraint on the coefficients
of the regression model in order to allow only negative effects of the miRNAs on the mRNA.
This procedure was applied for miRNA expression measurements derived from both, microar-
ray and qPCR analysis. The intersection network was then defined as the intersection of the
miRNA-mRNA relationships from the two platforms. We then applied a local enrichment on
the intersection network analysis for gene sets derived from KEGG pathways (http://www.
genome.jp/kegg/pathway.html) and self-compiled gene sets. Initially, we defined a gene set for
each gene in the network containing all other genes that were targeted by the same miRNA as
well as the respective gene itself. We then applied Fisher’s exact test on each of these gene sets
to test for statistical significant overrepresentation of genes assigned to a certain KEGG path-
way. Hence, we obtained a p-value for each gene indicating the overrepresentation of the path-
way gene set in the neighborhood of this gene.

Moreover, we applied Genomatix Pathway System (GePS) within the Genomatix Software
Suite (Genomatix, Munich, Germany) to identify and display enriched canonical pathways,
gene ontology terms, disease terms, and transcription factors based on information extracted
from public and proprietary databases, such as pathway data from the Pathway Interaction
Database [32], and co-citation in the literature [33]. For clustering of differential gene expres-
sions we used SOTA [34,35] implemented in the MultiExperiment Viewer (MeV) (http://www.
tm4.org/mev.html) with settings to receive nine clusters.

Results
After 24 h of control myoblast differentiation or concomitant treatment with TNF-α or IGF1
samples were profiled for mRNA and miRNA expression. The expressions of selected genes
were validated by qPCR (data not shown). The expected opposite effect of TNF-α and IGF1
treatment on myoblast differentiation was verified at the level of gene expression (S1 Fig),
signal transduction pathway association enrichment (S1 Table), as well as miRNA expression
and cell morphology [36]. Moreover, we selected 21 miRNAs of interest (S2 Fig) which were
detected on two independent miRNA profiling platforms including growth- as well as differen-
tiation-associated miRNAs. Results from the integrative analysis of target prediction, mRNA
profiling, and miRNA profiling were evaluated by criteria such as pathway enrichment analyses
of targets and the number of targets per miRNA (Fig 1).
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Data-driven integration of miRNA and mRNA expression reduced the
number of predicted miRNA-mRNA relations
Integrative analysis reduced the sum of predicted miRNA-mRNA interactions by a factor of
more than 20 compared to the sum of targets derived from sole in silico prediction (miRanda)
(S3A Fig). Moreover, the sum of predicted target interactions per miRNA was reduced by a
similar factor (S3B Fig). On average miRanda predictions analysis resulted in about 6000 tar-
gets per miRNA compared to integrative analysis of miRNA expression data which resulted on
average in about 320 target predictions per miRNA. The integration of both miRNA expression
datasets (intersection dataset) reduced the number of predicted target interactions to around
140 targets per miRNA. In the following, we present data derived from the miRNA expression
intersection dataset.

Fig 1. Joint analysis of miRNA andmRNA expression data. Schematic overview of the integrative analysis of miRNA target prediction based on
TargetScan (www.targetscan.org/) and miRanda (www.microrna.org/) and paired miRNA/mRNA expression data derived from the same experiments. The
graphic is an extension and modification of Fig 1 published by Meyer and co-workers 2014 [15]. The expression data included the intersection dataset
derived frommiRNAmicroarray and miRNA qPCR profiling experiments and was inversely associated to mRNAmicroarray data. Predicted miRNA-target
relations from integrated analysis were evaluated according to different criteria: Criteria which can be considered for mRNA-miRNA selection include: the
total number of miRNA targets per miRNA, the number of transcription factors per miRNA, enrichment of targets in gene expression clusters, or gene
ontology terms of all selected miRNAs or miRNA specific target enrichments, as well as the number of collective miRNA targets. The workflow allowed multi-
aspect based interpretation of the results, reduced the quantity of miRNA-mRNA target relations, and increased the prediction quality with respect to potential
biological implications.

doi:10.1371/journal.pone.0135284.g001
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MiRNA targets were involved in cell cycle and axon guidance
We analyzed enrichment of pathways or disease terms based on the inversely associated
miRNA targets for the set of the selected and inter-platform validated 21 miRNAs. KEGG
pathway analyses and signal transduction pathway association analysis showed that targets
which were associated with e.g. cell division-related pathways, axon guidance, and the p53 sig-
naling pathway were among the most significantly correlated miRNA target enriched pathways
(Table 1 and S2A Table). Enrichment analysis of disease terms based on co-citation showed
that the inversely associated miRNA-targets were linked to neoplasm and carcinoma (S2B
Table). The interrelations of pathway cyclin A2 associated genes showed that based on co-cita-
tion some targets were highly networked such as Ccna2, Cdk1, and Ccnd1 (Fig 2). In addition
to that, some genes such as Wee1, Chek1, Cdc6, Ccna2, and Ccnd1 were associated with several
enriched pathways (S2A Table) and were predicted to be targeted by several inversely regulated
miRNAs including foremost miR-322-5p, miR-206, and miR-503.

