Note to Readers: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Associations between Long-Term Air Pollutant Exposures and Blood Pressure in Elderly Residents of Taipei City: A Cross-Sectional Study

Szu-Ying Chen, Chang-Fu Wu, Jui-Huan Lee, Barbara Hoffmann, Annette Peters, Bert Brunekreef, Da-Chen Chu, and Chang-Chuan Chan

Table of Contents

- **Table S1.** Summary of the statistics for land use variables of the exposure modelling for six air pollutants.
- **Table S2.** Spearman correlation coefficients for air pollutants and the total lengths of major roads in 25, 50, 100, and 500 buffer zones.
- **Table S3.** Associations of systolic and diastolic blood pressures with an interquartile range increment of particulate matter and nitrogen oxides.
- **Table S4.** Subgroup analyses for associations of systolic and diastolic blood pressures with increments of annual averages of particulate matter and nitrogen oxides stratified by physician-diagnosed hypertension.

Table S1. Summary of the statistics for land use variables of the exposure modelling for six air pollutants.

Air pollution	Land use equation	R ² of model	R ² validation	RMSE (validation)	Number of sites	Measured concentration
PM ₁₀	$34.41 + 3.41 \times 10^{-2} \times \text{road area}$, 50 m + 1.10 × $10^{-4} \times \text{industrial}$	0.87	0.74	3.05 µg/m ³	20	48.6 ± 5.9
	area, 5000 m + 2.46 \times 10 ⁻⁵ \times commercial area, 1000 m + 1.16 \times 10 ⁻³ \times construction area 100 m					[39.2 - 64.0] µg/m³
$PM_{2.5-10}$	$13.88 + 1.20 \times 10^{-6} \times \text{industrial area, } 5000 \text{ m} + 2.23 \times 10^{4} $	0.65	0.52	3.15 µg/m ³	20	23.3 ± 3.1
	inverse distance squared to the nearest elevated road + 2.97 ×					[18.6 - 31.3]
	10 ⁻⁵ × commercial area, 1000 m					μg/m³
$PM_{2.5}$	13.81 + 2.23 × 10 ⁻³ × road area, 50 m + 72.07 × inverse distance	0.95	0.91	1.75 µg/m³	20	26.0 ± 5.6
	to the nearest major road + 9.89 × 10 ⁻⁵ × industrial are, 500 m +					[17.4 - 40.6]
	$2.22 \times 10^{-3} \times \text{construction}$ area, $100 \text{ m} + 1.13 \times 10^{-5} \times \text{residential}$					μg/m³
	area, 1000 m - 5.62 × 10 ⁻⁷ × river area, 5000 m			5 1		
$PM_{2.5}$	$1.07 + 5.76 \times 10^{-6} \times \text{transport building area, } 100 - 500 \text{ m} + 8.69 \times 10^{-6} \times 10^{-6$	0.96	0.92	0.11 10 ⁻⁵ m ⁻¹	20	2.0 ± 0.4
absorbance	10^{-4} × road area, 25 m + 3.75 × 10^{-5} × transport building area, 100					[1.2 - 2.6]
	m + 4.40 × 10^{-6} × industrial area, 500 m + 2.17 × 10^{-5} × length					10 ⁻⁵ m ⁻¹
	elevated road, 1000 m + 6.93 × 10 ⁻⁵ × commercial area, 100 m			-		
NO_x	47.57 + 0.28 × length major road, 25 m - 2.91 × 10 ⁻⁴ × urban green	0.81	0.75	10.70 μg/m³	40	72.4 ± 22.5
	area, 300 m - 3.43 × 10 ⁻⁶ × urban green area, 300 – 5000 m + 1.24					[21.9 - 113.0]
	\times 10 ⁻³ × length major road, 50 – 500 m + 5.80 × 10 ⁻² × length major					μg/m³
	road, 25 – 50 m - 1.32 × 10 ⁻⁴ × natural area, 500 m					
NO_2	$20.26 + 4.11 \times 10^{-5} \times \text{natural area}$, 500 m + 0.14 × length major	0.74	0.63	6.36 µg/m³	40	48.9 ± 12.2
	road, 25 m + 3.60 × 10 ⁻⁵ × commercial-residential or					[16.7 - 75.8]
	industrial-residential mixing area, 500 m - 8.87 × 10 ⁻⁴ × urban					μg/m³
	green area, 100 m					

The R² validation refers to the leave-one-out cross validation.

Table S2. Spearman correlation coefficients for air pollutants and the total lengths of major roads in 25, 50, 100, and 500 buffer zones.