Transcription factors involved in TGF-ß signaling, development-related
pathways or cell cycle pathways were targeted
Since modulation of transcription factor abundance is expected to result in significant tran-
scriptomic changes we conducted enrichment analysis of signal transduction pathway associa-
tions of targeted transcription factors only (S3 Table). Skeletal muscle differentiation, TNF-α
or IGF1 response associated miRNAs regulated transcription factors involved in TGF-β (S4
Fig) and mothers against decapentaplegic homolog (SMAD) signaling as well as development
or cell cycle regulation, such as notch or cyclin signaling (S3 Table).

Gene expression clusters contained miRNA targets of certain pathways
We tested whether targets of specific miRNAs are over-represented in certain gene expression
clusters. Self-organizing tree algorithm (SOTA) analysis revealed that cohorts of genes which
were upregulated during early or late myogenic differentiation were mostly targeted by miR-
155-5p or miR-29b-3p (Fig 3A and 3B; S4A and S4B Table). MiR-155-5p and miR-29b-3p tar-
geted early differentiation upregulated genes (Fig 3A and S4A Table) which are retrieved in
pathway associations such as semaphorin, cannabinoid receptor, and adenylate cyclase signal-
ing (S5A Table) as well as the gene ontology terms steroid biosynthetic process and skeletal
muscle tissue development (S5B Table). Moreover, miR-155-5p and miR-29b-3p targets were
overrepresented in the cluster containing genes which were upregulated during later myoblast
differentiation (Fig 3B and S4B Table). These targets had a function in calcineurin (protein
phosphatase 3) and protein kinase A signaling (S5C Table) as well as biological processes such
as regulation of ERK1 and ERK2 cascade, MAPK cascade, and regulation of chemokine pro-
duction (S5D Table). In contrast to clusters containing upregulated promyogenic genes, clus-
ters with down-regulated genes in early or late myogenic differentiation were enriched for
miR-335-3p, -206-3p, -322-5p, -335-5p, -351-5p, -322-3p, -133a-3p, -133b-3p, -532-5p and
miR-532-3p targets (Fig 3C and S4C Table). Genes targeted by miR-335-3p predominate
the cluster of down-regulated genes in early or later differentiation (Fig 3C and S4C Table).
MiRNA targets within the cluster of down-regulated genes during differentiation were associ-
ated with, for example, SMAD, hypoxia inducible factor 1 (alpha subunit), parathyroid hor-
mone related protein, and TGF-β (S5E Table). Moreover, miRNA targets of this cluster (Fig 3C
and S4C Table) were involved in biological processes such as anatomical structure and blood
vessel morphogenesis, locomotion, cell differentiation, migration and proliferation (S5F
Table). Finally, clustering genes which were down-regulated in later myoblast differentiation
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were enriched for miR-335-3p, -206-3p, -322-3p, -322-5p, -351-5p, and miR-503-5p targets
(Fig 3D and S4D Table) which were associated with, for example, nuclear factor like 2, breast
cancer 1 and 2 (early onset), tumor protein p53, cell division cycle 25C (S5G Table). Accord-
ingly, biological processes such as microtubule cytoskeleton organization, DNA metabolic pro-
cess and regulation of histone H3-K9 acetylation were enriched (S5H Table). In summary,
results from joint miRNA-mRNA analysis indicated that cluster of gene expressions contained
targets of distinct miRNAs and that these targets had a function within particular pathways
and biological processes related to myoblast differentiation.

Target quantity and versatility of biological functions was miRNA-specific
The number of inversely associated targets during myoblast differentiation and response to
TNF-α or IGF1 was miRNA-specific. MiR-335-3p, miR-322-5p, and miR-322-3p had the high-
est number of targeted and inversely associated genes and transcription factors (Fig 4A and
4B). The versatility of biological functions was miRNA-specific. MiR-206-3p targets had a
function in enriched pathways known to be of significance for myogenic differentiation such as
e.g. TGF-β, cyclin A2, caveolin1, and focal adhesion kinase (S6A Table). MiR-322-3p targets
had a function, for example, in cancer-related pathways, cell division cycle, ataxia telangiectasia
and Rad3 related, and tumor protein p53 (Tp53) (S6B Table). Moreover, miR-322-5p showed
a remarkable overrepresentation of targets involved in cell division-associated pathways such
as cyclins A2, B1, and D1 as well as cyclin dependent kinase, as well as cell division cycle 2 and
25c (S6C Table). MiR-335-3p targets were associated with e.g. cell division cycle 2, fibroblast
growth factor, and TGF-β signal transduction (S6D Table). Furthermore, miR-335-5p target

Table 1. Target enrichment in distinct KEGG pathways.

Term KEGGID Pvalue # Genes (observed) # Genes (total)

Cell cycle 04110 2.55E-09 45 123

Axon guidance 04360 1.87E-08 45 130

DNA replication 03030 4.93E-07 18 35

Ribosome biogenesis in eukaryotes 03008 1.23E-06 28 74

RNA transport 03013 2.62E-06 46 156

Oocyte meiosis 04114 2.93E-06 36 111

p53 signaling pathway 04115 4.46E-06 25 66

Neurotrophin signaling pathway 04722 9.54E-05 36 128

GnRH signaling pathway 04912 0.000208 29 99

Progesterone-mediated oocyte maturation 04914 0.000252 26 86

Purine metabolism 00230 0.000799 40 162

Glioma 05214 0.000992 20 65

Homologous recombination 03440 0.001101 11 27

ErbB signaling pathway 04012 0.001802 24 87

Gap junction 04540 0.001802 24 87

Prostate cancer 05215 0.002513 24 89

Mismatch repair 03430 0.003019 9 22

VEGF signaling pathway 04370 0.003324 21 76

One carbon pool by folate 00670 0.004161 8 19

Focal adhesion 04510 0.004651 44 199

Negatively associated miRNA targets are significantly retrieved in enriched KEGG pathways calculated based on the amount of observed and the total

amount of genes. Only the top 20 terms with p-values < 0.01 are depicted.

doi:10.1371/journal.pone.0135284.t001
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enrichment analysis revealed cyclin dependent kinase inhibitor 1 and cyclin A2 associated
genes (S6E Table). In contrast, miR-351 targets were functional in the extracellular matrix such
as matrix metalloproteinase Mmp12 or Adam17 (S6F Table). MiR-503-5p revealed targets
such as cyclins, ataxia telangiectasia and Rad3 related (Atr), cell division cycle, and cancer-
related genes, as well as Tp53 (S6G Table). Thus, miR-322-3p and miR-503-5p targeted a simi-
lar spectrum of pathways in skeletal muscle differentiation. Moreover, miR-133a-3p and miR-
133b-3p targets were enriched for V Akt murine thymoma viral oncogene homolog 1 (Act1)
and small GTP binding protein Rac associated genes (S6H Table) while miR-155-5p targets
were part of calcineurin pathway associations (S6I Table). Taken together, some miRNAs tar-
geted genes which had a function in rather distinct pathways while other miRNAs targeted
genes which were functionally related, such as cell cycle regulation.

Pathways and GO terms were targeted by several miRNAs with distinct
preference
The number of miRNA-mRNA interactions per miRNA was summarized for selected enriched
KEGG pathways or GO terms. Our data revealed that the number of targets per miRNA within
an enriched pathway or GO-term greatly varied indicating specific as well as common func-
tions of individual miRNAs (S5 Fig). All of the twelve selected miRNAs had at least more than
10 targets involved in cell cycle regulation but miR-322-5p and miR-322-3p appeared to be the
dominating miRNAs involved in regulation of this pathway. Furthermore, kinase activity was

Fig 2. miRNAs target the cyclin A2 pathway. Inversely associated targets had a function in certain
enriched signal transduction pathway associations by co-citation on sentence level according to Genomatix
Pathway System (GePS) analysis. The results of signal transduction pathway association analysis are
exemplarily depicted for cyclin A2 (see S2B Table for a complete list of pathway associations). The red
shading intensity increases with the number of miRNAs which target the respective gene.

doi:10.1371/journal.pone.0135284.g002
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Fig 3. Gene expression clusters are targeted by distinct miRNA groups. Scaled expression (mean subtraction and division by standard deviation) levels
of mRNA targets and their respective predicted and inversely associated miRNAs were depicted. Pie charts represent the relative number of mRNA targets
per miRNA within the respective gene expression cluster. Absolute target numbers per miRNA within the gene expression cluster were given as well. Self-
organizing tree algorithm clusters containing up-regulated genes in (A) early (24 h) or (B) late (72 h) myogenic differentiation, and genes which were (C)
down-regulated in early or late myogenic differentiation, or (D) down-regulated in later (72 h) myoblast differentiation (72 h data not shown). A list of the
outlined miRNA-mRNA relations was deposited in S4 Table.

doi:10.1371/journal.pone.0135284.g003
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predominantly targeted by miR-322-5p. Moreover, regulation of cell motility was mainly tar-
geted by miR-335-3p and miR-206-3p (S5 Fig).