	PM ₁₀	PM _{2.5-10}	PM _{2.5}	PM _{2.5} absorbance	NO _x	NO ₂	MRL_25	MRL_50	MRL_100	MRL_500
PM ₁₀	1.00	0.67	0.40	0.62	0.53	0.53	0.35	0.46	0.39	0.48
PM _{2.5-10}		1.00	-0.06	0.43	0.34	0.37	0.09	0.15	0.32	0.60
PM _{2.5}			1.00	0.25	0.34	0.21	0.28	0.39	0.28	0.05
PM _{2.5} absorbance				1.00	0.50	0.47	0.50	0.40	0.35	0.40
NO _x					1.00	0.82	0.61	0.63	0.56	0.60
NO ₂						1.00	0.57	0.47	0.41	0.53
MRL_25							1.00	0.80	0.50	0.13
MRL_50								1.00	0.72	0.18
MRL_100									1.00	0.38
MRL_500										1.00

MRL_25, the lengths of all major roads in a 25 m buffer; MRL_50, the lengths of all major roads in a 50 m buffer; MRL_100, the lengths of all major roads in a 100 m buffer; MRL_500, the lengths of all major roads in a 500 m buffer.

Table S3. Associations of systolic and diastolic blood pressures with an interquartile range increment of particulate matter and nitrogen oxides.

Evrocures	IQR	Models	Systolic BP	Diastolic BP	
Exposures			mm Hg (95% CI)	mm Hg (95% CI)	
PM ₁₀	5.3 μg/m ³	Crude	0.11 (-0.16, 0.39)	0.39 (0.24, 0.55)	
		Main	0.15 (-0.08, 0.38)	0.38 (0.23, 0.53)	
		Extended	0.21 (-0.04, 0.45)	0.40 (0.24, 0.55)	
PM _{2.5-10}	5.2 μg/m ³	Crude	-0.11 (-0.42, 0.19)	0.51 (0.34, 0.69)	
		Main	-0.03 (-0.29, 0.22)	0.47 (0.31, 0.64)	
		Extended	-0.02 (-0.27, 0.24)	0.47 (0.31, 0.64)	
PM _{2.5}	4.0 μg/m ³	Crude	-0.01 (-0.23, 0.20)	-0.07 (-0.20, 0.05)	
		Main	0.07 (-0.11, 0.25)	-0.02 (-0.14, 0.09)	
		Extended	0.09 (-0.09, 0.28)	-0.04 (-0.16, 0.08)	
PM _{2.5} absorbance	0.4 (10 ⁻⁵ m ⁻¹)	Crude	-0.03 (-0.30, 0.24)	0.30 (0.14, 0.45)	
		Main	0.11 (-0.11, 0.34)	0.28 (0.14, 0.43)	
		Extended	0.16 (-0.08, 0.40)	0.29 (0.13, 0.44)	
NO _x	17.5 µg/m ³	Crude	-0.14 (-0.37, 0.10)	0.29 (0.15, 0.45)	
		Main	-0.01 -0.21, 0.19)	0.30 (0.17, 0.42)	
		Extended	0.04 (-0.19, 0.27)	0.35 (0.20, 0.49)	
NO_2	6.7 μg/m³	Crude	-0.03 (-0.27, 0.21)	0.44 (0.30, 0.58)	
		Main	0.09 (-0.11, 0.29)	0.43 (0.30, 0.56)	
		Extended	0.15 (-0.07, 0.37)	0.49 (0.35, 0.63)	

The main models were calculated by generalized linear models, adjusted for sex, age, age mean-centered square, BMI, BMI mean-centered square, smoking status, alcohol consumption, education, hypertension, and diabetes. The extended models were further adjusted for traffic proximity in addition to covariates in the main models.

Table S4. Subgroup analyses for associations of systolic and diastolic blood pressures with increments of annual averages of particulate matter and nitrogen oxides stratified by physician-diagnosed hypertension.

	Systolic BP, m	m Hg (95% CI)	Diastolic BP, mm Hg (95% CI)		
Exposures (increment)	Physician-diagnosed hypertension (n=12,702)	No physician-diagnosed hypertension (n=15,050)	Physician-diagnosed hypertension (n=12,702)	No physician-diagnosed hypertension (n=15,050)	
PM ₁₀ (10 μg/m ³)	0.50 (-0.25, 1.25)	0.18 (-0.49, 0.85)	0.96 (0.57, 1.36)	0.30 (-0.05, 0.64)	
PM _{2.5-10} (5 μg/m ³)	0.03 (-0.39, 0.46)	-0.08 (-0.46, 0.30)	0.56 (0.33, 0.78)	0.29 (0.10, 0.49)	
PM _{2.5} (5 μg/m ³)	0.04 (-0.34, 0.42)	0.13 (-0.21, 0.48)	-0.02 (-0.22, 0.19)	-0.04 (-0.22, 0.14)	
PM _{2.5} absorbance (10 ⁻⁵ m ⁻¹)	0.11 (-0.84, 1.06)	0.18 (-0.67, 1.04)	0.90 (0.40, 1.40)	0.34 (-0.10, 0.78)	
NO_x (20 µg/m ³)	-0.09 (-0.48, 0.30)	0.08 (-0.27, 0.43)	0.39 (0.16, 0.62)	0.31 (0.10, 0.51)	
NO_2 (10 µg/m ³)	0.06 (-0.45, 0.57)	0.25 (-0.21, 0.71)	0.76 (0.45, 1.06)	0.55 (0.28, 0.82)	

Generalized linear models were used, adjusted for sex, age, age mean-centered square, BMI, BMI mean-centered square, smoking status, alcohol consumption, education, and diabetes.