A subset of myoblast-differentiation associated miRNAs might
participate in collective post-transcriptional regulation of gene
expression
The abundance of targets which were inversely associated with several miRNAs suggested col-
lective target regulation by a subset of muscle expressed miRNAs (Fig 5A, 5B, 5C and 5D).
More than 200 genes (Fig 5A) and more than 20 transcription factors (Fig 5B) were predicted
to be targeted by at least three miRNAs. MiRNAs which mainly participated in collective gene
targeting were miR-335-3p, miR-322-5p, and miR-322-3p (Fig 5C). As transcription factors
are powerful master regulators, we analyzed which miRNAs particularly were involved in col-
lective regulation of transcription factors. MiR-322-5p, miR-335-3p, and miR-322-3p were pri-
marily involved in the concerted regulation of transcription factors (Figs 5D and 6A). Two
transcription factors, Hmga2 and Ctbp2, were cooperatively targeted by five miRNAs (Fig 6B
and 6C). Genes which were targeted by at least three different miRNAs were retrieved in signal
transduction pathway associations such as cyclin dependent kinase inhibitor, cell division
cycle, thrombospondin, cyclin signaling, or ataxia telangiectasia (Table 2). Genes which were
collectively targeted by miRNAs were assigned to GO terms such as metabolic process, mRNA
splice site selection, positive regulation of cell migration, and positive regulation of cell motility

Fig 4. Abundance of targets is miRNA-specific. Joint analysis of miRNA and mRNA expression data and target prediction revealed miRNA-specific
numbers of inversely associated (A) targets and (B) transcription factors.

doi:10.1371/journal.pone.0135284.g004
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Fig 5. Collective target regulation bymiRNAs. The abundance of (A) genes or (B) transcription factors which were targeted by a specific number of
miRNAs of the observed miRNA set is shown. (C) The number of genes targeted by at least two other miRNAs (resulting in at least three miRNAs per gene)
of the 21 miRNA-subset per individual miRNA and (D) the number of transcription factors targeted by at least two other miRNAs of the 21 miRNA-subset per
individual miRNA are depicted. The abundance of miRNA-target interactions indicates collective target regulation by a subset of muscle expressed miRNAs.

doi:10.1371/journal.pone.0135284.g005
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Fig 6. Cooperative targeting of transcription factors. (A)MiRNA-target network of transcription factors which are targeted by at least three miRNAs.
Edges connect the respective miRNA with its predicted and inversely associated transcription factors which were represented by nodes. The bigger the size
of the node the more edges did the target have indicating collective targeting by several miRNAs. MiRNAs highlighted by yellow had the highest number of
collectively targeted transcription factors. (B) Hmga2 and its targeting miRNAs, (C) Ctbp2 with targeting miRNAs.

doi:10.1371/journal.pone.0135284.g006
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(S7A Table). Amongst others, the disease terms tendinopathy and neoplasms were enriched
(S7B Table).

Integrative analysis of miRNA and mRNA data and its evaluation
increased the quality of miRNA target predictions
The integrative analysis of holistic miRNA and mRNA expression data improved the quality of
miRNA target prediction. About 1% of the targets identified by joint mRNA and miRNA data
analysis had been validated based on bioinformatics database entries in miRTarBase (http://
mirtarbase.mbc.nctu.edu.tw/), miR2Disease (http://www.mir2disease.org/), miRecords (http://
mirecords.biolead.org/). When applying evaluation criteria such as the number of targets or
transcription factors per miRNA, GO term or pathway enrichment of targets, or degree of col-
lective target regulation by several miRNAs (summarized in Fig 1) the selection of miRNA-
target relations could be improved to containing about 14% validated targets (S6 Fig). The
improved recovery rate of yet validated targets might indicate an amendment of selecting bio-
logical significant miRNA-mRNA relations by applying simultaneous miRNA-mRNA data
analysis in combination with investigator based evaluation criteria in a specific physiological or
experimental context.

To further evaluate the quality of the computationally verified miRNA-target relations, we
compared our network to experimentally determined miRNA-target relations from Starbase
(http://starbase.sysu.edu.cn/), which holds the results from various HITS-CLIP and PAR-CLIP
experiments. We downloaded all miRNA-target relations, which were also predicted by both,
TargetScan and miRanda. We then aimed to assess whether this set of experimentally deter-
mined miRNA-target relations is overrepresented among our generated intersection network
in comparison to all predicted relations, which were subject to our expression-based filtering
approach. We observed that 12.92% of the relations in our generated intersection network
were experimentally validated using HITS-CLIP or PAR-CLIP, whereas this was the case only
for 10.67% of all predicted relations. Application of a one-sided Fisher’s exact test yielded a p-
value of 0.023 indicating a statistically significant overrepresentation.

Discussion
Targets of regulated miRNAs might enhance or ameliorate the effect of TNF-α or IGF1 treat-
ment on the differentiation capacity of skeletal myoblasts. In light of the high false positive rate

Table 2. Collective targeting of cell cycle genes.

Pathway P-value List of observed genes

CYCLIN DEPENDENT KINASE INHIBITOR 1 2.65E-04 Kras, Bcl2, Chek1, Cdc6, Wee1

CELL DIVISION CYCLE 2, G1 TO S AND G2 TO M 5.94E-04 Bcl2, Chek1, Hmmr, Cdc6, Wee1

THROMBOSPONDIN 1 9.09E-04 Kras, Ptk2, Vegfa

CYCLIN B1 1.97E-03 Bcl2, Chek1, Wee1

CYCLIN A2 2.88E-03 Chek1, Cdc6, Wee1

ATAXIA TELANGIECTASIA AND RAD3 RELATED 4.65E-03 Chek1, Cdc6, Mcph1

WEE1 HOMOLOG 6.02E-03 Chek1, Wee1

BMX NON RECEPTOR TYROSINE KINASE 6.63E-03 Ptk2, Vegfa

CYCLIN DEPENDENT KINASE 7.20E-03 Kras, Chek1, Smurf1, Cdc6, Wee1

Genes which were inversely associated and potentially targeted by at least three different miRNAs are

retrieved in signal transduction pathway association (GePS analysis) such as cell cycle regulation and are

depicted with corresponding p-values.

doi:10.1371/journal.pone.0135284.t002
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of in silicomiRNA target prediction [13] it is advantageous to employ and integrate informa-
tion from the miRNA and mRNA profiling data together with bioinformatics prediction tools.
However, existing studies about the impact of inflammatory or anabolic stimuli on skeletal
myoblast differentiation focus on either mRNA or miRNA expression levels. This study
expanded the methodology to view the results in the context of joint mRNA and miRNA analy-
sis in myoblast differentiation under cytokine or anabolic influence and facilitated the elucida-
tion of the post-transcriptional regulatory networks and the prioritization of potential miRNA-
mRNA interaction pairs. To date, there has been only one other study using integrative
mRNA-miRNA analysis in the context of myoblast differentiation [37].

By applying integrated mRNA and miRNA analysis together with target prediction we
reduced the complexity of predicted miRNA-mRNA relations on average by more than 18-fold
compared to pure in silico prediction. When focusing on the miRNA subset which overlapped
on both miRNA profiling platforms we reduced the complexity by more than 40-fold. Thereby,
we enlarged the list of highly potential targets of miRNAs implicated in skeletal myoblast dif-
ferentiation foremost miR-155, miR-206, miR-322-3p/-5p, miR-335-3p/-5p, miR-351, and
miR-532-3p/-5p. Thus, the role of e.g. miR-155 in myogenic target regulation has been under-
estimated so far. Moreover, this is the first study identifying a predominant functional role of
miR-335-3p in skeletal myoblast differentiation on the basis of simultaneous analysis of
miRNA and mRNA expression data.

Furthermore, we evaluated the predicted targets based on criteria such as the number of tar-
gets or transcription factors per miRNA, the enrichment of targets in pathways and gene
expression clusters, and the indication of cooperative target regulation by several distinct miR-
NAs. We corroborated an anti-myogenic role of miR-155-5p in skeletal muscle cell differentia-
tion. So far, it had been known that miR-155 overexpression repressed expression of MEF2A
[38], which is an important pro-myogenic transcription factor [39,40]. Moreover, miR-155
overexpression down-regulated WEE1 (WEE1 homolog-S. pombe), a kinase that blocks cell-
cycle progression [38]. However, exit from the cell cycle is a prerequisite for terminal myoblast
differentiation [41].

In addition, our data corroborated a function of miR-29b-3p in muscle differentiation. It
has been reported that miR-29b-3p was down-regulated in Myotonic Dystrophy Type-1 biop-
sies compared to controls [42]. Our data support the hypothesis that down-regulation of miR-
29b-3p promotes myoblast differentiation. However, expression studies in mice with chronic
kidney disease showed that an increase in miR-29 improved the differentiation of myoblasts
into myotubes [43], which appears to contradict our findings.

On the other hand, our study provided new insights into the biological implications of miR-
155-5p and miR-29b-3p in skeletal muscle cell differentiation. Furthermore, we showed that
these two miRNAs were not primarily involved in cooperative target regulation. Instead, a
decrease in miR-155-5p expression was associated with an increased calcineurin (protein phos-
phatase 3) related gene expression. Latter is in good agreement with the known up-regulation
and pro-differentiation function of calcineurin in myoblast differentiation [44–46] as well as
muscle regeneration [47] by activating MEF2 and MyoD and inducing myogenin [48,49].

In addition, we corroborated the expression of myoblast differentiation promoting miR-
NAs, such as miR-322-3p, miR-322-5p, miR-335-3p, and miR-335-5p, which were among the
miRNAs showing the highest number of inversely associated targets and transcription factors
as well as the highest degree of cooperative target regulation. In contrast to anti-myogenic
miR-155-5p and miR-29b-3p, the pro-myogenic miR-322-3p, miR-322-5p, miR-335-3p, and
miR-335-5p were involved in down-regulation of, for example, cell cycle or growth related
pathways. There has been little evidence in the literature about the biological implications of
miR-335-3p and miR-335-5p in myoblast differentiation or its response to TNF-α or IGF1,
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respectively. MiR-335-3p was differentially expressed in myogenic progenitor cell differentia-
tion [50]. However, the biological implications remained unknown. Our study suggests that
miR-335-3p was involved in target regulation of cell division related genes as well as fibroblast
growth factor or TGF-β signaling. Thus, we provide new evidence for a significant role of miR-
335-3p in myoblast differentiation. Similarly, our data revealed involvement of miR-335-5p in
cyclin dependent kinase inhibitor and cyclin A2 regulation. MiR-335-5p was likely functionally
relevant as the cyclin A2 pathway was the top enriched pathway when analyzing all investi-
gated inversely associated miRNA targets. Furthermore, it had been shown that miR-335-5p
was up-regulated following myoblast differentiation [51] and that miR-335-5p was induced in
mdx mice and DMD patients as well as newly formed myofibers during postischemic regenera-
tion [51] and primary muscle disorders [52,12]. Interestingly, our data revealed enrichment of
TGF-β associated targets for miR-335-3p. However, other studies indicated that miR-335-5p
targeted genes in the TGF-β non-canonical pathways in neuroblastoma cells [53]. Further-
more, miR-335-5p had been reported as tumor suppressor [54,55] or tumor promoter [56].
Besides, miR-335-5p was a pro-apoptotic and antimitogenic factor [57] in the brain and
induced cell cycle arrest in human cancer cells [58] or suppressed cell proliferation in prostate
cancer [59]. Thus, we conclude, based on our target enrichment analysis and known functions
within other cell types, that miR-335-5p might play a role in cell cycle withdrawal during myo-
blast cell differentiation. In addition, we revealed that miR-335-5p had the highest number of
potential targets and the highest number of targeted transcription factors. We hypothesize that
miR-335-3p and miR-335-5p played a significant role in post-transcriptional regulation of
gene expression in differentiating myoblasts and TNF-α response.

Furthermore, our data showed that inversely associated miR-322-3p targets were involved
in the regulation of, for example, cell cycle, cancer or ataxia telangiectasia. These findings pro-
vide new indications into the biological function of miR-322-3p as there have been no explicit
functional studies on miR-322-3p in muscle cells yet. In contrary, it has been reported that
miR-322-5p and miR-503 were induced during myogenesis and promoted cdk2 inhibition by
down-regulating Cdc25A, the phosphatase responsible for removing inhibitory phosphoryla-
tion of cdk2 [60]. We corroborated inverse association of Cdc25A and miR-322-5p. We
showed that Cdc25A was associated with cyclin signaling, cell division cycle, and cyclin depen-
dent kinase pathways which is in harmony with studies in other cell types describing a role of
miR-322-5p in the regulation of the cell cycle and cell growth [61–63]. Moreover, we confirmed
targets of miR-322-5p in myoblast differentiation which have been published in other tissues
and cell types including Chk1 [61], Wee1 [62], cyclin D1 [64], and cyclin E1 [65]. However,
inverse association of miR-322-5p and protein level but not mRNA abundance of cyclin E1
was observed [65]. We showed inverse association of cyclin E1 mRNA. In addition, our data
revealed a negative impact of TNF-α exposure on the expression of pro-differentiative miR-
322-3p. Latter could be explained by studies showing that miR-322-5p expression was inhib-
ited by NF kappa B activity [66]. However, in other inflammatory contexts, such as TWEAK
treatment of myotubes, miR-322-5p was upregulated [67]. Consistent with our findings, miR-
322-5p was upregulated in anti-inflammatory drug treated myotubes in a model of dexametha-
sone induced muscle atrophy [68]. Thus, our data affirmed that miR-322-5p was sensitive to
pro-inflammatory stimuli in the context of skeletal muscle.

In summary, we presented several new inversely associated genes of for example miR-335-
3p, miR-335-5p, miR-322-3p, and miR-322-5p with emphasis on the regulation of the cell
cycle-related pathways. Furthermore, we showed that inter alia miR-335-3p, miR-335-5p,
miR-332-3p, and miR-332-5p were downregulated by TNF-α treatment whereas IGF1 had no
significant impact on expression levels of these miRNAs. A study by Dmitriev et al. [37], which
used integrative analysis of mRNA and miRNA expression data during human myoblast
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differentiation, did not identify differential regulation of miR-335 or miR-322 (miR-424 in
human). Moreover, Dmitriev et al. [37] identified different functional classes of targets com-
pared to our study. However, miRNA targets associated with e.g. cell cycle regulations were
retrieved in enriched pathways as well. Differences between our study and the results published
by Dmitriev et al. [37] may result from species differences.

One of the challenges to understand miRNA-mediated regulation is to identify co-regulat-
ing miRNAs that simultaneously regulate their target genes in a network perspective [69]. MiR-
NAs with similar characteristics such as co-expression [17] or concordance between targets
[69] are predicted to target a higher number of mRNAs cooperatively than unrelated miRNAs
[17]. This study revealed that several targets were inversely associated to at least three poten-
tially targeting miRNAs, which might indicate that these miRNAs synergistically acted as mod-
ulators of myoblast cell differentiation and response to TNF-α. Particularly, miR-335-3p, miR-
322-5p, and miR-322-3p predominated collective regulation of genes including transcription
factors. Based on enrichment analyses these miRNAs seemed to function cooperatively in, for
example, cyclin dependent kinase inhibitor and cyclin signalling, as well as cell division cycle
regulation. In concordance with these functional indicators we found Hmga2 which was coop-
eratively targeted by five inversely associated miRNAs. Hmga2 was highly and specifically
expressed in proliferating skeletal myoblasts and directly regulated the RNA-binding protein
IGF2BP2 during myoblast differentiation [70]. This study highlighted the massive and redun-
dant targeting of Hmga2 expression by miRNAs during myotube formation. It had been con-
firmed that Hmga2 declined during fusion of myoblasts into myotubes and that Hmga2
overexpression promoted myoblast growth and that the HMGA2-IGF2BP2 axis functioned as
a key regulator of skeletal muscle development [70]. Another transcription factor, Ctbp2, was
targeted by five miRNAs which strongly suggested significant biological implications in myo-
blast differentiation. Moreover, CtBP proteins functioned as corepressors, which repressed
transcription by interacting with ZEB [71], a negative regulator of muscle differentiation [72].
Interestingly, it had been verified that the CtBP/ZEB complex was efficiently regulated by the
miR-141-200c cluster which simultaneously targeted several protein components of the protein
complex [16]. The study of Sass et al. [16] indicated a coordinate posttranscriptional regulation
of protein complexes by miRNAs. Our data support the orchestrated regulation of an individ-
ual component of the complex, namely Ctbp2, by different miRNA families. Taken together,
our study highlighted the combinatorial effects of myoblast differentiation-associated miRNAs
outlining a complex post-transcriptional regulatory network. Moreover, cooperativity of miR-
NAs was indicated by co-expression, their shared transcription factors, as well as partly func-
tional coherence of target genes. However, it remains an open question whether the miRNAs
function rather synergistically or additive in post-transcriptional target regulation of skeletal
muscle cell differentiation and its response to TNF-α or IGF1. Nevertheless, it is expected that
all inversely associated miRNAs which may collectively target mRNAs have a high probability
to be required for fine-tuning gene expression [16].

Besides the valuable benefits of the suggested integrative approach the method bears some
limitations with respect to the validity of mRNA-miRNA relationship predictions. Integrative
analysis of mRNA and miRNA profiling data cannot entirely exclude false positives as some
gene regulations might be due to indirect effects other than miRNA regulation such as tran-
scription factor regulation. Therefore, cross-linking immunoprecipitation data derived from
the same set of experiments are needed to holistically validate the miRNA-target interactions
predicted by our method. However, we were able to show that our integrative analysis of
expression data can yield a more reliable set of miRNA-target relations in terms of experimen-
tal validation than sequence-based in silico target predictions only.
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Conclusions
To our knowledge, this is the largest transcriptomic analysis of the impact of TNF-α and IGF1
on in vitro skeletal myoblast differentiation. Moreover, we derived indications for functional
mRNA-miRNA relationships by integrated data analysis and narrowed down the complexity
of predicted miRNA-mRNA relations. We identified significant involvement of miRNAs
which have not been described as major players in post-transcriptional regulation of myo-
genic differentiation yet. Moreover, our data suggest that miRNAs exert joint regulatory func-
tions on gene expressions. The consideration of the miRNA-specific level of cooperative
target regulation may facilitate the selection of promising miRNA candidates for therapeutic
interventions.

Supporting Information
S1 Fig. Principal component analysis revealed treatment effects. Principal component analy-
sis of gene expression analysis during skeletal myocyte differentiation with control, TNF-α,
and IGF1 treatment. Myoblasts were shown in light blue. Myotubes were depicted in green.
Myotubes with TNF-α treatment were shown in red while myotubes treated with IGF1 were
presented in dark blue. PC 1 explained most of the variance of myocyte differentiation. PC 2
explained most of the variance induced by TNF-α. PC 3 explained most of the variance caused
by IGF1 treatment.
(TIF)

S2 Fig. miRNA correlation of selected miRNAs. The miRNA heatmap and cluster analysis of
21 selected miRNAs includes all samples: control, TNF-α and IGF1. Perfect correlation is indi-
cated by a value of 1. The majority of the selected miRNAs shows high correlation with the
other selected miRNAs. Two inversely regulated cohorts of miRNAs appear to be involved in
differentiation and TNF-α or IGF1 response of murine skeletal muscle cells. Of the selected
candidates the majority of miRNAs was jointly upregulated during differentiation.
(TIF)

S3 Fig. Reduction of complexity of possible miRNA-mRNA relationships. (A) The sum of
predicted miRNA-mRNA interactions of a subset of 21 selected differentially expressed miR-
NAs by computational prediction (miRanda) only or by integrative analysis, respectively. The
number of possible miRNA-mRNA interactions was significantly reduced by integrative analy-
sis compared to solely computational prediction. (B) Each miRNA showed a specific number
of targets predicted by miRanda (black) or as a result of integrative analysis based on miRNA
microarray profiling data (red), miRNA qPCR (green) profiling data or the intersection (yel-
low) of microarray and qPCR data. The average numbers of targeted genes per miRNA were
depicted for each prediction method.
(TIF)

S4 Fig. Targeted transcription factors in the TGF-beta pathway. Targeted transcription fac-
tors with a function in the TGF-beta pathway were depicted with interconnections based on
co-citation. Circled transcription factors are significantly regulated during differentiation or
TNF-α or IGF1 response.
(TIF)

S5 Fig. Enriched pathways and GO terms contained targets of distinct miRNAs. Selected
enriched GO terms or KEGG pathways are shown, which were identified based on the analysis
of all inversely correlated miRNA-mRNA relations of the 21 miRNA subset. Analyses revealed
that the number of targets, which were associated with enriched pathways or GO terms, greatly
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varied per miRNA indicating specific as well as common functions of individual miRNAs.
(TIF)

S6 Fig. Probability of selecting functionally relevant miRNA-target relations. Evaluation of
results from integrative analysis increases the probability of selecting miRNA-target relations
with a high chance of being functionally relevant. The pie chart illustrates that about 14% of
the selected miRNA-target interactions have previously been validated. We selected nine miR-
NAs and 21 target genes of particular interest resulting in 36 miRNA-mRNA relations based
on integrated data analysis. Of these 36 relations five miRNA-mRNA interactions have been
validated previously.
(TIF)

S1 Table. Signal transduction pathway associations of genes identified by principal compo-
nents. Table showing enrichment of signal transduction pathway associations of PC 2 and PC
3 with p-values and the list of observed genes.
(XLSX)

S2 Table. miRNA target expressions had a function in distinct pathways. Target enrichment
in (A) genes retrieved in signal transduction pathway associations by co-citation on the sen-
tence level, as well as (B)MeSH disease terms (# genes (observed): number of genes of the
input set which have the respective annotation; # genes (expected): number of genes expected
with the respective annotation which is calculated based on the total number of genes with the
respective annotation and the number of genes of the input set with the respective annotation;
# genes (total): total number of genes with the respective annotation). Only the top 20 terms
with p-values< 0.01 within the respective list were shown.
(DOCX)

S3 Table. Pathway enrichment of targeted transcription factors. Enrichment analysis of tar-
geted transcription factors for signal transduction pathway associations by co-citation.
(DOCX)

S4 Table. Gene expression clusters and their targeting miRNA-relations. Differentiation- /
TNFα- / IGF1-associated miRNAs potentially targeted inversely correlated genes which clus-
tered by self-organizing tree algorithm (SOTA) analysis. Cluster analysis was performed for
0–72 h differentiation / treatment, however, only expression values for 24 h differentiation /
treatment were depicted. MiRNA-mRNA relations were depicted for: (A) cluster of genes
which were up-regulated in very early differentiation, (B) cluster of genes which were up-regu-
lated in later differentiation, (C) genes which were down regulated during very early or later
differentiation, (D) genes which were down-regulated later during differentiation.
(DOCX)

S5 Table. Enrichment of clusters of miRNA target expressions in gene ontology terms and
pathways. SOTA analysis of gene expression data of skeletal myoblast differentiation and
TNF-α and IGF1 treatment (0–72 h) revealed clusters of gene sets which were targeted by dif-
ferentiation-associated miRNAs. Scaled expressions of miRNA-mRNA relations based on inte-
grative analysis were depicted for 24 h differentiation / treatment. Clustered targets were
retrieved in signal transduction pathway associations or in GO term ‘biological processes’: (A),
(B) cluster of genes which were up-regulated in very early differentiation, (C), (D) cluster of
genes which were up-regulated in later differentiation, (E), (F) genes which were down regu-
lated during very early or later differentiation, (G), (H) genes which were down-regulated later
during differentiation.
(DOCX)
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S6 Table. Pathway enrichment of targets of selected miRNAs. Enrichment analysis of signal
transduction pathway associations of (A)miR-206-3p, (B)miR-322-3p, (C)miR-322-5p, (D)
miR-335-3p, (E)miR-335-5p, (F)miR-351-5p, (G)miR-503-5p, (H)miR-133a-3p/miR-133b-
3p, (I)miR-155-5p.
(DOCX)

S7 Table. Enrichment of collectively targeted genes in GO and disease terms.We showed
results for genes targeted by at least three miRNAs and refer to these as collectively targeted
genes. Collectively targeted genes were associated with (A) GO terms ‘biological processes’. (B)
The top 20 enriched MeSH disease terms of collectively targeted genes.
(DOCX)

S8 Table. MiRNA-mRNA relations of high interest. Table of miRNAs showing the selected
miRNA-mRNA relations of high interest based on the selection workflow depicted in Fig 1.
Column “predicted to be targeted by. . ..” is based on data of this study whereas column “previ-
ous evidence. . ..” is based on literature search.
(DOCX)
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